US007231586B2
12 United States Patent (10) Patent No.: US 7,231,586 B2
Prasad et al. 45) Date of Patent: Jun. 12, 2007
(54) MULTI-RATE VITERBI DECODER 5432803 A * 7/1995 Liuetal. ..cocouevunnnenn... 714/794
5012908 A 6/1999 Cesari et al.
(75) Inventors: Mohit K. Prasad, Austin, TX (US); 5046361 A * /1999 Araki et al. w.ooooooonnn 375/341

Gaurav Davra, Uttar Pradish (IN);
Arnab K. Mitra, Uttar Pradish (IN);
Amrit P. Singh, Pumjab (IN); Nitin
Vig, Austin, TX (US)

6,477,680 B2 11/2002 Mutaba

(73) Assignee: Freescale Semiconductor, Inc., Austin, OTHER PUBLICATTONS

IX (US) George C. Clark and J. Bibb Cain, “Error-Correction coding for

. . . _ _ Digital Communicatins”, Plenum Press, 1981 .*
(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35 * cited by examiner

U.S.C. 154(b) by 413 dayvs.
(b) by 4y Primary Examiner—IJoseph D. Torres

(21) Appl. No.: 10/896,268 (74) Attorney, Agent, or Firm—Charles Bergere
(22) Filed: Jul. 21, 2004 (57) ABSTRACT
(65) Prior Publication Data

A method and system for decoding a data symbol sequence
that has been previously encoded using one or more unique

code word polynomials 1n which at least one umique code
(51 Int. CI. word polynomial is used more than once. A set of 2¢" unique
HO3M 13/03 (2006.01) '

(52) U.S.CL oo, 714/796; 714/795: 714/794 branch metrics is computed, using the unique code word

_ _ _ polynomials, where d 1s the number of unique code word
(58) Field of Classification Search 5.1.4/253/779965,, polynomials. The computed set of 2! unique branch met-

o _ rics 1s stored 1n a memory. Path metrics are then calculated,

See application file for complete search history. based on the stored set of 2¢' unique branch metrics. A

(56) References Cited decoded data symbt?l sequence 1s generated based on the
computed path metrics.

US 2006/0020875 Al Jan. 26, 2006

U.S. PATENT DOCUMENTS

5,398,254 A * 3/1995 Miyaetal. 714/795 6 Claims, 15 Drawing Sheets
704
r - = l T __ ________ “3
| BRANCH METRIC UNIT |
| ~ 1207 |
: |
: ADDRESS GENERATOR = ot
. | EMORY
, 1204 | |
| - ! ZQQ
, WRTTE LOGIC UNIT l ,
! |
! | |
| 1206 | | g
| — - WETRIC
| ' |
| HEMORY READ LOGIC UK | i
l |

L___————Ef ——————— & /708

U.S. Patent Jun. 12, 2007 Sheet 1 of 15 US 7,231,586 B2

[

100
N 102,

SOURCE BLIS ——= ENCODER

ENCODED DATA
SYMBOL SEQUENCE

v 104

| COMMUNICATION
CHANNEL

106

DECOBED DATA
SYMBOL SEQUENCE. DELODER NOISY DATA

SYMBOL SEQUENCE

200~ INPUT DATA
Y |
[SHIFT REGISTER r U
SHIFT REGISTER |~ 2048
SHIFT REGISTER |~ 2%
SHIFT REGISTER | <04P

U.S. Patent Jun. 12, 2007 Sheet 2 of 15 US 7,231,586 B2

PREVIOUS STATE Oxyz BM CURRENT STATE xyz0

PREVIOUS STATE fIxyz BM CURRENT STATE xyz1
FIG. S
402
COMPUTE A SET OF 2A(D-1)
UNIQUE BRANCH METRICS
404

STORE THE COMPUTED SET OF
27(D-1) UNIQUE BRANCH METRICS

406 START

CALCULATE PATH METRICS AND | 50
DECISION BITS BASED ON STORED |

BRANCH METRICS AND PATH METRICS COMPUTE A SET OF
OF PREVIOUS FEEDING STATE 2°D UNIQUE BRANCH METRICS

408 504
GENERATE A DECODED DATA SYMBOL IDENTIFY AND SELECT ONE BRANCH
SEQUENCE BASED ON COMPUTED METRIC FROM EACH IDENTIFIED
DECISION BITS COMPLEMENTARY BRANCH METRIC PAIR

FIG. AL . 5

U.S. Patent Jun. 12, 2007 Sheet 3 of 15 US 7,231,586 B2

START
DETERMINE A SIGN VALUE OF 602
THE STORED BRANCH METRIC
604

YES SIGN VALUE NO
POSITIVE?

606 608
ADD THE STORED BRANCH METRIC SUBTRACT THE STORED BRANCH METRIC

FOR A STAGE TO THE PATH METRIC FOR A STAGE FROM THE PATH METRIC
FOR THE PREVIOUS FEEDING STATE FOR THE PREVIOUS FEEDING STATE

STORE THE PATH METRIC 610
FOR THE CURRENT STAGE

PATH METRIC UNIT

/14 /12

702
e T e e S S S e ES SEE T EmEe-—_—_—_Ee_Ee—ee—e———m—e———m—em—m—— “1
: 704 VITERBI DECODER 206 :
I I
| BRANCH FIRST |
: METRIC UNIT MEMORY :
I I
I I
I I
I |
I |
| /08 |
| |
I I
I I
I I
l l
I I
I I

U.S. Patent Jun. 12, 2007 Sheet 4 of 15 US 7,231,586 B2

TG
o000 [0 o o [0 [0 | somsusasean
o0 [[[[1 se-ssesem0
R O N R = T
oo [[0 o [0 [0 | somsusmsan
o0 [0 [[[0 [| coswesean
o0 [1 Jo [0 [[0 | swssmsean
oo [0 Jo o [t [0 | sweesmesan
oo [[[o 1| osemsean
Towo [0 oo [[| sossseae
Towo [[[[0 [0 | so-swsse
m_iiii
lml-llmml—
o [0 [o [0 [1 | sosswsesai
T [o [[Jo | so-sissan
T [0 o [[| sosstseesan
Timo [Jo {1 [0 [0 | so-swstsan
T [0 o [[0 [0 | sosusasean
T [D Lo [[| sosssisan

U.S. Patent Jun. 12, 2007 Sheet 5 of 15 US 7,231,586 B2

BRANCH METRIC
S04SH452+53=BM0
~S0-51-52-53=-BM0
~S0-51-52-53=-BM0
S0+514524S3=BM0
-S0-S1452-53=—BM
S0+51-52+53=BM1
S0+51-52+53=BM1
~S0-S1+52-53=-BM1
S0+51-52+53=BM1
~S0-S51+52-S3=-BM1
~50-51+52-53=-BMi

(3

il

STATE | INPUT BIT | CO
000

000 1

0101

-50451452-53=—BM3
~50451452-S3=—BM3
S0-S1-52+53=BM3
-50451-52-S3=—BM?
 S0-S1452+53=BM2
S0-S14+S2+S3=BM2
~50451-52-S3=—BM2

1101 1

Ca

1111

U.S. Patent Jun. 12, 2007 Sheet 6 of 15 US 7,231,586 B2

BRANCH METRIC
S0+351+52+53=6M0
~50-51-52-55=-BM(
-30-31-52-53=-BM(
S0+51452+53=BM0
-30-351-52-53=-BM0
S0+514+52+53=BMO
S0+S1452+53=6M0
- =50-51-52-S3=—-BM(

S0+51452+53=BM0
-50-51-52-53=-BM0
-30-51-52-55=-BM0

C3

CO | C

| —

STATE | INPUT BIT
0000

0000

0011
0011

-50+351-52+33=-BM
-S0+31-32+353=-BM
S0-S14+52-33=BM!
~S0+51-52+55=-BM
S0-S$1452-S3=BM1
30-31+52-55=BMi
-50+351-32+53=-BMi

1111

DO

U.S. Patent Jun. 12, 2007 Sheet 7 of 15 US 7,231,586 B2

MEMORY LOCATION BRANCH METRIC VALUE
| -50-51-S1-S3 (-BMO)
S0-51-52-S3 (BM7)
-50451-52-S3 (-BM1)
S0+51-S2-S3 (BM6)
-S0-51452-53 (-BM2
50-51432-53 (BMS
-50+51+52-S3 (-BM3)
S0+314+52+53 (BM4
-50-S1-52+53 (-BM4)
S0-51-52453 (BM3)
-S0+51-524S3 (-BMS
S0+51-52+S3 (BM2)
-S0-51452+S3 (-BMs)
S0-S1+52+S3 (BM1)
-S0+514+52+S3 (-BM7)
S0+51452453 (BMO)

e T

o S
R

e, | et
S

| T,

———
I

Hﬁﬁ

|

Fl7G. 9A

MEMORY LOCATION BRANCH METRIC VALUE
~50-1-51-S3 (~BMO)
S0-51-52+S3 (BM3)
-50+51-52-S3 (-BM)
S0+S51-52+S3 (BM2)
-S0-S1+52-S3 (-BM2)
S0-S1+32453 (BM1
-50451452-S3 (-BM3)
50+514524S3 (BMO)

——————

———],

R T,
hy T

M N | | N ~
i
-

o

FrlG. 95

BRANCH METRIC VALUE
~50-51-51-53 (~BMO)
SO0-S1452+55 (BM? |
-50+51-52-53 (~BM1)
SO+S1452+S3 (BMO)

MEMORY LOCATION

e, § i,
™

U.S. Patent Jun. 12, 2007 Sheet 8 of 15 US 7,231,586 B2

MEMORY LOCATION BRANCH METRIC VALUE

S0-S1-52-S3 (BM?7)
S0+51-52-S3 (BMS)
S0-S1452-S3 (BM5)
S0+S1452-53 (BM4)
S0+51-S2453 (BM2)

S0-S1452+S3 (BM!)
, S0+S51+524S3 (BMO)

FI1G. 10A

MEMORY LOCATION BRANCH METRIC VALUE
S0-51-S24+S3 (BM3)

S0+S1-S24S3 (BM2)
S0-S1+S2+S3 (BM1)

FI1G. 1065

BRANCH METRIC VALUE
S0-S1+524S3 (BM1)
S0+S1452+S3 (BMO)

FIG. 10C

MEMORY LOCATION

U.S. Patent Jun. 12, 2007 Sheet 9 of 15 US 7,231,586 B2

1102

TAP REGISTER

63[7:0] | | 62{7:0] | | GI[7:0° I 60[7:0] I
11044 11048 1104C 1104D

Fl1G. 77A

- g 1106
| CODE WORD SELECT REGISTER

| _
CISEL[O} | | C2SEL[tO} | | CISEL[%:0] | | COSEL[!:0]
11084 11088 1108C 1108D

rF/G. 715

7042_

r—— ———————————— ﬂ

ADDRESS GENERATOR

FIRST
MEMORY

706

¢ 1204

- 1206
NENORY READ LOGIC UNIT

PATH METRIC
UNIT

|

I

I

|

|

I

| -
: WrlTE LOGIC UNIT
|

!

|

I

|

|

I

b e e e e e o e - — i /08

FlG. 12

U.S. Patent Jun. 12, 2007 Sheet 10 of 15 US 7,231,586 B2

ADDRESS GENERATOR

CTRS

1306A CTR2

CTR2 CTR2
CTR1 CTRT

|
I
|
|
I
I
|
CTRI : ACTRZ — CTR? |
CTRO CTRI |
CTR1 :
GIEN, GOEN 4N CTRO ;
I
G2EN, GIEN, GOEN ACTR3

ADDRESS GENERATOR

13068
CTR?
CTR
CTR
CTRO
G2EN, GIEN OOEN

|
I
|
|
|
|
|
ACTR2 :
I
|
I
I
I

F1G. 1365

U.S. Patent Jun. 12, 2007 Sheet 11 of 15 US 7,231,586 B2

WREITE LOGIC UNIT

~ 14021
ACTRO TN A (
ACIRY LN
ACTR? 50' —
ACTRY SO —_.ka _
COSEL 1:0]
14028
LCTRO —_
ACTRT B
' -
AT =t

DATA

- 14020

ACTRO
ACTRI
ACTR2 —
ACIRG—

l GODRESS
=ACTR] 3:01

ACTRO —
ACTRI
ACTR2 —
ACTR3 —

|
|
|
|
|
|
|
|
|
|
|
|
)
|
\
|
|
: CISEL] 1:0]
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
1
l
|

U.S. Patent Jun. 12, 2007 Sheet 12 of 15 US 7,231,586 B2

ACIR1
ACIR?Z

1401
P - ——————— 4
} WRITE LOGIC UNIT :
1 14024 1404 |
I
: SIGN A :
: 0D~ :
E 1406A |
: COSEL{1:0] |
: 14028 :
I (] — I
| ACTRO— | SIGNB - :
ACTRt—
| ACTRI — ! |
| CISEL[1:0 14068 - |
| L1:0] | e DATA
I I
| 1402C | [
I |
| | |
| ACTRO |
| ACTRY |
: ACTR? |
I
| | ADDRESS
| | =ACTR[2:01
| 1406C | '
| () |
: ACTRO :
I I
I I
I I
N |

rF1G. 748

US 7,231,586 B2

Sheet 13 of 15

Jun. 12, 2007

U.S. Patent

k. LN AN EEEEy Wy i sehihhh A SEEEE BN VW PePee il ek S DS A S e Gamh sl A I A B WESW Gplewie ek

15078

SCNTR[2:0]

iIIIllll!llt..-..l.-.l_-___l.-..l.llIIIl.I_.I.III.I_I.IllIIIIIIII[[EEiIIIIII

F1G. 156A

US 7,231,586 B2

e EEE A I S S T T T T .

1501

Sheet 14 of 15

Jun. 12, 2007

U.S. Patent

15024

1

o __C

s embel ML I S e Seppes sl

- 15028

L e e o e —_— —————

o e
|

e]l s e Al

Il
Lol
o
<D

AN I I A S S I S T I S T T TS T T S e ey e sk kAR SO S A G S S S S A S T S T R Y R e S s aaesis sSeesh oslesh bk ekl s

FI1G. 155

U.S. Patent Jun. 12, 2007 Sheet 15 of 15 US 7,231,586 B2

704 r— === == —— ==
BRANCH
ME TRIC UNIT
PATH
* ACCUMULATOR SF| ECTOR
FIRST
MEMORY
: /17
v S
—

I
|
706 :
: | | SFCOND
| .
I
I

MEMORY

UsS 7,231,586 B2

1
MULTI-RATE VITERBI DECODER

BACKGROUND OF THE INVENTION

The present invention relates to digital commumnication
systems. In particular, the present invention relates to the
decoding of a convolutionally encoded data symbol
sequence 1n a digital commumication system.

Various error detection and correction techniques are used
to increase the reliability of a communication system. The
techniques involve the encoding of the transmitted data
symbol sequence and the decoding of the received encoded
data symbol sequence.

One such encoding technique 1s channel encoding. Chan-
nel encoding involves the addition of carefully designed
redundant information to the data symbol sequence being
transmitted through the channel. The recerved encoded data
symbol sequence on the receiver side 1s then decoded to
obtain the original data symbol sequence. Convolutional
coding 1s one such form of channel coding. Convolutional
coding 1s used to introduce redundancies 1n the transmitted
data. The transmitter sends convolutionally encoded data
rather than the transmitted data across a noisy channel. The
receiver receives the convolutionally encoded data symbol
sequence along with the errors, and corrects these errors 1n
the decoding process.

A convolutional code 1s a sequence of encoded symbols,
which 1s generated by passing the information sequentially
through a series of binary shift registers. For example, 1f a
1/r code rate convolutional coding 1s used, then each 1put
bit 1s encoded into r bits of data. The encoded bits are
generated using code word polynomials and a binary shiit
register defined by constraint length, K.

Once encoded, the resulting code 1s modulated and trans-
mitted across the noisy channel. On the recerver side, the
encoded data 1s demodulated before being decoded.

There are various algorithms for decoding convolution-
ally encoded data. The Viterb1 algorithm 1s one such tech-
nique used i the art. The Viterbi algorithm decodes a
convolutionally encoded data symbol sequence using the
prior knowledge of the possible encoder state transitions
from a given state to the next state. The prior knowledge 1s
based on the dependence of a given data state on past data.
The allowable state transitions can be represented using a
trellis diagram. Each node 1n the trellis diagram denotes the
state of a data symbol sequence at a point in time. The
branches connecting the nodes denote the state transitions.

The Viterb1 decoding process has three basic steps. In the
first step, the received data symbol 1s processed to determine
the Euclidean distance between the recerved data symbol
sequence and all possible actual data symbol sequences that
could result from a state transition from the present to a next
state. This result 1s stored 1n a memory for use during the
next step. The Euclidean distance computed also 1s referred
to as the branch metric for the path. The branch metric
computation provides a measurement of the likelihood that
a given path from the present state to a next state 1s correct.

In the second step, the stored branch metric values for all
possible state transitions are processed to determine an
“accumulated distance” for each input path. The path with
the minmimum distance, 1.¢., maximum probability, 1s then
selected as the survivor path. This step 1s known as Add-
Compare-Select, or ACS. The ACS operation can be broken
into two operations, the Add operation mmvolving a path
metric computation, and a Compare-Select operation. The
path metric at a stage 1s the accumulation of the accumulated
error metric resulting from previous branch metric compu-

10

15

20

25

30

35

40

45

50

55

60

65

2

tations and the branch metric values for a received data input
symbol. The accumulated error metric values are computed
from the Add operation, to determine and store the “trace-
back bits” to indicate the selected survivor path.

The third step 1s known as trace-back. This step traces the
maximum likelithood path through the trellis of state transi-
tions, as determined by the first two steps, and reconstructs
the most likely path through the trellis, to extract the original
data iput to the encoder.

Conventional implementations, for an encoder of code
rate r, typically compute all 2'r branch metrics for a given
data input symbol at any stage of a decoding process and
store the entire branch metric set in memory. This technique
requires a minimum of 2°r calculations, which consumes a
large number of machine cycles. Further, storing the entire
2"r branch metrics uses a relatively large amount of memory.
A large memory requirement together with a large number
of machine cycles for decoding increases the power require-
ments of the decoder. Additionally, the die-area of the chip
used to implement the decoder must be large to accommo-
date the large memory required.

Hence, there 1s a need for a method and system that
reduces the computational complexity of the decoding tech-
nique, thereby reducing memory requirements and the sys-
tem delay associated with the method of decoding. Further,
there 1s a need for a method and system that reduces the
power consumed 1n decoding the received data and for one
that reduces the die-size of the chip implementing the
decoder.

BRIEF DESCRIPTION OF THE DRAWINGS

The following detailed description of preferred embodi-
ments of the invention will be better understood when read
in conjunction with the appended drawings. The present
invention 1s 1llustrated by way of example and not limited by
the accompanying figures, 1n which like references indicate
similar elements.

FIG. 1 1s a block diagram of a communication system 1n
accordance with an exemplary embodiment of the present
invention;

FIG. 2 1s a block diagram of a circuit to generate encoded
bits at the encoder:

FIG. 3 1llustrates a Viterb1 buttertly showing the transition
from one trellis state to another trellis state;

FIG. 4 1s a flowchart illustrating a method for decoding a
data symbol sequence in accordance with an exemplary
embodiment of the present invention;

FIG. 5 1s a flowchart illustrating the steps performed to
compute 2 (d-1) branch metrics at step 402 of FIG. 4, in
accordance with an exemplary embodiment of the present
imnvention;

FIG. 6 1s a flowchart illustrating the steps performed to
compute the path metrics for a trellis state 1 accordance
with an exemplary embodiment of the present invention;

FIG. 7 1s a block diagram 1illustrating a Viterbi decoder 1n
accordance with an exemplary embodiment of the present
invention;

FIG. 8A 1s a table showing the computed branch metric
values 1 a %4 code rate data symbol sequence, where none
of the code word polynomials are re-used;

FIG. 8B 1s a table showing the computed branch metric
values 1n a V4 code rate data symbol sequence, where one
code word polynomial 1s re-used;

FIG. 8C 1s a table showing the computed branch metric
values 1n a ¥4 code rate data symbol sequence, where two
code word polynomials are re-used;

UsS 7,231,586 B2

3

FIG. 9A 1s a table showing the 2°d branch metrics stored
in memory, computed by not re-using any of the code word
polynomials, 1n accordance with an exemplary embodiment
of the present invention;

FIG. 9B 1s a table showing the 2°d branch metrics stored
in the memory, computed by re-using one code word poly-
nomial, 1n accordance with an exemplary embodiment of the
present mvention;

FIG. 9C 1s a table showing the 2°d branch metrics stored
in the memory, computed by re-using two code word poly-
nomials, 1n accordance with an exemplary embodiment of
the present invention;

FIG. 10A is a table showing the 2°(d-1) branch metrics
stored in the memory, computed by not re-using any of the
code word polynomials, 1n accordance with an exemplary
embodiment of the present invention;

FIG. 10B 1s a table showing the 2°(d-1) branch metrics
stored 1n the memory, computed by re-using one code word
polynomuial, 1n accordance with an exemplary embodiment
of the present invention;

FIG. 10C 1s a table showing the 2°(d-1) branch metrics
stored 1n the memory, computed by re-using two code word
polynomials, 1n accordance with an exemplary embodiment
of the present invention;

FIG. 11A 1s a block diagram of a tap register used to
determine the codeword polynomials;

FIG. 11B 1s a block diagram of a code word select register
used to select codeword polynomials for encoding

FIG. 12 1s a block diagram of a branch metric unit in
accordance with an exemplary embodiment of the present
invention;

FIG. 13 A 1s a block diagram of an address generator used
to compute 2°d branch metrics in accordance with an
exemplary embodiment of the present invention;

FIG. 13B i1s a block diagram of an address generator used
to compute 2°(d-1) branch metrics in accordance with an
exemplary embodiment of the present invention;

FIG. 14A 1s a block diagram of a write logic unit to
compute and populate 2"d branch metrics in accordance with
an exemplary embodiment of the present invention;

FIG. 14B 1s a block diagram of a write logic unit to
compute and populate 2°(d-1) branch metrics in accordance
with an exemplary embodiment of the present invention;

FIG. 15A 1s a block diagram of a memory read logic unit
to read the 2°d stored branch metrics in accordance with an
exemplary embodiment of the present invention;

FIG. 15B 15 a block diagram of a memory read logic umt
to read the 2°(d-1) stored branch metrics in accordance with
an exemplary embodiment of the present invention; and

FIG. 16 1s a block diagram of a path metric unit in
accordance with an exemplary embodiment of the present
invention.

DETAILED DESCRIPTION OF TH.
INVENTION

(Ll

The detailed description set forth below 1n connection
with the appended drawings 1s imntended as a description of
the presently preferred embodiments of the invention, and 1s
not intended to represent the only form 1n which the present
invention may be practiced. It 1s to be understood that the
same or equivalent functions may be accomplished by
different embodiments that are intended to be encompassed
within the spirit and scope of the mvention.

The present mvention provides a method and system to
decode a data symbol sequence that has been previously
encoded, using one or more unique code word polynomials.

10

15

20

25

30

35

40

45

50

55

60

65

4

The encoding process uses at least one unique code word
polynomial more than once. The first step of the decoding
method 1s the computation of a set of unique branch metrics,
using the umque code word polynomials. The number of
branch metrics that needs to be computed in the method 1s
2°(d-1), where d is the number of unique code word poly-
nomials. The computed set of branch metrics 1s then stored.
The stored branch metrics are used to compute a set of path
metrics. Based on the path metrics, a set of decoded data
symbol sequences 1s generated.

The system for implementing the method described above
1s a Viterbi decoder comprising a branch metric unit to
compute the unique branch metrics, a first memory to store
the computed unique branch metrics, a path metric unit to
compute the set of path metrics, and a trace back unit to
generate the decoded data symbol sequence, based on the
computed path metrics.

Referring now to FIG. 1, a block diagram of a commu-
nication system 100 in accordance with the present inven-

tion 1s shown. The communication system comprises an
encoder 102, a communication channel 104 and a Viterbi
decoder 106. The encoder 102 encodes source bits and
generates an encoded data symbol sequence. The encoded
data symbol sequence is transmitted over the communica-
tion channel 104 to the decoder 106. The communication
channel 104 can be either a wired or wireless channel. A
noise component 1s introduced into the data symbol
sequence while 1t 1s being transmitted over the communi-
cation channel 104. The noise component can be sufliciently
large 1n magnitude to modily the encoded data symbol
sequence. The decoder 106 receives the data symbol
sequence and performs appropriate steps to generate a
decoded data symbol sequence.

FIG. 2 1s a block diagram of a circuit 200 for generating,
encoded bits at the encoder 102. The circuit 200 1s capable
of generating two encoded bits corresponding to each mput
bit. The circuit 200 comprises shiit registers 202a, 2025,
202¢ and 202d. The shift registers 202a, 20256, 202¢ and
2024 are used to generate the encoded data symbol
sequence. For example, an encoded bit C0 1s generated by
adding the mput of shift register 2024, and the mput and the
output of shift register 2024d. The selection of shift registers
and their connection depends on the choice of code word
polynomials used for encoding. The code word polynomials
are user-programmable. That 1s, 1t 1s possible to select the
code word polynomials based on user requirement. Further,
the user specifies the order 1n which the codeword polyno-
mials are used to encode the mput bit. In an embodiment of
the present invention, the code word polynomials are
selected on the basis of the convolutional coding technique.
Alternatively, encoding can be conducted by selecting code
word polynomials based on any repeated coding technique.

For the purpose of understanding the present invention, a
Viterbi buttertly depicting transitions from one trellis state to
another trellis state 1s 1llustrated at FI1G. 3. As shown 1n FIG.
3, the Viterbi1 buttertly depicts the transitions that occur from
previous states Oxyz and 1xyz to current states xyz0 and
xyzl. In the process of transition from the previous state to
the current state, a current state can be reached for an input
bit of O or 1.

FIG. 4 1s a flowchart 1llustrating a method of decoding a
data symbol sequence in accordance with an exemplary
embodiment of the present invention. At step 402, a set of
2"(d-1) unique branch metrics is computed by processing the
received encoded data symbol sequence, where d is the
number of unique code word polynomials used for the
decoding process. The decoding process mnvolves computing

UsS 7,231,586 B2

S

a set of 2°d branch metrics, and further processing the
computed set to generate a set of 2°(d-1) unique branch
metrics. The steps to generate the set of 2°(d-1) unique
branch metrics are further elaborated 1n conjunction with
FIG. 5. The computed set of 2°(d-1) unique branch metrics
1s stored at step 404. At step 406, path metrics and decision
bits are calculated, using the stored branch metrics. Step 406
1s described 1n detail in conjunction with FIG. 5. At step 408,
a decoded data symbol sequence 1s generated, based on the
computed decision baits.

FIG. 5 1s a flowchart illustrating the steps performed to
compute 2°(d-1) branch metrics at step 402 of FIG. 4, in
accordance with an exemplary embodiment of the present
invention. At step 502, a set of unique branch metrics 1s
computed, where the number of branch metrics 1s 2 d.
Subsequently, at step 504, complementary branch metric
pairs from amongst the computed set of 2°d unique branch
metrics are 1dentified and selected. This involves selecting a
branch metric from each identified complementary branch
metric pair. The selected branch metrics subsequently are
stored at step 404.

FIG. 6 1s a flowchart illustrating the method steps per-
formed to compute the path metrics for a trellis state 1n
accordance with an exemplary embodiment of the present
invention. At step 602, the sign value of the stored branch
metrics 1s determined. Then, at step 604, a check 1s made to
identily whether the sign value 1s positive or negative. If the
sign value of the stored branch metric 1s positive, the stored
branch metric for the trellis state 1s added to the path metric
of the feeding trellis state at step 606, to generate the path
metric for the trellis state. If the sign value of the stored
branch metric 1s negative, the stored branch metric for the
trellis state 1s subtracted from the path metric of the feeding
trellis state at step 608, to generate the path metric for the
trellis state. After generating the path metrics for the trellis
state, the smallest path metric along with the decision bit at
the trellis state 1s identified. The smallest 1dentified path
metric 1s stored at step 610. The decoded data symbol
sequence 1s then generated, based on these stored smallest
path metrics and decision bits.

FIG. 7 1s a block diagram 1llustrating a Viterbi decoder
702 1n accordance with an exemplary embodiment of the
present invention. The Viterbi decoder 702 comprises a
branch metric unit 704, a first memory 706, a path metric
unit 708 that includes a second memory 712, a trace back
unit 710 that includes a third memory 714 and an output
register 716. The branch metric umt 704 computes a set of
2°(d-1) unique branch metrics using the unique code word
polynomials. The branch metric unit 704 1s described in
more detail in conjunction with FIG. 11. The first memory
706 1s connected to the branch metric unit 704 and stores the
computed set of 2°(d-1) unique branch metrics. The path
metric unit 708 1s connected to the first memory 706 and
calculates the path metrics using the set of 2°(d-1) unique
branch metrics stored in the first memory 706. The trace
back unit 710 1s connected to the path metric unit 708 and
generates the decoded data symbol sequence using the
decision bits. The second memory 712 stores the path metric
values calculated by the path metric unit 708. The third
memory 714 stores the decision bits calculated by the trace
back unit 710. The output register 716 stores the decoded
data symbol sequence generated by the trace back unit 710.
In an embodiment of the present invention, each of the first
memory 706, second memory 712, and third memory 714 1s
a Random Access Memory (RAM).

One advantage of the present mnvention 1s that the size of
the first memory 706 1s smaller than the memory required in

5

10

15

20

25

30

35

40

45

50

55

60

65

6

a conventional decoder. For a rate of 1/r, constraint length K
Viterbi decoder, a conventional decoder pre-computes the
branch metrics at each trellis stage and stores the computed
branch metrics corresponding to each of the 2'r different
branch metric values. Thus, the number of branch metrics
that are computed and stored in the conventional decoder 1s
2'r. In contrast, since only one of a pair of branch metrics is
stored, and only for unique code word polynomuials, the
number of branch metrics stored in accordance with the
present invention is 2" (d-1), where d is the number of unique
code polynomials.

For example, in GSM/GPRS and EDGE Radio Access
Networks (GERAN), a code rate of 10 and constraint length
K=5 and 7, the code rate 1s 1/r where r=2, 3,4, 5, 6,7, 8 and
10, the pre-compute and store method of the conventional
decoder stores 2" 10 or 1024 branch metrics. In contrast, only
cight branch metrics are stored in an embodiment of the
present invention because the present imvention takes into
account the specific number of encoder polynomials 1n
GERAN.

For the purpose of illustrating the operation of the present
mvention, the code word polynomials used for encoding
purposes are G0=1+D’+D*, G1=1+D+D’+D*, G2=1+D +
D* and G3=1+D+D*+D’+D*. However, it will be apparent
to a person skilled in the art that code word polynomials
other than those mentioned above could be used, without
diverting from the scope of the invention. Further, the
present 1nvention 1s generalized to all cases where the
number of encoder polynomials 1s less than the maximum
value of r 1 systems with minimum code rate k/r, for some
k. These advantages are further illustrated using FIGS. 8A,
8B, 8C, 9A, 9B, 9C, 10A, 10B and 10C.

FIG. 8A 1s a table showing the computed branch metric
values 1 a Y4 code rate data symbol sequence, where no
code word polynomial 1s re-used. In particular, four code-
word polynomials, G0, G1, G2 and G3 are used to generate
four encoded bits, in response to an mput bit. The table 1n
FIG. 8A comprises columns corresponding to state, mput
bit, encoded bits and branch metrics. Elements 1n the ‘State’
column define the current state of the decoder 502. Column
‘Input bit” contains the received input bit 1n the decoder 502.
Columns C0, C1, C2, and C3 1llustrate the four encoded bats.
Encoded bit CO0 1s generated by the codeword polynomial
G0. C1 1s generated by G1, C2 1s generated by G2, and C3
1s generated by G3. The elements of column ‘Branch Metric’
correspond to the branch metrics computed based on the
input bit, encoded bit, and the current state. The table in FIG.
8 A 1llustrates the possible branch metrics corresponding to
the possible mput states, input bit and the encoded bits. As
illustrated in the table, there are 16 possible branch metric
values for each iput bit, 1.e., etther ‘1° or “0’.

FIG. 8B 1s a table showing the computed branch metric
values 1n a V4 code rate data symbol sequence, wherein one
code word polynomial 1s re-used. In this case, three code-
word polynomials, G0, G1 and G2, are used to generate four
encoded bits, 1n response to an mput bit. Consequently, there
are 8 possible branch metric values for each input bit, 1.e., °1’
or ‘0°. Encoded bits CO0 and C3 are generated by the
codeword polynomial G0. C1 1s generated by G1, while C2
1s generated by G2. Since both C0 and C3 are generated by
(G0, they are 1dentical 1n all rows of the table. Consequently,
the number of unique branch metrics 1s half of the total
number of branch metrics. For example, the first and the
fourth elements of column ‘Branch Metric’ are identical. As
a result, only one of them 1s selected for storage. In this way,
the number of unmique branch metrics that are stored in
memory 1s reduced.

UsS 7,231,586 B2

7

FIG. 8C 1s a table showing the computed branch metric
values 1n a V4 code rate data symbol sequence, wherein two
code word polynomials are re-used. In this case, two code-
word polynomials, G0 and G1 are used to generate four
encoded bits, 1n response to an input bit. Consequently, there
are 4 possible branch metric values for each mput bit, 1.e., “1°
or ‘0’. Encoded bits C0 and C2 are generated by the
codeword polynomial G0. C1 1s generated by G1, while C1
and C3 are generated by G1. Since both C0 and C2 are
generated by G0, they are 1dentical 1n all rows of the table.
Also, as C1 and C3 are generated by (1, they are 1dentical
in all rows of the table. Since the elements of columns CO0
and C2 are i1dentical, the number of unique branch metrics
1s half of the total number of branch metrics. Also, since the
elements of columns C1 and C3 are 1dentical, the number of
unique branch metrics 1s further halved.

FIG. 9A 1s a table showing the 2°d branch metrics stored
in the memory, computed by re-using none of the code word
polynomials, 1n accordance with an exemplary embodiment
of the present invention. The table i FIG. 9A shows
columns ‘Memory Location” and ‘Branch Metric Value’.
Each element i column ‘Memory Location” shows the
address ol a memory location 1n the first memory 706, while
the column ‘Branch Metric Value’ contains the branch
metric value stored in the corresponding memory location.
For example, memory location F stores branch metric value
-BMO. As none of the code word polynomials was re-used,
there are 16 unique branch metric values for each mput bit.
Eight of these 16 unique branch metrics are complementary
to the other eight. In an embodiment of the present inven-
tion, only eight of these unique branch metrics are stored in
the first memory 706.

FIG. 9B 1s a table showing the 2°d branch metrics stored
in the memory, computed by re-using one code word poly-
nomial, 1n accordance with an exemplary embodiment of the
present mvention. While the number of possible branch
metrics 1llustrated 1n table 1n FIG. 9A 1s 16, the number of
unique branch metrics 1llustrated 1n table 1n FIG. 9B 1s eight.
This 1s because of the re-use of one of the code word
polynomials. Hence, eight memory locations are required
instead of 16. Hence, the size of the first memory 706 is
reduced by a factor of two 1f a code word polynomial 1s
re-used.

FIG. 9C 1s a table showing the 2°d branch metrics stored
in the memory, computed by re-using two code word poly-
nomials, 1n accordance with an exemplary embodiment of
the present invention. While the number of possible branch
metrics illustrated 1in the table 1n FIG. 9A 1s 16, the number
of branch metrics in the table 1n FI1G. 9B 1s eight, the number
of unique branch metrics illustrated in the table 1n FIG. 9C
1s four. Hence, only four memory locations are required for
storing these branch metrics. Hence, the size of the first
memory 706 1s further reduced by a factor of two by re-using,
two code word polynomaials.

To summarize, redundancy 1n the code word polynomaials
leads to a redundancy in the branch metrics generated. The
present invention identifies the redundant branch metrics,
selects one among the redundant branch metrics, and stores
the selected branch metrics. Reduction 1n the branch metrics
that need to be stored leads to a reduction 1n the size of the
first memory 706.

In another embodiment of the present invention, the
number of branch metrics stored 1n the first memory 706 1s
turther reduced by a factor of two by identifying comple-
mentary branch metric pairs from amongst the computed 2°d

branch metrics, shown i FIGS. 9A, 9B and 9C, and only

5

10

15

20

25

30

35

40

45

50

55

60

65

8

storing one branch metric from the identified pair. This 1s
described 1n detail 1n conjunction with FIGS. 10A, 10B and

10C.

FIG. 10A is a table showing the 2" (d-1) branch metrics to
be stored 1n the memory, computed by not re-using any code
word polynomaial, 1n accordance with an exemplary embodi-
ment of the present invention. Sixteen unique branch metrics
were obtained when none of the four code word polynomials
1s re-used. The computed branch metrics are depicted in the
table 1n FIG. 9A. Amongst these 16 branch metrics, eight
branch metrics are complementary to the other eight branch
metrics. Hence, after identification of all such complemen-
tary branch metric pairs from the table 1n FI1G. 9A, only eight
branch metrics are stored in the first memory 706, as shown
in the table 1n FIG. 10A. The removal of complementary
branch metrics from the imitially computed 16 branch met-
rics reduces the required size of the first memory to eight
memory locations instead of 16 in the embodiment where
none of the code word polynomials 1s re-used.

FIG. 10B is a table showing the 2" (d-1) branch metrics to
be stored 1n the memory, computed by re-using one code
word polynomial, 1n accordance with an exemplary embodi-
ment of the present invention. Eight unique branch metrics
are obtained by re-using one code word polynomial. The
computed branch metrics are depicted in table 1n FIG. 9B.
From amongst these eight branch metrics, four branch
metrics are complementary to the other four branch metrics.
Hence, after the identification of all such complementary
branch metric pairs from the table in FIG. 9B, only four
branch metrics are stored 1n the first memory 706, as shown
in table in FIG. 10B. The removal of complementary branch
metrics from the imitially computed eight branch metrics
reduces the size of the first memory 706 to four memory
locations.

FIG. 10C is a table showing the 2"(d-1) branch metrics to
be stored in the memory, computed by re-using two code
word polynomials, 1 accordance with an exemplary
embodiment of the present mvention. Four unique branch
metrics are obtamned 1f two code word polynomials are
re-used. The computed branch metrics are shown 1n table 1n
FIG. 9C. From amongst these four branch metrics, two
branch metrics are complementary to the other two branch
metrics. Hence, after identification of all such complemen-
tary branch metric pairs from the table in FIG. 9C, only two
branch metrics are stored 1n the first memory 706, as shown
in table i FIG. 10C. The removal of complementary branch
metrics from the mitially computed four branch metrics
reduces the required size of the first memory 706 to two
memory locations.

The mmplementation of the method described above
involves the step of encoding, using the code word polyno-
mials. This 1s performed by a selection of one or more code
word polynomials and using them to generate the encoded
data symbol sequence. A system for selecting code word
polynomials and generating the encoded bits, using the
same, 1S hereinafter described.

FIGS. 11 A and 11B are block diagrams 1llustrating sets of
tap and code word select registers for the case of ¥4 code rate
encoded data symbol sequence. The taps and code word
select registers are used to determine the codeword polyno-
mials and the selection of those code word polynomials for
encoding. The configuration of the shift registers 202aq,
2025, 202¢ and 2024 (F1G. 2) 1s user programmed to change
the code word polynomials. A tap register 1102 comprises
cight-bit-wide polynomials G3[7:0] 1104a, G2[7:0] 11045,
(G1[7:0] 1104¢ and GO0[7:0] 1104d. The bits of these ei1ght-
bit-wide polynomials contain information about the code

UsS 7,231,586 B2

9

word polynomial. The connections of the shift registers
202a, 2025, 202¢ and 202d are determined by the bit values
stored 1n the tap register 1102. The connections of the shift
registers 202a, 202b, 202¢ and 2024 can be altered to
generate a new code word polynomial by modifying the
contents of the tap register 1102. For example, for a con-
straint length K=5, it GO[7:0] 11044 has the wvalue
‘00000101°, then the selected code word polynomial equals
14D+D" 34D 4, where 1 represents the input signal, D
represents the output of shift register 202a, and D3 repre-
sents output of shift register 202¢. If GO0[7:0] 11044 has a
value ‘00000110°, then the selected code word polynomial
equals 1+D 2+D"3+D"4, where D2 represents the output of
the shift register 20256 and D3 represents the output of the
shift register 202¢. Hence, the unique code word polynomi-
als can be user programmed by changing the contents of the
tap register 1102. It 1s to be noted that the number of tap
registers 1s the same as the number of code word polyno-
mials used for encoding.

A code word select register 1106 has two 2-bit-wide code
word select registers C3sel/1:0] 1108a, C2sel/1:0] 11085,
Clsel/1:0] 1108¢ and COsel/1:0] 1108d. The contents of the
2-bit-wide code word select registers 1108a, 11085, 1108¢
and 11084 determine the code word polynomials used to
encode the input data. In an embodiment of the present
invention, 1f the 2-bit-wide code word select register Clsel
[1:0] 1108¢ contains the value 00, then the code word
polynomial G0 11044 1s selected. To re-use the same code
word polynomial G0 11044 for encoding, ‘00’ 1s also stored
in the code word select register C0sel/1:0] 1108d4. Hence,
re-use of a code word polynomial 1s achieved by using the
code word select registers Clsel/1:0] 1108¢ and COsel/1:0]
11084. It 1s to be noted that the number of code word select
registers 1s same as the number of code word polynomials
used for encoding.

FI1G. 12 1s a block diagram of a branch metric unit 604 in
accordance with an embodiment of the present invention.
The branch metric unit 704 comprises an address generator
1202 to generate the addresses for computing and populating
branch metrics, a write logic unit 1204 and a memory read
logic unit 1206. The address generator 1202 1s connected to
the write logic unit 1204 and first memory 706. The address
generator 1202 1s described 1n detail 1n conjunction with
FIGS. 13A and 13B. The write logic unit 1204 1s connected
to the first memory 706 and provides the branch metric
values stored 1n the first memory 706. The computed branch
metrics are stored in the first memory 706 at a memory
location, whose address 1s provided by the address generator
1202. The write logic unit 1204 1s mvolved 1n the compu-
tation of the branch metrics. In particular, the write logic unit
1204 1dentifies the complementary branch metrics from
amongst the computed set of 2°(d) unique branch metrics.
The memory read logic unit 1206 1s connected to the output
of the first memory 706. The memory read logic unit 1206
also 1s connected to the path metric unit 708 and reads the
stored branch metrics from the first memory 706 and passes
them to the path metric unit 708. The memory read logic unit
1206 1s described 1n detail in conjunction with FIGS. 14A
and 14B.

FIG. 13A 1s a block diagram illustrating an address
generator, used to compute the addresses for storing 2°d
branch metrics, 1n accordance with an embodiment of the
present invention. In this embodiment, an address generator
1300 1s a vanant of the address generator 1202. The address
generator 1300 generates a 4-bit address counter actr][3:0],
which 1s used to populate the first memory 706 with the
computed set of unique branch metrics. The four bits of

10

15

20

25

30

35

40

45

50

55

60

65

10

address counter actr[3:0] are generated by four address bit
generators actr generator 1302a, actrl generator 1304a,
actr2 generator 1306a and actr3 generator 1308a. In an
embodiment of the present invention, each of the address bit
generators comprises a multiplexer. The iputs to each
multiplexer are derived from a 4-bit counter ctr[3:0]. The
control signals for the multiplexers are dertved from the tap
registers 1102. For example, the mputs to actr0 generator
13024 are generated from the counter ctr[3:0], while the
control signal 1s determined from the tap register 1104a. The
output of the address generator 1300, actr[3:0], 1s an address
that 1s used 1n computing and populating branch metrics,
described 1n detail 1n conjunction with FIG. 14A.

FIG. 13B 1s a block diagram of an address generator 1301,
used to compute 2" (d-1) branch metrics, in accordance with
an embodiment of the present invention. In this embodi-
ment, the address generator 1301 1s a variant of the address
generator 1202. The address generator 1301 generates a
3-bit address counter actr[2:0], which 1s used to populate the
first memory 706 with the computed set of unique branch
metrics. The three bits of the address counter actr[2:0] are
generated by three address bit generators actr0 generator
13025, actrl generator 13045 and actr2 generator 130654. In
an embodiment of the present invention, each of the address
bit generators comprises a multiplexer. The mnputs to each
multiplexer are dertved from a 3-bit counter ctr[2:0]. The
control signals for the multiplexers are derived from the tap
registers 1102. For example, the mputs to actr(generator
13025 are generated from counter ctr|2:0], while the control
signal 1s determined from the tap register 1104a. The output
of the address generator 1301, actr[2:0], 1s an address that 1s
used in computing and populating branch metrics, described
in detail 1n conjunction with FIG. 14B.

FIG. 14A 1s a block diagram 1llustrating of a write logic
unit 1400 that computes and populates 2"d branch metrics in
accordance with an embodiment of the present invention. In
this embodiment, the write logic unit 1400 1s a variant of the
write logic unit 1204. The write logic unit 1400 comprises
four soft symbol sign generators 1402a, 140256, 1402¢ and
14024, and an adder tree 1404. Quantization of the received
data symbol sequence generates the soft symbols. The soft
symbol sign generators 1402q, 14025, 1402¢ and 1402d
receive as mputs actr[3:0] from the address generator 1300,
and C0sel/1:0], Clsel/1:0], C2sel/1:0] and C3sel/1:0] from
the code word select registers 1006. The soft symbol sign
generators 1402a, 140256, 1402¢ and 14024 generate the sign
bits associated with the respective soft symbols. The gen-
crated sign bits are passed along with the soft symbols SO,
S1, S2 and S3 to an adder tree 1404 after being processed
through XOR gates as S0', S1', S2' and S3', as shown 1n FIG.
14A.

The adder tree 1404 comprises three adders, 14064,
140656, and 1406c¢. The adder tree 1404 adds the soft
symbols, according to the sign bits associated with them at
adders 1406a and 1406c. The outputs of the adders 14064
and 1406¢ are subsequently added by the adder 14065, to
generate the branch metric, which 1s stored 1n the first
memory 706. The address at which the branch metric value
1s stored 1n the first memory 706 1s provided by the output
actr[3:0] of the address generator 1300.

FIG. 14B 1s a block diagram of a write logic umt 1401,
which 1s used to compute and populate 2°(d-1) branch
metrics 1 accordance with an embodiment of the present
invention. In this embodiment, the write logic unit 1401 1s
a variant of the write logic unit 1204. The write logic unit
1401 comprises four soft symbol sign generators 14024,

14025, 1402¢ and 1402d, and an adder tree 1404. Quanti-

UsS 7,231,586 B2

11

zation of the received data symbol sequence generates the
soit symbols. The soit symbol sign generators 1402a, 14025,
1402¢ and 1402d recerve as iputs actr[2:0] from the address
generator 1301, CoOsel/1:0], Clsel/1:0], C2sel/1:0] and
C3sel/1:0] from the code word select registers 1006. One of
the mputs of each of the soft symbol sign generators 1402a,
14025, 1402¢ and 14024 1s tied to ‘0’. The soft symbol sign
generators 1402a, 140256, 1402¢ and 14024 generate the sign
bits associated with the respective soft symbols. The gen-
erated sign bits are passed along with the soft symbols S0,
S1, S2 and S3 to the adder tree 1404 after being processed
through XOR gates as S0', S1', S2' and S3'.

The adder tree 1404 comprises three adders, 1406a,
14065, and 1406¢. The adder tree 1404 adds the soft
symbols, according to the sign bits associated with them at
adders 1406a and 1406c. The outputs of the adders 1406a
and 1406¢ are subsequently added by the adder 14065, to
generate the branch metric, which i1s stored in the first
memory 706. The address at which the branch metric value
1s stored 1n the first memory 706 1s provided by the output
actr[2:0] of the address generator 1301.

Once the computed branch metrics are stored 1n the first
memory 706, they are required to be read back to compute
path metrics. To read the stored branch metrics 1n the first
memory 706, a memory read logic umt 1500 1s used, which
1s described 1n detail 1n conjunction with FIGS. 15A and
15B.

FIG. 15A 15 a block diagram illustrating the memory read
logic unit 1500, which reads the 2°d stored branch metrics
in accordance with an embodiment of the present invention.
For the purpose of illustration, the implementation of this
block 1s shown for the case of 14 code rate and K=5
constraint length. In this embodiment, the memory read
logic 1500 1s a variant of the memory read logic 1206. The
memory read logic unit 1500 comprises logic circuit blocks

1502a, 15026 1502¢ and 1502d. The logic circuit blocks
1502a, 15025 1502¢ and 15024 comprise a combination of
AND and XOR gates that are connected as shown 1n FIG.
15A. The inputs of the logic circuit blocks 1502a, 15025
1502¢ and 15024 are derived from code word polynomials
G3[2:0], G2[2:0], G1]2:0], GO[2:0] and a three-bit counter
scntr[2:0]. The outputs of the logic circuit blocks 15024,
150256 1502¢ and 15024 are A[3], A[2], A[l] and A[O]
respectively, wherein A[3:0] 1s the address used for reading
the branch metrics from memory locations of the first
memory 706 when 2°d branch metrics are stored in the first
memory 706.

FIG. 15B 15 a block diagram illustrating a memory read
logic unit 1501, which reads the 2°(d-1) stored branch
metrics, 1 accordance with an embodiment of the present
invention. For the purpose of illustration, the implementa-
tion of this block 1s shown for the case of ¥4 code rate and
K=5 constraint length. In this embodiment, the memory read
logic 1501 1s a variant of the memory read logic 1206. The

memory read logic unit 1501 comprises logic circuit blocks
15024, 150256, 1502¢, 15024 and logic blocks 1504a, 15045

and 1504c¢. The logic circuit blocks 1502a, 150256, 1502¢
and 15024 comprise a combination of AND and XOR gates
that are connected as shown in FIG. 15B. The inputs of the
logic circuit blocks 1502a, 15025, 1502¢ and 15024 are
derived from code word polynomials G3[2:0], G2[2:0],
G1[2:0], GO[2:0] and a two-bit counter scntr[2:0]. The
outputs of the logic circuit blocks 1502a, 15025, 1502¢ and
15024 are P3, P2, P1 and PO respectively. The logic blocks
1504a, 15046 and 1504¢ comprise a combination of AND
and XOR gates that are connected as shown 1n FIG. 15B.
The mputs to the logic blocks 1504a, 15045 and 1504¢ are

5

10

15

20

25

30

35

40

45

50

55

60

65

12

derived from the outputs of the logic circuit blocks 15024,
1502, 1502¢ and 15024, 1.e., P3, P2, P1 and P0. The outputs

of the logic blocks 1504a, 15045 and 1504¢ are A[2], A[1]
and A[O] respectively, wherein A[2:0] 1s the address used for
reading the branch metrics from memory locations of the
first memory 706 when 2 (d-1) branch metrics are stored in
the first memory 706. Also, the output of the logic circuit
block 15024, PO, i1s used for generating the sign of the
branch metric during retrieval of the stored branch metric
from the first memory 706. After reading the branch metrics,
the branch metrics are used by the path metric unit 708 to
compute the path metric.

FIG. 16 1s a block diagram of the path metric unit 708 1n
accordance with an embodiment of the present invention.
The path metric unit 708 comprises an accumulator 1602, a
path selector 1604 and second memory 712. The accumu-
lator 1602 1s connected to the path selector 1604. The path
selector 1604 1s connected to the second memory 712, which
in turn 1s connected to the accumulator 1602. The accumu-
lator 1602 enables the generation of path metrics for a trellis
state. This involves an add operation of the computed branch
metrics for the trellis state to the path metrics for the
previous feeding trellis state. The add operation involves the
addition or subtraction of the computed branch metric
to/from the previous path metric, depending on the sign bit
of the computed branch metrics. The path selector 1604
selects the smallest path metric from the computed path
metrics for the trellis state. The smallest path metric 1s used
to obtain the optimum path that enables the generation of a
decoded data symbol sequence with the probability of a
minimum or very low error. The computed path metrics are
stored 1n the second memory 712. The path metric unit 708
1s known 1n the art and 1ts implementation will be apparent
to a person skilled 1n the art.

Referring again to FIG. 7, alter computation of the path
metrics, the trace back unit 710 generates a set of most likely
decoded data symbol sequences. In an embodiment of the
present invention, the trace back unit 710 includes a third
memory 714 that stores the decision bits generated to
compute the decoded data symbol sequence. The trace back
unmt 710 1s known 1n the art and its implementation will be
apparent to a person skilled 1n the art.

While the method described 1n the present invention has
been 1llustrated with the hardware Viterbi decoder 702, 1t
will be apparent to one skilled in the art that the present
invention can also be embodied 1 a computer program
using a high-level computer language such as C, C++, Java,
C# or Visual Basic.

An advantage of the present invention 1s that it reduces the
memory requirements ol a Viterb1 decoder thereby reducing
the die-area required to make the Viterb1 decoder. Another
advantage 1s that 1t reduces the processing time required for
decoding. Further, the power requirement of the Viterbi
decoder 1s also reduced.

While the preferred embodiments of the invention have
been 1llustrated and described, 1t will be clear that the
invention 1s not limited to these embodiments only. Numer-
ous modifications, changes, variations, substitutions and
equivalents will be apparent to those skilled in the art,
without departing from the spirit and scope of the invention,
as described 1n the claims.

The mvention claimed 1s:

1. A method for decoding a data symbol sequence previ-
ously encoded using one or more unique code word poly-
nomials, wherein the encoding process uses at least one
unique code word polynomial more than once, the method
comprising the steps of:

UsS 7,231,586 B2

13

computing a set of unique branch metrics based on the
data symbol sequence using the unique code word
polynomials, wherein the number of branch metrics
computed is 27, where d is the number of unique code
word polynomials;

storing the computed set of unique branch metrics;

calculating path metrics and decision bits based on the

stored set of umique branch metrics and path metrict of
previous feeding state; and

generating a decoded data symbol sequence based on the

computed decision bits, and wherein the computing the

set of 2¢! unique branch metrics step comprises:

computing a set of 27 branch metrics based on the data
symbol sequence using the unique code word poly-
nomials;

identifying complementary branch metric pairs from
amongst the computed set of 2¢ unique branch met-
rics; and selecting one branch metric from each
identified complementary branch metric pair.

2. The decoding method of claim 1, wherein the calcu-
lating the path metrics step comprises:

adding the computed branch metrics for a state to the path

metrics for the previous feeding state; and

storing the accumulated path metric.

3. The decoding method of claim 2, wherein the adding
the computed branch metrics step further comprises:
determining a sign value of the computed branch metric; and
performing one of addition and subtraction of the computed
branch metric based on the sign value.

4. The decoding method of claim 1, wherein the data
symbol sequence 1s encoded using convolutional coding.

5. A method for decoding a data symbol sequence
encoded previously using convolutional coding, the convo-
lutional coding being done using one or more unique code
word polynomials, wherein the encoding process uses at
least one unique code word polynomial more than once, the
method comprising:

computing a set of unique branch metrics based on the

data symbol sequence using the unique code word
polynomials, wherein the number of branch metrics
computed is 27, where d is the number of unique code
word polynomials, the step comprising:

computing a set of unique branch metrics based on the

data symbol sequence using the unique code word

10

15

20

25

30

35

40

14

polynomials, wherein the number of branch metrics
computed is 2%, where d is the number of unique code
polynomials;
identifying complementary branch metric pairs from
amongst the computed set of unique branch metrics;

selecting one branch metric from each 1dentified comple-
mentary branch metrics pair, such that a set of 27
unique branch metrics 1s selected;

storing the selected branch metrics;

calculating path metrics and decision bits based on the

stored branch metrics and path metrics of previous
feeding state; and

generating a decoded data symbol sequence based on the

computed decision bits.
6. A computer readable memory including a computer
program for decoding a data symbol sequence previously
encoded using convolutional coding, the convolutional cod-
ing being done using one or more unique code word poly-
nomials, the encoding process using at least one unique code
word polynomial more than once, the computer program
performing:
computing a set of unique branch metrics based on the
data symbol sequence using the unique code word
polynomials, wherein the number of branch metrics
computed is 2¢', where d is the number of unique code
word polynomials, the step comprising;
computing a set of unique branch metrics based on the
data symbol sequence using the unique code word
polynomials, wherein the number of branch metrics
computed is 24!, where d is the number of unique code
polynomials;
identifying complementary branch metric pairs from
amongst the computed set of unique branch metrics;

selecting one branch metric from each 1dentified comple-
mentary branch metrics pair, such that a set of 27
unique branch metrics 1s selected;

storing the selected branch metrics;

calculating path metrics and decision bits based on the

stored set of unique branch metrics and path metrics of
previous feeding state; and

generating a decoded data symbol sequence based on the

computed decision bits.

	Front Page
	Drawings
	Specification
	Claims

