12 United States Patent

Crump et al.

US007233579B1

US 7,233,579 B1
Jun. 19, 2007

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(%)

(21)
(22)

(1)
(52)

(58)

(56)

ROUTING TABLE FOR FORWARDING

INTERNET PROTOCOL (IP) PACKETS
THROUGH A COMMUNICATIONS
NETWORK

Inventors: Richard Crump, Boston, MA (US);
Janet Yung Doong, Chelmsiord, MA
(US); Shekhar Kshirsagar, Lexington,

MA (US)

Assignee: Nortel Networks Limited, St. Laurent
(CA)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 1145 days.

Appl. No.: 10/327,341

Filed: Dec. 20, 2002

Int. CI.

HO4L 12/28 (2006.01)

US.CL ., 370/256; 370/401; 370/392;
707/102

Field of Classification Search None

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

6,442,561 B1* 82002 Gehrke et al. 707/102
6,490,592 B1* 12/2002 St. Denis et al. 707/102
6,680,916 B2* 1/2004 Pulestoncccuuunen... 370/254
6,876,655 B1* 4/2005 Afek et al. 370/392
7,111,071 B1* 9/2006 Hoopercccvvvenenennnns 709/238
2003/0031167 Al* 2/2003 Singh et al. 370/352

* cited by examiner

Primary Examiner—Duc Ho

(74) Attorney, Agent, or Firm—Guerin & Rodriguez, LLP;
Michael A. Rodriguez

(57) ABSTRACT

Described are a system and computer-implemented method
for searching and updating a routing table for forwarding IP
packets through a commumications network. Records con-
taining IP address prefixes are organized 1n a binary tree data
structure. When 1nserting a new record, one of the records 1n
the binary tree data structure is identified as an enclosing
record having an associated record data range that encloses
record data of the new record. An enclosing pointer of the
new record 1s set to point to the identified enclosing record.
When searching for a longest matching prefix for a desti-
nation IP address, the binary tree data structure 1s traversed
and one of the records i the binary tree data structure is
identified as an enclosing record, which 1s returned as the
longest matching prefix.

6,141,738 A * 10/2000 Munter et al. 711/206

40

"

17 Claims, 11 Drawing Sheets

RECORD DATA
00

48

I.EFT POINTER //\

RIGHT POINTER
52

ENCLOSING
POINTER

56

NEIGHBORING
POINTER
62

—

NEXT POINTER

e —r———— - e . e = T wWT W W W Em W W W

)))

US 7,233,579 B1

d HJdON
e
Cl
nm _
g D AAON
e
s 9,
/
- hN.—”
&
&
2
=
=
d 4dON
/
Cl

U.S. Patent

[OlA

ce
J41dV.L
ONITIV MU0
JO DNILNOY

US 7,233,579 B1

¢ OlAd

8/000°TI

— 2§/SSTSSTSSTSST 91/0°0°'11°01 91/0°0°01°01 0/0°0°0°0

— _

M Mo“ ZS S~8¥ _QW moww > Hov
ZS

'

5 .

= PZ/OOT TTIT pc/001 01 11 pZ/00T 11701 R/0°0°0°01

7 P,

W, 01/0°0 1T 1T J

. < mmm @\

= 20V r

p OT/0°0°0T 11

—

= Sﬂm

U.S. Patent

U.S. Patent Jun. 19, 2007 Sheet 3 of 11 US 7,233,579 B1

RECORD DATA
60

LEFT POINTER
48

RIGHT POINTER
52

ENCLOSING
POINTER

56

NEIGHBORING
POINTER

02

o

NEXT POINTER
04

FLLAG
68

U.S. Patent Jun. 19, 2007 Sheet 4 of 11 US 7,233,579 B1

10.10.10.0/24

10.10.255.255

10.11.0.0 104 40

/
l 10.11.10.0/24 |

10.11.255.255
10.255.255.255

10.11.0.0/16

40h
b

0.0.0.0/0

/"
| 11.10.10.0/24 ‘

11.10.255.255

Q7 A0 I__ 11.11.0.0 1112 4[’]

vl — e
| 11.11.0.0/16 | 11.11.10.0/24

I— 11.11.255.255

11.255.255.255

o

4(m

255.255.255.255‘ 2355.255.255.255/32 \

FIG. 4

US 7,233,579 B1

(S421U10d SUISOJOUT) C DA

h
- A G S BN EE E Iy Wy Em m wl WE W W W A W W A W e e e mpln oM Wy AN BEN AN EEF IR AEN A WA W A W W R W MWR TEE amp W A A A A A A A S A T S A A S T EE I A AR S A T I I EE I EE A A A I A B A A S I A I S S e A T T W T E W Wl B A e o

\
96 00 e il
- L
y—)
i “
© | TESSTSSTSSTCET | cmmmmmm e cemccceeceae oo 91/0°0°01°0T _
S | |
- " "
Qs _)
Qs _)
e _
2 "
— 9% PT/OOT'0T'TT | 8/0°0°0°01
= " Jov \
— AN
e /s
o) 9T/00TT'TT 9\, $Z/0'01°01°01
y— \
M uo_w JOt
-

91/0001°11

017

U.S. Patent

US 7,233,579 B1

Sheet 6 of 11

Jun. 19, 2007

U.S. Patent

(S421U10 IXaN) / "Dl

91/00°01°01 0/0°0°0°0

R/0°0°0°TT _ 0T/00' 1101
ZE/CCT CCT ST CST

J
4 e vmv M /7 \, b9 ¥
Wi

PC/O0T°0LT]

PS/OOLTTTI

PC/O0T TTOI

b9 .

79 . &

/
mmw _ O 0%
4
OT/0'0'TT'TT b9 $T/0°0T°01°01
7 5
ﬂv 30 Q07
OT/0°0°0T TT
0C1 5@

(4231104 SULIOGYSIZN) G "DIA

91/0°0°0T°01

0/0000

qu 107 aw 29—~ zm_q
vC/O0T 01T pZ/00T 1T 01 | 80000
i? o W
OT/00TITT bZ/0°01°01°01
umﬂ m \lev 07

e e mr e —m— e ———————— O1/000IL'11
/b/mo_u

U.S. Patent Jun. 19, 2007 Sheet 7 of 11 US 7.,233.579 B1

TRAVERSE TIE SEARCII DATA STRUCTURE FOR A
RECORD, WHILE KEEPING TRACK OF A PREVIOUS - 150

FIG. 8 RECORD)
- e

el A N AT T A Ty s oy e sees dees O sees o sbbie oELDE S A OEEE DD OB DD DDDDGE BN BB S I Il S O I D S T T T T T T T T T Y T T T T T T T T T

T -
: [F DURING TRAVERSAL OF THE SEARCH DATA
STRUCTURE A RECORD IS REACHED THAT INDICATES

THAT THE SEARCH DATA STRUCTURE IS IN AN
INTERMEDIATE STATE, CONTINUE SEARCHING FOR THE
RECORD USING A SECOND SEARCH DATA STRUCTURE.

162
EXACT MATCH OF

RECORD FOUND?

166

DOES PREVIOUS RECORD
ENCLOSE SEARCHED FOR
RECORD?

170

TRAVERSE THE ENCLOSING POINTER OF THE PREVIOUS
RECORD TO A CANDIDATE ENCLOSING RECORD

-

DOES CANDIDATE
RECORD ENCLOSE
SEARCHED-FOR RECORD?

TRAVERSE THE ENCLOSING POINTER OF THE
CANDIDATE ENCLOSING RECORD TO ANOTHER

CANDIDATE ENCLOSING RECORD
I 164

RETURN RECORD
AS LPM

U.S. Patent Jun. 19, 2007 Sheet 8 of 11 US 7,233,579 B1

FIG. 9A
200
FOR NEW RECORD FIND INSERTION LOCATION IN TREE, | 204
(‘ OA AND PREVIOUS AND NEXT RECORDS FOR LINKED LIST
9B SET ENCLOSING RANGE POINTER FOR NEW RECORD 200

I)12

SET NEXT POINTER OF NEW RECORD TO NEXT RiIZCORD

SET NEXT POINTER OF PREVIOUS RECORD TO NEW /2 10
RECORD
L—_ 220)
INSERT NEW RECORD INTO TREE o

DOES NEW RECORD
ENCLOSE THLE NEXT
RECORD?

230
DOLS NEW -~
NR]E;? Egc%hll{?) N UPDATE ENCLOSING POINTER FOR NEXT
HAVE SAME RECORD TO POINT TO NEW RECORD
ENCLOSING

RECORD?

N
DOES NEXT RECORD
v /227 22\8\ HAVE A NEIGHBORING
| RECORD?
SET NEIGHBORING POINTER SET NEIGHRORING
OF NEW RECORD TO NEXT POINTER OF NEW
RECORD | RECORD TO NULL Y

. : 10 FIG. 9B
10O FIG. 9B

U.S. Patent Jun. 19, 2007 Sheet 9 of 11 US 7,233,579 B1

FROM FIG 9A
(step 232) FIG 9B
240
el
DOES NEW RECORD N SET NEIGHBORING POINTER OF
NEW RECORD TO THE
ENCLOSE NEIGHBORING -
RECORD? NEIGHBOR OF THE LAST
ENCLOSED RECORD FOUND.

238
~
| SET ENCLOSING POINTER OF ENCLOSED RECORD TO
POINT TO THE NEW RECORD

DOES ENCI.OSED
RECORD HAVE A
NEIGHBORING RECORD?

FROM FIG 9A

(steps 227 & 228) N
244
PREVIOUS RECORD AND o~
NEW RECORD HAVE

THE SAME ENCLOSING
RECORD?

‘\f

246

SET NEIGHBOR POINTER OF PREVIOUS RECORD TO THE
NEW RECORD

248
v ~

TRAVERSE THE ENCLOSING POINTER FOR
PREVIOUS RECORD AND IF A RECORD
WITH A MATCHING ENCLOSING IS FOUND
AND SET NEIGHBORING POINTER OF

THAT RECORD TO THE NEW RECORD
. : —

250
l ~

| BALANCE TREE, IF NECESSARY

U.S. Patent Jun. 19, 2007 Sheet 10 of 11 US 7,233,579 B1

0.0.0.0

10.10.0.0 10b

I 10.10.10.0/24 |
100"

10.10.255.255

[0.11.0.0 104 40e

L~
10.11.10.0/24

10.11.255.255

02"
40n 10.128.0.0

40h 10.128.0.235
10.255.255.255

\ _
0.0.0.0/0
— 11000

40k & \r LL100.0 108 40f

— W\
11.0.0.0/8 11.10.0.0/16

| 11.10.10.0/24 l

11.10.255.255

11.11.0.0 112

L 4Og\/\
11.11.0.0/16 11.11.10.0/24

11.11.255.255

11.255.255.255
40m

255.255.255.255 | 255.255.255.255/32

FIG. 10A

U.S. Patent Jun. 19, 2007 Sheet 11 of 11 US 7,233,579 B1

0.0.0.0

10.0.0.0

100 40b

10.10.0 O!lt?_l — Z
10.10.255.255
10.10.0.0/15

40d

g 10.11.0.0 04 40¢
~ ‘7
40hv\ 10.11.0.0/16 10.11.10.0/24
2V
40
o 10.11.255.255
™~
40n 10.128.0.0
10.128.0.0/24
10.128.0.255
10.255.255.255
11.0.0.0
6
. 11.10.0.0
| I— ./_,103 4Ofm

\

11.10.10.0/24

11.10.255.255

11.11.0.0 112 40

/-""
11.11.0.0/16 11.11.10.0/24

—Ell.ll.ESS.QSS

11.255.255.255

40m

255.255.255.255' 255.255.255.255/32 I

FIG. 10B

US 7,233,579 Bl

1

ROUTING TABLE FOR FORWARDING
INTERNET PROTOCOL (IP) PACKETS
THROUGH A COMMUNICATIONS
NETWORK

FIELD OF THE INVENTION

The mvention relates generally to communications net-
works. More particularly, the invention relates to a system
and method of implementing, searching and updating a
routing table for forwarding communications 1n a commu-
nications network.

BACKGROUND

A current bottleneck 1n the performance of routers and
switches operating on the Internet 1s Internet Protocol (IP)
address lookup. The bottleneck 1s likely to worsen with
increasingly larger routing tables, faster communication
links, heavier packet tratlic, and the migration from 32-bit
Internet Protocol Version 4 (IPv4) addresses to 128-bit
Internet Protocol Version 6 (IPv6) addresses. Consequently,
it 15 becoming increasingly important for routers and
switches to employ IP packet forwarding that can meet these
increasing demands.

FIG. 1 shows an example of a communications network
10 having a router 20. The router 20 receives 1P packets 22
from a node 12 (Node A) 1n the network 10. Each received
IP packet 22 has a header 24, including a destination address
field 26, and data 28. The destination address field 26 has an
IP address of a node (or host) to which the IP packet 22 1s
targeted. With this IP address, the router 20 accesses a
routing (or forwarding) table 32 to determine to which node
(e.g., Node B, C, or D) to forward the IP packet 22. In
general, the router 20 selects the node that advances the 1P
packet 22 towards 1ts targeted destination.

A basic principle of IP addressing 1s that routers and
switches can use the prefixes of an IP address to make
routing decisions. A familiar dot-notation for a 32-bit IP
address includes four decimal values separated by periods
(e.g., 208.128.16.10). Each decimal value 1s represented by
cight bits (a byte). The leftmost 16 bits of the IP address can,

for example, 1dentily a corporation, the leftmost 20 bits of

the IP address an oflice 1n that corporation, the leftmost 24
bits a particular network (e.g., Ethernet) 1n that oflice, and all
32 bits a particular host device on that network.

One technique for using a routing table 1s longest prefix
matching (LPM). When performing LPM, the router 20
compares the destination address 26 to entries 1n the for-
warding table 32 to find the entry with the longest matching,
prefix. That entry indicates the location (or node) towards
which to send the IP packet 22. For example, consider that
the router 20 receives an IP packet 22 with a destination
address 26 of 208.128.16.10 and upon searching the routing
table 32 finds two entries with matching prefixes, the first
entry being 208.128 and the second entry being 208.128.16.
The router 20 then selects the second entry (208.128.16)
because it 1s longer and more specific than the first entry.

One way to implement the LPM algorithm 1s to use a
prefix tree (1.e., a binary tree) having a root node, interme-
diate nodes, and leal nodes. The leal nodes represent prefix
entries in the forwarding table 32. The prefix tree 1s built
only to the extent needed to represent all of the entries 1n the
tforwarding table 32. The router 20 searches for the longest
prefix in the prefix tree that matches part of or the entire
destination IP address 26 by traversing the prefix tree from
root node to a leal node, possibly passing through one or

10

15

20

25

30

35

40

45

50

55

60

65

2

more intermediate nodes. Each traversed node adds a bit to
the matching prefix. From a leaf node the router 20 obtains
the forwarding location. A disadvantage of using a direct
implementation of the prefix tree 1s that the process can
require a traversal of as many nodes as there are bits in the
IP address to obtain the forwarding location. Consequently,
searching for the longest prefix match and updating the
prefix tree can be slow.

Another implementation of a routing table uses a hash
table of indexes and linked lists of entries. The entries of
cach linked list provide a range of prefix data, and each
index points to a linked list. A general disadvantage with this
implementation 1s that tuning the routing table to perform
fast prefix searching slows the performance of table updates,
and tuning the routing table to perform fast table updates
slows the performance of prefix searching. Thus there 1s a
need for a longest prefix matching implementation that can
perform fast prefix searching and fast table updates without
the performance tradeofl described above.

SUMMARY

In one aspect, the mvention features a method of adding
a new record to a plurality of records organized 1n a binary
tree data structure. One of the records organized in the
binary tree data structure 1s 1dentified as an enclosing record
having an associated record data range that encloses record
data of the new record. An enclosing pointer of the new
record 1s set to point to the 1dentified enclosing record.

In another aspect, the invention features a method of
determining a route for an IP packet having a destination IP
address. A plurality of records 1s organized in a binary tree
structure. Each record has record data that include an IP
address prefix for use 1n routing IP packets. It 1s determined
that the binary tree data structure lacks a given record with
record data that match the destination IP address. One of the
records organized 1n the binary tree data structure i1s 1den-
tified as a previous record having record data that more
closely precede 1n order the record data of the new record
than any of the other records 1n the binary tree data structure.
It 1s determined that the record data of the previous record
are the longest matching prefix in the plurality of records for
the destination IP address 11 the record data range associated
with the record data of the previous record encloses the
record data of the new record.

In another aspect, the mvention features a record having
record data. The record comprises an enclosing pointer for
linking the record to an enclosing record in a data structure.
The enclosing record has a record data range that encloses
the record data of the record. The record also includes a
neighboring pointer for linking the record to a neighboring
record in the data structure. The neighboring record has
record data that 1s greater than the record data of the record
and 1s enclosed by the same enclosing record that encloses
the record.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and further advantages of this invention may
be better understood by referring to the following descrip-
tion 1 conjunction with the accompanying drawings, in
which like numerals indicate like structural elements and
features 1n various figures. The drawings are not necessarily
to scale, emphasis instead being placed upon illustrating the
principles of the invention.

FIG. 1 1s a diagram of a network including a router that
torwards IP packets over the network according to a longest
prefix matching method.

US 7,233,579 Bl

3

FIG. 2 1s a diagram 1illustrating one exemplary set of
records organized according to a search data structure, here
an embodiment of a binary tree.

FIG. 3 1s an embodiment of a data structure for each
record 1n the set of records, each record having left, right,
enclosing, neighboring, and next pointers.

FIG. 4 1s a diagram 1llustrating “enclosing” and “neigh-
boring” relationships for the exemplary set of records in
FIG. 2 based on the prefix information of those records.

FIG. 5 1s a diagram showing the linking (1.e., enclosing
pointers) between enclosing records for the same exemplary
set of records of FIG. 2.

FIG. 6 1s a diagram showing the linking (1.e., neighboring
pointers) between neighboring records for the same exem-
plary set of records of FIG. 2.

FIG. 7 1s a diagram showing the linking (1.e., next
pointers) between next records for the same exemplary set of
records of FIG. 2.

FIG. 8 15 a flow diagram of an embodiment of a process
of searching for and obtaining a longest matching prefix
from a set of records.

FIG. 9A and FIG. 9B are tflow diagrams illustrating an
embodiment of a process for inserting a record into the
exemplary set of records shown in FIG. 2.

FIG. 10A and FIG. 10B are diagrams illustrating revised
“enclosing” and “neighboring” relationships for the exem-
plary set of records 1in FIG. 2 after the insertion of two
exemplary records.

DETAILED DESCRIPTION

FIG. 2 shows an example set of records (generally, 40)
organized 1n a binary tree 42. The particular records 40 1n
this exemplary record set and the order 1n which the records
are arranged 1n the binary tree 42 are shown here for the
purpose of 1illustrating the principles of the invention, and
their use 1s not mtended to limit the scope of the invention
to this particular record set or arrangement. As described in
more detail below, the binary tree 42 1s the primary data
structure used to search for an IP address prefix for routing
an IP packet.

Each record 40 in the binary tree 42 has data (also, record
data or search key) by which the records can be ordered and
searched. In this example, the data in each record 40
includes an IP address prefix. For example, the record 40a
1s the root node of the binary tree 12 and has an IP address
prefix of 11.10.0.0/16. Records 40 with a lower IP address
prefix appear 1n a left sub-tree of the root node record and
records 40 with a higher IP address prefix appear 1n the right
sub-tree of the root node record. This pattern of lower IP
address prefixes 1n the leit sub-tree and higher IP address
prefixes 1n the right sub-tree applies also to records at a
lower level than the root node record (except for records that
are leal nodes, which have no sub-trees).

In the binary tree 42, each record 40 1s linked to zero, one,
or two other records by a left pointer 48, by a right pointer
52, by both left and right pointers, or by neither a lett nor
right pointer. In the particular example shown, the records
40/, 40i, 40;, 40k, 40m with record data of *“0.0.0.0/0,”
“10.10.0.0/16,” “10.11.0.0/16,” “11.0.0.0/8,”
“2355.255.255.255/32,” respectively, are leal nodes 1n the
binary tree 42. In one embodiment, the binary tree 42 1s an
AVL (Adelson, Velski, and Landis) tree (1.e., a binary tree
in which the difference 1n height between the leit and right
sub-trees (or root node) i1s less than or equal to one).
Although 1n the present example the IP address prefixes are
tor IPv4 addresses, the principles of the invention extend

10

15

20

25

30

35

40

45

50

55

60

65

4

also to IPv6 addresses and to other types of data that are
ordered and ranged (as described in more detail below).

A typical search for the longest matching prefix entails
traversing through the levels of the binary tree 42 to find a
record with record data that matches the destination IP
address. An exact address match may not be found. To
facilitate the search for the longest matching prefix, the
present invention provides each record with an additional
pointer (referred to as an enclosing pointer), as described in
more detail below. Also, write processes can add records to
the set of records. Accordingly, the present invention fea-
tures additional pointers (referred to as a neighboring pointer
and a next pointer), which, when used 1n conjunction with
the enclosing, pom‘[er produces faster record insertions than
those of the prior art. Further, adding a record to (or deleting,
a record from) the set of records can cause an intermediate
state to arise in the binary tree data structure (e.g., to
rebalance the binary tree 42 after the insertion or deletion).
Ordinarily, a locking mechanism 1s used to prevent other
processes from accessing records atlected by the interme-
diate state. In one embodiment the present invention
employs the next pointer and an indicator to provide lock-
free access to the records in the binary tree 42, when the
binary tree 42 1s 1n an intermediate state.

FIG. 3 shows embodiments of a data structure for each
record 40 of the present invention. One embodiment of each
record 40 includes record data 60, a left pointer 48, a right
pointer 52, an enclosing pointer 56, and a nelghbormg
pointer 62. As described above, the record data 60 1s the
resource being managed and the means by which the records
40 are placed and searched for 1n the search data structure,
such as the binary tree 42. For record data 60 that include an
IP address prefix, each IP address prefix 1s associated with a
range ol prefixes. For example, an IP address prefix of
10.0.0.0/8 1s associated with a range of prefixes from an
upper endpoint of 10.0.0.0 to a lower endpoint of
10.255.255.255. As another example, an IP address prefix of
11.11.0.0/16 1s associated with a range of prefixes from an
upper endpomnt of 11.11.0.0 to a lower endpoint of
11.11.255.255. The left pointer 48 and right pointer 52
provide the linkage for placing the record in the data
structure of the binary tree 42.

The enclosing pointer 56 1s for linking the record 40 to
another record that has “enclosing” record data; that 1s, the
record data of the pointed-to enclosing record have an
associated range of values, and the record data of the
enclosed record fall within this value range (including the
range endpoints).

The neighboring pointer 62 points to a “neighbor” record,
the neighbor record being a record that shares a common
enclosing record and has record data associated with an
adjacent non-overlapping higher range of values.

Each record 40 also includes a next pointer 64 for
providing the linkage to place the record in a second search
data structure, e.g., a linked list. The next pointer 64 1s used
for 1nserting records into the binary tree 42 and, in some
embodiments, for providing an alternative search path
through the second search data structure when the primary
search data structure 1s 1n an intermediate state. In general,
the next poimnter 64 of a record 40 points to an enclosed
record or to a record with record data of “higher” value. In
embodiments that use the next pointer 64 to provide an
alternative search path, each record 40 also includes a flag
68 (1.¢., indicator), shown 1n dashed lines, which operates as
a mechanism for indicating that the primary search data
structure 1s 1n an mntermediate state.

US 7,233,579 Bl

S

The following pseudo-code illustrates an example of a
data structure for a record 40:
RECORD {

left ptr; / point to left child node 1n tree */

right ptr; / point to right child node 1n tree */ 5

enclosing ptr; / point to an enclosing node */

neighboring ptr; / point to a neighbor node */

next ptr; / point to next node in linked list */

record_data; /* resource being managed */

flag; /* optional: to indicate that the tree 1s 1n an inter- 10

mediate state */

} RECORD

FIG. 4 diagrammatically 1llustrates a hierarchy 80 for the
exemplary set of records shown in FIG. 2 based on the
record data (here, the IP address prefixes) of those records. 15
Each record 40 1n the hierarchy 80 has an associated prefix
range, which 1s depicted in FIG. 4 by a bracket extending
above and below the record 40 (i.e., specific reference
numeral 84, 88, 88', 92, 92', 96, 96', 100, 104, 108, or 112).
A first address prefix for the range appears at the top of each 20
bracket, and the last address prefix for that range appears at

the bottom of each bracket. For example, the first and last
address prefixes for the record 40/ with record data 0.0.0.0/0

are 0.0.0.0 and 255.255.255.255, respectively.

Some brackets (e.g., brackets 84 and 88, 88 and 96, 96 and 25
108) are nested and other brackets (e.g., brackets 88 and 88',

92 and 92', and 96 and 96') arc adjacent to each other. Nested
brackets show which records are enclosing records and
adjacent brackets show which records are neighboring
records. For example, the nested brackets 84, 88, 92 and 100 30
show that the record 405 1s enclosed by the record data range

of the record 40i, that the record 40i i1s enclosed by the
record data range of the record 40d, and that the record 40d

1s enclosed by the record data range of the record 404

Note that although record 40/ has a record data range that 35
encloses the record 40i, record 40/ 1s not an enclosing
record of record 40: because there 1s an 1ntervening enclos-
ing record (here, record 40d). That 1s, as used herein an
enclosing record 1s on the next higher level of the hierarchy
80 than the enclosed record. Also note that the record 40m 40
(255.255.255.255/32) 1s deemed enclosed by the record data
range of the record 40/. Generally, with the exception of the
record 40/, each record 40 has one enclosing record. FIG. 5
shows the enclosing pointers 56 for the example set of
records 40 shown 1n FIG. 4. The records 40 are 1n the same 45
relative position in FIG. 5 as they are i FIG. 2 to facilitate
a comparison between the left and right pointers 48, 52 of
the binary tree 42 and the enclosing pointers 56.

Adjacent brackets show neighboring records. For
example, brackets 96, 96' show that the record 40c¢ 1s the 50
neighboring record of record 40a. Note that, as used herein,
the reverse 1s not true; that is, the record 404 1s not the
neighboring record of the record 40¢. Both records 40a and
its neighboring record 40c, have a common enclosing record
40%. As another example, the record 407 1s the neighboring 55
record ol the record 40i, and both records 40; and 40: are
enclosed by the record data range of enclosing record 40d.
Generally, a record 40 has zero or one neighboring record,
and each neighboring pointer 62 points to a neighboring
record with record data of greater value. FIG. 6 shows the 60
neighboring pointers for the example set of records 40
shown 1n FIG. 4. The records 40 are in the same relative
position 1 FIG. 6 as they are in FIG. 2 to facilitate a
comparison between the left and right pointers 48, 52 of the
binary tree 42 and the neighboring pointers 62. 65

The present mnvention also arranges the records according,
to a second data structure to facilitate record 1nsertion and,

6

in one embodiment, to provide a second search data struc-
ture that 1s used when the primary search data structure 1s in
an intermediate state. The second search data structure
provides lock-Iree access to the records by one or more read
processes while the primary search data structure 1s 1n the
intermediate state because of a write process. A system and
method for providing the lock-free access are described 1n a
co-pending application titled “Concurrent Lock-Free Access
to a Record by Write and Read Processes,” to Crump et al.,
filed on Dec. 20, 2002, the entirety of which 1s incorporated
by reference herein.

FIG. 7 shows one embodiment 1n which the second data
structure 1s a linked list 120 formed of next pointers 64 of the
example set of records 40 shown in FIG. 4. These next
pointers 64 link the records 40 1n ascending order based on
the IP address prefixes of the records 40. Each record 40,
except for the last record 1n the linked list 120, 1s linked to
the following record 40 1n the order by a next pointer 64. The
next pointer 64 of the last record 1n the linked list (here,
record 40m with record data 255.255.2535.255/32) points to
NULL (i.e., 0). Again, the records 40 are 1n the same relative
position 1 FIG. 7 as they are in FIG. 2 to facilitate a
comparison between the left and right pointers 48, 52 of the
binary tree 42 and the next pointers 64.

FIG. 8 shows an embodiment of a process 150 of search-
ing for a longest matching prefix for a destination IP address
included 1n a received IP packet. At step 154, the primary
search data structure (here, the binary tree 42 of FIG. 2) 1s
traversed 1in a manner known 1n the art, in search of a record
that has record data matching the destination IP address.
Step 154 includes keeping track of a previous record. The
process 150 updates the previous record whenever the
search moves to a record 1n a right sub-tree, (the previous
record remains unchanged when the search moves to a
record 1n a left sub-tree). In one embodiment, the search for
a matching record proceeds (step 138) along a search path
determined by the second search data structure, 1f, during the
traversing of the primary search data structure, a record 1s
reached that indicates that the primary data structure 1s 1n an
intermediate state (1.e., the flag 68 of that record 1s set).

If an exact match 1s found (step 162), the process 150
returns the record data of the matching record (step 164) as
the longest matching prefix. The returned record data can
also 1include routing information, such as the network route
by which to forward the IP packet towards 1its destination.

I an exact match 1s not found (step 162), 1n the illustrated
embodiment the process 150 examines (step 166) the record
data of the previous record to determine 1f the associated
record data range encloses the searched-for destination IP
address. When the record data range of the previous record
encloses the destination IP address, the process 150 returns
the previous record (step 164) as the longest matching
prefix.

If the record data range of the previous record does not
enclose the destination IP address, the search follows (step
170) the enclosing pointer 56 of the previous record to a new
candidate enclosing record. By following the enclosing
pointer 56, the search traverses “up” one level in the
hierarchy 80 shown 1n FIG. 4. Then the process 150 exam-
ies (step 174) the record data range of the candidate
enclosing record to determine 1f the data range encloses the
destination IP address. The process 1350 returns (step 164)
the candidate enclosing record as the longest matching
prefix 1f 1ts record data range encloses the destination IP
address. Otherwise, the search moves up another level 1n the
hierarchy 80 by following the enclosing pointer 56 of the
candidate enclosing record (step 178) to another candidate

US 7,233,579 Bl

7

enclosing record, and the record data range evaluation
occurs again (step 174). The pattern of traversing the enclos-
ing pointer 56 and evaluating the data range (steps 178 and
174) repeats until the process 150 finds and returns an
enclosing record as the longest matching prefix. At worst
case, the search for the longest matching prefix eventually
rises to the top of the hierarchy 80 and returns the record 40/
(0.0.0.0/0), which has a data range that spans all possible IP
addresses (e.g., IPv4).

The process of searching 1s now 1llustrated by example.
Consider a search for the longest matching prefix for a
destination IP address of 10.10.11.8, using the binary search
tree 42 and the set of records shown 1n FIG. 2. The search
traverses, 1 order, the records 40a, 406, 40e, and 40/,
(11.10.0.0/16, 10.10.10.0/24, 10.11.10.0/24, and 10.11.0.0/
16, respectively), to determine that a match of the searched-
for IP address 1s not within the set of records. Because the
record 40/ 1s not an enclosing record for the searched-for IP
address, the previous record i1s examined, which in this
example 1s the record 405. Record 407 1s the previous record
because 1t 1s the last record visited when the search last

moved to a record 1n a right sub-tree.
The record data range for record 4056 (i.e., 10.10.10.0/0 to

10.10.10.255), also does not enclose the searched-for IP
address of 10.10.11.8, so the search follows the enclosing
pointer 56 of the previous record 4056 to the record 40: (see
FIG. 5). The record data range for the record 40i (i.e.,
10.10.0.0/0 to 10.10.255.2535) encloses the searched-for 1P
address o1 10.10.11.8 and 1s therefore returned as the longest
matching prefix.

FIG. 9A and FIG. 9B illustrate an embodiment of a
process 200 for mserting a new record into the exemplary
binary tree 42 shown in FIG. 2. In brief overview, the
process 200 involves various phases: (1) finding the enclos-
ing record and setting the enclosing pointer 56 for the new
record to point to the enclosed record; (2) mserting the new
record into the primary and second data structures; (3)
finding each record enclosed by the new record, 11 any, and
setting their enclosing pointers to point to the new record;
(4) finding a neighboring record of the new record, il any,
and setting the neighboring pointer 62 of the new record to
point to that neighboring record; and (5) finding a record that
has the new record as 1s its neighboring record, 1f any, and
setting the neighboring pointer 62 of that record to point to
the new record.

Specifically, the process 200 finds (step 204) an 1nsertion
location in the binary tree 42 for the new record. The
isertion location 1s found by traversing the levels of the
binary tree 42 using a binary tree traversal technique known
in the art until the traversal reaches an appropriate record for
linking to the new record. During the traversal of the binary
tree, the 1dentities of a current “previous record” and of a
current “next record” are maintained. When the traversal
moves to a record 1n a right sub-tree, the process 200 updates
the current “previous record” to the record just visited (1.e.,
the record from which the traversal just moved). When the
traversal moves to arecord 1n a left sub-tree, the process 200
updates the current “next record” to be the record currently
being visited.

At step 208, the process 200 determines the enclosing
record for the new record and sets the enclosing pointer 56
of the new record to point to the enclosing record. To
determine this enclosing record, the process 200 examines
the previous record to determine if the record data range of
the previous record encloses the record data of the new
record. If the previous record 1s the enclosing record, the
process 200 sets the enclosing pointer 56 to the previous

10

15

20

25

30

35

40

45

50

55

60

65

8

record. Otherwise, the process 200 follows the enclosing
pointer 56 of the previous record to another candidate
enclosing record and examines the record data range of the
candidate enclosing record to determine 1f 1t encloses the
new record. If necessary, the process 200 continues to follow
the enclosing pointer 56 of each candidate enclosing record
that does not enclose the new record until a record 1s found
that encloses the new record.

The process 200 then sets (step 212) the next pointer 64
of the new record to point to the next record determined
during the tree traversal. At step 216, the next pointer of the
previous record 1s then set to point to the new record. Steps
212 and 216 operate to insert the new record into the second
search data structure (1.e., the linked list). At step 220, the
new record 1s then inserted into the binary tree 42 at the
insertion location determined at step 204.

The new record 1s examined (step 224) to determine 11 it
encloses the next record. If the new record does not enclose
the next record, this indicates that the new record does not
enclose any records, and thus there are no enclosing pointers
to update to point to the new record. Also the process 200
determines (step 226) 11 the new record and the next record
are enclosed by the same enclosing record. If both the new
and next records are enclosed by the same enclosing record,
in step 227 the neighboring pointer 62 of the new record 1s
set to point to the next record. Otherwise, the process 200
sets (step 228) the neighboring pointer 62 of the new record
to NULL because the new record has no neighboring record.
The process 200 then continues with step 244 1n FIG. 9B. I,
at step 224 above, the new record encloses the next record,
the process 200 updates (step 230) the enclosing pointer 56
of the next record to point to the new record. Then the
neighboring pointer 62 of the next record 1s followed (step
232). This neighboring pointer 62 either points to NULL, 1f
the next record has no neighboring record, or to another
record.

In the first instance, the new record has no neighboring
record and the process 200 sets 1ts neighboring pointer 62 to
NULL (step 228). In the latter instance, the neighboring
record of the next record 1s examined (step 236) to determine
if the record data of the new record also encloses this
neighboring record. The process 200 updates (step 238) the
enclosing pointer of the neighboring record to point to the
new record, i1f the new record encloses this neighboring
record, or updates (step 240) the neighboring pointer 62 of
the new record to point to this neighboring record, 1f the new
record does not enclose the neighboring record.

Further, 1f the new record encloses this neighboring
record (step 236), the neighboring pointer 62 of this
enclosed neighboring record 1s followed to another record to
determine if there 1s another record that 1s enclosed by the
new record (step 242). If this neighboring pointer 62 1s set
to another record, then steps 236 and 240 or steps 236, 240
and 242 repeat, depending upon whether this other record 1s
enclosed by the new record. In general, the neighboring
pointer 62 of the new record 1s set to NULL or to the
neighboring record of the last (highest record data value)
record enclosed by the new record.

Referring to FIG. 9B, at step 244 the process 200 deter-
mines if the previous record and the new record have the
same enclosing record (e.g., by comparing the records
pointed to by enclosing pointers 36 of both the previous and
new records). I the previous record and the new record have
the same enclosing record, the neighboring pointer 62 of the
previous record 1s set to point to the new record (step 246).
It these records to not have the same enclosing record, the
process 200 follows the enclosing pointer 56 of the previous

US 7,233,579 Bl

9

record (and the enclosing pointer 56 of each subsequently
visited record that does not have the same enclosing record
as the new record). If, by traversing the enclosing pointers
56, the process 200 finds a record with the same enclosing
record as the new record, the process 200 sets the neigh-
boring pointer 62 of that record to point to the new record
(step 248). At step 250, the process 200 balances the binary
tree 42 11 necessary.

The process 200 of inserting a new record into a set of
records 1s now 1llustrated by example. Consider the insertion
of a new record 40 having record data of 10.128.0.0/24,
using the binary search tree 42 and the set of records shown
in FIG. 2. FIG. 10A diagrammatically 1llustrates the hierar-
chy 80 of FIG. 4 with the new record (highlighted 1n bold).
As shown, the new record 40# 1s enclosed by the record 404
(10.0.0.0/8) and 1s the neighboring record of the record 40;
(10.11.0.0/16).

To find an 1nsertion location for the new record 40# 1n the
binary tree 42, the tree traversal visits the records 40a, 405,
40e, and 404 (11.10.0.0/16, 10.10.10.0/24, 10.11.10.0/24,
and 11.0.0.0/8, respectively), 1n this order, to determine that
the new record 40 1s to be iserted 1n the left sub-tree of the
record 40%. During the traversal, the process 200 determines
the previous record to be the record 40e because this record
1s the last record from which the traversal moved to a record
in a right sub-tree. Also, the next record is the record 404
because this record 1s the last record from which the tra-
versal moved to a record 1n a left sub-tree (in this example,
the record 404 1s considered the next record because the new
record 40n 1s to be inserted into the left sub-tree of record
40%).

Because the record 404 1s not an enclosing record for the
new record 40n, the previous record 40e 1s examined to
determine 11 1t 1s an enclosing record. Because the record 40e
1s also not an enclosing record for the new record 40n, the
process 200 follows the enclosing pointer of the previous
record 40e to the record 405 (see FI1G. 5), which also does not
enclose the new record 40x. Similarly, the enclosing pointer
of the record 407 1s then followed to the record 40d, which
does enclose the new record 40». Consequently the enclos-
ing pointer 36 of the new record 40 1s set to point to the
enclosing record 40d.

The next pointer 64 of the new record 40 1s set to the next
record, here the record 404, and the next pointer 64 of the
previous record 40e 1s set to point to the new record 40%. The
new record 407 1s then mserted 1nto the binary tree 42 as a
leat node 1n the left sub-tree of the record 40%. Also, the
neighboring pointer 62 of the new record 1s set to NULL
because the new record does not enclose the next record, and
because the previous record and the new record do not have
the same enclosing record, the process 200 follows the
enclosing pointer 36 of the previous record to the record 40/
(see FIG. 5) and sets the neighboring pointer 62 of the record
407 to point to the new record 407 because the record 407 and
the new record 40n have the same enclosing record 40d.
Balancing of the binary tree 42 may occur, 1f necessary.

The process 200 of inserting a new record is further
illustrated by another example. Consider the insertion of a
record 40p with record data of 10.10.0.0/15 1to the set of
records shown 1n FIG. 2, which also includes the record 40#
added 1n the previous example. FIG. 10B diagrammatically
illustrates the hierarchy 80 of FIG. 4 with the new record 40p
(highlighted in bold). As shown, the new record 40p 1s
enclosed by the record 404 and has the record 40n for a
neighboring record.

To find an 1insertion location for the new record in the
binary tree 42, the tree traversal visits, 1n order, the records

10

15

20

25

30

35

40

45

50

55

60

65

10

40a, 400, 404, 40: (11.10.0.0/16, 10.10.10.0/24, 10.0.0.0/8,
and 10.10.0.0/16), to determine that the new record 40p 1s to
be 1nserted 1n the left sub-tree of the record 40i. During the
traversal, the process 200 determines the previous record to
be the record 404 and the next record to be the record 40i.

Because the record 40;i 1s not an enclosing record for the
new record 40p, the process 200 examines the previous
record 404 to determine if 1t 1s an enclosing record, which
it 1s, and therefore sets the enclosing pointer 56 of the new
record 40p to point to the enclosing record 404d.

The next pointer of the new record 40p 1s set to the next
record, here the record 40i, and the next pointer of the
previous record 40d 1s set to point to the new record 40p.
The new record 40p 1s then inserted into the binary tree 42
as a leal node 1n the left sub-tree of the record 40i.

Because the new record 40p encloses the next record 40i,
the process 200 follows the neighboring pointer of the next
record 40i to the record 40/. The process 200 then sets the
enclosing pointer 56 of the record 40; to point to the new
record 40p because the new record 40p also encloses the
record 40;. Then the neighboring pointer 62 of the record 405
1s Tollowed to the record 40x. Because this record 40 1s not
enclosed by the new record 40p, the neighboring pointer 62
of the new record 40p 1s set to point to the record 40 and
the neighboring pointer 62 of the record 405 1s set to NULL.

Because the previous record 404 and the new record 40p
do not have the same enclosing record, the enclosing pointer
56 of the previous record 404 1s followed to the record 40/
(see FIG. §), which also does not have the same enclosing
record as the new record 40p. Thus, no neighboring pointer
62 points to the new record 40p. If necessary, the process
200 balances the binary tree 42.

While the invention has been shown and described with
reference to specific preferred embodiments, it should be
understood by those skilled 1n the art that various changes in
form and detail may be made therein without departing from
the spirit and scope ol the ivention as defined by the
following claims. For instance, although the invention 1is
described with specific reference to IP address prefixes, the
principles of the invention can be applied to other types of
record data (strings, numeric, alphanumeric), provided the
record data values permit records to be placed into an order,
and are associated with data ranges that permit records to be
nested or to be adjacent to each other as described above.

What 1s claimed 1s:

1. A method of adding a new record to a plurality of
records organized in a binary tree structure, the method
comprising;

identilying one of the records organized in the binary tree

structure as an enclosing record having an associated
record data range that encloses record data of the new
record;

setting an enclosing pointer of the new record to point to

the 1dentified enclosing record; and

identifying one of the records organized 1n the binary tree

structure as a neighboring record of the new record, and
setting a neighboring pointer of the new record to point
to the neighboring record.

2. The method of claim 1, further comprising 1dentiiying
cach record organized in the binary tree structure with record
data that are enclosed by a record data range associated with
the record data of the new record, and setting an enclosing
pointer of each identified enclosed record to point to the new
record.

3. The method of claim 1, further comprising organizing,
the plurality of records according to a second data structure,
inserting the new record 1nto an insertion location in the

US 7,233,579 Bl

11

second data structure, and inserting the new record nto an
insertion location in the binary tree structure.

4. The method of claim 1, wherein the record data of the
new record include an IP address prefix.

5. The method of claim 1, further comprising identifying
one of the records orgamized 1n the binary tree structure as
a previous record having record data that more closely
precedes 1n order the record data of the new record than any
of the other records 1n the binary tree data structure.

6. The method of claim 3, further comprising setting a
next pointer of the previous record to point to the new
record.

7. The method of claim 5, wherein the step of 1dentifying,
the enclosing record includes determining whether a record
data range associated with the record data of the previous
record encloses the record data of the new record.

8. The method of claim 3, wherein the step of identifying
the enclosing record includes following an enclosing pointer
of the previous record to a candidate enclosing record 1n the
binary tree structure if the record data range associated with
the record data of the previous record does not enclose the
record data of the new record.

9. The method of claim 1, further comprising identifying
one of the records organized 1n the binary tree structure as
a next record having record data that more closely follows
in order the record data of the new record than any other
record 1n the binary tree data structure.

10. The method of claim 9, further comprising setting a
next pointer of the new record to point to the next record.

11. The method of claim 9, further comprising setting an
enclosing pointer of the next record to point to the new
record 11 a record data range associated with the record data
of the new record encloses record data of the next record.

12. The method of claim 9, further comprising traversing
a neighboring pointer of the next record to a neighboring
record.

13. The method of claim 12, further comprising setting an
enclosing pointer of the neighboring record to point to the
new record 1f a record data range associated with the record
data of the new record encloses record data of the neigh-
boring record.

10

15

20

25

30

35

40

12

14. A method of determining a route for an IP packet
having a destination IP address, the method comprising:

organizing a plurality of records 1n a binary tree structure,
cach record having record data that include an IP
address prefix for use in routing IP packets;

determiming that the binary tree structure lacks a given
record with record data that match the destination IP

address:

identifying one of the records organized in the binary tree
structure as a previous record having record data that
more closely precede 1n order the record data of a new
record than any of the other records in the binary tree
structure; and

determining that the record data of the previous record are
the longest matching prefix 1n the plurality of records
for the destination IP address if the record data range
associated with the record data of the previous record
encloses the record data of the new record.

15. The method of claim 14, further comprising traversing
an enclosing pointer from the previous record to a candidate
enclosing record if the record data range associated with the
record data of the previous record does not enclose the
record data of the new record.

16. The method of claim 135 further comprising determin-
ing that the record data of the candidate enclosing record 1s
the longest matching prefix in the plurality of records for the
destination IP address 1t a record data range associated with
the record data of the candidate enclosing record encloses
the record data of the new record.

17. The method of claim 14, further comprising searching
for the given record along a search path determined by the
binary tree structure until a record 1s accessed that indicates
that the binary tree structure i1s 1n an intermediate state, and
searching for the given record along a second search path
determined by the second data structure 1n response to the
record that indicates that the binary tree structure 1s 1n an
intermediate state.

	Front Page
	Drawings
	Specification
	Claims

