12 United States Patent

Moulton

US007272602B2

(10) Patent No.: US 7,272,602 B2
45) Date of Patent: Sep. 18, 2007

(54) SYSTEM AND METHOD FOR
UNORCHESTRATED DETERMINATION OF
DATA SEQUENCES USING STICKY BYTE
FACTORING TO DETERMINE
BREAKPOINTS IN DIGITAL SEQUENCES

(75)

(73)

(%)

(21)

(22)

(65)

(63)

(60)

(1)

(52)
(58)

(56)

Inventor:

Assignee:

Notice:

Filed:

Int. CI.
GO6l 17/30
GOo6l 7/00

US. Clo

Field of Classification Search
See application file for complete search history.

3,608,647 A
4,215,402 A
4,404,676 A
4,649,479 A
4,761,785 A

Gregory Hagan Moulton, Irvine, CA

(US)

EMC Corporation, Hopkinton, MA

(US)

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 568 days.

Appl. No.: 10/861,796

Jun. 4, 2004

Prior Publication Data

US 2004/0225655 Al Nov. 11, 2004

Related U.S. Application Data

(2006.01)
(2006.01)

References Cited

U.S. PATENT DOCUM

6/1972
7/1980
9/1983
3/1987
8/1988

1304

1306
AN

! Input Digita k
(Snumnm {a.g. F’
a Flig)

1308

1310

Continuation of application No. 09/777,149, filed on
Feb. 5, 2001, now Pat. No. 6,810,398.

Provisional application No. 60/245,920, filed on Nov.
6, 2000.

None

SNTTS
Evangelist1 et al. 707/1
Mitchell et al. 711/216
DeBenedictis
Advani et al. 718/1
Clark et al. 714/805

4,887,204 A 12/1989 Johnson et al. 707/10

4,887,235 A 12/1989 Holloway et al. 711/216

4,897,781 A 1/1990 Chang et al. 707/201

4,901,223 A 2/1990 Rhynecoeeninininn. 345/475

4,929,946 A 5/1990 O’Brien et al.

4,982,324 A 1/1991 McConaughy et al. 709/222
(Continued)

FOREIGN PATENT DOCUMENTS

WO PCT/AU96/00081 8/1996

OTHER PUBLICATTONS

Rabin, M.O. “Fingerprinting by Random Polynomials™, Technical
Report TR-15-81, Department of Computer Science, Harvard Uni-
versity, 1981.%

(Continued)

Primary Examiner—Luke S Wassum
(74) Attorney, Agent, or Firm—Workman Nydegger

(57) ABSTRACT

A system and method for unorchestrated determination of
data sequences using “sticky byte” factoring to determine
breakpoints 1n digital sequences such that common
sequences can be identified. Sticky byte factoring provides
an eflicient method of dividing a data set ito pieces that
generally yields near optimal commonality. This 1s eflectu-
ated by employing a rolling hashsum and, 1n an exemplary
embodiment disclosed herein, a threshold function to deter-
ministically set divisions 1n a sequence of data. Both the
rolling hash and the threshold function are designed to
require minimal computation. This low overhead makes 1t
possible to rapidly partition a data sequence for presentation
to a factoring engine or other applications that prefer sub-
sequent synchronization across the data set.

38 Claims, 11 Drawing Sheets

1316

Yes

1314

5hifl Exiating-32 ./
Bi Hash Value

Crver O BH

US 7,272,602 B2

Page 2
U.S. PATENT DOCUMENTS 5,802,264 A 9/1998 Chen et al. 714/6
5,802,297 A 9/1998 Engquistcceeenennn. 709/212

5,005,122 A 4/1991 Griflin et al. 709/203 5,909,677 A * 6/1999 Broder et al. 707/3
5,018,060 A 5/1991 Gelb et al. 707/205 5,933,104 A {/1999 Kimura
5,089,958 A 2/1992 Horton et al. T14/5 5,978,791 A 11/1999 Farber et al. 707/2
5,109,515 A 4/1992 Laggis et al. ... 707/10 5,990,810 A * 11/1999 Williamsc..cu........ 341/51
5,133,065 A 7/1992 Chefletz et al. 714/2 6,014,676 A 1/2000 McClainceeeueeenn... 707/204
5,146,568 A 9/1992 Flaherty et al. 703/24 6,016,553 A 1/2000 Schneider et al. 714/21
5,155,835 A 10/1992 Belsan 711/114 6,029,168 A 2/2000 FIEY wevviveeeeeeeeeeeenenene, 707/10
5,162,986 A 11/1992 Graber et al. 700/17 6,044,220 A 3/2000 Breternitz, Ir.
5,163,148 A 11/1992 Wallscccvvveniinanne. 707/204 6,085,298 A 7/2000 Ohran ... T11/162
5,210,866 A 5/1993 Milligan et al. 714/6 6,122,754 A 9/2000 Litwin et al.ccoouen...... 714/4
5,218,695 A 6/1993 Noveck et al. 707/205 6,141,421 A 10/2000 Takaragi et al.
5,239,637 A 8/1993 Davis etal. 7117165 6,230,155 B1* 5/2001 Broder et al. ...cuun.......... 707/3
5,239,647 A 8/1993 Anglin et al. 707/205 6,268,809 Bl 7/2001 Saito
5,239,659 A 8/1993 Rudeseal et al. 714/6 6,307,487 B1 10/2001 Luby
5,263,154 A 11/1993 Eastridge et al. 714/6 6,320,520 Bl 112001 Luby .cccvveeeeeveeenne.. 341/50
5,276,860 A 1/1994 Fortier et al. 714/6 6,374,250 B2* 4/2002 Ajtai et al. ovveeueeenne... 707/101
5,276,807 A /1994 Kenley et al. 707/204 6,611,213 BL* 82003 Bentley et al. 341/51
5,278,838 A 1/1994 Ngetal ..o, 714/6 6,667,700 Bl * 12/2003 McCanne et al. 341/51
5,305,380 A 4/1994 Palmer 382/305 6,704,730 B2* 3/2004 Moulton et al. 707/6
5317,728 A 5/1994 Tevis et al. 707/204 6,810,398 B2 * 10/2004 Moultoncoceeeeeveenn.. 707/6
5,325,505 A 6/1994 Hoflecker et al. 707/101 6,828,925 B2* 12/2004 McCanne et al. 341/51
5,347,653 A 9/1994 Flynn etal. 707/203 6,961,009 B2* 11/2005 McCanne et al. 341/51
5,355,453 A 10/1994 Row et al. 709/219 7.116,249 B2* 10/2006 McCanne et al. 341/50
5,367,637 A 1171994 Wel woeeevvvvininininiianennes 710/56 7001/0037323 Al 11/2001 Moulton et al.
5,367,698 A 11/1994 Webber et al. 709/203 2002/0010797 Al 1/2002 Moulton
5,379418 A 1/1995 Shimazaki et al. 714/11 7002/0152218 Al 10/2002 Moulton
5,403,639 A 4/1995 Belsan et al. 707/204 2004/0148306 Al* 7/2004 Moulton et al. 707/101
5,404,508 A 4/1995 Konrad et al. 707/202 2005/0091234 Al* 4/2005 Hsu et al. ..ccoevveee.... 707/100
5,404,527 A 4/1995 TIrwin et al. 709/222
5,448,718 A 9/1995 Cohnetalccvenen..... 711/4 OTHER PUBLICATIONS
5,452,440 A 9/1995 Salsburgcceeeeen. 711/136
5,452,454 A /1995 Basu ..coocovvviiiiiiiiiiiininnn, 713/2 Karp, R.M. and M.O. Rabin “Efficient Randomized Pattern-Match-
5,454,099 A 9/1995 Myers et al. 714/6 ing Algorithms”m IBM Journal of Research and Development, vol.
5,479,654 A 12/1995 Squibbc.ccoeieienniin, 707/201 31, No. 2, Mar. 1987, pp. 249-260.*
5485474 A * 1/1996 Rabimnccovvvvninnnnn.n. 714/762 Broder, A.Z. “On the Resemblance and Containment of Docu-
5,487,160 A 1/1996 BemiS ..coovevvvvvvnvnninnnnn. 711/114 ments”’, Proceedings of the IEEE Conference on Compression and
5497483 A 3/1996 Beardsley et al. 714/1 Complexity of Sequences, Jun. 11-13, 1997.*
5513314 A 4/1996 Kandasamy et al. 714/6 Spring, N.T. and D. Wetherall “A Protocol-Independent Technique
5,515,502 A 5/1996 Woodccoevivnininnennnnn, 714/15 for Eliminating Redundant Network Traffic”, Proceedings of the
5,521,597 A 5/1996 Dimitri Conference on Applications, Technologies, Architectures and Pro-
5,524,205 A 6/1996 Lomet et al. 714/16 tocols for Computer Communication, 2000, pp. 87-95.*
5,532,694 A * 7/1996 Mayers et al. 341/67 Tridgell, A. “SpamSum Overview and code”, downloaded from
5,535,407 A 7/1996 Yanagawa et al. 705/39 samba.org/ftp/unpacked/junkcode/spamsum, 2002 .*
5,544,320 A 8/1996 Konradeunenenn.. 709/203 Schleimer, S., D.S. Wilkerson and A. Aiken “Winnowing: Local
5,559,991 A 9/1996 Kanficooviiinininn, 711/162 Algorithms for Document Fingerprinting”, SIGMOD 2003, Jun.
5,574,906 A 11/1996 MOITIS .evivinienienennnenn, 707/1 9-12, 2003 .*
5,586,322 A 12/1996 Beck et al. 707/200 Scherrer, W. and M. Chuah “Comparison of Three Sliding-Window
5,604,862 A 2/1997 Midgely et al. 714/6 Based Worm Signature Generation Schemes”, Technical Paper
5,606,719 A 2/1997 Nichols et al. 710/56 LU-CSE-05-025, CSE Department, Lehigh University, 2005.*
5,608,801 A 3/1997 Auello et al. Kornblum, J. “Identifying Almost Identical Files Using Context
5,640,561 A 6/1997 Satoh et al. 707/202 Triggered Piecewise Hashing”, Digital Investigation, vol. 35, pp.
5,649,196 A 7/1997 Woodhill et al. 707/204 S91-S97 .*
5,659,743 A 8/1997 Adams et al. 707/205 Tridgell, Andrew, Efficient Algorithms for Sorting and Synchroni-
5,659,747 A 8/1997 Nakajima 713/1 zation, Apr. 2000, pp. 1-viu, pp. 1-106.
5,696,901 A 12/1997 Konradccvevvennnenn.. 709/203 Aho, Alfred V., Hopcroft, John E., and Ullman, Jeffrey D., Data
5,742,811 A 4/1998 Agrawal et al. Structures and Algorithms, 1983, Chapter 4, Addison-Wesley Pub-
5,751,936 A 5/1998 Larson et al. 714/7 llShlIlg Companyj Readjng, Massachusetts, Pp. 107-151.
5,754,844 A 5/1998 Fuller ...ccoovvvviniiviiinnnnnnnn. 707/6 HegazytI AEFA. “Searching Large Textual Files for Near Ma’[ching
5,765,173 A 6/1998 Cane et al. 707/204 Patterns™, Dissertation, School of Engineering and Applied Science,
5,771,354 A 6/1998 Crawford 709/229 George Wahington UﬂiV@I’Sity, Jul. 2.4'_11| 1985,
5,778,395 A 7/1998 Whiting et al. 707/204
5,794,254 A 8/1998 McClain 707/204 * cited by examiner

US 7,272,602 B2

Sheet 1 of 11

Sep. 18, 2007

U.S. Patent

ch

INOGMOVH
13INH3LNI

U.S. Patent Sep. 18, 2007 Sheet 2 of 11 US 7,272,602 B2

IF

116

RAIN Racks

< n [! g r r
- il & —T
Al

]

Internal Network

: S i

E uununuunnunn
-..f‘

ﬁ | oooooooono

é E - &'/‘

RAIN Racks

_
—
=
S—
—]
= |
 S—
| S—
—
—
 m—
 ——
—J
 m—

Internet Based Network

122
AN
0
Fig. 2

122

RAIN Racks

IBM Compatible

104
Internal Network

==
— =
= |
—
=
= |
—
—
—
—
—
—
—
—

= [

Supercompuier
ar Data Center

O
o
-—

¢le

g1eq
Buipuodsauo)
pue senjep Ysey

Jo eseqeleq]

US 7,272,602 B2

aseqejeq o} 1S
AloyeJ1(104 ejeq

00S

pue yseH ppy
-
e SdA ¢
= oseqgereq U
e 1517 AJO}23.I(] 10}
~— anjea yseH
Qs m_
W
7

906G

1S Aoj0ey|Q jo
-.nU/ SIUBUOT) UO UNy
I~ LonOUN yse
~ ouny yseH
-3
- 0S
53 Aioj0aaQ
v € U] waj| yoe3

10} ysSeH s.aii4

pue ejeq-ejon

914 ‘saweN 94

JO 1517 21BNWNo0Y
c0S

1811 AsoyaaaQ
B 0} yseH 1si Aowang
10 yseH 8ji4 ppy

U.S. Patent

91¢

S999|d4 PBySeH

O} 8j)id seaug

AN

V] T4

ON

¢le

s Alcpalg e
0} YsSeH 5.9)i4 PPV

A
gseqeien
Ui ¢ Qji4
JO} anjeA

uopouN

YSEH WI0LD

9|
v 404 BlEQ

WasAS 2114 yseH

Ojuj 9jl4 Jow3

Eleq
Suipuodsanon
pue saneA yseH
10 8seqeeq

US 7,272,602 B2

Sheet 4 of 11

Sep. 18, 2007

U.S. Patent

90e—7

- 803ld Yoe3 0) Jaqunp
anbjun Ajeoysiieqeqold ubissy o
uonaun4 yseH ybnoiy possed
5| aousnbag jeNbiqg Jo 8231d Yyoe3

aJNiN4 U} LOWWOYD

up Bugeg sedaid JO pooyyexi Jo
WIASAG By} uj S898|d JaYIQ Yim
Alljleuowil0) U0 paseqg $o09|d
ol papiAIQ St souanbag (elbig

401>
ejleg
aounbag
[eudia
¢0t

$908ld paysey
o aouanbag ejeqg 10

aii4 40} pouiepy dnxeasg

US 7,272,602 B2

Sheet 5 of 11

Sep. 18, 2007

U.S. Patent

14017

V 10 4yseH

§809\4 J0 anjeA

YSBH Yim Sa08(d [|€ J0) ONnjEA 4SBH
6i6uiS J0 9ouUdeAINh] Bumoyg pi0day

aseqgejeq 0)
pappy ejeq Buipuodsano) pue sanjep
YSEH MIN PUB WaSAS Ul SenjeA UseH
Bugs|x3 0} pasedwon) aauenbag |epbig
B JO 82314 Yde3 10) senjeA ysey

eieq
Bujpuodsaniod

pue SanjeA ysey

JO eseqejeq

US 7,272,602 B2

Sheet 6 of 11

Sep. 18, 2007

U.S. Patent

] 25

0
90t

A [e/

0Lt

/.v GV 228|d by 828id gV 99did ! IV 209ld

:se pajuasasdal
s1 8ouanbag |e}big Jo uoISISA MBN

© :se pajuaseaidsel s} aouanbag [eibig

US 7,272,602 B2

Sheet 7 of 11

Sep. 18, 2007

U.S. Patent

eje
._‘u_& d |
0L# €1e0 — =
00 o# 10) YsSeH
_ —
| Zi# 10} YseH
- 21t 40} yseH
6 B1EQ ‘
_ | /U o use _
Ta 10} yseH -
LL# 103 USEH 8# €1EQ
| _ (saysey Aq pajeoipul
Ol# Jo} yseH g;ep Jo Buissaosoud
o 1# E1eq JO ynsa! s| ejep)
| 6# 404 yseH ~ Z1i eyeQ susodwo)
14 10} ysen 14074
G# 40} YSeH ci €120
i 10} YSeH
£# 40) yseH . .
— v# 40} yseH
40} USE R
— ™~ _ HEE I £4 10} yseH
Z# J0) |SeH .
G# 40} |SeH
L# O} YSeH _
_ S e1eQ ¢#t 40} SeH
80/ |\ \# J0} yseH
V# e1eq
_ (ssysey Aq pajedipu

90/ K

Elep JO UOJEUd}EDUDD)
g ejeq ansodwon)

¢0. u\l

|

|

US 7,272,602 B2

Sheet 8 of 11

Sep. 18, 2007

U.S. Patent

. E— A— m— . [r— = . - I_ -
. : 20 eleq eieg eleg E€d
eleq eieq g1eQ ®meqg e1eQ E1e0 eleg e)
WOy | { KUy I JCHY quONy DU DO DLLONY IO IO u_Eﬂd SO O/
151 808 NEiHEHEE
A 808 AL \»mom
|)) _ [
Om ﬂﬁ_mnnEnu | eleq eleg aysodwon ejeq 212
¢(08 e DO}y O[O}y Owory

s e

T|IIXT|IIXT|IXT]XL{XI I | XX LII|X| X X]| I
G EREBREHEERE AHEBEE AHE AHHEHE
$151%| = SIS I5E|S 55555 =84 k- S1&1%5 5155

T T

_ psodwon ajisodwos) alseduio) plisodunn) | apsodwon
S— - W—

8)sodwon g)|sodwon)

/ ' . AN/%

S~ E_monEn._u ‘/ @Oﬂ

I Z08

| r|lxjxz|{z|xix Iix|xz|z|zix
- — %(818(8(8|8 ALY —
\\\\| DHIOYY WO A/ \V Lo
808 3 708 " eysodwon
4 808
| |
D] R D] A D
c08 |32|g|3|8|2 wm_mmwm ¢08 218\B[81g |8

A

yseH
yseH

US 7,272,602 B2

Sheet 9 of 11

Sep. 18, 2007

U.S. Patent

v | oo
—L 0L "biH
L | oso .
_ - 4)
BN "
------ - moo F H .
L | oo ¢/ 9pON eleq gg adus
.......... | oo |
e | oo] VL6
B \i L ﬂ 0] oo | L€ 9PON xapu] Z ading
/8 A | _
001 yZEL o
/ 8S9JPPVY d| SSE|D 4|
H\ \ SSAIppY di 0} aI 2diS
€. SPON
0L6
-~ adig xapuy _ A/ q) adis 03 Xiysud yseH
LE ®PON |z adus ¢l6 \\' SOPON ||V
8.10Jo¢ 806 - g
XapU|
906 06
200} o -
| 010 |
YseH g 094 _
206~

US 7,272,602 B2

Sheet 10 of 11

Sep. 18, 2007

U.S. Patent

|
|

eL b /e
00zl - 8H
| 8L11 9til cLil
pOZ} el T e
pabugyoun | '€ v0Cl
\. _ . L . _
. yH . CH
He 9121
pabueyoun| ¢'7
91¢] I S ” . .
— ¥H 91661 20:9 D0Q'A ZH LLE€2L 0£6 3X3'9
147" 6H 916¥1 209 20Q°Z |
P I
£'C \LATA’ ——— . €H €/8 17701 D0Q'X| A/ lH 6129 0€:8 IX3'V
uw_.\ 23 8H L0OGL Z¥ L DOA'A o AJ
vle . . 9H GH
» _ . ” »
77 A ——— |€H €8 1¥:0} D0Q’X OLE} 0LL
pabusyaun — O VH NN_.)
\
oLe P_I_‘.N OLZL!l X e o:._ spuawnIoq A ‘ oH ._B:mEE 9011
0L} -
| GH S914 weiboud P
pafueyaun NY'S 12G0IS GH $9)14 weiboid . >mD LLH - g
gzl , 8021 — — Jint. N L Aed iR
'} AN" . —)
/ peBUEOUN voct MIN —» 6H 00QZ . 4
. . | ZH 3X3'8 . ZH 3X3'9
ke |]Dwm 1103 > 8H DOT'A | PH D00°A
ANons Aons €H 204X 1H IXIV tH 000X H AXI'V
L' Lol | | r
\ sjuawnaoqg Ay | sa|l4 welfboiy sjuawinoog AN s34 welbouy
9021
902V - — N .
zheg gzozr LAea wvzozi garorL \+J az04 | vvorL \:D — VZOl |
juswinoo(g pIopA Ju2WN20g PIOAA ro >mn_ L >mn_

13jhdwo9) aWoH

US 7,272,602 B2

Sheet 11 of 11

Sep. 18, 2007

U.S. Patent

PLEL

pL b

ON

Jiajoeseyd

Jayjouy SOA

AAN

18 #uQ J9A0

enjeA yseH 19
Z¢ bunsix3 yius

0ctl

¢
puno4 {wayed

- 53410 30) wsjed
paujuLajapald
JO 198Qns

LPapeaox3
PIOYSBIY L
DBUIWLID8P8BIc

9}Ag Ajons aoeld

{Ppunog
Wwajjed
DAUILLIBIOPBIY

A%

91tl

yseH
g Z€ uaun)
Oju] anjeA Ny

€ paxepu) YOX

soneA Hg ¢
10 Aelly ue xapy|
0} Jajoesey) as

8aInog aduanbag
leuBiq indu) wo.y
japeieyn) e pesy

Huo)oe

oig Hus

0Lt}

{0

90t}

A

(sn4 e
‘8-8) asuanbag

[enbiq induy

14091

Us 7,272,602 B2

1

SYSTEM AND METHOD FOR
UNORCHESTRATED DETERMINATION OF
DATA SEQUENCES USING STICKY BYTE
FACTORING TO DETERMINE
BREAKPOINTS IN DIGITAL SEQUENCES

CROSS REFERENCE TO RELATED PATENT
APPLICATIONS

This application 1s a continuation of U.S. application Ser.
No. 09/777,149 now U.S. Pat. No. 6,810,398, filed Feb. 5,
2001, and 1ssued Oct. 26, 2004, which claims priority from
U.S. Provisional Application No. 60/245,920, filed Nov. 6,
2000, the disclosures of which are herein specifically incor-
porated by this reference.

COPYRIGHT NOTICE/PERMISSION

A portion of the disclosure of this patent document
contains material which 1s subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document of the patent
disclosure as 1t appears 1 the United States Patent and
Trademark Oflice patent file or records, but otherwise,
reserves all copyright rights whatsoever. The following
notice applies to the software and data and described below,

inclusive of the drawing figures where applicable: Copy-
right©2000, Avamar Technologies.

BACKGROUND OF THE INVENTION

The present invention relates, 1 general, to the field of
systems and methods for the unorchestrated determination
of data sequences using “sticky byte” factoring to determine
breakpoints 1n digital sequences. More particularly, the
present invention relates to an ethicient and effective method
of dividing a data set into pieces that generally yields near
optimal commonality.

Modern computer systems hold vast quantities of data—
on the order of a billion, billion bytes 1n aggregate. Incred-
ibly, this volume tends to quadruple each year and even the
most impressive advances 1 computer mass storage archi-
tectures cannot keep pace.

The data maintained 1 most computer mass storage
systems has been observed to have the following interesting
characteristics: 1) it 1s almost never random and 1s, 1n fact,
highly redundant; 2) the number of unique sequences in this
data sums to a very small fraction of the storage space 1t
actually occupies; 3) a considerable amount of effort is
required 1n attempting to manage this volume of data, with
much of that being involved in the identification and
removal of redundancies (i.e. duplicate files, old versions of
files, purging logs, archiving etc.); and 4) large amounts of
capital resources are dedicated to making unnecessary cop-
1es, saving those copies to local media and the like.

A system that factored redundant copies would reduce the
number of storage volumes otherwise needed by orders of
magnitude. However, a system that factors large volumes of
data into their common sequences must employ a method by
which to determine those sequences. Conventional methods
that attempt to compare one data sequence to another
typically suiler from extreme computational complexity and
these methods can, therefore, only be employed to factor
relatively small data sets. Factoring larger data sets 1s
generally only done using simplistic methods such as using
arbitrary fixed sizes. These methods factor poorly under
many circumstances and the etlicient factoring of large data

5

10

15

20

25

30

35

40

45

50

55

60

65

2

sets has long been a persistent and heretofore intractable
problem 1n the field of computer science.

SUMMARY OF THE INVENTION

Disclosed herein 1s a system and method for unorches-
trated determination of data sequences using “‘sticky byte”
factoring to determine breakpoints in digital sequences such
that common sequences can be identified. Sticky byte fac-
toring provides an eflicient method of dividing a data set into
pieces that generally vields near optimal commonality. As
disclosed herein, this may be eflectuated by employing a
hash function with periodic reset of the hash value or, 1n a
preferred embodiment, a rolling hashsum. Further, in the
particular exemplary embodiment disclosed herein, a thresh-
old function 1s utilized to deterministically set divisions 1n a
digital or numeric sequence, such as a sequence of data.
Both the rolling hash and the threshold function are designed
to require minimal computation. This low overhead makes 1t
possible to rapidly partition a data sequence for presentation
to a factoring engine or other applications that prefer sub-
sequent synchronization across the entire data set.

Among the significant advantages of the system and
method disclosed herein 1s that 1its calculation requires
neither communication nor comparisons (like conventional
factoring systems) to perform well. This 1s particularly true
in a distributed environment where, while conventional
systems require communication to compare one sequence to
another, the system and method of the present invention can
be performed 1n 1solation using only the sequence being then
considered.

In operation, the system and method of the present
invention provides a fully automated means for dividing a
sequence of numbers (e.g. bytes 1n a file) such that common
clements may be found on multiple related and unrelated
computer systems without the need for communication
between the computers and without regard to the data
content of the files. Broadly, what 1s disclosed herein 1s a
system and method for a data processing system which
includes a tully automated means to partition a sequence of
numeric elements (1.e. a sequence ol bytes) so that common
sequences may be found without the need for searching,
comparing, communicating or coordinating with other pro-
cessing elements 1n the operation of finding those sequences.
The system and method of the present invention produces
“sticky byte” points that partition numeric sequences with a
distribution that produces subsequences of the type and size
desired to optimize commonality between partitions.

BRIEF DESCRIPTION OF THE DRAWINGS

The aforementioned and other features and objects of the
present invention and the manner of attaining them will
become more apparent and the invention itselt will be best
understood by reference to the following description of a
preferred embodiment taken 1n conjunction with the accom-
panying drawings, wherein:

FIG. 1 1s a high level illustration of a representative
networked computer environment 1n which the system and
method of the present invention may be implemented;

FIG. 2 1s a more detailed conceptual representation of a
possible operating environment for utilization of the system
and method of the present mmvention wherein files main-
tained on any number of computers or data centers may be
stored 1n a decentralized computer system through an Inter-
net connection to a number of Redundant Arrays of Inde-

Us 7,272,602 B2

3

pendent Nodes (“RAIN™) racks located, for example, at
geographically diverse locations;

FIG. 3 1s logic flow chart depicting the steps in the entry
of a computer file into the hash file system of the present
invention wherein the hash value for the file 1s checked
against hash values for files previously maintained 1n a set,
database;

FIG. 4 1s a turther logic flow chart depicting the steps in
the breakup of a file or other data sequence into hashed
pieces resulting in the production of a number of data pieces
as well as corresponding probabilistically unique hash val-
ues for each piece;

FIG. 5 1s another logic tlow chart depicting the compari-
son of the hash values for each piece of a file to existing hash
values 1n the set or database, the production of records
showing the equivalence of a single hash value for all file
pieces with the hash values of the various pieces and
whereupon new data pieces and corresponding new hash
values are added to the set;

FIG. 6 15 yet another logic flow chart 1llustrating the steps
in the comparison of file hash or directory list hash values to
existing directory list hash values and the addition of new
file or directory list hash values to the set directory list;

FIG. 7 1s a comparison of the pieces of a representative
computer file with their corresponding hash values both
before and after editing of a particular piece of the exem-
plary file;

FIG. 8 1s a conceptual representation of the fact that
composite data which may be derived by means of the
system and method of the present invention 1s eflectively the
same as the data represented explicitly but may instead be
created by a “recipe” such as the concatenation of data
represented by its corresponding hashes or the result of a
function using the data represented by the hashes;

FIG. 9 1s another conceptual representation of how the
hash file system and method of the present invention my be
utilized to organize data to optimize the reutilization of
redundant sequences through the use of hash values as
pointers to the data they represent and wherein data may be
represented either as explicit byte sequences (atomic data) or
as groups ol sequences (composites);

FIG. 10 1s a simplified diagram illustrative of a hash file
system address translation function for an exemplary 160 bat
hash value;

FIG. 11 1s a simplified exemplary illustration of an index
stripe splitting function for use with the system and method
of the present invention;

FIG. 12 1s a simplified illustration of the overall func-
tionality of the system and method of the present invention
for use in the backup of data for a representative home
computer having a number of program and document files
on Day 1 and wherein one of the document files 1s edited on
Day 2 together with the addition of a third document file;

FIG. 13 1llustrates the comparison of various pieces of a
particular document file marked by a number of “sticky
bytes” both belore and following editing wherein one of the
pieces 1s thereby changed while other pieces remain the
same; and

FIG. 14 1s a representative tlow chart for an exemplary
sticky byte factoring process 1n accordance with the present
invention.

DESCRIPTION OF A REPRESENTATITV.
EMBODIMENT

(L]

The present invention 1s illustrated and described 1n terms
of a distributed computing environment such as an enter-

5

10

15

20

25

30

35

40

45

50

55

60

65

4

prise computing system using public communication chan-
nels such as the Internet. However, an important feature of
the present invention 1s that 1t 1s readily scaled upwardly and
downwardly to meet the needs of a particular application.
Accordingly, unless specified to the contrary the present
invention 1s applicable to significantly larger, more complex
network environments as well as small network environ-
ments such as conventional LAN systems.

With reference now to FIG. 1, the present invention may
be utilized 1n conjunction with a novel data storage system
on a network 10. In this figure, an exemplary internetwork
environment 10 may include the Internet which comprises a
global internetwork formed by logical and physical connec-
tion between multiple wide area networks (“WANs™) 14 and
local area networks (“LLANs™) 16. An Internet backbone 12
represents the main lines and routers that carry the bulk of
the data trathic. The backbone 12 1s formed by the largest
networks in the system that are operated by major Internet
service providers (“ISPs”) such as GTE, MCI, Sprnt,
UUNet, and America Online, for example. While single
connection lines are used to conveniently illustrate WANSs
14 and LLANs 16 connections to the Internet backbone 12, 1t
should be understood that in reality, multi-path, routable
physical connections exist between multiple WANs 14 and
LLANs 16. This makes internetwork 10 robust when faced
with single or multiple failure points.

A “network™ comprises a system of general purpose,
usually switched, physical connections that enable logical
connections between processes operating on nodes 18. The
physical connections implemented by a network are typi-
cally independent of the logical connections that are estab-
lished between processes using the network. In this manner,
a heterogeneous set of processes ranging irom {ile transier,
mail transfer, and the like can use the same physical net-
work. Conversely, the network can be formed from a het-
erogenecous set of physical network technologies that are
invisible to the logically connected processes using the
network. Because the logical connection between processes
implemented by a network 1s independent of the physical
connection, internetworks are readily scaled to a virtually
unlimited number of nodes over long distances.

In contrast, internal data pathways such as a system bus,
peripheral component interconnect (“PCI”) bus, Intelligent
Drive Electronics (“IDE™) bus, small computer system inter-
face (*“SCSI”) bus, and the like define physical connections
that implement special-purpose connections within a com-
puter system. These connections implement physical con-
nections between physical devices as opposed to logical
connections between processes. These physical connections
are characterized by limited distance between components,
limited number of devices that can be coupled to the
connection, and constrained format of devices that can be
connected over the connection.

In a particular implementation of the present invention,
storage devices may be placed at nodes 18. The storage at
any node 18 may comprise a single hard drive, or may
comprise a managed storage system such as a conventional
RAID device having multiple hard drives configured as a
single logical volume. Significantly, the present invention
manages redundancy operations across nodes, as opposed to
within nodes, so that the specific configuration of the storage
within any given node 1s less relevant. Optionally, one or
more of the nodes 18 may implement storage allocation
management (“SAM”) processes that manage data storage
across nodes 18 1n a distributed, collaborative fashion. SAM
processes prelerably operate with little or no centralized
control for the system as whole. SAM processes provide

Us 7,272,602 B2

S

data distribution across nodes 18 and implement recovery 1n
a Tault-tolerant fashion across network nodes 18 in a manner
similar to paradigms found 1 RAID storage subsystems.

However, because SAM processes operate across nodes
rather than within a single node or within a single computer,
they allow for greater fault tolerance and greater levels of
storage efliciency than conventional RAID systems. For
example, SAM processes can recover even when a network
node 18, LAN 16, or WAN 14 becomes unavailable. More-
over, even when a portion of the Internet backbone 12
becomes unavailable through failure or congestion the SAM
processes can recover using data distributed on nodes 18 that
remain accessible. In this manner, the present imvention
leverages the robust nature of internetworks to provide
unprecedented availability, reliability, fault tolerance and
robustness.

With reference additionally now to FIG. 2, a more
detailed conceptual view of an exemplary network comput-
ing environment i which the present mvention 1s 1mple-
mented 1s depicted. The Internetwork 10 of the preceding
figure (or Internet 118 in this figure) enables an intercon-
nected network 100 of a heterogeneous set of computing,
devices and mechanisms 102 ranging from a supercomputer
or data center 104 to a hand-held or pen-based device 114.
While such devices have disparate data storage needs, they
share an ability to retrieve data via network 100 and operate
on that data within their own resources. Disparate comput-
ing devices 102 including mainframe computers (e.g., VAX
station 106 and IBM AS/400 station 116) as well as personal
computer or workstation class devices such as IBM com-
patible device 108, Macintosh device 110 and laptop com-
puter 112 are readily interconnected via internetwork 10 and
network 100. Although not illustrated, mobile and other
wireless devices may be coupled to the internetwork 10.

Internet-based network 120 comprises a set of logical
connections, some of which are made through Internet 118,
between a plurality of internal networks 122. Conceptually,
Internet-based network 120 1s akin to a WAN 14 (FIG. 1) 1n
that 1t enables logical connections between geographically
distant nodes. Internet-based networks 120 may be imple-
mented using the Internet 118 or other public and private
WAN technologies including leased lines, Fibre Channel,
frame relay, and the like.

Similarly, internal networks 122 are conceptually akin to
[LANs 16 (FIG. 1) in that they enable logical connections
across more limited stance than WAN 14. Internal networks
122 may be implemented using various LAN technologies
including Ethernet, Fiber Distnibuted Data Interface
(“FDDI”), Token Ring, Appletalk, Fibre Channel, and the
like.

Each internal network 122 connects one or more redun-
dant arrays of independent nodes (RAIN) elements 124 to
implement RAIN nodes 18 (FIG. 1). Each RAIN element
124 comprises a processor, memory, and one or more mass
storage devices such as hard disks. RAIN elements 124 also
include hard disk controllers that may be conventional IDE
or SCSI controllers, or may be managing controllers such as
RAID controllers. RAIN elements 124 may be physically
dispersed or co-located in one or more racks sharing
resources such as cooling and power. Each node 18 (FIG. 1)
1s 1ndependent of other nodes 18 in that failure or unavail-
ability of one node 18 does not aflect availability of other
nodes 18, and data stored on one node 18 may be recon-
structed from data stored on other nodes 18.

In a particular exemplary implementation, the RAIN
clements 124 may comprise computers using commodity
components such as Intel-based microprocessors mounted

5

10

15

20

25

30

35

40

45

50

55

60

65

6

on a motherboard supporting a PCI bus and 256 megabytes
of random access memory (“RAM”) housed 1n a conven-
tional AT or ATX case. SCSI or IDE controllers may be
implemented on the motherboard and/or by expansion cards
connected to the PCI bus. Where the controllers are imple-
mented only on the motherboard, a PCI expansion bus may
be optionally used. In a particular implementation, the
motherboard may implement two mastering EIDE channels
and a PCI expansion card which 1s used to implement two
additional mastering EIDE channels so that each RAIN
clement 124 includes up to four or more FIDE hard disks.
In the particular implementation, each hard disk may com-
prise an 80 gigabyte hard disk for a total storage capacity of
320 gigabytes or more per RAIN element. The hard disk
capacity and configuration within RAIN elements 124 can
be readily increased or decreased to meet the needs of a
particular application. The casing also houses supporting
mechanisms such as power supplies and cooling devices
(not shown).

Each RAIN element 124 executes an operating system. In
a particular implementation, a UNIX or UNIX wvarnant
operating system such as Linux may be used. It 1s contem-

plated, however, that other operating systems including
DOS, Microsoit Windows, Apple Macintosh OS, OS/2,

Microsoit Windows NT and the like may be equivalently
substituted with predictable changes 1n performance. The
operating system chosen forms a platform for executing
application software and processes, and implements a file
system for accessing mass storage via the hard disk con-
troller(s). Various application soitware and processes can be
implemented on each RAIN element 124 to provide network
connectivity via a network interface using appropriate net-
work protocols such as User Datagram Protocol (“UDP”),

Transmission Control Protocol (TCP), Internet Protocol (IP)
and the like.

With reference additionally now to FIG. 3, a logic flow
chart 1s shown depicting the steps 1n the entry of a computer
file 1nto the hash file system of the present invention and
wherein the hash value for the file 1s checked against hash
values for files previously maintained in a set or database.
Any digital sequence could also be entered into the hash file
system of the present invention 1n much the same way, but
the current example wherein the digital sequence entered
consists of a computer file 1s 1nstructive.

The process 200 begins by entry of a computer file data
202 (e.g. “File A”) into the hash file system (“HFS”) of the
present invention upon which a hash function 1s performed
at step 204. The data 206 representing the hash of File A 1s
then compared to the contents of a set containing hash file
values at decision step 208. If the data 206 1s already in the
set, then the file’s hash value 1s added to a hash recipe at step
210. This hash recipe consists of the data and associated
structures needed to reconstruct a file, directory, volume, or
entire system depending on the class of computer file data
entered into the system. The contents of the set 212 com-
prising hash values and corresponding data i1s provided in
the form of existing hash values 214 for the comparison
operation of decision step 208. On the other hand, 11 the hash
value for File A 1s not currently 1n the set, the file 1s broken

into hashed pieces (as will be more fully described herein-
after) at step 216.

With reference additionally now to FIG. 4, a further logic
flow chart 1s provided depicting the steps 1n the process 300
for breakup of a digital sequence (e.g. a file or other data
sequence) 1nto hashed pieces. This process 300 ultimately

Us 7,272,602 B2

7

results 1n the production of a number of data pieces as well
as corresponding probabilistically unique hash values for
cach piece.

The file data 302 1s divided into pieces based on com-
monality with other pieces 1n the system or the likelihood of
pieces being found to be 1n common 1n the future at step 304.
The results of the operation of step 304 upon the file data 302
1s, 1n the representative example shown, the production of
five file pieces 306 denominated Al through A5 inclusively.
Each of the file pieces 306 1s then operated on at step 308 by
placing it through individual hash function operations to
assign a probabilistically unique number to each of the
pieces 306 Al through AS. The result of the operation at step
308 1s that each of the pieces 306 (Al through AS) has an
associated, probabilistically unique hash value 310 (shown
as Al Hash through AS Hash respectively). The file division
process of step 304 1s described 1n greater detail heremnafter
in conjunction with the unique “sticky byte” operation also
disclosed herein.

With reference additionally now to FIG. 5, another logic
flow chart 1s shown depicting a comparison process 400 for
the hash values 310 of each piece 306 of the file to those of
existing hash values 214 maintained 1n the set 212. Particu-
larly, at step 402, the hash values 310 for each piece 306 of
the file are compared to existing hash values 214 and new
hash values 408 and corresponding new data pieces 406 are
added to the set 212. In this way, hash values 408 not
previously present 1n the set 212 are added together with
their associated data pieces 406. The process 400 also results
in the production of records 404 showing the equivalence of
a single hash value for all file pieces with the hash values
310 of the various pieces 306.

With reference additionally now to FIG. 6, yet another
logic flow chart 1s shown 1llustrating a process 500 for the
comparison of file hash or directory list hash values to
existing directory list hash values and the addition of new
file or directory list hash values to the set directory list. The
process 500 operates on stored data 502 which comprises an
accumulated list of file names, file meta-data (e.g. date, time,
file length, file type etc.) and the file’s hash value for each
item 1n a directory. At step 504, the hash function 1s run upon
the contents of the directory list. Decision step 506 1s
operative to determine whether or not the hash value for the
directory list 1s 1n the set 212 of existing hash values 214. If
it 15, then the process 500 returns to add another file hash or
directory list hash to a directory list. Alternatively, 11 the
hash value for the directory list 1s not already 1n the set 212,
the hash value and data for the directory list are added to the
set 212 at step S08.

With reference additionally now to FIG. 7, a comparison
600 of the pieces 306 of a representative computer file (i.e.
“File A””) with their corresponding hash values 310 1s shown
both before and after editing of a particular piece of the
exemplary file. In this example, the record 404 contains the
hash value of File A as well as the hash values 310 of each
of the pieces of the file Al through AS. A representative edit
or modification of the File A may produce a change in the
data for piece A2 (now represented by A2-5) of the file
pieces 306 A along with a corresponding change in the hash
value A2-b of the hash values 310A. The edited file piece
now produces an updated record 404A that includes the
modified hash value of File A and the modified hash value
of piece A2-b.

With reference additionally now to FIG. 8, a conceptual
representation 700 1s shown illustrative of the fact that
composite data (such as composite data 702 and 704)
derived by means of the system and method of the present

5

10

15

20

25

30

35

40

45

50

55

60

65

8

invention, 1s effectively the same as the data 706 represented
explicitly but 1s mstead created by a “recipe”, or formula. In
the example shown, this recipe includes the concatenation of
data represented by 1ts corresponding hashes 708 or the
result of a function using the data represented by the hashes.
The data blocks 706 may be variable length quantities as
shown and the hash values 708 are derived from their
associated data blocks. As previously stated, the hash values
708 are a probabilistically umique 1dentification of the cor-
responding data pieces but truly unique identifications can
be used mstead or intermixed therewith. It should also be
noted that the composite data 702, 704 can also reference
other composite data many levels deep while the hash values
708 for the composite data can be derived from the value of
the data the recipe creates or the hash value of the recipe
itself.

With reference additionally now to FIG. 9, another con-
ceptual representation 800 1s shown of how a hash file
system and method may be utilized to organize data 802 to
optimize the reutilization of redundant sequences through
the use of hash values 806 as pointers to the data they
represent and wherein data 802 may be represented either as
explicit byte sequences (atomic data) 808 or as groups of
sequences (composites) 804.

The representation 800 illustrates the tremendous com-
monality of recipes and data that gets reused at every level.
The basic structure of the hash file system of the present
invention 1s essentially that of a “tree’ or “bush” wherein the
hash values 806 are used instead of conventional pointers.
The hash values 806 are used in the recipes to point to the
data or another hash value that could also itself be a recipe.
In essence then, recipes can point to other recipes that point
to still other recipes that ultimately point to some specific
data that may, itself, point to other recipes that point to even
more data, eventually getting down to nothing but data.

With reference additionally now to FIG. 10, a simplified
diagram 900 1s shown 1illustrative of a hash file system
address translation function for an exemplary 160 bit hash
value 902. The hash value 902 includes a data structure
comprising a front portion 904 and a back portion 906 as
shown and the diagram 900 1illustrates a particular “0 (1)”
operation that 1s used for enabling the use of the hash value
902 to go to the location of the particular node 1n the system
that contains the corresponding data.

The diagram 900 illustrates how the front portion 904 of
the hash value 902 data structure may be used to indicate the
hash prefix to stripe identification (“ID”’) 908 and how that
1s, 1n turn, utilized to map the stripe ID to IP address and the
ID class to IP address 910. In this example, the “S2”
indicates stripe 2 of index Node 37 912. The index stripe 912
of Node 37 then indicates stripe 88 of data Node 73
indicated by the reference numeral 914. In operation then, a
portion of the hash value 902 1itself may be used to indicate
which node 1n the system contains the relevant data, another
portion of the hash value 902 may be used to indicate which
stripe of data at that particular node and yet another portion
of the hash value 902 to indicate where within that stripe the
data resides. Through this three step process, 1t can rapidly
be determined if the data represented by the hash value 902
1s already present 1n the system.

With reference additionally now to FIG. 11, a simplified
exemplary illustration of an index stripe splitting function
1000 1s shown for use with the system and method of the
present invention. In this illustration, an exemplary function
1000 1s shown that may be used to eflectively split a stripe
1002 (S2) into two stripes 1004 (S2) and 1006 (S7) should

one stripe become too full. In this example, the odd entries

Us 7,272,602 B2

9

have been moved to stripe 1006 (S7) while the even ones
remain 1n stripe 1004. This function 1000 1s one example of
how stripe entries may be handled as the overall system
grows 1n size and complexity.

With reference additionally now to FIG. 12, a simplified
illustration 1100 of the overall functionality of the system
and method of the present invention 1s shown for use, for
example, 1n the backup of data for a representative home
computer having a number of program and document files
1102A and 1104A on Day 1 and wherein the program files
1102B remain the same on Day 2 while one of the document
files 11048 1s edited on Day 2 (Y.doc) together with the
addition of a third document file (Z.doc).

The 1llustration 1100 shows the details of how a computer
file system may be broken into pieces and then listed as a
series ol recipes on a global data protection network
(“gDPN”) to reconstruct the original data from the pieces.
This very small computer system 1s shown 1n the form of a
“snapshot” on “Day 1”7 and then subsequently on “Day 2”.
On “Day 17, the “program files H5” and “my documents
H6” are 1llustrated by numeral 1106, with the former being
represented by a recipe 1108 wherein a first executable {ile
1s represented by a hash value H1 1114 and a second
represented by a hash value H2 1112. The document files are
represented by hash value H6 1110 with the first document
being represented by hash value H3 1118 and the second by
hash value H4 1116. Thereafter on “Day 2”, the “program
files H5” and “my documents” H10 indicated by numeral
1120 show that the “program files H5” have not changed, but
the “my document H10” have. H10 indicated by numeral
1122 shows the “X.doc” 1s still represented by hash value H3
1118 while “Y.doc” 1s now represented by hash value H8 at
number 1124. New document file “Z.doc” 1s now repre-
sented by hash value H9 at numeral 1126.

In this example, 1t can be seen that on Day 2, some of the
files have changed, while others have not. In the files that
have changed, some of the pieces of them have not changed
while other pieces have. Through the use of the hash file
system of the present invention, a “snap shot” of the
computer system can be made on Day 1 (producing the
necessary recipes for reconstruction of the computer files as
they exist then) and then on Day 2 through the reuse of some
ol the previous day’s recipes together with the reformulation
of others and the addition of new ones to describe the system
at that time. In this manner, the files that together constitute
the computer system may be recreated 1n their entirety at any
point 1n time on Day 1 and Day 2 for which a snapshot was
taken, as well as from snapshots taken on any subsequent
day. Thus any version of a computer file committed to the
hash file system of the current invention can be retrieved
from the system at any time after 1t has been mitially
commiutted.

With reference additionally now to FIG. 13, a comparison
1200 of various pieces of a particular document file marked
by a number of “sticky bytes” 1204 1s shown both before
(Day 1 1202A) and following editing (Day 2 1202B)
wherein one of the pieces 1s thereby changed while other

pieces remain the same. For example, on Day 1, file 1202A
comprises variable length pieces 1206 (1.1), 1208 (1.2),

1210 (2.1), 1212 (2.), 1214 (2.3) and 1216 (3.1). On Day 2,
pieces 1206, 1208, 1210, 1214 and 1216 remain the same
(thus having the same hash values) while piece 1212 has
now been edited to produce piece 1212A (thus having a
differing hash value).

With reference additionally now to FIG. 14, a represen-
tative sticky byte (or sticky point) factoring process 1300 1s
illustrated for possible use in the implementation of the

10

15

20

25

30

35

40

45

50

55

60

65

10

present invention. The process 1300 begins by setting the
hash value to “0” at step 1302 to initialize the process.

A data object 1304, comprising the contents of an 1nput
computer file, 1s acted upon at step 1306 wherein a character
from the mput file source 1s read. At step 1308, the character
read at step 1306 1s utilized to index an array of 32 bit values
(this si1ze array 1s described for purposes of example only).
Thereatter, at step 1310, the indexed 32 bit value found at
step 1308 1s exclusive OR d (“XOR’d”) 1nto the current 32
bit hash value.

At decision step 1312, if the predetermined pattern is
found (e.g. a selected number of least significant bit “0°s™),
then the sticky byte 1s placed 1n the input file at that point at
step 1314. In some embodiments, eleven bits are used for the
least significant bits or endmost bits of the predetermined
numeric pattern, and in these embodiments, the eleven bits
may be “0”. In some cases, the method 1300 includes, as
explained below, establishing a second predetermined
numeric pattern when the threshold 1s met. The second
predetermined numeric pattern may be a bit pattern which 1s
a subset of the first predetermined pattern. In specific
examples of the method 1300, the first numeric pattern may
include a consecutive sequence of eleven bits while the
second numeric pattern may include ten of the eleven bits of
the first numeric pattern. For example, the first numeric
pattern may include eleven consecutive “0”’s and the second
numeric pattern may include ten consecutive “0°”s. If the
predetermined pattern 1s not found at decision step 1312,
then, at decision step 1316, a determination 1s made as to
whether a predetermined threshold number of characters in
the mput file (having been operated on by the rolling hash
function of process 1300, as will be more fully described
hereinafter) has been exceeded. 11 the predetermined thresh-
old number has been exceeded, then the process 1300
proceeds to decision step 1318 to see 1f some subset number
of the predetermined pattern (e.g. a smaller selected number
of least significant bit “0’s””) being searched for 1n decision
step 1312 has been found. If so, then the sticky byte 1s placed
at step 1314. In some embodiments, the hash function 1s
selected to produce preferential hashsums that do not uni-
formly cover the range of the possible output values. In other
cases, the hash function 1s selected or modified dynamically
during the execution of the hash function. In vet other cases,
the hash function includes the relative or absolute value of
the current location as an input value in the hash function
resulting 1n hash values that are aflected by the relative or
absolute value of the current location.

Alternatively, 11 at decision step 1316 the predetermined
threshold has not been exceeded, the process 1300 proceeds
to step 1320 wherein the existing 32 bit hash value 1s shifted
over one bit position (either “right” or “left”). At decision
step 1322, 11 there 1s still another character to be operated
upon by the process 1300, a next character 1n the mput file
source 1s read at step 1306. If at decision step 1318, the
subset of the predetermined pattern 1s not found, or at step
1314 the sticky byte has been placed, the process proceeds
to step 1320 as previously described.

Data sticky bytes (or “sticky points™) are a unique, fully
automated way to sub-divide computer files such that com-
mon elements may be found on multiple related and unre-
lated computers without the need for communication
between the computers. The means by which data sticky
points are found 1s completely mathematical in nature and
performs equally well regardless of the data content of the
files. Through the use of a hash file system, all data objects
may be indexed, stored and retrieved using, for example, but
not limited to an industry standard checksum such as: MD4,

Us 7,272,602 B2

11

MD35, SHA, or SHA-1. In operation, 1f two files have the
same checksum, 1t may be considered to be highly likely that
they are the same file. Using the system and method dis-
closed herein, data sticky points may be produced with a
standard mathematical distribution and with standard devia-
tions that are a small percentage of the target size.

A data sticky point 1s a statistically infrequent arrange-
ment of n bytes. In this case, an example 1s given with 32 bits
because of i1ts ease 1 1mplementation for current 32-bit
oriented microprocessor technology. While the hashing
function utilized to implement the hash {file system requires
a moderately complex computation, 1t 1s well within the
capability of present day computer systems. Hashing func-
tions are inherently probabilistic and any hashing function
can produce the same results for two different data objects.
However, the system and method herein disclosed mitigates
this problem by using well known and researched hashing
functions that reduce the probability of collision down to
levels acceptable for reliable use (1.e. one chance 1n a trillion
trillion), far less than the error rates otherwise tolerated in
conventional computer hardware operation.

For purposes of more fully explaining the sticky byte
factoring system of the present invention, the following
definitions pertain:

Rolling Hash:

A rolling hash function preserves the essential nature of a
normal hash function but 1s designed to have limited
memory of 1ts input values. Specifically 1t 1s a hash function
with these properties:

1. It has a fixed or variable length window (sequence
length).
2. It produces the same value given the same window of

data; that 1s, 1t 1s deterministic. Ideally the hashsums pro-
duced uniformly span the entire range of legal values.

e

3. Its hashsum 1s unafiected by the data either before or

after the window.

In a particular implementation of the present invention, a
32-bit rolling hash function may be used. Its general opera-
tion 1s: 1) shift the existing 32-bit hash value over one bit
(either left or right); 2) read a character from the input file
source; 3) use that character to imndex an array of 32-bit
values; and 4) XOR the indexed 32-bit value into the current
32-bit hash. The operation then repeats.

The rolling hash value then remains a 32-bit value and all
32 bits are aflected by the XOR operation. In the shifting
phase, one of the bits 1s moved out of the rolling hash
“window” leaving the remaining 31 bits moved over one
place but otherwise unchanged. The eflect of this 1s to move
the window over one unit.

It should be noted that a 64-bit (or other size) rolling
hashes may be used although the additional computational
cllort may not be required in the determination of “sticky
bytes” since only a small number of bits are generally used
by many applications, e.g. some number of the least signifi-
cant “0’’s. For a 32-bit number, the maximum number of
zeros 18, of course, 32, which would occur only once every
4 billion characters on average—assuming the function
utilized produces well distributed numbers. Four billion
characters 1s approximately four gigabytes of data; a large
“chunk™. Using 64-bit hash values would aid in producing
even larger chunk sizes, but since the particular implemen-
tation of the present invention herein disclosed uses about a
2K chunk size, the full range of a 32-bit rolling hash 1is

seldom required.

10

15

20

25

30

35

40

45

50

55

60

65

12

Consider the following C language example, wherein: “1”
1s an array of bytes, “1” 1s the index into that array, and
“hash” 1s the hashsum being computed. A simple rolling
hash might be written as:

hash=(hash<<1)If]{];

This hash can be improved by including a second array
“scramble” indexed by the input byte values (0 through 255)
which produces large randomized integer values:

hash=(hash>>1)lscramble[f[{]];

This example of a rolling hash function produces fairly
uniform numbers across the range of 32 bit values.

Threshold Function:

A threshold function performs a calculation to determine
whether a value 1s above or below a given level. This action
produces discontinuous results, placing some values above

and others below the threshold. It may optionally perform
some transformation on 1ts mput value. As an example:

threshold_wvalue=(hash—-1) = hash;

or.

threshold_value=((hash-1) ~ hash)+length;

The system and method of the present invention for sticky
byte factoring advantageously partitions data sets 1nto
sequences that promote commonality. The ensuing example,
1s 1llustrative of a preferred implementation utilizing a 32-bat
rolling hash together with a threshold function which may be
carried out particularly well with modern 32-bit micropro-
CESSOTS.

A rolling hash of 32 bits 1s generated using the byte array
“1” as the mmput sequence to be partitioned where:

1. 1fJ1]=1s the 1-th byte of the byte sequence contained 1n “1”.
2. “Scramble” 1s a 256-clement array of 32-bit integers
chosen to “churn™ the bits 1n the hashsum created. These
integers are typically chosen to have the characteristic that
their combined exclusive OR (“XOR™) equals zero,
meaning they have a combined binary equality of one and
Zero bits.
. The “°”” operator 1s the exclusive-or function.
4. The length_of byte_sequence i1s the length of the
sequence being partitioned.
5. The function “output_sticky_point” 1s called with the
index of the partitioning element.
6. “threshold” 1s a value chosen to produce sequences of the
desired length. That 1s, the larger the value, the longer the
sequences produced.

(sJ

EXAMPLE 1

int hash = 0O; //initial value of hashsum is zero.

int sticky_ bits = 0;

int last_ sticky_ point = 0;

for(int 1=0; 1 < length_ of_ byte_ sequence; 1++)
i
//For each byte in the sequence of “f”, “hash”
{/represents the rolling hash of the file.

hash = (hash »>> 1) | scramble [{]1]];
f/sticky__ bits 1s a non-uniform value with the
{/characteristic that larger values are produced less
{//frequently.

sticky _bits = (hash — 1) ~ hash;
//This calculation determines whether the current byte
//should be considered the end of the partition.

1f(sticky_ bits > threshold)

Us 7,272,602 B2

13

-continued

output__sticky_ point (1);
/*last__sticky_ point” remembers the index of the
//previous partition for (optional) use 1n determining

//the existing partition’s length as a factor in the

//threshold calculation.

last_ sticky_ point = i;

h

The system and method of the present mnvention steps
sequentially through a sequence of values and calculates a
rolling hashsum value. That hashsum value at index “1” 1s
dependent only on the bytes at indexes 1-31 through 1. In the
case of 1 being less than 31, the hashsum reflects the values
for the bytes between 0 and 1. Assuming an input text in “1”
that uses a large range of byte values and a well chosen set
of randomizing values present 1n “scramble”, the hashsum
will produce a well-distributed range of values, that largely
and uniformly spans the desired 32-bit numeric range. While
it should be noted that some byte sequences do not produce
well-distributed numbers, byte sequences having this behav-

1ior should be uncommon for typical input texts.

The “sticky_bits” value 1s calculated using the current
hashsum. This value i1s designed to have a highly non-
uniform distribution and to produce numbers that span the
entire range ol 32-bit values, with larger values being

produced 1n inverse proportion to their magnitude as 1llus-
trated 1n the following Table 1:

TABLE 1

Sticky Byte % of Sequences
Value w/Value
1 50.00000
3 25.00000
7 12.50000
15 6.25000
31 3.12500
63 1.56250
127 0.78125
255 0.39062
511 0.19531
1023 0.09766
2047 0.04883
4095 0.02441
8191 0.01221
16383 0.00610
32767 0.00305
65535 0.00153

etc. etc.

Without further modification, this particular example
demonstrates the statistical property of having sequence
lengths with a standard deviation that are 95% of their mean.
In order to compensate for this, the “sticky_bits” value can
be combined with the length of the current sequence to
produce partitions more evenly spaced. In this regard,
“sticky_weighting” 1s a factor that 1s used to adjust the
weight of the “sticky_bits” value versus the length of the
current partition.

sticky_weighting+(i—/ast_sticky_point)

10

15

20

25

30

35

40

45

50

55

60

65

14
EXAMPLE 2

int hash = 0; //initial value of hashsum is zero.

int sticky_ bits = 0;

int last_ sticky_ point = 0;

for(int 1=0; 1 < length__of__byte_ sequence; 1++)
i
//For each byte in the sequence of “f”, “hash”
{/represents the rolling hash of the file.

hash = (hash >> 1) | scramble [{]1]];
{//sticky__bits 1s a non-uniform value with the
{/characteristic that larger values are produced less
{//frequently.

sticky_ bits = (hash — 1) ~ hash;
//This calculation determines whether the current byte
//should be considered the end of the partition.

1f(sticky__bits +
sticky_ weighting® (i-last_ sticky_ point) > threshold)

{

output__sticky_ point(1);
//*last-sticky-point” remembers the index of the
/fprevious partition for optional use i determining
//the existing partition’s length as a factor in the
{/threshold calculation.

last_ sticky point = 1;

h

In this particular embodiment of the system and method
of the present mvention, an adjustment has been made to
produce more consistent partition sizes. This 1s eflectuated
by essentially increasing the “pressure” on the threshold to
create a partition as the potential partition size increases. It
should be noted that any number of a vanety of methods for
cllectuating this end might be employed and the foregoing
example 1s intended to 1llustrate but one.

As will be appreciated, the system and method of the
present invention for unorchestrated determination of data
sequences disclosed herein provides an eflicient and readily
ellectuated means to factor large volumes of data into their
common sequences using modern computer processors.
Unlike conventional factoring techniques, 1t requires no
sequence comparisons, communication, or historical record
of previous actions 1n order to establish commonality. Fur-
ther, the system and method of the present invention 1s
essentially immune to the type of data being partitioned and
it performs consistently on text files, binary files, set images,
audio and video clips, still images and the like.

r

T'he sticky byte factoring technique disclosed herein also
advantageously creates partitions that tend to identily com-
monality even when that commonality lies 1n variable loca-
tions within a sequence; for example, while the difference
between two versions of a particular document file might be
only minor, sticky byte factoring nevertheless produces a
high commonality between the factored documents despite
the mnsertion or deletion of characters. Moreover, the system
and method of the present invention creates partitions, or
breakpoints, that tend to 1dentily commonality in data that
“slides™, or changes 1ts absolute location.

In essence, the system and method of the present mnven-
tion effectively solves the problem of how to locate common
data sequences quickly and efliciently. Further, 1t can be used
to search for alternative encodings of a sequence of data that
would have a higher likelihood of being present 1n a system
designed to store imnformation based on such a partitioning
scheme. The sticky byte factoring technique of the present
invention performs particularly well when searching for
common sequences 1n typical computer file systems and

Us 7,272,602 B2

15

produces much higher compression ratios for some test
suites than even the best known compression algorithms,
many ol which exploit commonality factoring as their
fundamental file size reduction technique.

Although as used herein, the term “Internet infrastruc-
ture” encompasses a variety of hardware and software
mechanisms, the term primarily refers to routers, router
software, and physical links between these routers that
function to transport data packets from one network node to
another. As also used herein, a “digital sequence” may
comprise, without limitation, computer program files, com-
puter applications, data files, network packets, streaming
data such as multimedia (including audio and video), telem-
ctry data and any other form of data which can be repre-
sented by a digital or numeric sequence.

While there have been described above the principles of
the present invention 1n conjunction with specific exemplary
sticky byte factoring techniques and computer systems, 1t 1s
to be clearly understood that the foregoing description 1s
made only by way of example and not as a limitation to the
scope of the invention. Particularly, 1t 1s recognized that the
teachings of the foregoing disclosure will suggest other
modifications to those persons skilled in the relevant art.
Such modifications may 1nvolve other features which are
already known per se and which may be used 1nstead of or
in addition to features already described herein. Although
claims have been formulated 1n this application to particular
combinations of features, it should be understood that the
scope of the disclosure herein also includes any novel
feature or any novel combination of features disclosed either
explicitly or implicitly or any generalization or modification
thereot which would be apparent to persons skilled in the
relevant art, whether or not such relates to the same inven-
tion as presently claimed in any claim and whether or not 1t
mitigates any or all of the same technical problems as
conironted by the present invention. The applicants hereby
reserve the right to formulate new claims to such features
and/or combinations of such features during the prosecution
of the present application or of any further application
derived therefrom.

What 1s claimed 1s:

1. A method for partitioning a digital sequence compris-
ng:
performing a hash function on at least a portion of said
digital sequence;
monitoring hash values produced by said hash function

for a first predetermined numeric pattern found 1n a
range ol numeric values; and

marking a breakpoint 1n said digital sequence when said
first predetermined numeric pattern occurs,

said step of performing said hash function comprising a
rolling hash function adapted to scan portions of said
digital sequence combined with adjusting a hash value
based on a length of a current partition of said digital
sequence to 1ncrease a likelihood of identifying a
breakpoint 1n said current partition as a potential length
of said current partition increases.

2. The method of claim 1, wherein said {first predeter-
mined numeric pattern 1s a bit pattern.

3. The method of claim 1, wherein said rolling hash
function comprises a 32-bit hash function.

4. The method of claim 1, wherein said first predeter-
mined numeric pattern comprises a consecutive sequence of
bits.

10

15

20

25

30

35

40

45

50

55

60

65

16

5. The method of claim 4, wherein during said monitoring,
said consecutive sequence of bits 1s found 1n said hash
values, the hash values comprising hash sequences that are
not numerically consecutive.

6. The method of claim 4, wherein said consecutive
sequence ol bits comprises a plurality of endmost baits.

7. The method of claim 1, further comprising:

determining a threshold restriction for said step of moni-

toring said hash values; and

increasing a probability of said marking of said break-

point in said digital sequence.

8. The method of claim 7, wherein said step of increasing,
said probability of said marking of said breakpoint in said
digital sequence 1s a function of at least a desired chunk size.

9. The method of claim 7, wherein said step of increasing,
said probability of said marking of said breakpoint 1in said
digital sequence 1s carried out by the step of:

utilizing a second predetermined numeric pattern for said

step of monitoring said hash values; and

alternatively marking said breakpoint when said second

predetermined numeric pattern occurs.

10. The method of claim 7, wherein said step of increasing
said probability of said marking of said breakpoint in said
digital sequence 1s a function of some content portion of said
sequence.

11. A method for determining at least a first breakpoint in
at least a first digital sequence comprising:

determinming a subset group of said first digital sequence;

performing a hash function on said subset group of said

first digital sequence beginning at a starting position in
said first digital sequence until a first predetermined
numeric pattern, which 1s found 1n a range of numeric
values, 1n said hash value 1s obtained, wherein said
hash function 1s combined with adjusting said hash
value based on a length of a current partition of said
first digital sequence to increase a likelthood of 1den-
tifying said first breakpoint 1n said current partition as
a potential length of said current partition increases;
and

marking said first breakpoint when said first predeter-

mined numeric pattern in said hash value 1s obtained.
12. The method of claim 11, wherein said numeric pattern
comprises a bit pattern.
13. The method of claim 11, wherein said step of per-
forming a hash function comprises a rolling hash function
that scans portions of said digital sequence.
14. The method of claim 11, further comprising the steps
of:
turther performing a hash function on another subset
group of said first digital sequence from said {irst
breakpoint until said first predetermined numeric pat-
tern 1n said hash value 1s again obtained; and

marking another breakpoint 1n said first digital sequence
when said first predetermined numeric pattern in said
hash value 1s again obtained.

15. The method of claim 14, wherein said step of further
performing said hash function 1s carried out by means of a
rolling hash function.

16. The method of claim 11, further comprising the steps
of:

determining a second predetermined numeric pattern in

said hash value; and

continuing said step of performing said hash function on

said subset group of said first digital sequence until an
established threshold restriction has been met.

17. The method of claim 11, further comprising the steps

of:

Us 7,272,602 B2

17

storing said predetermined hash value of said first break-
point i a data storage, said predetermined hash value
of said first breakpoint pointing to a corresponding
portion of said first digital data sequence from said
starting point to said first breakpoint;

performing a hash function on a subset group beginning
at a starting position in a second digital sequence until
said first predetermined numeric pattern 1n said hash
value 1s obtained;

marking a second breakpoint in said second digital
sequence when said first predetermined numeric pat-
tern 1n said hash value 1s obtained;

comparing said predetermined hash value at said first
breakpoint with said predetermined hash value at said
second breakpoint

i said predetermined hash value of said first breakpoint 1s
not the same as said predetermined hash value of said
second breakpoint, replacing said predetermined hash
value of said first breakpoint 1n said data storage, said
predetermined hash value of said second breakpoint
pointing to a corresponding portion of said second
digital data sequence from said starting point to said
second breakpoint; and

i said predetermined hash value of said first breakpoint 1s
the same as said predetermined hash value of said
second breakpoint, storing said predetermined hash
value of said second breakpoint 1n said data storage,
said predetermine hash value of said second breakpoint
pointing to said predetermined hash value of said first
breakpoint.

18. A computer program product comprising;

a computer usable medium having computer readable
code embodied therein for determining at least a {first
breakpoint 1n a first digital sequence comprising:

computer readable program code devices configured to
cause a computer to eflect determining a subset group
of said first digital sequence;

computer readable program code devices configured to
cause a computer to effect performing a hash function
on said subset group of said first digital sequence
beginning at a starting position i1n said first digital
sequence until a first predetermined numeric pattern in
said hash value 1s obtained, wherein said hash function
1s combined with adjusting said hash value based on a
length of a current partition of said first digital
sequence to increase a likelithood of 1dentifying a first
breakpoint 1n said current partition as a potential length
of said current partition increases;

computer readable program code devices configured to
cause a computer to effect marking said first breakpoint
when said first predetermined numeric pattern 1n said
hash value 1s obtained;

computer readable program code devices configured to
cause a computer to effect storing said predetermined
hash value of said first breakpoint in a data storage, said
predetermined hash value of said first breakpoint point-
ing to a corresponding portion of said first digital data
sequence from said starting point to said first break-
point;

computer readable program code devices configured to
cause a computer to eflect performing a hash function
on a subset group beginming at a starting position 1n a
second digital sequence until said first predetermined
numeric pattern in said hash value 1s obtained;

computer readable program code devices configured to
cause a computer to effect marking a second breakpoint
in said second digital sequence when said first prede-

10

15

20

25

30

35

40

45

50

55

60

65

18

termined numeric pattern 1n said hash value 1s obtained,
wherein said hash function 1s combined with adjusting
said hash value based on a length of a current partition
of said second digital sequence to increase a likelihood
of 1dentifying said second breakpoint in said current
partition as a potential length of said current partition
increases; and

computer readable program code devices configured to

cause a computer to ellect comparing said predeter-

mined hash value at said first breakpoint with said

predetermined hash value at said second breakpoint,

wherein

if said predetermined hash value of said first breakpoint
1s not the same as said predetermined hash value of
said second breakpoint, replacing said predeter-
mined hash value of said first breakpoint 1n said data
storage, said predetermined hash value of said sec-
ond breakpoint pointing to a corresponding portion
of said second digital data sequence from said start-
ing point to said second breakpoint; and

if said predetermined hash value of said first breakpoint
1s the same as said predetermined hash value of said
second breakpoint, storing said predetermined hash
value of said second breakpoint 1n said data storage,
said predetermine hash value of said second break-
point pointing to said predetermined hash value of
said first breakpoint.

19. The computer program product of claim 18, wherein
said numeric pattern comprises a bit pattern.

20. The computer program product of claim 18, wherein
said computer readable program code devices configured to
cause a computer to eflect performing a hash function 1is
carried out by means of a rolling hash function.

21. The computer program product of claim 18, further
comprising;

computer readable program code devices configured to

cause a computer to effect further performing a hash
function on another subset group of said first digital
sequence from said first breakpoint until said first
predetermined numeric pattern in said hash value 1s
again obtained; and

computer readable program code devices configured to

cause a computer to effect marking another breakpoint
in said first digital sequence when said first predeter-

mined numeric pattern 1 said hash value 1s again
obtained.

22. The computer program product of claim 21, wherein
said computer readable program code devices configured to
cause a computer to eflect further performing said hash
function 1s carried out by means of a rolling hash function.

23. The computer program product of claim 18, further
comprising;
computer readable program code devices configured to
cause a computer to eflect determining a second pre-
determined numeric pattern in said hash value;

computer readable program code devices configured to
cause a computer to eflect continuing said step of
performing said hash function on said subset group of
said first digital sequence until an established threshold
restriction has been met; and

computer readable program code devices configured to
cause a computer to eflect alternatively marking said
first breakpoint when said second predetermined
numeric pattern in said hash value 1s obtained.

24. A method for determining at least a first breakpoint 1n
at least a first digital sequence comprising:

Us 7,272,602 B2

19

determining a subset group of said first digital sequence;

performing a hash function on said subset group of said
first digital sequence beginning at a starting position 1n
said first digital sequence until a first predetermined

20

said first breakpoint with a corresponding portion of
said second digital sequence from said stathing position
to said second breakpoint.

277. A computer program product comprising:

numeric pattern 1s found in the hash values from the 3 a computer usable medium having computer readable
said hash function 1s obtained, wherein the hash func- code embodied therein for determining a first break-
tion 1s a 32-bit rolling hash function and the subset point 1n a first digital sequence comprising:
group 15 a 32-bit pattern derived directly or indirectly computer readable program code devices configured to
from the said first digital sequence combined with cause a computer to eflect determining a subset group
adjusting said hash value based on a length of a current 10 of said first digital sequence;
partition of said first digital sequence to increase a computer readable program code devices configured to
likelihood of identifying said first breakpoint in said cause a computer to effect performing a hash function
current partition as a potential length of said current on said subset group of said first digital sequence
partition increases, and the performing comprises shift- beginning at a starting position in said first digital
ing the 32-bit pattern over one bit, reading a character 153 sequence until a first predetermined numeric pattern in
from the first digital sequence and deriving directly or said hash value 1s obtained combined with adjusting
indirectly another 32-bit pattern, and repeating the said hash value based on a length of a current partition
shifting and the reading, until there are 32-bits in of said first digital sequence to increase a likelihood of
sequence that can be hashed together to provide one identifying said first breakpoint 1n said current partition
said hash value; 20 as a potential length of said current partition increases,
marking said first breakpoint when said first predeter- wherein the hash function 1s a 32-bit rolling hash
mined numeric pattern in said hash value is obtained; tunction and the subset group 1s a 32-bit pattern, and
further performing a hash function on another subset the per fonping cqmprises shitting the 32-bit pattern
group of said first digital sequence from said first over one bit, readmg.a charactcj-r from the first dlgltal
breakpoint until said first predetermined numeric pat- “3 sequence, and repeating the shifting and the reading;
tern in said hash value 1s again obtained; and and ‘
marking another breakpoint 1n said first digital sequence computer readable Progrdiil COde_ devu::es configured o
when said first predetermined numeric pattern 1n said cause a computer 1o eilect markmg sa{d first breqkpmpt
hash value is again obtained. y Khin szild ﬁrstbprgde‘?rmmed numeric pattern in said
25. The method of claim 24, wherein said step of further ash value 1s obtained. .
performing said hash function 1s carried out by means of a 28. .Tl.le computer program product of claim 27, further
rolling hash function. COMPHSILS. .
. . computer readable program code devices configured to
26. The method of claim 24, further comprising the steps - :
cause a computer to effect further performing a hash
‘ ‘ _ _ 3 function on another subset group of said first digital
storing s:‘-;ud predetermined htash value of §ald first break- sequence from said first breakpoint until said first
point in a data storage, said predetermined hash value predetermined numeric pattern in said hash value is
of s:‘-;ud first breakpmgt pointing to a correspondu}g again obtained; and
portion of said first digital data sequence from said computer readable program code devices configured to
starting point to said first breakpoint; 40 cause a computer to eflect marking another breakpoint
performing a hash function on a subset group beginning in said first digital sequence when said first predeter-
at a starting position in a second digital sequence until mined numeric pattern in said hash value is again
said first predetermined numeric pattern 1n said hash obtained.
value 1s obtained; 45 29. The computer program product of claim 28, wherein

marking a second breakpoint in said second digital
sequence when said first predetermined numeric pat-
tern 1n said hash value 1s obtained;

said computer readable program code devices configured to
cause a computer to eflect further performing said hash
function 1s carried out by means of a rolling hash function.

30. The computer program product of claim 27, turther
comprising:

comparing said predetermined hash value at said first
breakpoint with said predetermined hash value at said

second breakpoint;

i said predetermined hash value of said first breakpoint 1s
not the same as said predetermined hash value of said
second breakpoint, replacing said predetermined hash
value of said first breakpoint 1n said data storage, said
predetermined hash value of said second breakpoint
pomnting to a corresponding portion of said second
digital data sequence from said starting point to said
second breakpoint; and

i said predetermined hash value of said first breakpoint 1s
the same as said predetermined hash value of said
second breakpoint, storing said predetermined hash
value of said second breakpoint in said data storage,
said predetermine hash value of said second breakpoint
pointing to said predetermined hash value of said first
breakpoint, thereby equating a corresponding portion
of said first digital sequence from said starting point to

50

55

60

65

computer readable program code devices configured to
cause a computer to eflect determining a second pre-
determined numeric pattern in said hash value;

computer readable program code devices configured to
cause a computer to eflect continuing said step of
performing said hash function on said subset group of
said first digital sequence until an established threshold

restriction has been met; and

computer readable program code devices configured to
cause a computer to eflect alternatively marking said
first breakpoint when said second predetermined
numeric pattern in said hash value 1s obtained.

31. The computer program product of claim 27, further

comprising;

computer readable program code devices configured to
cause a computer to eflect performing a hash function
on a subset group beginning at a starting position 1n a

Us 7,272,602 B2

21

second digital sequence until said first predetermined
numeric pattern 1n said hash value 1s obtained;

computer readable program code devices configured to
cause a computer to effect marking a second breakpoint
in said second digital sequence when said first prede-
termined numeric pattern 1n said hash value 1s obtained;

computer readable program code devices configured to
cause a computer to eflect comparing said predeter-
mined hash value at said first breakpoint with said
predetermined hash value at said second breakpoint;
and

computer readable program code devices configured to

cause a computer to effect equating a corresponding
portion of said first digital sequence from said starting
pomnt to said first breakpoint with a corresponding
portion of said second digital sequence from said
starting position to said second breakpoint.

32. A method for partitioning a digital sequence compris-
ng:

performing a rolling hash function on at least a portion of

a digital sequence to produce binary sequences, said
hash function being combined with adjusting a hash
value based on a length of a current partition of said
digital sequence to increase a likelihood of identifying
a breakpoint 1n said current partition as a potential
length of said current partition increases;

monitoring said binary sequences produced by said hash

function for a predetermined pattern of bits; and
marking said breakpoint in said digital sequence when
said predetermined pattern occurs.

33. The method of claim 32, wherein the predetermined
pattern of bits comprises a consecutive sequence of bits.

34. The method of claim 33, wherein the consecutive
sequence ol bits comprises a plurality of endmost bits.

35. The method of claim 32, wherein the performing of
the hash function comprises performing a rolling hash
function adapted to scan portions of said digital sequence.

36. A computer program product comprising;

computer readable program code devices configured to

cause a computer to effect performing a rolling hash

function on at least a portion of a digital sequence to

produce binary sequences, said hash function being

combined with adjusting said hash value based on a

length of a current partition of said first digital
sequence to increase a likelihood of identifying said
first breakpoint 1n said current partition as a potential
length of said current partition increases;

computer readable program code devices configured to
cause a computer to eflect monitoring said binary
sequences produced by said hash function for a prede-
termined pattern of bits; and

computer readable program code devices configured to
cause a computer to effect marking said breakpoint 1n
said digital sequence when said predetermined pattern
OCCUTrS.

37. A method for partitioning a digital sequence compris-
ng:
performing a mathematical function that produces a sta-
tistically infrequent arrangement of n bytes on at least
a portion of a digital sequence to produce binary
sequences, said mathematical function that produces
statistically infrequent arrangement of n bytes being
combined with adjusting said mathematical function
that produces statistically infrequent arrangement of n
bytes based on a length of a current partition of said
digital sequence to increase a likelihood of 1dentifying

10

15

20

25

30

35

40

45

50

55

60

65

22

a breakpoint 1n said current partition as a potential
length of said current partition increases;

monitoring said binary sequences produced by the math-
ematical function that produces statistically infrequent
arrangement of n bytes for a first predetermined pattern
of bits; and

marking said breakpoint 1n the digital sequence when the
first predetermined pattern 1s i1dentified as occurring

during the monitoring.

38. The method of claim 37, wherein said step of per-
forming said mathematical function that produces statisti-
cally mmfrequent arrangement of n bytes function comprises
a rolling hash function adapted to scan portions of said
digital sequence.

39. The method of claim 37, further comprising:

determining a threshold restriction for said step of moni-
toring said binary sequences; and

increasing a probability of said marking of said break-
point 1n said digital sequence.

40. The method of claim 39, wherein the increasing of
said probability of said marking of said breakpoint 1n said
digital sequence 1s carried out by the steps of:

utilizing a second predetermined numeric pattern for said
step of monitoring said binary sequences; and

alternatively marking said breakpoint when said second
predetermined numeric pattern occurs.

41. The method of claim 39, wherein the increasing of
said probability of said marking of said breakpoint 1in said
digital sequence 1s a function of some content portion of said
sequence.

42. A computer program product comprising:

computer readable program code devices configured to
cause a computer to eflect performing a mathematical
function that produces a statistically infrequent
arrangement ol n bytes on at least a portion of a digital
sequence to produce binary sequences, said mathemati-
cal function that produces statistically infrequent
arrangement of n bytes being combined with adjusting,
said mathematical function that produces statistically
infrequent arrangement of n bytes based on a length of
a current partition of said digital sequence to increase
a likelihood of 1dentifying a breakpoint in said current
partition as a potential length of said current partition
1ncreases;

computer readable program code devices configured to
cause a computer to eflect monitoring said binary
sequences produced by the mathematical function that
produces statistically infrequent arrangement of n bytes
for a first predetermined pattern of bits; and

computer readable program code devices configured to
cause a computer to eflect marking said breakpoint 1n
the digital sequence when the first predetermined pat-
tern 1s 1dentified as occurring during the monitoring.

43. The computer program product of claim 42, wherein
said performing said mathematical function that produces
statistically infrequent arrangement of n bytes comprises
performing a rolling hash function adapted to scan portions
of said digital sequence.

44. The computer program product of claim 42, further
comprising:

computer readable program code devices configured to

cause a computer to eflect determiming a threshold

restriction for said step of momtoring said binary
sequences; and

Us 7,272,602 B2

23

computer readable program code devices configured to
cause a computer to eifect increasing a probability of
said marking of said breakpoint 1 said digital
sequence.

45. The computer program product of claim 44, wherein
the increasing of said probability of said marking of said
breakpoint 1n said digital sequence comprises:

utilizing a second predetermined numeric pattern for said

step of monitoring said binary sequences; and
alternatively marking said breakpoint when said second
predetermined numeric pattern occurs.

46. The computer program product of claim 42, wherein
the increasing of said probability of said marking of said
breakpoint in said digital sequence i1s a function of some
content portion of said sequence.

47. A method for partitioning a digital sequence compris-
ng:

performing a mathematical function that produces statis-

tically infrequent arrangement of n bytes on at least a
portion of a digital sequence to produce hash values,
said mathematical function that produces statistically
inirequent arrangement of n bytes being combined with
adjusting said mathematical function that produces
statistically infrequent arrangement of n bytes based on
a length of a current partition of said digital sequence
to 1ncrease a likelithood of 1dentifying a breakpoint in
said current partition as a potential length of said
current partition increases;

monitoring said hash values produced by the mathemati-

cal function that produces statistically inifrequent
arrangement of n bytes for a numeric pattern selected
from a range of numeric values; and

marking said breakpoint in the digital sequence when the

numeric pattern occurs according to the monitoring.

48. A computer program product comprising:

computer readable program code devices configured to

cause a computer to effect performing a mathematical
function that produces statistically infrequent arrange-
ment of n bytes on at least a portion of a digital
sequence to produce hash values, said mathematical
function that produces statistically infrequent arrange-
ment of n bytes being combined with adjusting said
mathematical function that produces statistically inire-
quent arrangement of n bytes based on a length of a
current partition of said digital sequence to increase a
likelihood of identitying a breakpoint in said current
partition as a potential length of said current partition
1ncreases:;

computer readable program code devices configured to
cause a computer to eflect monitoring hash values
produced by the mathematical function that produces
statistically infrequent arrangement of n bytes for a
numeric pattern selected from a range ol numeric
values and

computer readable program code devices configured to
cause a computer to eflect marking said breakpoint 1n
the digital sequence when the numeric pattern occurs
according to the monitoring.

49. A method for partitioning a digital sequence compris-
ng:

performing a mathematical function that produces statis-
tically infrequent arrangement of n bytes on at least a
portion of said digital sequence, the performing com-
prising:

indexing bytes from the digital sequence into an array of
alternative pre-determined bit sequences;

10

15

20

25

30

35

40

45

50

55

60

65

24

performing a hash function on the pre-determined bit
sequences, said hash function being combined with
adjusting said hash function based on a length of a
current partition of said digital sequence to increase a
likelihood of 1dentifying a breakpoint in said current
partition as a potential length of said current partition
1ncreases:

monitoring the bit sequences produced by the said hash

function for a first predetermined bit pattern; and
marking said breakpoint 1n said digital sequence when
said first predetermined bit pattern occurs.
50. The method of claim 49, wherein said alternative
pre-determined bit sequences are 32-bit sequences.
51. The method of claim 49, wherein said alternative
pre-determined bit sequences are 32-bit sequences selected
to normalize breakpoints around a certain data block size.
52. A computer program product comprising:
computer readable program code devices configured to
cause a computer to effect performing a mathematical
function that produces statistically infrequent arrange-
ment of n bytes on at least a portion of said digital
sequence, the computer readable program code devices
comprising additional computer readable program code
devices configured to cause a computer to etlect:

indexing bytes from the digital sequence into an array of
alternative pre-determined bit sequences;

performing a hash function on the pre-determined bit

sequences, said has function being combined with
adjusting said hash function based on a length of a
current partition of said digital sequence to increase a
likelihood of 1dentifying a breakpoint in said current
partition as a potential length of said current partition
1ncreases;

monitoring the bit sequences produced by the said hash

function for a first predetermined bit pattern; and
marking said breakpoint 1n said digital sequence when
said first predetermined bit pattern occurs.

53. A method for partitioning a digital sequence compris-
ng:

processing at least a portion of a digital sequence to

produce a transformation;

performing a rolling hash function on the transformation

to produce binary sequences, said hash function being
combined with adjusting said hash function based on a
length of a current partition of said digital sequence to
increase a likelihood of identifying a breakpoint 1n said
current partition as a potential length of said current
partition increases;

monitoring said binary sequences produced by the hash

function for a pattern of bits; and

marking said breakpoint 1n the digital sequence when said

first predetermined pattern occurs as determined by the
monitoring.

54. The method of claim 53, wherein the processing to
produce the transformation and the hash function are con-
figured to produce a plurality of the breakpoints aggregating
around a pre-determined data block size as opposed to a flat
distribution of data block sizes.

55. The method of claim 53, wherein the transformation
indexes the processed portion of the digital sequence into
one of “n” pre-determined numbers or numeric sequences.

56. A computer program product comprising:

computer readable program code devices configured to

cause a computer to eflect processing at least a portion

of a digital sequence to produce a transformation;
computer readable program code devices configured to

cause a computer to etlect performing a rolling hash

Us 7,272,602 B2

25

function on the transformation to produce binary
sequences, said hash function being combined with
adjusting said hash function based on a length of a
current partition of said digital sequence to increase a
likelihood of identifying a breakpoint in said current
partition as a potential length of said current partition
1ncreases:

computer readable program code devices configured to
cause a computer to eflect monitoring said binary
sequences produced by the hash function for a pattern
of bits; and

computer readable program code devices configured to
cause a computer to eflect marking said breakpoint in

10

26

the digital sequence when said first predetermined
pattern occurs as determined by the monitoring.

57. The computer program product of claim 56, wherein
the processing to produce the transformation and the hash
function are configured to produce a plurality of the break-
points aggregating around a pre-determined data block size
as opposed to a flat distribution of data block sizes.

58. The computer program product of claim 357, wherein
the transformation indexes the processed portion of the
digital sequence into one of “n” pre-determined numbers or
numeric sequences.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. . 7,272,602 B2 Page 1 of 3
APPLICATION NO. : 10/861796

DATED . September 18, 2007

INVENTOR(S) . Gregory Hagan Moulton

It Is certified that error appears in the above-identified patent and that said Letters Patent i1s hereby corrected as shown below:

Drawings
Sheet 7, replace Fig. 8 with the figure depicted herein below, wherein 1n 704 “Hash for #12” has
been changed to --Hash for #10--

7102

Column 5
Line 46, change ““stance™ to --distances--

Column 8
Line 2, change ““‘recipe”, or formula™ to --"recipe” or formula--

Line 37, change ““1s shown 1llustrative ot™ to --1llustrates--
Line 50, change *“37 9127 to --37, which 1s also at number 912--

ey

CERTIFICATE OF CORRECTION (continued)
U.S. Pat. No. 7,272,602 B2

Page 2 of 3

Column 9

Line 19, change ““"Day 2”.” to --"Day 2.”--
Line 20, change ““"Day 17,” to --"Day 1,"--
Line 27, change ““"Day 27,” to --"Day 2, -
Line 60, change <1212 (2.)" to --1212 (2.2)--

Column 11
Line 58_, Change r;r;r;r;O:J:mS:m to __r;r;OS:m__
Line 63, change “““chunk™.” to --"chunk.”--

Column 13
Replace Table 1 with the table depicted herein below, wherein “Sticky Byte™ has been changed to

—“sticky bits”—

Column 14

Lin¢ 38, change

Claim 17

Column 17, line 28, change “predetermine” to --predetermined--

Claim 18

Column 18, lin¢e 26, change “predetermine” to --predetermined--

Claim 24

Column 19, lin¢ 64, change “predetermine” to --predetermined--

ekl

2% 22

TABLE 1}
"sticky_bits’ % of Sequences

Value w/Value
1 50,00000
3 25.00000
7 12 50000
5 65.25000
31 3.12300
63 1.56250
127 0.78125
255 0.39042
311 0.19531
1023 0.09766
2047 0.04883
4095 0.02441
R191 0.01221
16383 0.00610
32767 0.00305
65535 0.00153

cic. elc.

slides™,” to --""slides, ”’--

CERTIFICATE OF CORRECTION (continued) Page 3 of 3
U.S. Pat. No. 7,272,602 B2

Claim 48
Column 23, line 54, change “values and™ to --values and;--

Claim 52
Column 24, line 28, change “has function™ to --hash function--

Signed and Sealed this

Fifth Day of January, 2010

Lo ST s

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

