12 United States Patent

Ferlitsch

US007256901B2

US 7,256,901 B2
Aug. 14, 2007

(10) Patent No.:
45) Date of Patent:

(54) PRINTER DRIVER CUSTOMIZATION USING
INCREMENTAL CUSTOM PRINT

PROCESSOR
(75) Inventor: Andrew R. Ferlitsch, Tigard, OR (US)
(73) Assignee: Sharp Laboratories of America, Inc.,
Camas, WA (US)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 884 days.
(21) Appl. No.: 10/269,378
(22) Filed: Oct. 10, 2002
(65) Prior Publication Data
US 2004/0070640 Al Apr. 15, 2004
(51) Int. CL
GO6IF 3/12 (2006.01)
GO6F 15/80 (2006.01)
GO6I 15/82 (2006.01)
GO6F 15/16 (2006.01)
(52) US.CL 358/1.13; 3358/1.15; 358/1.16;
710/14; 710/16; 345/502
(58) Field of Classification Search None
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
5,222,200 A * 6/1993 Callister et al. 358/1.13
5,226,112 A * 7/1993 Mensing et al. 358/1.15
5,566,278 A * 10/1996 Patel et al. 358/1.15
5,572,631 A * 11/1996 Kavathekar et al. 358/1.16
6,092,089 A 7/2000 Lahey et al.
6,097,496 A * 8/2000 Papke et al. 358/1.1
6,266,150 Bl 7/2001 Brossman et al.
6,327,045 B1* 12/2001 Tengetal 358/1.15
6,498,657 B1* 12/2002 Kuntz et al. 358/1.15

Application

20

7,062,402 B2 *
7,096,143 B2 *

6/2006 Ternasky et al. 702/123
8/2006 Ternasky et al. 702/123

(Continued)

FOREIGN PATENT DOCUMENTS

* 10/2003
6/2004

JP 2003288191 A
JP 2004157998 A *

OTHER PUBLICATIONS

Adobe Systems Incorporated, PostScript Printer Description File
Format Specification, Feb. 9, 1996, pp. 1-240.

Primary Examiner—ITwyler Lamb
Assistant Examiner—Myles D. Robinson

(74) Attorney, Agent, or Firm—Marger Johnson &
McCollom, P.C.
(37) ABSTRACT

An operating system alternate arrangement for a printer
driver/spooler/print processor 1s disclosed. Referring to one
embodiment, although using a PPD-compatible printer
driver 1s often desirable, such a driver includes no mecha-
nism for mmplementing a printer feature that cannot be
specified 1n a PPD. The disclosed alternate arrangement uses
the PPD for those printer options and features that can be
specified by PPD. The remaining options and features are
classified as “custom actions™ that are processed 1n a custom
print processor that 1s bound to the spooler in place of the
operating system’s default print processor. Preferably, how-
ever, the custom print processor does not implement any
traditional print processor functionality. Instead, after per-
forming any custom actions, the custom print processor
subroutines call the OS default print processor subroutines
to perform traditional print processing. This arrangement
avoilds the printer manufacturer having to duplicate and
maintain functionality present in the driver and print pro-
cessor maintained by the OS or custom replacement print
processor vendor.

27 Claims, 7 Drawing Sheets

Printing
Instructions

EMF

Operating
System
PostSeript Driver

20

PPD
52

EMF or P5

Spooler PS

4

EMF or Ph

Custom
Print Processor
60

EMF or PS

System

. P5

Print Progcessor
il

Port anager

28

To Printer

US 7,256,901 B2

Page 2
U.S. PATENT DOCUMENTS 2004/0111597 Al* 6/2004 Rothman et al. 713/1
2005/0159926 A1* 7/2005 SAIO ooveeeeeeeerereneennnss 702/186
7,106472 B2* 9/2006 Gomez etal. 358/1.15 2006/0017948 Al* 1/2006 Levin et al. ...cooeve..... 358/1.13
2002/0062404 A1* 5/2002 Ecobetal.vvnnn. 700/321 2006/0176499 Al* 82006 Shintoku 358/1.13
2002/0101600 A1* 8/2002 Sabbagh et al. 358/1.13 2006/0221372 Al* 10/2006 Onishi et al, 358/1.13
2003/0184782 Al 10/2003 Perkins et al. 2006/0224876 A1* 10/2006 Kato .oveeveeeeeeeeeeeereveinn, 713/1
2003/0184784 A1* 10/2003 Ferlitsch covvevevvvnnnnnnnnn. 358/1.13 2006/0230261 Al* 10/2006 Yoshimura et al. 713/1
2003/0200361 Al* 10/2003 Dogra et al. ...oooeeeun....... 710/8
2003/0200427 Al* 10/2003 Kemp et al. coceveeeeennn... 713/1 * cited by examiner

U.S. Patent Aug. 14, 2007 Sheet 1 of 7 US 7,256,901 B2

Application Fig. 1
20 (Prior Art)

Printing
Instructions

Monaolithic

PostScript Driver
22

EMF or PS

PS

EMF
EMF or PS

System

Print Processor
26

PS Port Manager

28

To Printer

U.S. Patent Aug. 14, 2007 Sheet 2 of 7 US 7,256,901 B2

Application Fig. 2
20 (Prior Art)
32
Printing _
Instructions Geperlc .
ostScript Driver
Clisiom Features,
36
EMF or PS

PS

EMF

System
Print Processor

20

Port Manager

28

To Printer

U.S. Patent Aug. 14, 2007 Sheet 3 of 7 US 7,256,901 B2

Application Fig. 3
20 (Prior Art)

Printing
Instructions Operating
System PPD
PostScript Driver 40
42
EMF or PS
PS

EMF

System

Print Processor
26

Port Manager

28

To Printer

U.S. Patent Aug. 14, 2007 Sheet 4 of 7 US 7,256,901 B2

Application Fi g, 4

20

Printing
Instructions

Operating
System
PostScript Driver
50

PPD
52

EMF or PS

PS5

EMF
EMF or PS

Custom

Print Processor
60

EMF or PS

System
Print Processor

70

PS Port Manager
28

To Printer

U.S. Patent Aug. 14, 2007 Sheet 5 of 7 US 7,256,901 B2

Fig. 5
(Prior Art)

Spooler 24

call InitializePrintProcessor()
. call OpenPrintProcessor(argsi)

I. call Printlj)ocumentOnPrinthcessor(args2)

call ClosePrintProcessor(args3)

Default Print Processor (winprint.dif) 70

export sub {nitialize PrintProcessor()
returnaddr EnumPrintProcessor()
addr OpenPrintProcessor()
addr ClosePrintProcessor()
addr ControlPrintProcessor()
addr PrintDocumentOnPrintProcessor()

suv OpenPrintProcessor(spooler:argsl)
default actions
return results

call PrintDocum entOnPrintProcessor(spooler:args2)
default actions
return results
call ClosePrintProcessor(spooler:args3)
default actions
return results

U.S. Patent Aug. 14, 2007 Sheet 6 of 7 US 7,256,901 B2

Fig. 6
Spooler 24

call Initia{izePrintProcessor()

call PrintDocumentOnPrintProcessor(args2)

Custom Print Processor 60

&
®

export Sub.lnitializePrintProcessor()
call InitializePrintProcessor()
returnaddr custom:EnumPrintProcessor()
addr custom.:OpenPrintProcessor()
addr custom:ClosePrintProcessor()
addr custom. ControlPrintProcessor()
addr custom:PrintDocumentOnPrintProcessor()

call PrintDocumentOnPrintProcessor(spooler:argsz2)
[custom actions]
return call default: PrintDocumentOnPrintProcessor(
. [modified]spooler:args?2)

Detault Print Processor (winprint.dil) 70

export sub InitializePrintProcessor()
returnaddr EnumPrintProcessor()
addr OpenPrintProcessor()
addr ClosePrintProcessor()
addr ControlPrintProcessor()
addr PrintDocumentOnPrintProcessor()

call PrintDocumentOnPrintProcessor(spooler:args’)
default actions
return results

U.S. Patent Aug. 14, 2007 Sheet 7 of 7 US 7,256,901 B2

Fig. 7
Spooler 24

call Initia{izePrintProcessor()

call Contr;ZPrinthcessar(argsd)

Custom Print Processor 60

export sub InitializePrintProcessor()
call InitializePrintProcessor()
returnaddr custom: Enum PrintProcessor()
addr custom:OpenPrintProcessor()
addr custom:ClosePrintProcessor()
addr default: ControlPrintProcessor()
addr custom: PrintDocumentOnPrintProcessor()

Detault Print Processor (winprint.dil) 70

export sub InitializePrintProcessor()
returnaddr EnumPrintProcessor()
addr OpenPrintProcessor()
addr ClosePrintProcessor()
addr ControlPrintProcessor()
addr PrintDocumentOnPrintProcessor()

call ControlPrintProcessor(spooler:argsd)
default actions
return results

US 7,256,901 B2

1

PRINTER DRIVER CUSTOMIZATION USING
INCREMENTAL CUSTOM PRINT
PROCESSOR

FIELD OF THE INVENTION

The present mvention relates generally to printing, and

more particularly to printer drivers, spoolers, print proces-
sors, and related processes.

BACKGROUND OF THE INVENTION

In many computer operating systems, printing tasks are
divided between several well-known processes or functions.
FIG. 1 shows the relationship between these processes for an
exemplary POSTSCRIPT driver 22 1n a MICROSOFT Win-
dows-type operating system (OS) environment. A printer
driver 22 accepts operating-system-specific printing instruc-
tions, from applications (or, more generally, other processes)
20, and converts these 1nstructions to a rendered format or
to a metafile (1.e., the driver journals the printing instructions
for delayed background rendering). Rendered/journaled
print data 1s combined with other information (e.g., printer
10b language commands) to form a print job. The print job
1s spooled to a spooler 24, which implements a queue for the
print data from driver 22, and therefore allows the driver to
generate multiple print jobs while a first job 1s pending on
the printer. Either immediately or delayed, the spooler
despools the print job to a print processor 26. Print processor
26 performs different functions depending on the operating
system. Generally, 1f the print data i1s journaled (e.g.,
Extended MetaFile or EMF) data, print processor 26 passes
the journaled data back through the printer driver 22. Oth-
erwise, 1n the case of rendered print data, print processor 26
despools the print data to a port manager 28 that actually
performs data communication with the printer.

Printer drivers are generally printer specific and operat-
ing-system specific, as these drivers must convert the oper-
ating system printing instructions to a Page Description
Language (PDL) or raster format understandable by the
particular printer they are supporting, and may encapsulate
that data in a specific Printer Job Language (PJL) to imple-
ment other printer functions (e.g., stapling, sorting). Hewlett
Packard PCL (Printer Control Language) and Adobe PS
(POSTSCRIPT) are two prevalent formats for printer com-
munications, although different printers may provide difler-
ent levels of support for these formats, and/or additional
features not directly supported by these standard formats.

In FIG. 1, POSTSCRIPT driver 22 1s described as a
monolithic PS driver, meaning that this driver 1s written to
implement PS functionality specifically for the printer (or
group ol printers with common features) that this driver
supports. A monolithic driver would include, e.g., a printer-
specific menu to allow a user to control the available print
options, a MICROSOFT OS Device Drniver Interface (OS-
DDI) to process printing instructions recerved from appli-
cations, a renderer to generate PS print data specific to the
printer, and a PJL generator to actuate the printer’s special
features.

A monolithic driver requires a one-time cost to design and
develop the drniver from scratch—a cost that may be signifi-
cant. Rivaling this cost 1s the additional cost to test and
debug the driver, and then package 1t. The driver must then
be maintained. Although historically many printer drivers
were implemented this way, monolithic drivers are generally
no longer cost eflective given the regular introduction of
new operating systems and printer models with different

10

15

20

25

30

35

40

45

50

55

60

65

2

feature sets, and the complexity of both. Each supported
operating system requires 1ts own test and debug procedure,
cach time an incremental modification 1s made to the exist-
ing driver. Thus the ongoing costs to a printer manufacturer
from such an approach are significant.

FIG. 2 shows an alternate approach that saves some
development costs. Source code for a generic PS driver 34
1s purchased from a vendor (e.g., Adobe POSTSCRIPT 3.0).
The printer manufacturer then adds customizations 36 to the
driver source code that are appropriate for the specific
printer to be supported, to create a driver 32. The generic
driver vendor generally charges a royalty for each copy of
the driver distributed. Thus although this approach saves
some money upiront, 1t requires that one learn the source
code for the existing driver, integrate patches and updates
from the vendor into the driver, and maintain the customi-
zations. Further, this approach does not decrease test, debug,
and packaging costs or alleviate costs associated with revi-
s1ons and updates, and adds an additional fixed cost to every

printer sold.
Both APPLE and MICROSOFT supply configurable PS

printer drivers iree of charge, as part of their operating
systems, which read PPD (POSTSCRIPT Printer Definition)
files (use of PPD files 1s not limited to these operating
system families, however). Taking the MICROSOFT driver
as an example (see FIG. 3), a printer manufacturer can use
the MICROSOFT OS base PS driver 42 by describing and
storing the specifics of the manufacturer’s printer in PPD file
40. The base PS driver 42 reads the PPD file when it 1s called
upon to render a print job for the corresponding printer.

The PPD 1s a text file, with each non-comment line having
a *feature:value format such as: *DefaultFont: Courier
(setting the printer’s default font); *ImageableArea A3/A3:
“14 14 828 1178” (setting the printable area for A3 paper);
*DetaultResolution: 600 dpi (printer resolution). Various
toolkits are available to generate a PPD file from a menu-
driven interface.

The PPD approach has some appeal—it does not require
that a printer driver be written from scratch or maintained,
it allows for customization, 1t 1s generally portable, and does
not require royalties. Also, although each time the PPD 1s
changed 1t must be tested, 1n general 1t need not be tested for
cach operating system.

The PPD approach also has a few drawbacks. Although a
rich set of PPD predefined features and options are available,
this set 1s nevertheless limited and would not include new
features that a manufacturer might develop. The manufac-
turer cannot add such features to the PPD, and cannot
modily the corresponding “free” driver since no source code
1s supplied. Thus with a PPD PS dniver there 1s no way to
configure the driver to take advantage of newly discovered
features that might set a manufacturer apart from the com-
petition.

SUMMARY OF THE INVENTION

It 1s recognized herein that i1t would be desirable to a
printer manufacturer if there were a way to enjoy the
advantages ol a PPD driver, and yet still be able to offer
non-PPD features on a printer. One method that the present
inventor has considered 1s replacing the OS default print
processor with a custom print processor that acts like the
default print processor, but also implements custom printer
features that cannot be implemented by PPD—in essence
moving part ol the operability of the driver to the print
processor. Although this can work, 1t has several drawbacks.
The default print processor 1s not generally portable between

US 7,256,901 B2

3

different operating systems, and thus a custom print proces-
sor 1s required for each supported OS. For example, the
Windows NT default print processor reads EMF data as a
single file per job, whereas the Windows 98 default print
processor reads EMF data as an index {ile and separate data
file for each page. Also, the Windows 2000 default print
processor includes some features not found in Windows NT
and 98, such as various sheet assembly emulation options.
And, if a third-party custom replacement print processor 1s
already 1nstalled to perform some required printing function,
such as job accounting, the user would likely not want that
print processor replaced. Thus although some of the difli-
culties present with a monolithic dniver are avoided 1n the
custom print processor approach, some are just replaced
with similar difliculties for what 1s now a monolithic custom
print processor.

A custom replacement print processor 1s assumed to
conform to the system print processor in both interface and
functionality. In contrast to the custom replacement print
processor approach, some embodiments described herein
present an “incremental” approach that can allow both an
existing printer driver and the OS-supplied default print
processor (or other third-party custom replacement print
processor) to be retained. Briefly, a custom print processor
1s placed 1n the data path between the print spooler and the
default or “system™ print processor. The custom print pro-
cessor appears to the print spooler as the print processor. In
actuality, the custom print processor merely accepts subrou-
tine call arguments from the spooler and passes these
arguments through to the default print processor subroutine
calls. But 1n addition to this pass-through functionality,
however, the custom print processor can perform a custom
action 1 one or more of 1ts subroutine calls before passing
those calls through to the default print processor. Thus
although “custom”, the print processor implements little
more than the custom features, and relies on the default print
processor to implement the rest. This custom print processor
can therefore remain fairly simple and portable across
multiple operating systems, since 1t need only comprehend
and retain the argument structure for a print processor
subroutine call on each platform.

BRIEF DESCRIPTION OF THE DRAWING

The invention may be best understood by reading the
disclosure with reference to the drawing, wherein:

FIGS. 1, 2, and 3 illustrate prior art Windows OS print
environments for, respectively, a monolithic PS dnver, a
customized generic PS driver, and a PPD PS dniver;

FIG. 4 shows a Windows OS print environment according,
to an embodiment of the invention, using a PPD PS driver
and a custom print processor inserted between the spooler
and system print processor;

FIG. 5 shows the prior art relationship between a spooler
and a system print processor dynamic link library; and

FIGS. 6 and 7 illustrate relationships between a spooler,
a custom print processor, and a system print processor for
some embodiments of the invention.

DETAILED DESCRIPTION OF TH.
EMBODIMENTS

L1

The following embodiments are described 1n the context
of vartous MICROSOFT Windows operating systems.
Although exemplary, these embodiments are not intended to
be limiting, as the concepts illustrated can be applied in

10

15

20

25

30

35

40

45

50

55

60

65

4

other vendors® operating systems, as well as 1n
MICROSOFT Windows operating systems that are not
specifically addressed.

FIG. 4 shows the general print data flow for a first
embodiment of the invention. A PS dniver 1s constructed
using the OS built-in base PS drniver 50 and a PPD 52.
Preferably, PPD 32 includes whatever printer features and
options are specifiable by PPD (as will be discussed below,
this may include features that can be specified by PPD but
are not recognizable by the particular printer—these serve as
instructions to a custom print processor to emulate the
teature). Once constructed, this PS driver 1s called whenever
an application or process 20 desired to print to the corre-
sponding printer.

Once, rendered or journaled, print data 1s spooled by base
PS dniver 50 to spooler 24, as 1s conventional. By, e.g., one
of the methods to be illustrated below, the spooler 1is
configured to pass print job data to custom print processor
60. Custom print processor 60 performs any custom actions
that are appropriate, and then passes the print job data to the
system print processor 70. System print processor 70 con-
tinues processing, as 1s conventional and as 1t would 11 called
directly from spooler 24.

As an aid in this 1llustration, it 1s instructive to examine
how spooler 24 and system print processor 70 interact 1n the
absence of custom print processor 60. In a MICROSOFT
OS, the default print processor subroutines are located 1n a
Dynamic-Link Library (DLL), named winprint.dll. As will
be recognized by those skilled in the art, a DLL contains
binary instructions that can be linked to a calling program at
runtime instead of at compile time, using dynamic linking.

The default print processor DLL includes several exter-
nal-referenced subroutines that are normally callable by the
spooler, of the form <Entry>PrintProcessor(spooler:args),
where Entry is selected from the group {Enum, Open, Close,
Control, PrintDocumentOn}, and “spooler:args” represents
the arguments expected from the spooler with that particular
call. FIG. 5 1llustrates the contents of winprint.dll concep-
tually (the actual file 1s of course a binary file), showing each
of these subroutines with a corresponding entry point.

In addition to these external-referenced subroutines, the
default print processor DLL includes an exported function
InitializePrintProcessor(). After an operating system reboot,
the first time a printer driver having a correspondence to
winprint.dll 1s mvoked, winprint.dll 1s dynamaically loaded
into the spooler. After loading winprint.dll, the spooler uses
the OS function GetProcAddress() to discover the address
of ImitializePrintProcessor(). The spooler calls Initial-
1zePrintProcessor(), which returns a data structure contain-
ing the addresses of the remaining external-referenced, but
not exported, functions 1in the print processor (the
<Entry>PrintProcessor() functions described above). The
spooler can then call the <Entry>PrintProcessor() functions
as they are needed.

In the present embodiment, a custom print processor DLL
1s dynamically linked to the spooler instead of the winprint-
.dll. As shown 1n FIG. 6, the custom print processor DLL
contains external-referenced subroutine entry points, cus-
tom:<Entry>PrintProcessor(), corresponding in type and
arguments to the winprint.dll entry points, and an exported
function InmitializePrintProcessor().

When the custom print processor DLL 1s first loaded, it
also loads winprint.dll. When the custom function Imitial-
1zePrintProcessor() 1s called by the spooler, it calls 1n turn
the winprint.dll function InitializePrintProcessor() to dis-
cover the addresses for the winprint.dll functions
<Entry>PrintProcessor(). The custom print processor then

US 7,256,901 B2

S

returns, to the spooler, a data structure indicating the
addresses of the custom:<Entry>PrintProcessor() functions.

Referring back to FIG. 6, a call to one of the print
processor entry points 1s illustrated. The spooler performs a
subroutine call to custom:<Entry>PrintProcessor(args) 3
using the corresponding address that was returned during the
InitializePrintProcessor() call. The syntax of args depends
on which subroutine 1s called.

The custom print processor function custom:
<Entry>PrintProcessor(spooler:args) performs any custom 10
actions that are appropriate (some examples are included
turther along in this description). The custom actions may,
however, as one result modily the arguments receirved from
the spooler. After taking the custom actions, the subroutine
custom:<Entry>PrintProcessor() calls 1ts corresponding 15
default print processor function <Entry>PrintProcessor
([modified]spooler:args) from winprint.dll, with the (possi-
bly modified) arguments passed in by the spooler. The
default print processor function performs whatever actions
are conventional for the print processor to perform 1n that 20
operating system, and returns the results to the custom print
processor. The custom print processor returns these default
results to the spooler. If the results of the custom print
processor actions require, the default results may be merged
or combined with the custom results as appropriate. 25

From this example, 1t can be appreciated that the func-
tionality embedded in the custom print processor can be
relatively small and focused almost exclusively on imple-
menting the custom features. By depending on the default
print processor to do the work normally expected of a print 30
processor, the custom print processor need not replicate that
functionality or concern itself greatly with the 1diosyncrasies
of each platform (unless, of course, those 1diosyncrasies are
implicated in the custom features). As such, test and debug
procedures become relatively straightiorward and develop- 35
ment and maintenance costs are reduced.

There are several diflerent broad categories of custom
actions that may be implemented 1n the custom print pro-
cessor. For a given print job, none, one, some, or all of these
categories of actions may be performed. 40

The first category of custom actions includes the set of
actions that allow a user to actuate a non-PPD feature or
option. For instance, after a print job 1s despooled to the
custom print processor (e.g., in the custom:PrintDocumen-
tOnPrintProcessor() subroutine), a User Interface can be 45
displayed that allows a user to select a custom feature.
Exemplary features could include a pool-printing feature
(the user selects this feature to allow the print processor to
select a printer from a group of printers, e.g., based on
availability and/or a best capability match), a job-splitting 50
feature that splits a print job into several sub-jobs and
distributes these jobs to different printers, a sheet assembly
or document-finishing feature that is not available in the
PPD, etc. Also included 1in the custom action could be a
pop-up notification that a feature, such as a cluster-printing 55
feature, has directed the print job to a specific printer or
printers.

The second and third categories of custom actions are
those that modily the print data stream, e.g., to add, delete,
or modily print job language commands (category two) or 60
modily the rendered data by adding or modilying POST-
SCRIPT directives (category three). In a MICROSOFT OS
the print data stream 1s not part of the Application Binary
Interface (ABI) of the print processor, but 1s located 1n a
spool data file associated with the print job. Thus category 65
two and three custom actions require that the custom print
processor locate and modily the print job spool data file

6

before the default print processor PrintDocumentOnPrint-
Processor() function 1s called. The spool file can be located
using the print job 1D (*jobID”) passed from the spooler to
the custom print processor OpenPrintProcessor() call as part
of the Document Data argument. Using joblID, the custom
print processor can find the spool file at, e.g.,
C:windows\system\spooli<joblD=>.spl (Windows 935/98/
Me) or C:windows\system32\spool\printersi<joblD>.spl
(Windows NT/2000). Once this file 1s located, the custom
print processor can open the spool data file for read/write
and modity 1t i place, or read the spool data file, make
modifications to the copy, and then replace the spooi1 data file
with a new spool data file. For instance, a PJL. command
could be mnserted 1n the spool file to activate a binding option
that cannot be specified 1n the PPD. A sheet assembly option,
not available through the PPD, can be specified in the
POSTSCRIPT data. Where a job 1s split between two
printers, the spool file could be duplicated and one copy sent
to each printer. In each copy, the number of copies command
would be located and modified to retlect the number of
copies actually printed by that copier.

The last category of custom actions includes those that
modily the arguments received from the spooler before
passing those arguments to the default print processor. For
instance, 1f the custom action redirects the print job to a
different printer, the spooler arguments can be modified
accordingly to force this redirection in the default print
Processor.

Note that 1n order to fully implement a given custom
feature, custom actions 1n two or more of these categories
may be required. It 1s also possible that a custom action
could work in conjunction with the PPD to emulate a
PPD-specifiable function that the print device 1tself does not
support. For instance, a given sheet assembly option can be
indicated as supported 1in the PPD, even though the print
device does not support this option directly. When the user
selects this option, the custom print processor detects the
selection directive, removes the directive from the spool file,
and rearranges the data 1n the spool file to match the option.

The preceding example assumes that some custom action
(or some configuration needed for later custom actions) may
result from each spooler call to a print processor function. It
1s concelvable that for a given print processor function the
custom print processor does nothing more than pass the
arguments through in a call to the default print processor,
and return the result of the default call to the spooler. In such
a case, that particular custom print processor function can
optionally be removed from the library. As 1llustrated in FIG.
7 for the ControlPrintProcessor() function, the custom
InitializePrintProcessor() function merely returns the
address of the default print processor ControlPrintProcessor(
) function 1n the data structure. When the spooler subse-
quently calls ControlPrintProcessor(), the custom print
processor 1s bypassed for that call.

In accordance with the preceding embodiments, several
new methods for installing a POSTSCRIPT printer on a
computer operating system are also contemplated. A PPD
that defines those printer features supportable by the base PS
driver 1s mstalled. The custom print processor, including the
custom actions, 1s installed in the proper directory (e.g.,
Ciwindowsisystem for Windows 95/98/Me, or
C:windows\system32\spooliprtprocs\w32x86 for Windows
NT/2000/XP). Then the operating system 1s configured to
call the custom print processor nstead of the default print
processor. This step can be accomplished in several ways.
First, the information (.inf) file corresponding to the PPD
can be modified directly. This involves setting the PrintPro-

US 7,256,901 B2

7

cessor field to specity the library containing the custom print
processor. Second, 1n some operating systems there 1s a Print
Processor setting in the printer driver’s system properties
(located at Properties->Advanced->Print Processor on Win-
dows NT/2000/XP). This setting can be set to the library
containing the custom print processor. Third, a copy of the
spooler executable file can be modified directly 1n some
instances such that at run time 1t dynamically loads the
custom print processor mstead of the default print processor.
This involves locating the relocation entry (although located
in a bimary file, these entries appear in a table of ASCII
strings) for the winprint.dll InitializePrintProcessor() func-
tion, and modifying 1t to bind instead to the imtialize
function 1n the custom print processor DLL. Depending on
the operating system, other methods may be available, but
are not discussed 1n detail herein.

Those skilled in the art recognize the various media
capable of holding the binary custom print processor library
tfunctions and PPD definitions, including but not limited to
optical and magnetic disks, and static or dynamic solid-state
memory devices, any of which may be local, networked,
fixed or removable, and understand that at distribution, after
installation, and at run-time the functions and definitions can
exist 1 various places on these media.

Although POSTSCRIPT has been used as an exemplary
PDL 1n the preceding embodiments, an incremental custom
print processor as described can be equally applied to other
rendering formats, whether they be another PDL or another
format entirely. In general, the printer manufacturer knows
the format 1ts printer expects, and thus can write the incre-
mental custom print processor to read and modify print data
in that format. The printer driver need not be a PPD dniver,
and could even be a driver supplied by the printer manu-
facturer.

One of ordinary skill 1n the art will recognize that the
concepts taught herein can be tailored to a particular appli-
cation 1n many other advantageous ways. In particular, those
skilled 1n the art will recognize that the 1llustrated embodi-
ments are but one of many alternative implementations that
will become apparent upon reading this disclosure. Although
a “default” or “system” print processor 1s generally a print
processor supplied with the OS, the default or system print
processor can also be a custom replacement print processor.
“Moditying” print job data or arguments can include in-
place alteration, additions, or deletions, or replacement with
substitute data or arguments. No distinction 1s drawn herein
between the terms “‘subroutine”, “function™, and “entry
point”. Although the embodiments described herein imple-
ment the custom print processor as a single DLL, the
functionality could of course be distributed among multiple
DLLs, and/or 1n some operating systems the custom print
processor could be a separately executable program. Note
that although the custom print processor 1s sometimes
described as associated with a “printer” of a given type, that
“printer” can 1n some instances be a cluster of printers,
which need not all be of the same type, administered by the
custom print processor. Such minor modifications are
encompassed within the invention, and are intended to fall
within the scope of the claims.

The preceding embodiments are exemplary. Although the
specification may refer to “an”, “one”, “another”, or “some”
embodiment(s) 1 several locations, this does not necessarily
mean that each such reference 1s to the same embodiment(s),

or that the feature only applies to a single embodiment.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

What 1s claimed 1s:

1. A method of configuring a computer’s operating system
to process print jobs for a printer, the method comprising:

installing a primer definition file to define printer features
supported by a generic printer driver;

installing a custom print processor that defines and 1mple-
ments custom printer features not supported by the
generic printer driver but that are supported by the
printer, the custom print processor linking to a default
print processor to perform print processing other than
the custom primer features;

configuring a print spooler to pass spooler argument data
that represents one or more jobs to the custom print
Processor;

configuring the custom printer processor to modily the
spooler argument data when one of the custom printer
features 1s selected, and to pass the modified spooler
argument data to the default print processor for per-
forming print processing other than the custom printer
features; and

configuring the custom printer processor to pass-through
the spooler argument data to the default print processor
without making modifications when the custom printer
features are not selected;

wherein the operating system 1s configured to process the
print jobs using the custom print processor responsive
to a user request when the user request selects the
custom print features.

2. The method of claim 1, wherein the printer accepts the
print jobs 1n a page description language, the method further
comprising supplying a printer definition for the printer to a
generic page description language printer driver that sup-
plies print data to the print spooler.

3. The method of claim 2, further comprising, for at least
one of the custom printer features, configuring the custom
print processor to display that custom printer feature to the
user as a selectable element of a graphical user interface for
allowing the user to indicate the selected custom printer
features to be processed by the custom printer processor.

4. The method of claim 1, wherein configuring the custom
printer processor to modily the spooler argument data when
one of the custom printer features 1s selected comprises
configuring the custom print processor to modily a section
of the print jobs containing print job command language.

5. The method of claim 1, further comprising configuring
the system print processor to only process non-custom print
10b aspects that are not included 1n the printer defimition file.

6. The method of claim 1, further comprising binding the
print spooler to the custom print processor.

7. A custom print processor dynamic-link library located
on a computer readable medium, the custom print processor
dynamic-link library comprising:

a set of external-referenced custom print processor sub-
routines that conform to the calling syntax of a set of
external-referenced default print processor subroutines
in a default print processor dynamic-link library, each
custom print processor subroutine in the set including
a call to a corresponding default print processor sub-
routine entry point, at least one of the custom print
processor subroutines further comprising a custom
action to be performed prior to calling the correspond-
ing default print processor subroutine; and

an 1nitialization subroutine that loads the default print
processor dynamic-link library and retrieves the default
print processor subroutine entry points, the initializa-
tion subroutine providing a set of print processor sub-
routines entry points to a calling process;

US 7,256,901 B2

9

wherein the set of external-referenced custom print pro-
cessor subroutines comprises one custom print proces-
sor subroutine entry point for each default print pro-
cessor subroutine entry point.

8. The custom print processor dynamic-link library of
claim 7, the custom action comprising at least one action
selected from the group of actions comprising modifying
print job command language, moditying printing data, and
moditying spooler argument data.

9. A custom print processor dynamic-link library located
on a computer readable medium, the custom print processor
dynamic-link library comprising:

a set of external-referenced custom print processor sub-
routines that conform to the calling syntax of a set of
external-referenced default print processor subroutines
in a default print processor dynamic-link library, each
custom print processor subroutine in the set including
a call to a corresponding default print processor sub-
routine entry point, at least one of the custom print
processor subroutines further comprising a custom
action to be performed prior to calling the correspond-
ing default print processor subroutine; and

an 1nitialization subroutine that loads the default print
processor dynamic-link library and retrieves the default
print processor subroutine entry points, the initializa-
tion subroutine providing a set of print processor sub-
routines entry points to a calling process;

wherein the set of external-referenced custom print pro-
cessor subroutines includes one subroutine entry point
for a subset of the default print processor subroutine
entry points, the entry points supplied to a calling
process by the mitialization subroutine including
default print processor subroutine entry points for those
entry points not having a corresponding custom print
processor subroutine entry point.

10. The custom print processor dynamic-link library of
claiam 9, the custom action comprising a user interface
display action, the user interface allowing a user to select
from a set of custom print features not available with a
corresponding printer driver.

11. The custom print processor dynamic-link library of
claim 10, the custom action further comprising, depending
on the custom print features selected by a user, at least one
action selected from the group of actions comprising modi-
tying print job command language, modilying printing data,
and moditying spooler argument data.

12. A method of installing a PostScript printer on a
computer operating system, the method comprising:

installing a PostScript Printer Definition (PPD) to define
standard print routines and standard operating
attributes for the PostScript printer;

comparing the PPD to a feature set of the PostScript
printer to 1dentify custom print features that the Post-
Script printer 1s configured to perform but which are
not supported by the PPD;

installing a custom print processor that defines and 1mple-
ments the i1dentified custom printer features not sup-
ported by the generic PostScript printer driver, the
custom print processor dynamically linking to a default
print processor to perform print processing other than
the 1dentified custom printer features; and

configuring the operating system to call the custom print
processor mstead of the default print processor for print
j0bs spooled for the printer;

when a user requests a custom print job, wherein the
installed PostScript printer and the operating system are

5

10

15

20

25

30

35

40

45

50

55

60

65

10

configured to print a user requested print job using the
custom print processor responsive to the user request.

13. The method of claim 12, wherein configuring the
operating system to call the custom print processor com-
prises setting an information file to indicate that the custom
print processor 1s the print processor to be used for the
printer.

14. The method of claim 12, wherein configuring the
operating system to call the custom print processor com-
prises setting an operating system property.

15. The method of claim 12, wherein configuring the
operating system to call the custom print processor com-
prises modifying a spooler relocation table entry to bind the
spooler to the custom print processor.

16. The method of claim 12, further comprising config-
uring the custom print processor to modily spooler argument
data before passing the spooler argument data to the default
print processor.

17. An apparatus comprising a computer-readable
medium containing instructions and defimitions that, when
executed by one or more processors, cause the one or more
Processors to:

identity a printer definition file listing a plurality of

generic printer functions operable by a first printer
type;,
identify at least one non-generic printing function oper-
able by the first printer type, the non-generic printing,
function being diflerent than all the generic printing
functions 1ncluded 1n the printer definition file;

configure a print spooler to pass a print job for the first
printer type to a custom print processor;
configure the custom print processor to modity spooler
argument data recerved from the printer spooler to
process the at least one non-generic printing function
when a custom print action 1s requested over an nput;

configure the custom print processor to send the modified
spooler argument data to a system print processor for
processing at least one of the generic printing func-
tions;

configure the custom print processor to pass-through the

spooler argument data received from the printer spooler
without modification when the custom print action 1s
not requested;

configure the system print processor to process at least

one of the generic printing functions in response to
receiving the modified spooler argument data or the
unmodified spooler argument data from the custom
print processor.

18. The apparatus of claim 17 wherein the at least one of
the generic printing functions sets a default font for the first
printer type.

19. The apparatus of claim 17 wherein the at least one
non-generic printing function splits the print job ito a
plurality of sub-jobs.

20. The apparatus of claim 19 wherein the at least one
non-generic printing function provides a pop-up notification
that a cluster-printing feature has directed the print job to a
second printer type.

21. The apparatus of claim 17 wherein the processors are
operable to modily a spooler relocation table entry to bind
the print spooler to the custom print processor.

22. A method, comprising:

identifying a printer description {ile listing a generic

printer arguments for a printer type and attributes for
the default printer type;

identifying at least one non-generic printing argument

operable with the printer type, the at least one non-

US 7,256,901 B2

11

generic printing argument providing a non-generic
printing function for the printer type, the non-generic
printing function being independent from all the
generic printing functions provided by the generic
printing arguments included 1n the printer description
file;

configuring a print spooler to pass a print job for the
printer type to a custom print processor; and

configuring the custom print processor to accept the print
job from the print spooler, process the at least one
non-generic printing argument, and pass the print job to
a system print processor for processing at least one of
the generic printing arguments;

wherein the print spooler 1s configured to process a user

5

10

12

23. The method of claam 22 wherein the custom print
processor does not process any of the generic printing
arguments included in the printer description file.

24. The method of claim 23 wherein the system print
processor only processes the generic printing arguments
without processing any non-generic printing functions.

25. The method of claim 24 wherein the printer descrip-
tion {ile 1s a PostScript Printer Definition (PPD) file.

26. The method of claim 24 wherein the printer descrip-
tion file 1dentifies a default font setting for the printer type
and a default printer resolution for the printer type.

277. The method of claim 22, further comprising config-
uring the custom print processor to modily spooler argument
data belore passing the spooler argument data to the system

requested print job using the custom print processor 15 print processor.

responsive to a user request that identifies at least one
of the non-generic printing arguments.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,256,901 B2 Page 1 of 1
APPLICATION NO. : 10/269378

DATED . August 14, 2007

INVENTOR(S) . Andrew R. Ferlitsch

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

At column 8, line 13, please replace “more jobs” with --more print jobs--

Signed and Sealed this

Seventeenth Day of February, 2009

), . (.20

JOHN DOLL
Acting Director of the United States Patent and Trademark Olffice

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

