

(12) United States Patent Hall et al.

US 7,262,074 B2 (10) Patent No.: (45) **Date of Patent:** Aug. 28, 2007

- METHODS OF FABRICATING (54)**UNDERFILLED, ENCAPSULATED SEMICONDUCTOR DIE ASSEMBLIES**
- Inventors: Frank L. Hall, Boise, ID (US); Cary (75)J. Baerlocher, Meridian, ID (US)
- Micron Technology, Inc., Boise, ID (73)Assignee: (US)

5,886,404	Α	*	3/1999	You 257/692
5,917,242	A	*	6/1999	Ball 257/737
6,060,768	A	*	5/2000	Hayashida et al 257/666
6,144,107	A	*	11/2000	Narita 257/789
6,165,819	A	*	12/2000	Seki et al 438/123
6,221,689	B1		4/2001	Maa et al.
6,225,144	B1		5/2001	How et al.

- *) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- Appl. No.: 10/191,655 (21)
- Jul. 8, 2002 Filed: (22)
- (65)**Prior Publication Data** US 2004/0004294 A1 Jan. 8, 2004
- (51) **Int. Cl.**

H01L 23/29	(2006.01)
H01L 21/66	(2006.01)
H01L 21/00	(2006.01)

- 438/26; 438/51; 438/55; 438/64; 438/112; 438/124; 438/126; 438/127; 257/790
- Field of Classification Search 257/784, (58)257/666, 778, 702, 790, 777, 787; 438/106, 438/107, 112, 15, 124, 617

(Continued)

OTHER PUBLICATIONS

Tummala et al., Microelectronics Packaging Handbook Semiconductor Packaging Part II, Chapman and Hall, 2nd Ed., 1997, pp. 25-26, 42-44, 91-93, and 887-890.

Primary Examiner—Carl Whitehead, Jr. Assistant Examiner—J. D. Mitchell (74) Attorney, Agent, or Firm—TraskBritt, PC

ABSTRACT (57)

An apparatus and method may be used for packaging a semiconductor die and a carrier substrate to substantially prevent trapped moisture therebetween and provide a robust, inflexible cost-effective bond. The semiconductor die is attached to the carrier substrate with a plurality of discrete adhesive elements so as to provide a gap or standoff therebetween. Wire bonds may then be formed between bond pads on the semiconductor die to conductive pads or terminals on the carrier substrate. With this arrangement, a dielectric filler material is disposed in the gap or standoff to form a permanent bonding agent between the semiconductor die and the carrier substrate. By applying the dielectric filler material after forming the wire bonds, the dielectric filler material coats at least a portion of the wire bonds to stabilize the wire bonds and prevent wire sweep in an encapsulation process, such as transfer molding, performed thereafter.

See application file for complete search history.

(56)**References** Cited U.S. PATENT DOCUMENTS

4,048,670	Α	*	9/1977	Eysermans
5,173,766	Α	*	12/1992	Long et al 257/687
5,548,160	A		8/1996	Corbett et al.
5,561,329	A	*	10/1996	Mine et al 257/788
5,585,600	Α		12/1996	Froebel et al.
5,596,366	A	*	1/1997	Takashima et al 348/208.16
5,710,071	A		1/1998	Beddingfield et al.
5,719,440	A		2/1998	Moden
5,840,598	A		11/1998	Grigg et al.

20 Claims, 5 Drawing Sheets

US 7,262,074 B2 Page 2

U.S. PATENT DOCUMENTS

6,229,202 B1*	5/2001	Corisis 257/666
6,242,283 B1*	6/2001	Lo et al 438/106
6,297,547 B1*	10/2001	Akram 257/676
6,297,560 B1	10/2001	Capote et al.
6,359,334 B1	3/2002	Jiang
6,376,915 B1*	4/2002	Hikita et al 257/777
6,385,049 B1*	5/2002	Chia-Yu et al 361/721
6,465,734 B2*	10/2002	Yamada et al 174/52.4
6,476,507 B1*	11/2002	Takehara 257/787
6,593,662 B1*	7/2003	Pu et al 257/777
6,621,156 B2*	9/2003	Kimura 257/686
6,670,702 B2*	12/2003	Corisis et al 257/686
6,700,210 B1*	3/2004	Smith 257/790
6,707,166 B1*	3/2004	Noguchi 257/790
6,747,361 B2*	6/2004	Ichinose 257/784

6,906,415	B2 *	6/2005	Jiang et al 257/723
6,940,184	B2 *	9/2005	Ueda et al 257/790
2001/0035294	A1*	11/2001	Park et al 174/52.4
2002/0000327	A1*	1/2002	Juso et al 174/250
2002/0070047	A1*	6/2002	Jiang et al 174/256
2002/0074645	A1*	6/2002	Dickey et al 257/702
2002/0100989	A1*		Jiang et al 257/784
2002/0125571	A1*		Corisis et al 257/738
2002/0130413	A1*	9/2002	Tay et al 257/737
2002/0171142	A1*	11/2002	Kinsman
2002/0171143	A1*	11/2002	Kinsman 257/737
2003/0045072	A1*	3/2003	Jiang 438/459
2003/0116866	A1*	6/2003	'Khng et al 257/780
2003/0173679	A1*		Levardo et al $257/777$

2003/01/30/9 A	1 9/2003	Levardo et al	231/11/
2003/0230801 A	1* 12/2003	Jiang et al	257/723

* cited by examiner

U.S. Patent Aug. 28, 2007 Sheet 1 of 5 US 7,262,074 B2

U.S. Patent US 7,262,074 B2 Aug. 28, 2007 Sheet 2 of 5

Fig. 5

U.S. Patent US 7,262,074 B2 Aug. 28, 2007 Sheet 3 of 5

Fig. 6

U.S. Patent Aug. 28, 2007 Sheet 4 of 5 US 7,262,074 B2

U.S. Patent Aug. 28, 2007 Sheet 5 of 5 US 7,262,074 B2

1

METHODS OF FABRICATING UNDERFILLED, ENCAPSULATED SEMICONDUCTOR DIE ASSEMBLIES

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to methods and apparatus for assembling semiconductor dice to a carrier substrate. In particular, the present invention relates to 10 methods and apparatus of underfill bonding semiconductor dice to a carrier substrate and various assembly arrangements with respect to underfill bonding semiconductor dice to a carrier substrate followed by encapsulation.

2

sive-coated tape. Specifically, by conventionally utilizing adhesive tape in attaching a semiconductor die to a carrier substrate followed by overmolding, moisture associated with the adhesive becomes trapped, ultimately resulting in moisture sensitivity issues in the form of enhanced potential for delamination of the components of the semiconductor die assembly. Further, the cost of the large volume of adhesive tape used to attach large numbers of dice to carrier substrates becomes excessive. In addition, the conventional use of substantial volumes (as measured by surface area) of tape is required to avoid stress defect failure in semiconductor die assemblies. Finally, even with the use of substantial tape coverage between a semiconductor die and its carrier substrate, the bond and resulting assembly may be 15 undesirably flexible and resilient. Another ongoing problem with the use of wire bonding in packaging occurs during a transfer molding encapsulation process of the semiconductor die in what is known as "wire sweep." Wire sweep results when a wave front of dielectric (commonly a silicon-filled polymer) encapsulation material moving through a mold cavity across the semiconductor die and carrier substrate assembly forces wire bonds to contact adjacent wire bonds and become fixedly molded in such a contacted position after the encapsulation material sets. When wire sweep occurs, a wire bond interconnection of a semiconductor die to a carrier substrate short circuits, which results in a nonfunctional semiconductor die assembly. Wire bond sweeping may also result in bond wire breakage or disconnection from a bond pad or terminal. Yet another problem with conventional techniques is that of bleed of molding compound introduced into a mold cavity to form a dielectric encapsulant over the die and carrier substrate, which problem particularly manifests itself in the case of BOC-type assemblies wherein bond pads of a semiconductor die accessed through a slot in a carrier substrate are wire bonded prior to encapsulation. Under certain conditions, such as where the die fails to overlap the slot sufficiently, pressure of the molding compound in conjunction with the configuration of the assembly causes molding compound to bleed out of the mold cavity. Therefore, it would be advantageous to utilize wire bonding in packaging in combination with an assembly and encapsulation technique to substantially eliminate moisture sensitivity issues as well as being cost efficient and providing a more robust semiconductor die assembly. It would also be advantageous to utilize wire bonding packaging techniques while substantially eliminating the problem of wire sweep and molding compound bleed.

2. State of the Art

Chip-On-Board ("COB") or Board-On-Chip ("BOC") technology is used to attach a semiconductor die directly to a carrier substrate, such as an interposer or printed circuit board. Electrical and mechanical interconnection used in COB or BOC technology may include flip-chip attachment 20 techniques, wire bonding techniques, or tape automated bonding ("TAB") techniques.

Flip-chip attachment generally includes electrically and mechanically attaching a semiconductor die by its active surface to a carrier substrate using a pattern of discrete 25 conductive elements therebetween. The discrete conductive elements are generally disposed on the active surface of the die or an interposer during fabrication of the semiconductor die package, but may instead be disposed on the carrier substrate. The discrete conductive elements may comprise 30 minute conductive bumps, balls or columns of various configurations. Each discrete conductive element is placed corresponding to mutually aligned locations of bond pads (or other I/O locations) on the semiconductor die (or interposer) and terminals on the carrier substrate when the two 35 components are superimposed. The semiconductor die is thus electrically and mechanically connected to the carrier substrate by, for example, reflowing conductive bumps of solder or curing conductive or conductor-filled epoxy bumps. A dielectric underfill may then be disposed between 40 the die and the carrier substrate and around the discrete conductive elements for environmental protection and to enhance the mechanical attachment of the die to the carrier substrate. For example, U.S. Pat. No. 5,710,071 to Beddingfield et al. discloses an exemplary flip-chip attachment of a 45 semiconductor die to a substrate and a method of underfilling a gap between the semiconductor die and substrate. Wire bonding and TAB attachment techniques generally begin with attaching a semiconductor die by its back side or its active surface to the surface of a carrier substrate with an 50 appropriate adhesive, such as an epoxy or silver solder, a liquid or gel adhesive, a double-sided adhesive-coated tape segment such as Kapton[®], a polyimide. In wire bonding, fine wires of gold, aluminum or alloys thereof, are discretely attached to bond pads on the semiconductor die and then 55 extended and bonded to corresponding terminal pads on the carrier substrate. A dielectric encapsulant such as a silicone or epoxy may then be applied to protect the fine wires and bond sites. In TAB attachment, ends of metal traces carried on a flexible insulating tape such as a polyimide are 60 attached, as by thermocompression bonding, directly to the bond pads on the semiconductor die and corresponding terminal pads on the carrier substrate. Particularly in the case of wire bonding followed by a transfer or other molding process to encapsulate a die and 65 carrier substrate assembly, there are problems in securing the semiconductor dice to the carrier substrates using an adhe-

BRIEF SUMMARY OF THE INVENTION

The present invention relates to methods and apparatus for mutually securing and encapsulating a semiconductor substrate and a carrier substrate to substantially reduce or even prevent trapping of moisture at the interface between the semiconductor substrate and carrier substrate. The present invention also relates to methods and apparatus for substantially preventing "wire sweep" in wire bonding packaging techniques. The semiconductor substrate includes a back surface and an active surface with bond pads exposed thereon. The carrier substrate includes a surface with conductive pads or terminals exposed thereon. The semiconductor substrate is attached to the carrier substrate in a position and orientation so that wire bonds may be extended between the conductive pads or terminals on the surface of the carrier substrate and the bond pads on the active surface of the semiconductor

3

substrate. Such attachment is facilitated by a plurality of adhesive elements of relatively small surface area, in comparison to the "footprint" of the semiconductor substrate over the carrier substrate, which provides an initial bond between the semiconductor substrate and the carrier sub- 5 strate while providing a gap or standoff therebetween. A dielectric filler material is then disposed in the gap or standoff area to act as a permanent bonding agent between the semiconductor substrate and the carrier substrate.

In one embodiment, the carrier substrate includes an 10 opening, for example, in the form of a slot extending between the first and second surface thereof. The semiconductor substrate is attached by its active surface to a surface of the carrier substrate so that the bond pads of the semiconductor substrate are exposed through the opening. Wire 15 bonds are then formed between the exposed bond pads on the semiconductor substrate and the conductive pads on the surface of the carrier substrate opposite that to which the semiconductor substrate is secured so that the wire bonds extend through the opening. In this embodiment, the dielectric filler material is introduced into the gap or standoff area between the semiconductor substrate and the carrier substrate to establish a permanent bond between the semiconductor substrate and the carrier substrate and to substantially fill the slot and 25 secure the wire bond in place. In one aspect of the present invention, the dielectric filler material may be applied to the gap or standoff area through the opening in the carrier substrate. As such, at least a portion of each of the wire bonds in the opening is encapsulated by the dielectric filler 30 material, stabilizing the wire bonds against potential wire sweep. After applying the dielectric filler material, a dielectric encapsulation material may be applied, as by transfer molding, injection molding or other technique known in the art, to fully encapsulate the wire bonds, and an overmold of 35 encapsulation material may be likewise applied over the semiconductor substrate on the other side of the carrier substrate. According to the present invention, the stabilization of the wire bonds via the dielectric filler material surrounding the 40 wire bonds prevents wire sweep between adjacent wire bonds during the encapsulation process. Further, by utilizing the dielectric filler material and not a large adhesive tape segment or segments to permanently bond the semiconductor substrate to the carrier substrate, any moisture sensitivity 45 problems in the assembled semiconductor die assembly are substantially eliminated while a more robust and rigid bond between the semiconductor substrate and the carrier substrate minimizes the potential for stress defect failure. In another embodiment of the present invention, the 50 semiconductor substrate may be attached by its back side to the carrier substrate. In such an arrangement, the bond pads on the active surface of the semiconductor substrate are usually proximate one or more peripheral edges thereof. Wire bonds may be formed between the bond pads on the 55 semiconductor substrate and conductive pads or terminals on the carrier substrate. Dielectric filler material may be dispensed in the gap or standoff area provided by a plurality of relatively small surface area adhesive elements between the semiconductor substrate and carrier substrate to act as a 60 primary bonding structure between the semiconductor substrate and carrier substrate. The wire bonds may then be encapsulated with an overmolded encapsulation material. Similar to the first embodiment, bonding the semiconductor substrate to the carrier substrate using the dielectric filler 65 material substantially prevents moisture therebetween. The dielectric filler material also surrounds portions of the wire

bonds, which stabilizes the wire bonds against wire sweep during the encapsulation process.

In another aspect of the present invention, the semiconductor substrate is mounted to a circuit board in an electronic system, such as a computer system. In the electronic system, the circuit board is electrically connected to a processor device which electrically communicates with an input device and an output device.

Other features and advantages of the present invention will become apparent to those of skill in the art through a consideration of the ensuing description, the accompanying drawings and the appended claims.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

While the specification concludes with claims particularly pointing out and distinctly claiming that which is regarded as the present invention, the advantages of this invention 20 may be ascertained from the following description of the invention when read in conjunction with the accompanying drawings, wherein:

FIG. 1 illustrates a simplified cross-sectional view of a semiconductor assembly, depicting a semiconductor die attached to a semiconductor substrate with an adhesive element providing a gap therebetween, according to a first embodiment of the present invention;

FIG. 2 illustrates a simplified cross-sectional view of a semiconductor assembly, depicting dielectric filler material provided in the gap between a semiconductor die and substrate through an opening in the substrate, according to the first embodiment of the present invention;

FIG. 3 illustrates a simplified cross-sectional view of a semiconductor assembly, depicting wire bonds extending through the opening encapsulated by an encapsulation mate-

rial, according to the first embodiment of the present invention;

FIG. 4 is a top view of a substrate with an adhesive element arrangement, according to the first embodiment of the present invention;

FIG. 5 is a top view of a substrate with an adhesive element arrangement, according to a first variant of the first embodiment of the present invention;

FIG. 6 is a top view of a substrate with an adhesive element arrangement, according to a second variant of the first embodiment of the present invention;

FIG. 7 is a top view of a substrate with an adhesive element arrangement, according to a third variant of the first embodiment of the present invention;

FIG. 8 illustrates a simplified cross-sectional view of a semiconductor assembly, depicting a semiconductor die attached face up to a semiconductor substrate with an adhesive element providing a gap therebetween, according to a second embodiment of the present invention;

FIG. 9 illustrates a simplified cross-sectional view of a semiconductor assembly, depicting dielectric filler material provided in the gap between the semiconductor die and substrate, according to the second embodiment of the present invention; FIG. 10 illustrates a simplified cross-sectional view of a semiconductor assembly, depicting an active surface of the semiconductor die encapsulated by an encapsulation material, according to the second embodiment of the present invention; and

FIG. 11 illustrates a block diagram of the semiconductor assembly of the present invention interconnected to an electronic system, according to the present invention.

5

DETAILED DESCRIPTION OF THE INVENTION

Embodiments of the present invention will be hereinafter described with reference to the accompanying drawings. It 5 would be understood that these illustrations are not to be taken as actual views of any specific apparatus or method of the present invention, but are merely exemplary, idealized representations employed to more clearly and fully depict the present invention than might otherwise be possible. 10 Additionally, elements and features common between the drawing figures are designated by the same or similar reference numerals. FIGS. 1-3 illustrate a process that may be used for FIG. 1, a carrier substrate 110 is attached to a semiconductor substrate in the form of semiconductor die 120 with a plurality of discrete adhesive elements 130 therebetween. The carrier substrate 110 includes a first surface 112 and a include an opening **116** therein in, for example, the form of a slot extending from the first surface 112 to the second surface 114. The carrier substrate 110 may be any suitable type of substrate known in the art, such as an interposer or of any type of substrate material known in the art, such as bismaleimide triazine (BT) resin, ceramics, or FR-4 or FR-5 materials. The semiconductor die 120 includes an active surface 122 active surface 122. The bond pads 126 may be centrally located and exposed in one or more rows on the active surface 122 of the semiconductor die 120 and interconnected with integrated circuitry (not shown) within the semiconformed from silicon, but may be formed from germanium, gallium arsenide or indium phosphide, or any other known semiconductive material whose electrical conductivity and resistivity lie between those of a conductor and an insulator. singulated dice, groups of dice (partial wafers) and bulk substrates of semiconductive materials other than conventional wafers and including, without limitation, silicon on glass (SOG), silicon on insulator (SOI) and silicon on sapphire (SOS) substrates. The active surface 122 of the semiconductor die 120 is attached face down (as depicted) to the first surface 112 of the carrier substrate 110 so that the bond pads 126 are exposed through the opening 116. The semiconductor die and preferably at least two, discrete adhesive elements 130. The discrete adhesive elements 130 are configured so as to provide a gap or standoff 132 between the semiconductor die **120** and carrier substrate **110**. Further, the attachment using between the semiconductor die 120 and the carrier substrate 110 is sized and configured as a temporary attachment to secure the semiconductor die 120 and carrier substrate 110 together in proper relative position and alignment prior to the two components. The adhesive elements 130 may be any known adhesive structures, such as adhesive-coated dielectric tape segments such as Kapton® or other polymer segments, reduced tape decals, or epoxy drops applied to of the other thereto, preformed adhesive segments, or the like. The adhesive elements 130 may also comprise metallic

packaging a semiconductor assembly 100. Referring first to 15 second surface 114, wherein the carrier substrate 110 may 20 printed circuit board. Carrier substrate 110 may also be made 25 and a back surface 124 with bond pads 126 formed on the 30 ductor die 120. The semiconductor die 120 is preferably 35 As used herein, the term "semiconductor substrate" includes 40 120 is attached to the carrier substrate 110 with one or more, 50 one or more discrete adhesive elements 130 disposed 55 the introduction of another, primary bonding agent between 60 one of the components and partially cured before application 65

0

or other conductive bonding elements, such as a bond facilitated with solder or solder balls or the like so as to raise the semiconductor die 120 from the surface of the carrier substrate 110 to provide the gap or standoff 132 therebetween. Of course, in that instance, a suitable dielectric may be interposed between active surface 122 and the metallic bonding elements unless the metallic or other conductive bonding elements were used to ground or electrically bias the semiconductor die 120. With this arrangement, wire bonds 128 may be formed between the bond pads 126 on the active surface 122 of the semiconductor die 120 and conductive pads or terminals 118 on the second surface 114 of the substrate 110 so that the wire bonds 128 extend through the opening **116**. Turning to FIG. 2, the semiconductor assembly 100 is then ready to receive a dielectric filler material **140** from, for example, a dispenser head 142. In particular, dielectric filler material 140 may be dispensed from the dispenser head 142 so that the dielectric filler material 140 is provided to the gap 132 between the semiconductor die 120 and carrier substrate 110 through the opening 116. The dielectric filler material 140 may then extend into and substantially fill the gap 132 by capillary action or any other suitable method known in the art, such as methods utilizing gravity and/or pressurization or application of a vacuum to an outer periphery of gap 132. FIG. 2 is reversed from a conventional orientation wherein dispenser head 142 is located above the semiconductor assembly 100 for consistency and clarity among FIGS. 1-3. According to the present invention, the dielectric filler material 140 coats and/or encapsulates at least a portion of the wire bonds 128 proximate the bond pads 126 on the active surface 122 of the semiconductor die 120 and within opening **116**. The curing or hardening of dielectric filler material 140 surrounding the wire bonds 128 provides a stabilizing effect to the wire bonds 128 to help prevent movement thereof and wire sweep between adjacent wire bonds **128**. Moreover, according to the present invention, by limiting the initial use of adhesive material as much as possible so as to utilize only the minimum size, number and arrangement of discrete adhesive elements 130 necessary to secure semiconductor die 120 to carrier substrate 110 for wire bonding and to provide the gap or standoff 132, any moisture in the adhesive elements 130 is also limited. The 45 dielectric filler material **140** may then be introduced to fill the gap or standoff 132 and provide a permanent, secure and inflexible bond between the semiconductor die 120 and carrier substrate 110, wherein any problems due to moisture being trapped therebetween are substantially eliminated. Exemplary, suitable filler materials include T693-R3001EX-V3 and T693-R3002EX-V3, both offered by Nagase Chemtex. Also, utilizing dielectric filler material 140 to bond the semiconductor die 120 to the carrier substrate 110 is much more cost effective, in comparison to utilizing adhesive element or elements as a primary bonding agent. It should be noted that the particle size of the dielectric filler material is generally substantially smaller than the particle size of filled polymer encapsulants used, for example, in transfer molding, enhancing flow of the dielectric filler material past and surrounding wire bonds 128. FIG. 3 illustrates the semiconductor assembly with an envelope of dielectric encapsulation material 150 formed thereon. Specifically, a dielectric encapsulation material 150 is formed at least partially over the second surface **114** of the carrier substrate 110 so that each of the wire bonds 128 are fully encapsulated. Dielectric encapsulation material 150 may also be formed over the back surface 124 and sides of

7

semiconductor die 120, as shown in broken lines. Such dielectric encapsulation material 150 may be provided by transfer molding, injection molding, pot molding or any other suitable technique for encapsulating components of the semiconductor assembly 100. It will, therefore, be well 5 appreciated by one of ordinary skill in the art that the dielectric encapsulation material 150 may be formed, for example, using transfer molding over the wire bonds 128 without a wave front of molten dielectric encapsulation material 150 causing wire sweep or wire contact between 10 adjacent wire bonds 128 due to the prior stabilization of such wire bonds 128 in the coating and/or encapsulating of at least a portion thereof by dielectric filler material 140. As shown in FIG. 3, semiconductor assembly 100 may be completed in a flip-chip configuration with solder balls, 15 conductive or conductor-filled epoxy bumps, pillars or columns or other discrete conductive elements 160 formed on the second surface 114 of carrier substrate 110 and electrically connected to conductive pads or terminals 118 by conductive traces (not shown), as well known in the art. FIGS. 4-7 illustrate the carrier substrate 110 with various exemplary, suitable adhesive element arrangements, among a wide variety of adhesive element arrangements, that may be utilized for attaching the semiconductor die 120 thereto. The adhesive element thickness and its arrangement may be 25 selected to provide an adequate gap or standoff 132 to receive dielectric filler material between semiconductor die **120** and carrier substrate **110** and provide an initial, temporary, but adequately secure, bond between the semiconductor die 120 and carrier substrate 110, after which dielectric 30 filler material 140 may be introduced into the gap or standoff 132 to provide the permanent bond between the semiconductor die 120 and carrier substrate 110.

8

transverse thereto. As illustrated, the second variant may include three pads on each side of the opening **316**. Alternatively, more or fewer pads may be utilized on each side of the opening **316**.

FIG. 7 illustrates a die attach site 434 (shown in broken lines) surrounding an opening 416 on the first surface 412 of the carrier substrate 410 with adhesive elements 430 thereon, according to a third variant of the first embodiment. The adhesive elements 430 of the third variant may be arranged to provide one or more discrete pads positioned centrally on each longitudinal side of the opening 416. As depicted, the third variant may include a single pad positioned on each longitudinal side of the opening 416. FIGS. 8-10 illustrate a method of packaging a semiconductor assembly 500 according to a second embodiment of the present invention. Turning first to FIG. 8, there is depicted a semiconductor die 520 attached to a carrier substrate 510. Semiconductor die 520 includes an active surface 522 and a back surface 524, of which the back 20 surface 524 is attached to carrier substrate 510 with a plurality of adhesive elements 530 providing a gap or standoff 532 between the semiconductor die 520 and the carrier substrate 510. The carrier substrate 510 includes a first surface 512 with conductive pads or terminals 518 thereon and a second surface 514. With the active surface 522 of the semiconductor die 520 exposed upward, wire bonds 528 may be formed to extend from bond pads 526 thereon to the conductive pads or terminals 518 on the substrate 510. The adhesive elements 530 utilized in the second embodiment may be arranged in any manner so that the arrangement of adhesive elements 530 provides a gap or standoff 532 between the semiconductor die 520 and the carrier substrate **510**. Similar to the adhesive element arrangements depicted be utilized for the second embodiment as long as the arrangement provides a gap or standoff 532 sufficient to facilitate introduction of a dielectric filler material 540. As before, the adhesive elements 530 may be any known adhesive material, such as a decal or adhesive-coated tape, epoxy drops or segments or preformed adhesive segments, that provides a sufficient initial attachment between semiconductor die 520 and carrier substrate 510. The adhesive elements 530 may also comprise metallic elements, such as solder bumps or the like. FIG. 9 illustrates filling the gap or standoff 532 with dielectric filler material 540 from dispenser head 542 to provide a secure, permanent, substantially inflexible bond between the semiconductor die 520 and the carrier substrate **510**. The dielectric filler material **540** also facilitates stabilization of at least a portion of the wire bonds **528** proximate the conductive pads 518 on the first surface 512 of the carrier substrate 510. Such stiffening may prevent wire sweep between adjacent wire bonds 528 during encapsulation of the semiconductor die 520. Dielectric filler material 540 may be alternatively, or additionally, applied over bond pads **526** on active surface **522**. FIG. **10** illustrates the semiconductor assembly 500 with an encapsulation material 550 molded over at least the active surface 522 of the semicon-60 ductor die **520** or, as shown, over the entire semiconductor die 520 and surrounding area of carrier substrate 510. As with the embodiment of FIGS. 1-3, semiconductor assembly **500** may be configured for flip-chip attachment to higher level packaging, configured as a vertical surface mount package (VSMP) using one or more rows of contacts along an edge of carrier substrate 510, or otherwise as well known in the art.

FIG. 4 depicts a die attach location 134 (shown in broken) lines) surrounding an opening 116 on the first surface 112 of 35 in FIGS. 4-7, such adhesive element arrangements may also the carrier substrate 110. The adhesive elements 130 of the first embodiment may be arranged to provide a plurality of discrete point pads, wherein the point pads may be arranged proximate each inside corner of the die attach location 134. As depicted, additional point pads may be selectively 40 placed, such as being positioned proximately inside the die attach location 134 periphery and midway between the point pads proximate the inside corners, or any other suitable placement that may be desired or required. The discrete point pads may be selectively positioned in a symmetrical or 45 asymmetrical arrangement. At least three, and preferably four, discrete point pads should be used for stability. FIG. 5 illustrates a die attach site 234 (shown in broken lines) surrounding an opening 216 on the first surface 212 of a carrier substrate 210 with an arrangement of adhesive 50 elements 230, according to a first variant of the first embodiment. The adhesive elements 230 of the first variant may be arranged to provide a plurality of discrete elongated pads laterally adjacent to the opening 216 and arranged to run longitudinally parallel with the opening 216. As depicted, 55 each elongated pad may extend substantially the length of the die attach site 234. In the alternative, the elongated pads may be broken into multiple pads extending along the length of the die attach site periphery, or any other suitable placement that may be required. FIG. 6 illustrates a die attach site 334 (shown in broken lines) surrounding an opening 316 on the first surface 312 of a carrier substrate 310 with adhesive elements 330 thereon, according to a second variant of the first embodiment. The adhesive elements 330 of the second variant may be 65 arranged to provide a plurality of discrete elongated pads laterally adjacent to the opening **316** and arranged to extend

9

As illustrated in block diagram form in FIG. 11, a semiconductor assembly 100, 500 of the present invention may be mounted to a circuit board 610 in an electronic system 600, such as a computer system. In the electronic system 600, the circuit board 610 may be connected to a processor 5 device 620 which communicates with an input device 630 and an output device 640. The input device 630 may comprise a keyboard, mouse, joystick or any other type of electronic input device. The output device 640 may comprise a monitor, printer or storage device, such as a disk 10 drive, or any other type of output device. The processor device 620 may be, but is not limited to, a microprocessor or a circuit card including hardware for processing instructions for the electronic system 600. Additional structure for the electronic system 600 is readily apparent to those of 15 ordinary skill in the art. Thus, it will be appreciated that the present invention provides a less costly, but structurally superior semiconductor assembly and package through reduction or elimination of the use of adhesive-coated tape. Moisture problems are 20 substantially eliminated and a robust, substantially rigid package is formed, reducing or eliminating stress defects. Further, wire sweep problems are also substantially eliminated, increasing yield. In addition, when molding a dielectric encapsulant mate- 25 rial by transfer molding onto a board on chip assembly (such as that of FIG. 1), it is highly desirable to introduce the molding compound forming the dielectric encapsulant material into the mold cavity containing the semiconductor die attached to the carrier substrate to flow around the bottom 30 (backside) of the semiconductor die first and then to finish at the top (wire bond side). If the molding compound enters the opening or slot first, the pressure created in the mold cavity will cause the molding compound to bleed out of the mold cavity. By use of the present invention and introducing 35 a dielectric filler material between the semiconductor die and carrier substrate and into the slot prior to transfer molding, the front of the slot is effectively sealed and bleed during the molding process is prevented. Further, the present invention affords enhanced flexibility 40 in assembling the semiconductor die to a carrier substrate. Without the present invention, there must be a certain amount or degree of overlap of the periphery of the semiconductor die over the carrier substrate beyond the opening or slot to prevent bleed. Unfortunately, and contrary to the 45 overlap requirement, there also must be a certain amount of clearance between an end of the slot and the first active bond pad of the semiconductor die at the end of a row of bond pads or the semiconductor die cannot be wire bonded. The present invention, by enabling the filling of the slot with a 50 dielectric filler material prior to transfer molding, enables one to center the semiconductor die with respect to the slot, which effectively makes more die area available to populate with active bond pads, enabling higher I/O counts and enhancing design flexibility.

10

providing a semiconductor substrate having an active surface having bond pads exposed thereon and a back surface;

providing a carrier substrate;

attaching the carrier substrate to the semiconductor substrate using a plurality of spaced adhesive elements providing a standoff comprising a substantially open volume directly between a surface of the semiconductor substrate and an opposing surface of the carrier substrate extending generally parallel to the surface of the semiconductor substrate;

forming wire bonds between the bond pads and the carrier substrate;

introducing a volume of dielectric filler material into the substantially open volume and around portions of the wire bonds, leaving exposed other portions of the wire bonds; and

curing the volume of dielectric filler material to form a dielectric structure extending between the surface of the semiconductor substrate and the surface of the carrier substrate and about the portions of the wire bonds, leaving the other portions of the wire bonds protruding therefrom.

2. The method of claim 1, wherein the providing the carrier substrate comprises providing a carrier substrate comprising a non-conductive material and including a first surface, a second surface and an opening extending through the carrier substrate therebetween, the second surface having discrete conductive pads exposed thereon.

3. The method of claim 2, wherein attaching comprises attaching the semiconductor substrate over the first surface of the carrier substrate so that the bond pads are exposed through the opening and forming the wire bonds comprises extending wire bonds through the opening between the bond pads and the conductive pads.

While the present invention has been disclosed in terms of certain preferred embodiments and alternatives thereof, those of ordinary skill in the art will recognize and appreciate that the invention is not so limited. Additions, deletions and modifications to the disclosed embodiments may be effected without departing from the scope of the invention as claimed herein. Similarly, features from one embodiment may be combined with those of another while remaining within the scope of the invention. What is claimed is: 65 1. A method of forming a semiconductor assembly, com-

prising:

4. The method of claim 3, wherein attaching further comprises selecting the plurality of spaced adhesive elements to include at least one of point pads and elongated pads.

5. The method of claim **4**, wherein the plurality of spaced adhesive elements include elongated pads and further comprising arranging the elongated pads mutually separate and discrete from each other.

6. The method of claim 4, wherein the plurality of spaced adhesive elements include elongated pads and further comprising arranging the elongated pads laterally adjacent the opening and extending substantially parallel to the opening.
7. The method of claim 4, wherein the plurality of spaced adhesive elements include elongated pads and further comprising arranging the elongated pads laterally adjacent the opening and extending substantially transverse to the opening.

8. The method of claim 1, further comprising arranging the plurality of spaced adhesive elements in a substantially
55 symmetrical arrangement between the semiconductor substrate and the carrier substrate.

9. The method of claim 1, further comprising arranging

the plurality of spaced adhesive elements mutually separate and discrete from each other.

10. The method of claim 9, wherein arranging further comprises positioning the plurality of spaced adhesive elements for attaching proximate at least corner portions of the semiconductor substrate.

11. The method of claim **9**, wherein arranging further comprises positioning the plurality of spaced adhesive elements for attaching proximate at least one peripheral edge of the semiconductor substrate.

11

12. The method of claim 1, further comprising substantially encapsulating at least the exposed portions of the wire bonds extending between the semiconductor substrate and the carrier substrate.

13. The method of claim 12, wherein substantially encapsulating at least the exposed portion of the wire bonds extending between the semiconductor substrate and the carrier substrate comprises forming a volume of dielectric encapsulation material over at least the exposed portions of wire bonds having portions with the dielectric filler material 10 extending thereover.

14. The method of claim 13, further comprising forming a volume of dielectric encapsulation material over at least a majority of the semiconductor substrate.

12

forming wire bonds between the bond pads and the conductive pads;

- introducing a volume of dielectric filler material into the substantially open volume to substantially fill the substantially open volume and extend around portions of the wire bonds, leaving exposed other portions of the wire bonds; and
- curing the volume of dielectric filler material to form a dielectric structure extending between the surface of the semiconductor substrate and the surface of the carrier substrate and about the portions of the wire bonds, the other portions of the wire bonds protruding

15. The method of claim **1**, further including substantially 15 filling the substantially open volume between the surface of the semiconductor substrate and the opposing surface of the carrier substrate with the dielectric filler material.

16. The method of claim **1**, further including selecting the adhesive elements to comprise at least one of a decal, a tape 20 segment and a volume of adhesive.

17. The method of claim 1, wherein providing the carrier substrate comprises providing the carrier substrate to include a first surface and a second surface, the first surface having discrete conductive pads exposed thereon, the wire bonds 25 extending between the bond pads and the conductive pads.

18. The method of claim **17**, wherein attaching further comprises attaching the back surface of the semiconductor substrate to the first surface of the carrier substrate.

19. A method of substantially preventing moisture in a 30 semiconductor assembly, the method comprising:

providing a semiconductor substrate having an active surface having bond pads exposed thereon and a back surface;

providing a carrier substrate having conductive pads 35 exposed on a surface thereof;

therefrom.

20. A method of forming a semiconductor assembly, comprising:

providing a semiconductor substrate having an active surface having bond pads exposed thereon and a back surface;

providing a carrier substrate having conductive pads exposed on a surface thereof;

attaching the carrier substrate to the semiconductor substrate using a plurality of spaced adhesive elements providing a standoff comprising a substantially open volume directly between a surface of the semiconductor substrate and an opposing surface of the carrier substrate extending generally parallel to the surface of the semiconductor substrate;

- forming wire bonds between the bond pads and the conductive pads;
- introducing a volume of dielectric filler material into the substantially open volume and around portions of at least some of the wire bonds, leaving exposed other portions of the at least some of the wire bonds:

attaching the carrier substrate to the semiconductor substrate using a plurality of spaced adhesive elements providing a standoff comprising a substantially open volume directly between a surface of the semiconduc- 40 tor substrate and an opposing surface of the carrier substrate extending generally parallel to the surface of the semiconductor substrate; portions of the at least some of the wire bonds; curing the volume of dielectric filler material; and overmolding a dielectric encapsulation material on portions of the at least some of the wire bonds remaining exposed after the introduction and the curing of the volume of dielectric filler material.

* * * * *