12 United States Patent

Dixon, 111 et al.

US007257819B1

US 7,257,819 B1
Aug. 14, 2007

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(%)

(21)
(22)

(1)

(52)
(58)

(56)

6,012,090 A *
6,173,327 Bl *

METHOD AND SYSTEM FOR DISPATCHING
SERVICE REQUESTS TO
SUB-APPLICATIONS

Inventors: Walter Dixon, III, Delanson, NY (US);
Daniel Morrill, Clifton Park, NY (US)

Assignee: General Electric Capital Corporation,
Stamford, CT (US)
Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 1024 days.

Appl. No.: 09/845,750

Filed: Apr. 30, 2001

Int. CIL.

GO6F 9/54 (2006.01)

GO6F 9/44 (2006.01)

US.CL ... 719/316; 719/311; 719/330

Field of Classification Search 709/227:

718/102; 719/315, 330, 311, 316; 717/101
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

1/2000 Chung et al. 709/219
1/2001 De Borst et al. 700/231

6,718,535 B1* 4/2004 Underwood 717/101
6,732,139 B1* 5/2004 Dillenberger et al. 718/102
6,732,175 B1* 5/2004 Abjaniccco....... 7009/227
6,813,769 B1* 11/2004 Limprecht et al. 719/315
7,028,312 B1* 4/2006 Merrick et al. 719/330

* cited by examiner

Primary Examiner—Meng-Al T. An

Assistant Examiner—I1 Zhen

(74) Attorney, Agent, or Firm—Buckley, Maschofl &
Talwalkar LLC

(37) ABSTRACT

A dispatching system that uses a common interface to
interface with all sub-applications, regardless of their logic
models. The common interface provides a service method or
routine that the dispatching system invokes to eflect pro-
cessing by the sub-application. Each sub-application imple-
ments the common interface and shares a common context
with the other sub-applications. In one embodiment, the
dispatching system receives requests (e.g., HI'TP requests),
identifies the sub-applications that should process the
received requests, and invokes the service routines of the
identified sub-applications to process the recerved requests.
Each sub-application may have an associated match criteria
that indicates when the sub-application should process the
requests.

6 Claims, 4 Drawing Sheets

(Dispatcher:: > (request, response)

Service

401

Matched = false

—> 402

Select next sub-app

403
All sub-app

ready selecte

404

Evaluate expression

405

Y 406

Matched = true

407

Invoke service
(request, response)

409
Matched

—_— -smm
— —

false

410

Log error

o

)

US 7,257,819 B1

Sheet 1 of 4

Aug. 14, 2007

U.S. Patent

[31
ddy-qng
uonIuyaQ oL
ddy-ans N 1D
OLl
X [0t
1pyoredsiq JUIWUOJIAUT :
ddy 19AJDS .
601 GOl YOl
. ¢Ol
ddv-qng
901
801 oL
€0} [ST

US 7,257,819 B1

Sheet 2 of 4

Aug. 14, 2007

U.S. Patent

asuodsay

asuodsay

asuodsay]

¥ee

TE 3T

asuodsay 307

1’4 T4
:*—W*:

[
DOIAIIS WIOHD]

Z o1

€cc
=*~W*:

|
30IAISS WLIOJII]

eLe

159nbay S0

204 CTS/1S/R2INd9S U

1% 31

1Sanbay]
0€d

195[) 2]ednuayiny

222 122 NS,
T 3
15anbay
Q¢
1
1sanbay 307 135 deonuayIny
AR 112 [S/2INJ3s/ * *
:*OHSUQM*z Tk 31
159nbay
0Lc

[L
138 21LONUAYINY 135 2ILdNUAYINY

U.S. Patent Aug. 14, 2007 Sheet 3 of 4 US 7,257,819 B1

Dispatcher::
[t

301

Open sub-app
configuration file

302

Select next sub-app

already selectec

:

N

Select next parameter

306

Retrieve parameter
and set

All parameters
already selectec

Y 307
Retrieve class
definition

308
Instantiate object
Fig. 3
305
Retneve match
criteria

U.S. Patent Aug. 14, 2007 Sheet 4 of 4 US 7,257,819 B1

Dispatcher: (request, response)
Service
Matched = false

401
402
Select next sub-app

403

All sub-app
already selectec

409
Matched

gl .
"

false

404
Y
405 Log error
406
407

410

N
N
Y

Matched = true

Invoke service
(request, response)

Fig. 4

N

408
Y

US 7,257,819 Bl

1

METHOD AND SYSTEM FOR DISPATCHING
SERVICE REQUESTS TO
SUB-APPLICATIONS

TECHNICAL FIELD

The described technology relates generally to installable
sub-applications and particularly to installable sub-applica-
tions using different logic models.

BACKGROUND

Many companies are now allowing their customers to
remotely access their computer systems. These companies
believe that the providing of such access will give the
company an advantage over their competitors. For example,
they believe that a customer may be more likely to order
from a company that provides computer systems through
which that customer can submit and then track their orders.
The applications for these computer systems may have been
developed by the companies specially to provide informa-
tion or services that the customers can remotely access, or
the applications may have been used internally by the
companies and are now being made available to the cus-
tomers. For example, a company may have previously used
an application internally to 1dentify an optimum configura-
tion for equipment that 1s to be delivered to a particular
customer’s site. By making such an application available to
the customer, the customer 1s able to 1dentity the optimum
configuration themselves based on their current require-
ments, which may not be necessarily known to the company.
The rapid growth of the Internet and 1ts ease of use has
helped to spur making such remote access available to
customers.

Because of the substantial benefits from providing such
remote access, companies oiten find that various groups
within the company undertake independent eflorts to pro-
vide their customers with access to their applications. As a
result, a company may find that these groups may have used
very different and incompatible logic models. For example,
one application may be based on a request-response logic
model, and another application may be a legacy system that
performs processing of data provided 1n a file. A company
may want to provide the functionality of both applications to
its customers through a single and consistent user interface
so that these applications appear to the customers as a single
“overall application.” It may, however, be very diflicult, time
consuming, and error prone to combine the functionality of
both applications into a single application. It would thus be

desirable to have a technique that would allow applications
that use disparate logic models to provide the appearance of
a single overall application.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram illustrating components of the
dispatching system in one embodiment.

FIG. 2 1s a block diagram illustrating the invocation of
sub-applications 1n one embodiment.

FIG. 3 1s a flow diagram 1llustrating the processing of the
initialization routine of the dispatcher 1n one embodiment.

FI1G. 4 15 a block diagram 1llustrating a service routine of
the dispatcher 1n one embodiment.

10

15

20

25

30

35

40

45

50

55

60

65

2
DETAILED DESCRIPTION

A method and system for dispatching requests to sub-
applications that use disparate logic models within the
context of an application executing 1n a server environment
1s provided. The sub-applications form an application and
share the same application context. The dispatching system
allows sub-applications implemented with disparate logic
models to share context information and thus function
cooperatively as an application. The logic models may be

the action-view model as described 1 U.S. patent applica-
tion Ser. No. 09/753,0377, entitled “Application Architec-

ture,” filed on Dec. 28, 2000 and the interaction model as
described 1 U.S. patent application Ser. No. 09/681,567,
entitled “Method and System for Executing a Computer

Program,” (now U.S. Pat. No. 6,944,851) filed concurrently

with this application, both of which are hereby incorporated
by reference. Other logic models may include worktlow-
based models. The term “logic model” refers to the overall
architecture of a sub-application. In one embodiment, the
dispatching system uses a common interface to interface
with all sub-applications, regardless of their logic models.
The common interface provides a service method or routine
that the dispatching system invokes to effect processing by
the sub-application. Each sub-application implements the
common interface. In one embodiment, the dispatching
system receives requests (e.g., HI'TP requests), identifies the
sub-applications that should process the received requests,
and invokes the service routine of the i1dentified sub-appli-
cations to process the received requests. Each sub-applica-
tion may have an associated match criteria that indicates
when the sub-application should process the requests. The
dispatching system applies the match criteria of the sub-
applications to received requests to determine whether the
associated sub-applications should process the requests. For
example, a match criteria may be a regular expression (e.g.,
“* html”) that 1s applied to the uniform resource locator
(“URL”) of an HTTP request. The dispatching system
processes the sub-applications 1n an order that may be
predefined. The dispatching system selects the first sub-
application and applies the match criteria associated with the
first sub-application to the received request. If a match 1s
found, then the dispatching system invokes the service
routine of the first sub-application. When the first sub-
application completes its processing, the dispatching system
then selects the second sub-application and applies the
matching criteria associated with the second sub-application
to the received request. The dispatching system continues
this process until all the sub-applications have been pro-
cessed. In one embodiment, a sub-application may return an
indication that the dispatching system should not process
any additional sub-applications for the received request. For
example, a sub-application that implements user authenti-
cation may prevent additional sub-applications from being
processed when the authentication sub-application cannot
authenticate the user who sent the request. The dispatching
system may also stop processing additional sub-applications
when a sub-application provides a response to the recerved
request. In this way, application programs that are indepen-
dently developed using different logic models can be com-
bined to provide an overall application with the dispatching
system invoking the service routine of the sub-applications
as 1ndicated by the match criteria. Moreover, legacy appli-
cations can be encapsulated within the common interface so
that they can be combined with sub-applications that use
different logic models.

US 7,257,819 Bl

3

In one embodiment, the dispatching system during its
initialization mstantiates objects that implement the different
sub-applications that compose the overall application. This
initialization may be based on information stored in a
configuration file. The configuration file, which may be 1n an
XML format, may contain an entry for each sub-application.
Each entry may identily an object class associated with the
sub-application, initialization parameters associated with the
sub-application, and the match criteria for the sub-applica-
tion. During initialization, the dispatching system retrieves
cach entry and instantiates an object of the object class
associated with that the sub-application. The object class
defines a “service” method or routine that the dispatching
system 1nvokes to have the sub-application process requests.
The dispatching system initializes the instantiated object
with the initialization parameters of the configuration file. In
one embodiment, the entries 1n the configuration file are
ordered, and the dispatching system processes the sub-
applications when a request 1s received in the specified
order. The phrase “processing a sub-application” refers to
evaluating the match criteria for that sub-application and
invoking the service routine of that sub-application when a
match 1s found.

The sub-applications share the same application context.
This allows the sub-applications to share global data (as
attributes) and to shared services such as database connec-
tions and connections to a workilow server. When a sub-
application of an overall application 1s mtialized, it 1is
passed a configuration object through which the sub-appli-
cation can access an application context object. The appli-
cation context object provides methods for setting and
getting the values of attributes associated with the applica-
tion context. The application context object includes a
lookup method to provide access to the shared services. The
application context object also includes a method to retrieve
a dispatcher object that 1s used to process and send the
presentation data.

FIG. 1 1s a block diagram illustrating components of the
dispatching system 1n one embodiment. The client comput-
ers 101 are connected to a web server 103 via the Internet
102. The client computers may have conventional browsers
for interacting with the web server. The web server includes
a server environment 104 and the dispatching system com-
prising the dispatcher 105, the sub-application configuration
file 106, the sub-application definition file 107, and the
application comprising sub-applications 108, 109, and 110.
The server environment receives HT'TP requests from the
client computers and 1nvokes the appropriate application to
handle the request. In this case, the server environment
invokes the dispatcher. The server environment then trans-
mits responses provided by the dispatcher to the client
computers. The dispatcher operates within a server environ-
ment that provides services to web-based applications.
When the dispatcher receives a request, it processes the
sub-applications serially. The invoked sub-applications pro-
cess the request and optionally return a response. The
sub-application configuration file contains an entry for each
sub-application that includes an indication of the match
criteria, object class, and initialization parameters for that
sub-application. The sub-application definition file contains
the class definitions for the sub-applications. The computer
systems may include a main memory, a central processing
unit, mput devices (e.g., keyboard input devices), output
devices (e.g., display devices), and storage devices, such as
a hard drive, a CD-ROM, or floppy disk drive. The main
memory and storage devices are computer-readable media
that may contain instructions for implementing the dispatch-

10

15

20

25

30

35

40

45

50

55

60

65

4

ing system. Also, one skilled 1n the art will appreciate that
various communication channels can be used to interconnect

the web server and the client computers such as the Internet,
a wide area network, or point-to-point, dial-up connections

FIG. 2 1s a block diagram illustrating the processing of
sub-applications in one embodiment. The sub-application
sequences 210, 220, and 230 illustrate the invocation of
sub-applications when a request i1s received by the dis-
patcher. The overall application comprises six sub-applica-
tions ordered as follows: Authenticate User 1 (**””), Authen-

ticate User 2 (“*secure™”), Log Request (*“*”), Perform
Service 1 (*“*S1*”), Perform Service 2 (“*S82*”), and Log

Response (“*7). The parentheticals indicate the match cri-
teria for each sub-application. The match criteria of “*”
indicates that all URLs match, and the match criteria of
“*secure™”” 1ndicates that only those URLs that include the
word “secure” match. The Authenticate User 1 and Authen-
ticate User 2 sub-applications perform user authentication.
The Log Request sub-application stores the request 1n a log
file. The Perform Service 1 and Perform Service 2 sub-
applications perform the business behavior. The Log
Response sub-application logs the response. Referring to
sub-application sequence 210, the dispatcher receives the
request “ . . . /secure/sl” and determines that the match
criteria of Authenticate User 1 sub-application 211, Authen-
ticate User 2 sub-application 212, Log Request sub-appli-
cation 213, and Perform Service 1 sub-application 214. The
match criteria Log Response sub-application also matches
the received request but 1s not processed because the Per-
form Service 1 sub-application 214 returned an indication
not to process any additional sub-applications. If the
Authenticate User 2 sub-application 212 returned an indi-
cation not to process any additional sub-applications
because the user could not be authenticated, then the dis-
patcher would not have processed the Log Request sub-
application 213 or the Perform Service 1 sub-application
214. Referring to sub-application sequence 220, the dis-
patcher recerves the requestof ““. . . /S1/ ... 7 and determines
that the match criteria of the Authenticate User 1 sub-
application 221, the Log Request sub-application 222, the
Perform Services 1 sub-application 223, and the Log
Response sub-application match the received request. The
dispatcher then 1invokes the sub-applications 1n the
sequence. Referring to sub-application sequence 230, the
dispatcher recerves the request of * . . . secure/S1/52” an

determines that the match criteria of all the sub-applications
match the received request. The Authenticate User 1 sub-
application 231 returns an indication that no additional
sub-applications should be processed by the dispatcher
because the user could not be authenticated. As a result, the
dispatcher does not process any additional sub-applications.

Table 1 contains an example portion of the configuration
file for sub-applications. Lines 1-17 define the sub-applica-
tions. Lines 1-6 contain the definition of the Authenticate
User 1 sub-application. The model element contains the
name attribute for the name of the sub-application and a
class-name attribute for the name of the class associated
with the sub-application. The iit-param element defines a
parameter to be passed when the object that implements the
sub-application 1s mstantiated. The mnit-param element 1indi-
cates that the parameter of “db” should be mitialized to “user
security.db.” Lines 19-22 define the match criteria for the
sub-applications. Line 19 defines that the match critenia for
the Authenticate User 1 sub-application. The pattern
attribute indicates a match criteria of “*” and the model-ref
attribute 1dentifies the Authenticate User 1 sub-application.

US 7,257,819 Bl

S

TABLE 1

1. <model name="AuthenticateUserl ’class-name="authenticateuserl”>
2. <init-params
3. <param-name>db</param-name>
4. <param-value>usersecurity.db</param-value>
5. </1nit-params>
6. </model>
7.
8. <model name=

“AuthenticateUser2” class-name="authenticateuser2”/>
9.
10. <model name="LogResponse” class-name="“logresponse”>
11.
12. <model name="PerformServicel™ class-name="businessappl™>
13. <init-params
14. <param-name>db</param-name>
15. <param-value>equipment.db</param-value>
16. </1nit-params
17. </model>
18.
19. <model-map pattern=""*"" model-ref="AuthenticateUserl1”’/>
20. <model-map pattern="*secure™”” model-ref="AuthenticateUser2”/>
21. <model-map pattern="*" model-ref="LogRequest”/>
22. <model-map pattern="*s1*” model-ref="PerformServicel”/>
23.

Table 2 defines the methods of the interface implemented
by the sub-applications 1n one embodiment. The dispatcher
interacts with the sub-applications using this mterface. One
skilled 1n the art will appreciate that different methods may
be 1included in the interface. For example, the interface may

provide a match method that the dispatcher invokes to see it

the match criteria of the sub-application matches the request.

TABLE 2

getConfig()
Returns a Config object, which gives a sub-application its
initialization parameters.
Specified by getConflg in interface Model
java.lang.String getName()
Returns Name of class implementing the model.
Specified by getName 1n interface Config
ApplicationContext getApplicationContext()
Returns a reference to the ApplicationContext in which the
sub-application 1s executing.
Specified by getApplicationContext 1n interface Config
java.lang.String getlnitParameter(java.lang.String name)
Returns a String containing the value of the named initialization
parameter, or null if the parameter does not exist.
Specified by getlnitParameter in interface Config
Parameters:
name - the name of the initialization parameter
java.util.Iterator getlnitParameterNames()
Returns the names of the sub-application’s initialization parameters as
an Iterator of String objects, or an empty Iterator if the sub-
application has no initialization parameters.
Specified by getlnitParameterNames in interface Config
void 1nit (Config config)
Called by the dispatcher to indicate to a sub-application that it is
being placed into service. The dispatcher calls the 1nit method once
after instantiating the sub-application. The init method needs to
complete successfully before the sub-application can receive any
requests.
Parameters:
config - an object containing the sub-application’s configuration
and initialization parameters. Also provides a reference to the
ApplicationContext object that enables access to sub-application
services.
void 1nit()
Convience method so sub-application needing initialization need to be
passed a Config object.
void service (Request request,
Response response)

10

15

20

25

30

35

40

45

50

55

60

65

6

TABLE 2-continued

Called by the dispatcher to allow an model to respond to a request.
This method 1s called after the sub-application’s it method has
completed successtully. Sub-applications run mside a multithreaded
environment in which multiple requests are handled concurrently.
Access to the sub-application’s class and instance variable should be
synchronized 1f they are updateable within the service method.
Parameters:

request - a Request object that contains the request message.

response - a Response object that contains the response message.

void destroy()

Called by the dispatcher to indicate a sub-application that it 1s being
taken out of service.

Table 3 defines the methods of the interface for the
application context.

The interface provides access to resources that include

registered services, named objects managed by the applica-
tion environment, the server environment, resource bundles,

and the class loaders. Each overall application executes

within 1ts own context. Every sub-application within an

overall application is passed a reference to the Application-
Context mstance giving it access to all resources available

within the overall application.

TABLE 3

lookup(java.lang.String name)
Retrieves a named object. This method provides a consistent means
of accessing named objects within the overall application. A named
object differs from an attribute in that an attribute is application-
specific, and contains data meaningful only to the application,
whereas named objects are managed by the application environment
and provide functionality or services that the sub-applications can
take advantage of.
Parameters:
name - the name of the object to look up.
Returns the object bound to name.
getContainerContext()
Returns the context object supported by the underlying container.
This method allows access to a container specific implementation of
the context object, which may provide more concrete methods to
interact with the context.
Returns a context object supported by the underlying container.
getRequestDispatcher(java.lang.String path)
Returns a RequestDispatcher object that acts as a wrapper for the
resource located at the given path. This method returns null if the
ApplicationContext cannot return a RequestDispatcher for any reason.
Parameters:
path - a String specifying the pathname to the resource
Returns a RequestDispatcher object that acts as a wrapper for the
resource at the specified path.
getResource(java.lang. String path)
Returns a URL to the resource located at the named path. This
method returns null if the resource specified by the named path does
not exist. The rules governing the application’s ability to manipulate
the resource are dependent on the underlying container.
Parameters:
path - description of parameter
Returns the URL for the resource, or null if the resource does
not exist.
getResource AsStream(java.lang.String path)
Returns the resource located at the named path as an InputStream
object. This method returns null if the resource specified v the named
path does not exist
Parameters:
path - description of parameter
Returns the InputStream for the resource, or null if the resource
does not exist.
getRealPath(java.lang.String path)
Returns a String containing the real path of a given virtual path. this
method returns null if the virtual path cannot be translated.
Parameters:
path - a String specifying a virtual path
Returns a String specifying the real path, or null if the translation
cannot be performed.

US 7,257,819 Bl

7

TABLE 3-continued

getContainerInfo()
Returns information about the container.
Returns a String containing container information.
getlnitParameter
Returns a String containing the value of the named initialization
parameter, or null if the parameter does not exist.
Parameters:
name - a String containing the name of the requested parameter
Returns a String value for the named parameter.
getlnitParameterNames()
Returns an Iterator over the initialization parameters names available
within this context.
Returns an Iterator of initialization parameter names.
getAttribute(java.lang. String name)
Returns the attribute with the given name, or null if there 1s no
attribute by that name. The attribute 1s retumed as a java.lang.Object
or some subclass.
Parameters:
name - a String specifying the name of the attribute.
Return an Object containing the value of the attribute, or null if
not attribute exists matching the given name.
getAttributeNames()
Returns an Iterator over the attribute names available within this
context.
Returns an Iterator over attribute names.
removeAttribute(java.lang.String name)
Removes the attribute with the given name from the context. After
removal, subsequent calls to getAttribute to retrieve the attribute’s
value will return null.
Parameters:
name - a String specifying the name of the attribute to be
removed.
set Attribute (java.lang. String name,
java.lang.Object object)
Binds an object to a given attribute name in this context. If the name
specified 1s already used for an attribute, this method will remove the
old attribute and bind the name to the new attribute.
Parameters:
name - a String specifying the name of the attribute
object - an Object representing the attribute to be bound.
registerL.ookupDelegate
Registers a LookupDelegate to be used 1n calls to lookup(). The
lookup() method retrieves references to named resources. Multiple
sources can be defined to perform those lookups by adding
LookupDelegates via this method. Each registered LookupDelegate
will be consulted n the order in which they are registered. The
ApplicationContext has no facility itself for performing a lookup(),
and so at least one LookupDelegate must be registered 1n order for
lookup() to succeed.
Parameters:
delegate - the LookupDelegate to be registered
getClassLoader()
Retrieves a reference to the Classl.oader for the sub-application. This
generally corresponds to the ClassL.oader used to load the
ApplicationContext itself.
Returns the ClassLoader for the application

FIG. 3 1s a flow diagram 1llustrating the processing of the
initialization routine of the dispatcher 1n one embodiment.
The mitialization routine 1s mvoked when the dispatching
system 1s first initialized on the web server. In block 301, the
routine opens the sub-application configuration file. In
blocks 302-309, the routine loops processing the entry for
cach sub-application 1n the configuration file. In block 302,
the component selects the next sub-application 1n the con-
figuration file. In decision block 303, 1t all the sub-applica-
tions have already been selected, then the routine returns,
else the routine continues at block 304. In blocks 304-306,
the routine loops retrieving each 1nitialization parameter for
the selected sub-application. In block 304, the routine selects
the next parameter for the selected sub-application. In deci-
sion block 305, i1 all the parameters have already been
selected, then the routine continues at block 307, else the
routine continues at block 306. In block 306, the routine
retrieves the value of the parameter from the configuration

10

15

20

25

30

35

40

45

50

55

60

65

8

file and loops to block 304 to select the next parameter. In
block 307, the routine retrieves the class definition for the
selected sub-application from the sub-application definition
file. In block 308, the routine instantiates an object of the
retrieved class and initializes the object with the retrieved
parameter values. The imitialization process includes 1nstan-
tiation of an application context object and passing that same
application context object to each sub-application. In block
309, the routine retrieves and saves the match criteria for the
selected sub-application. The routine then loops to block 302
to select the next sub-application.

FIG. 4 1s a block diagram 1llustrating a service routine of
the dispatcher in one embodiment. The service routine 1s
invoked by the server environment and 1s passed the
received request and returns a response. The routine loops
processing each sub-application by determining whether the
match criteria for the sub-application matches the passed
request and 1f so, ivokes the service routine of the sub-
application. In block 401, the routine sets a matched tlag to
false. This flag 1s used to indicate whether the match criteria
for any sub-application matched the request. If not, the
routine logs an error message. In block 402, the routine
selects the next sub-application. In decision block 403, 11 all
the sub-applications have already been selected, then the
routine continues at block 409, else the routine continues at
block 404. In block 404, the routine evaluates the match
criteria for the selected sub-application. In decision block
4035, 11 the match criteria matches the passed request, then
the routine continues at block 406, else the routine loops to
block 402 to select the next sub-application. In block 406,
the routine sets the matched flag to true to indicate that the
match criteria of at least one sub-application matched the
passed request. In block 407, the routine mnvokes the service
routine of the sub-application passing the request and receiv-
ing a response in return. In decision block 408, 1f the
processing of the request 1s complete, then the routine
returns, else the routine loops to block 402 to select the next
sub-application. The processing of the request may be
complete 11 the invoked sub-application returns a completion
indication or provides a response to the request. In decision
block 409, 1f the matched flag 1s false, then the routine logs
the error 1 block 410 and returns, else the routine just
returns.

From the above description, it will be appreciated that all
the specific embodiments of the dispatching system have
been described for purposes of illustration, various modifi-
cations may be made without deviating from the scope of the
invention. One skilled 1n the art will appreciate that the
sub-application can implement a wide variety of behaviors
such as protocol translation, logging, business rules, authen-
tication, and so on. Also, the dispatcher and sub-applications
may operate 1 the framework described in U.S. patent
application Ser. No. 09/753,037, entitled “Application

Architecture” filed on Dec. 28, 2000. Accordingly, the
invention 1s not limited except by the following claims.

The invention claimed 1s:

1. Amethod 1n a computer system for dispatching requests
to perform services to sub-applications that use different
logic models the method comprising:

providing a context for the sub-applications

recerving a request from a client computer to perform a
service; and

for a plurality of sub-applications,

determining whether the received request should be
dispatched to the sub-application; and

US 7,257,819 Bl

9

when 1t 1s determined that the request should be dis-
patched to the sub-application, invoking a service
routine of the sub-application passing the request
whereby the sub-applications share the provided context;
wherein the determiming 1includes determining whether a
match criteria for the sub-application matches the
received request;
wherein the requests are HI'TP requests with a URL and
the match criteria 1s a regular expression relating to the
URL;
wherein a respective service routine 1s mvoked for the
request with respect to each of at least two of the
sub-applications;
wherein the sub-applications are ordered and the invoking
of the service routines of the at least two sub-applica-
tions 1s performed 1n the order of the sub-applications;
and
wherein when i1t 1s determined that the request should not
be dispatched to any sub-application, an error 1s logged.

2. A computer system for dispatching HT'TP requests to

sub-applications, comprising:

a configuration file having a class, mnitialization param-
eters, and a match criteria associated with the sub-
applications;

an 1nitialization component that instantiates an object of
the class for each sub-application in the configuration
file, the instantiated object being initialized with the
initialization parameters for the sub-application and
being provided with a context object, the context object
being shared by the instantiated objects so that the
sub-applications share a common context;

a dispatcher that recerves HTTP requests from client
computers and, when the received HTTP request
matches a match criteria of a sub-application, invokes
a service routine of the instantiated object of the class
associated with the sub-application;

said dispatcher logging an error if the HT'TP request does
not match any match criteria;

a memory to store the configuration file, the mitialization
component, and the dispatcher; and

a processor to execute the configuration file, the initial-
1zation component, and the dispatcher;

wherein the match criteria 1s a regular expression relating
to a URL of the HTTP request;

wherein a respective service routine 1s invoked for at least
one of the HT'TP requests with respect to each of at
least two of the sub-applications; and

wherein the configuration file specifies an ordering of the
sub-applications and the dispatcher invokes the service
routines of the mstantiated objects of the classes asso-
ciated with the at least two sub-applications 1 the
specified order.

3. A computer system for processing request messages,

comprising:

a plurality of sub-applications forming an application, a
sub-application having a match criteria indicating when
the sub-application should process a request and having
a service routine to invoke when the match criteria

10

15

20

25

30

35

40

45

50

55

10

indicates that the sub-application should process the
request, the sub-applications using disparate logic mod-
els:
a context for the application that i1s shared by the sub-
applications;
a dispatcher that receives requests from client computers,
evaluates the match criteria to identily which sub-
applications have match critenna that match the
requests, and mvokes the service routines of the iden-
tified sub-applications wherein mmvoked sub-applica-
tions use the context:
a memory to store the plurality of sub-applications, the
context and the dispatcher; and
a processor to execute the plurality of sub-applications,
the context and the dispatcher;
wherein the requests are HI'TP requests with a URL and
the match criteria 1s a regular expression relating to the
URL;
wherein a respective service routine 1s invoked for at least
one of the requests with respect to each of at least two
of the sub-applications; and
wherein the sub-applications are ordered and the dis-
patcher invokes the service routines of the at least two
sub-applications based on the order of the sub-appli-
cations.
4. The computer system of claim 3 wherein an mnvoked
service routine indicates that additional service routines
should not be 1nvoked to process the recerved request.
5. The computer system of claim 3 wherein the dispatcher
does not invoke additional service routines when an invoked
service routine responds to a received request.
6. A computer-readable medium having instructions for
controlling a computer system to dispatch requests to per-
form services to service routines, comprising:
program means lfor receiving a request from a client
computer to perform a service; and
for a plurality of service routines,
program means for retrieving a match criteria for the
service routine:

program means for determining whether the received
request matches the retrieved match critena;

when 1t 1s determined that the request matches the
retrieved match criteria, invoking the service routine
for processing of the received request;

whereby the service routines form an application and
share a common context;

wherein the requests are HI'TP requests with a URL and
the match criteria 1s a regular expression relating to the
URL;

wherein at least one of the requests 1s processed by at least
two of the service routines;

wherein the service routines are ordered and the imnvoking
of the at least two service means 1s performed in the
order of the service routines; and

wherein when 1t 1s determined that the request does not
match any retrieved match criteria, an error 1s logged.

	Front Page
	Drawings
	Specification
	Claims

