12 United States Patent

Eruhimov et al.

US007228534B2

US 7,228,534 B2
Jun. §, 2007

(10) Patent No.:
45) Date of Patent:

(54) OPTIMIZING PERFORMANCE OF A
PROGRAM OR A COMPUTER SYSTEM
(75) Inventors: Victor L. Eruhimov, Nizhny Novgorod
(RU); Igor V. Chikalov, Nizhny
Novgorod (RU)

(73) Assignee: Intel Corporation, Santa Clara, CA
(US)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 599 days.
(21) Appl. No.: 10/461,067
(22) Filed: Jun. 14, 2003
(65) Prior Publication Data
US 2004/0255282 Al Dec. 16, 2004
(51) Int. CIL
GO6l 9/45 (2006.01)
(52) US.Cl e 717/151
(58) Field of Classification Search 717/151

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5915,114 A * 6/1999 McKee et al. 717/128
6,233,678 B1* 5/2001 Balac..oooeiiinnnl. 712/240
6,453,411 B1* 9/2002 Hsuetal. 712/237
2005/0183074 Al* 8/2005 Alexander et al. 717/144

OTHER PUBLICATIONS

Chen et al., Dynamic Trace Selection Using Performance Monitor-
ing Hardware Sampling, Mar. 2003, IEEE, p. 79-90.*

Quinn et al., Path-Based Next Trace Prediction, IEEE, p. 14-23.%

Martinosi et al., Effectiveness of Trace Sampling . . . , ACM, p.
248-259.%

Wood et al., A Model for Estimating Trace-Sample Miss Ratios,
ACM, p. 79-89 *

Friedman, *“Stochastic Gradient Boosting”, CSIRO Mathematical
and Information Sciences, Australia, the Department of Energy
under Contract DE-AC03-76SF00515, and National Science Foun-
dation under Grant DMS9764431, Mar. 26, 1999,

Friedman, “Greedy Function Approximation: A Gradient Boosting
Machine”, CSIRO Mathematical and Information Sciences, Aus-
tralia, the Department of Energy under Contract DE-AC03-
76SF00515, and National Science Foundation under Grant
DMS9764431, Feb. 24, 1999.

Fahringer et al., “Knowledge Specification for Automatic Perfor-
mance Analysis APAT Technical Report Revised Version,
Workpackage 2 Identification and Formation of Knowledge”,
Forschungszentrum Julich GmbH, Aug. 2001.

“Introduction to the Intel VTune Performance Analyzer 6.0, Find
Hotspots, Identify Performance Issues, and Tune Application Per-
formance™, Intel Corporation, Revision 1.0, Dec. 2001.

* cited by examiner

Primary Examiner—John Chavis
(74) Attorney, Agent, or Firm—Trop, Pruner & Hu, P.C.

(57) ABSTRACT

A Tunction may be a portion of software code. A first
function having a known optimization and a second function
may be executed. The first function may provide a first trace,
and the second function may provide a second trace. The
first trace and the second trace may be analyzed to determine
an optimization of the second function. The optimization of
the second function may indicate how ethciently the second
function may be executed.

24 Claims, 5 Drawing Sheets

(OPTIVIZATION nounmf)x
300

I

EXEGUTE FIRST FUNCTION TO
PROVIDE FIRST TRACE

!

EXECUTE SECOND EUCTIONT0 |~ °T0
PROVIDE SECOND TRACE

!

EXECUTE THIRD FUNCTION TG |~~~ 315
PROVIDE THIRD TRACE

v

RANDOMLY SELECT FIRSTTRACE |~ 520
OR SECOND TRACE

l

NORMALIZE NUMBER OF TIMES EVENT OGCURS e 325
DURING EXECUTION OF FIRST FUNCTION AND
SECOND FUNCTION

|

TRAIN EXPERT SYSTEM USING
IRST TRACE AND SECOND TRACE

Ve 330

|

ANALYZE FIRST TRACE, SECOND |/~ 33
TRACE, AND THIRD TRACE

|

DETERMINE QPTIMIZATION OF THIRD
FUNCTION

I|I|"ll-ul-

T,

U.S. Patent Jun. 5, 2007 Sheet 1 of 5 US 7,228,534 B2

/100
110a
STATISTICS
s s ———
_
—— LEVEL -
l——L 130a 140
| STATISTICS 10 |
130b ——N—130c LFVEL 1100 |
| V—MOb
| STATISTICS STATISTICS |
I — b —]
T 1100 T
| EVEL - 130e 1mf_| e
110e 4

STATISTICS

STATISTICS STATISTICS '

U.S. Patent Jun. 5, 2007 Sheet 2 of 5 US 7,228,534 B2

100

~ FIRST CONFIG.: 979=47. ?1% //
SECOND CONFIG.; 1099=52.89% /1 110a

-//

TOTAL=2078

FIRST LEVEL CACHE LOAD HIT RATE 1903

130a
FIRST CONFIG.: 424=63.28% | |
SECOND CONFIG.: 246=36.72%V.///

[_% -

TOTAL=670

120b
MACHINE CLEAR COUNT PERFORMANCE IMPACT
130b _<0.9e-003 _ _=>0.06-003 1300
FIRST CONFIG.: 86=94.51%] FIRST CONFIG.: 338=58.38%] 110d

SECOND CONFIG.: §=5.49% SECOND CONFIG.: 241=41.62%

7

TOTAL=579

7

TOTAL=91

10
TC DELIVERY RAIE
120c

130d 4 U4 > d UL, 1306

FIRST CONFIG: 37=29.84% 1| ~110¢ | FIRST CONFIG.. 301=66.15% |j 110f
SECOND CONFIG 87 70 16% 224 /// SECOND CONFIG.: 154=33.85% [

U

TOTAL 124 TOTAL=455
FIRST LEVEL CACHE LOAD MISS PERFORMANCE IMPACT
120d
_<8.7919 _>0.79719
130f 110g 130g

FIRST CONFIG.: 26=23.42% [| / FIRST CONFIG.:11=84.62%
SECOND CONFIG.: 85=76.58% V.77 SECOND CONFIG.: 2=15.38% 110h

T | L7

TOTAL=111 | TOTAL=13
FIG. 2

US 7,228,534 B2

Sheet 3 of 5

Jun. 5, 2007

U.S. Patent

JIOVIHTINI
d3S/

£ Il

06¢c \\

-1

e —

AJOWNIN _ AVIdSId

0v¢ |\

IW %mmm%%U
012

00¢ \«

S——

F0IA30 O/1

0E¢ \ Occ \

U.S. Patent

Jun. 5, 2007 Sheet 4 of 5

US 7,228,534 B2

COPTIMIZA TION RO UTINE)X
300

;

EXECUTE FIRST FUNCTIONTO |~ 9%

PROVIDE FIRST TRACE

! _

PROVIDE SECOND TRACE

EXECUTE SECOND FUNCTIONTO |/~

310

'

PROVIDE THIRD TRACE

T

EXECUTE THIRD FUNCTIONTO |~ 510

OR SECOND TRACE

-

'RANDOMLY SELECT FIRST TRACE |/~

320

SECOND FUNCTION

NORMALIZE NUMBER OF TIMES EVENT OCCURS Ve 325
DURING EXECUTION OF FIRST FUNCTION AND

|

FIRST TRACE AND SECOND TRACE

" TRAIN EXPERT SYSTEM USING |~ 2

" ANALYZE FIRST TRACE, SECOND
TRACE, AND THIRD TRACE

335
/_

|

FUNCTION

DETERMINE OPTIMIZATION OF THIRD |~ 340

e

FIG. 4B

FIG. 4A

U.S. Patent Jun. 5, 2007 Sheet 5 of 5 US 7,228,534 B2

FIG. 4A

345
/

ISSUE

REGARDING THIRD FUNCTION
?

NO

YES

_ 350
DETERMINE SEVERITY OF ISSUE ‘}/_

399

DOES
SEVERITY EXCEED DEFINED

THRESHOLD
7

NO

YES

360

DOES
ANOTHER PERFORMANCE VES 370
PROBLEM HAVE A HIGHER — ya
SEVERITY DETERMINE PERFORMANCE
? PROBLEM HAVING HIGHEST
SEVERITY
NO
- % s
MODIFY SET OF INSTRUCTIONS INCLUDED | | MODIFY SET OF INSTRUCTIONS
IN THIRD FUNCTION TO RESOLVE INCLUDED IN FUNCTION ASSOCIATED
PERFORMANCE PROBLEM REGARDING WITH PERFORMANCE PROBLEM
THIRD FUNCTION HAVING HIGHEST SEVERITY TO
— —— RESOLVE PERFORMANCE PROBLEM
l HAVING HIGHEST SEVERITY
(END

FIG. 4B

US 7,228,534 B2

1

OPTIMIZING PERFORMANCE OF A
PROGRAM OR A COMPUTER SYSTEM

BACKGROUND

This invention relates generally to software code optimi-
zation and performance analysis.

Soltware program developers face the challenge of main-
taining stability of programs by analyzing performance data
and refining the program code to resolve problems revealed
by the data. Performance data 1s typically used to describe
performance properties, which are characterizations of per-
formance behaviors, such as cache misses or load imbal-
ances, in the program.

Performance tools are often used to measure and analyze
performance data to provide statistics relating to the histori-
cal behavior of a program. Although a performance problem
may be determined subjectively, most program developers
use at least one performance tool to assist in such a deter-
mination. For example, the performance tool may indicate a
performance problem when the severity of an 1ssue exceeds
some defined threshold. The severity of a problem 1ndicates
the importance of the problem. A review of problem severi-
ties, therefore, may allow the program developer to focus
cllorts on the more critical problems of the program. The
1ssue having the highest severity 1s generally referred to as
the bottleneck of the program. The bottleneck 1s frequently
addressed before other 1ssues, provided its severity 1s high
enough to render i1t a performance problem.

Performance statistics of a program may be compared to
those of a previous version of the program to determine
whether changes 1n the program have resulted 1mn improved
performance. Using the statistics, the program developer
may predict future performance problems, as well as resolv-
ing existing performance problems.

Although performance tools have proven very helpful 1n
allowing program developers to improve the performance of
programs, the tools are often limited 1n their applicability.
For example, performance tools are often platform-depen-
dent and/or language-dependent. Even i1 a tool 1s capable of
supporting performance analyses of a variety of program
paradigms and architectures, such a tool 1s generally inca-
pable of correlating performance data gathered at lower
levels with higher-level programming paradigms.

Thus, there 1s a need for an improved way of optimizing
the performance of soltware or a computer system.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a conceptualized representation of a perfor-
mance tree according to an embodiment of the present
imnvention;

FIG. 2 1s an example of a performance tree according to
an embodiment of the present invention;

FIG. 3 1s a system according to an embodiment of the
present ivention; and

FIGS. 4A and 4B are a flow chart for software that may
be utilized by the system shown in FIG. 3 according to an
embodiment of the present invention.

DETAILED DESCRIPTION

Referring to FIG. 1, a performance tree 100 may provide
a way to visualize the performance of a software program.
The performance tree 100 may include event statistics 110 to
provide information regarding the execution of different
portions of the software program. An event statistic may be

10

15

20

25

30

35

40

45

50

55

60

65

2

defined as a representation of the number of times portions
of the software program satisiy certain conditions 130. The
performance of different portions of the software program
may be analyzed, with the results being provided by the
event statistics 110. For example, if execution of different
portions of the software program satisfies condition 130a,
information regarding those portions may be combined
within event statistics 11056. If portions of the software
program that satisfy condition 130q also satisty condition
130a, for example, information regarding those portions
may be combined within event statistics 1104

In some embodiments, the event statistics 110 may be
organized into levels 140. Event statistics 110 at a particular
level 140 are generally associated with a certain action that
may occur during execution of a portion of the software
program. For example, the event statistics 1105 at level 140a
may be associated with accessing a cache memory. For
instance, satisfaction of condition 130a may require at least
a certain percentage ol cache memory access attempts to be
successiul. In some embodiments, 11 execution of the portion
of the soitware program does not satisiy the condition 130aq,
information regarding the portion may not be included 1n the
event statistics 1105.

In some embodiments, 1f information regarding a certain
portion of the software program 1s not included 1n event
statistics 110 at a particular level 140, information regarding
that portion may not be included 1n event statistics 110 at
levels 140 below the particular level 140. For example, 1f
event statistics 1105 at level 140a do not include information
regarding a portion of the software program, event statistics
110c—2 at levels 140b—d may not include information
regarding the portion.

Referring to FIG. 2, a performance tree 100 may provide
a way to visualize event statistics 110 of a source training
data set, for example. Executing a function, which 1s a
portion of software code, may cause certain events to occur.
An event may be defined as an action performed 1n response
to instructions included 1 a function. An event ratio 120
may indicate the number of times or the frequency with
which an event occurs during execution of the software
code.

In FIG. 2, the event ratios 120 may be processor ratios,
such as “first level cache load hit rate” 120a, “machine clear
count performance impact” 1205, “TC delivery rate” 120c,
or “first level cache load miss performance impact” 1204, to
give some examples. For example, a “first level cache load
miss rate” event ratio 120a may equal the number of times
the first level cache 1s not successtully accessed, divided by
the number of memory access instructions executed. A
“machine clear count performance impact” event ratio 12056
may equal the number of times the processor had to stop
processing, divided by the number of clock cycles that occur
during execution of the software code. A “TC delivery rate”
event ratio 120¢c may equal the number of times an instruc-
tion from the trace cache 1s delivered, divided by the number
of clock cycles that occur during execution of the software
code. A “first level cache load miss performance impact”
event ratio 1204 may equal the number of times the first
level cache 1s not successtully accessed, divided by the
number of clock cycles that occur during execution of the
software code.

A collection of event ratios 120 may be defined as a trace.
A trace may be provided by executing a function on a
processor, for example. Each function may provide a dii-
ferent trace when executed. However, different traces need
not necessarily include different event ratios 120. An event
ratio 120 1s generally included in a trace i1t the event

US 7,228,534 B2

3

associated with the event ratio 120 1s performed during
execution of the function associated with the trace. For
example, the “first level cache load miss rate” event ratio
120a may be included 1n a trace 11 the first level cache 1s not
successiully accessed during execution of a function from
which the trace 1s provided.

Event statistics 110 may indicate whether traces that
include a certain event ratio 120 satisiy a particular condi-
tion 130. A condition 130 may indicate that an event ratio
120 may equal a particular value or fall within a particular
range ol values. For those traces that satisiy the particular
condition 130, the event statistics 110 may indicate the
number or percentage of traces provided from functions
having a certain configuration. For instance, event statistics
11046 1n FIG. 2 indicate that, of the 670 traces that have a
“first level cache load hit rate” event ratio 120a greater than
or equal to 96.394, 424 traces have a first configuration and
246 traces have a second configuration.

The source training data set may be defined as a collection
of traces. In some embodiments, the source training data set
may be compared to another trace to determine an optimi-
zation of the function from which the other trace 1s provided,
for example. In FIG. 2, the source training data set may
include 2078 traces, as indicated in event statistics 110a. Of
those 2078 traces, 979 traces may correspond to a first code
configuration, and 1099 traces may correspond to a second
code configuration. For example, the event statistics 110a
may indicate that 47.11% of the traces that include the “first
level cache load hit rate” event ratio 120a correspond to the
first code configuration, and 52.89% of the traces that
include the “first level cache load hit rate” event ratio 120a
correspond to the second code configuration.

In some embodiments, the source training data set may be
used to train an expert system. An expert system may use a
knowledge base of human expertise to solve a problem. For
example, the expert system may be used to analyze another
trace and determine an optimization of a function associated
with the trace.

In some embodiments, the optimization of a function may
be inferred by the event statistics 110 associated with a trace
provided by the function. An optimization 1s generally a
numerical representation of the efliciency with which a set
ol instructions may be executed. The optimization 1s gen-
erally a floating point value from 0 to 1. For example, 1n
some embodiments, a value of 1 may indicate that the set of
instructions 1s written to execute as etliciently as possible on
a particular processor. A value less than 1 may 1ndicate that
changes to the set of instructions may allow it to execute
more efliciently.

For example, in FIG. 2, event statistics 1106 indicate that
63.28% of the traces that satisfy condition 130a may be
provided by functions having a first code configuration, and
36.72% of the traces may be provided by functions having
a second code configuration. It may be inferred that, 1 a
trace satisfies condition 1304, the function from which the
trace 1s provided has a 63.28% probability of having a first
code configuration and a 36.72% probability of having a
second code configuration. For example, 1 the function
having the second code configuration 1s written to execute as
clliciently as possible on a particular processor, the optimi-
zation of the function may be inferred to be 36.72%, or
0.3672.

A set of instructions included in a function may operate
according to a certain specification, for example, such as
calculating an output varniable based on an input. Although
multiple sets of mstructions may each operate according to
the same specification(s), the different functions may have

10

15

20

25

30

35

40

45

50

55

60

65

4

different execution times. An execution time 1s the time to
execute a set of instructions. The execution time may be a
processor-specific measure. For example, a {first set of
instructions may run faster than a second set of instructions
on one type ol processor, but slower on another. In some
embodiments, the set of mstructions may be obtained from
a C/C++ source code using a compiler. For example, a
compiler may construct a set of instructions in a certain
configuration that does not rely substantially on processor-
specific 1mstructions. Such a set of instructions 1s generally
not highly optimized with respect to a particular processor.
On the other hand, a compiler or a software engineer may
generate a set of instructions in another configuration to
operate as quickly as possible on a particular processor.

An event ratio 120 may be a low-level characterization of
how efliciently software code 1s executed on a processor. An
event ratio 120 differs from an optimization in that the event
ratio 120 may indicate the number of times an event occurs
during execution of a certain number of functions; whereas,
the optimization may indicate the probability that an
executed function has a particular configuration. An event
may be accessing a first level cache, stopping the execution
of an istruction, or delivering a particular type of data, to
give some examples. The event ratio 120 may be normalized
to indicate the frequency with which the event occurs with
respect to another value. For example, the number of times
the event occurs may be divided by the total number of
functions executed. In some embodiments, a software engi-
neer may be able to increase the performance of software
code by analyzing the event ratios 120 associated with a
particular function.

In some embodiments, a performance impact may be a
type of event ratio 120 1 which the number of times an
event occurs 1s divided by the number of clock cycles that
occur during execution of the software code. For example,
a “first level cache load miss performance impact” event
ratio 1204 may equal the number of first level cache misses
divided by the total number of clock cycles. For example, a
“machine clear count performance impact” event ratio 12056
may equal the number of times the processor had to stop,
divided by the total number of clock cycles.

In some embodiments, a hit rate may be a type of event
ratio 120 1n which the number of times an event occurs 1s
divided by the total number of actions associated with the
event. The hit rate may differ from the performance impact
in that the divisor for the hit rate may be the total number of
actions associated with the event, rather than the number of
clock cycles. For example, a “first level cache load miss
rate” event ratio may equal the number of first level cache
misses divided by the total number of memory access
instructions executed. The “first level cache load hit rate”
event ratio 120 may equal 100% minus the “first level
cache load miss rate” event ratio. In another example, a
“machine clear count miss rate” event ratio may equal the
number of times the processor had to stop, divided by the
total number of mnstructions executed. The “machine clear
count hit rate” event ratio may equal 100% minus the
“machine clear count miss rate” event ratio.

Referring to FIG. 3, a processor-based system 200 may be
any processor-based system, including a desktop computer,
a server, or a computer network, to mention a few examples.
The system 200 may include a processor 210 coupled over
a bus, for example, to an input/output (“I/0O”) device 220, a
display 230, and a memory 240. In some embodiments, the
I/O device 220 may be any device that allows the user to
make selections from a user interface 250 that may be stored
in the memory 240.

US 7,228,534 B2

S

The user interface 250 may be a graphical user interface
that displays text or symbols to enable the user to make
selections of events to be included 1n a source traiming data
set. Generally, a user may use the I/O device 220 to select
a source training data set from the user interface 250. In
accordance with one embodiment of the present invention,
a source training data set may be stored so as to be accessed
through the user interface 250. A function may be executed
on the processor 210 to provide event statistics. The event
statistics may be collected using an event sampling feature
of a software application, such as VTune™, which 1s owned
by Intel Corporation, 2200 Mission College Boulevard,
Santa Clara, Calif. 95052-8119. The event statistics may be
stored 1 the memory 240 and may be displayed on the
display 230 1n the form of a performance tree 100 (see FIG.
2), for example.

Referring to FIGS. 4A and 4B, an optimization routine
300 may estimate an optimization of a function using traces
ol a source training data set, for example. In some embodi-
ments, a function may be modified by the optimization
routine 300, so that the function may execute more efli-
ciently on a particular processor 210 (see FIG. 3), for
example. In some embodiments, the optimization routine
300 may determine the function that executes most 1neth-
ciently. The optimization routine 300 may be stored in a
memory 240 (see FIG. 3), for example.

The optimization routine 300 may include executing a
first function to provide a first trace, as indicated at block
305. In some embodiments, a second function may be
executed at block 310 to provide a second trace. For

example, the first trace and/or the second trace may include
event ratios 120 (see FIG. 2).

In some embodiments, the first function may be an
optimized function, and the second function may be an
un-optimized function. A function may be optimized when
the function 1s written to execute efliciently on a particular
processor 210. In some embodiments, the optimized func-
tion may be written to execute as efliciently as possible on
the particular processor 210. An un-optimized function may
be written such that changes to the function may allow the
function to execute more ethiciently.

In some embodiments, executing an optimized function
and an un-optimized function may provide a way to estimate
an optimization of another function. A third function may be
executed at block 315 to provide a third trace. In some
embodiments, the third trace may include the event ratios
120. For example, 1n some embodiments, the optimization
of the third function may be interpolated or extrapolated
using the optimizations of the first and second functions.

In some embodiments, the first trace and the second trace
may be selected to be included 1n a source training data set.
In some embodiments, the first trace and/or the second trace
may be randomly selected, as indicated at block 320. For
example, 1 some embodiments, random selection may
provide a more robust source training data set than deliber-
ate selection of the traces.

The traces may include event statistics 110 (see FIG. 2),
such as the number of times an event occurs during execu-
tion of the first and second functions. In some embodiments,
the number of times the event occurs may be normalized at
block 325. For mstance, an event statistic 110 may equal the
number of times an event occurs divided by the number of
clock cycles within a particular period of time. In some
embodiments, normalizing an event may enable a statistic
associated with the event to become less dependent upon the
input data size.

10

15

20

25

30

35

40

45

50

55

60

65

6

The source training data set may be used to train an expert
system, for example, at block 330. In some embodiments,
the expert system may be a partition tree system, such as a
Classification and Regression Trees™ (“CART”) system,
registered to California Statistical Software, Inc., 961 York-
shire Ct., Lafayette, Calif. 94549-4623. In some embodi-
ments, the expert system may be a gradient boosted tree
system, such as a Multiple Additive Regression Trees™
(“MART”) system, developed by Jerome H. Friedman,
Department of Statistics and Stanford Linear Accelerator
Center, Stanford Umniversity, Stanford, Calif. 943035. The
expert system may be stored in memory 240 (see FIG. 3), for
example. In some embodiments, functions having difierent
optimizations may be used to provide traces that are
included in the source traiming data set. In such cases,
particular traces may be associated with particular optimi-
zations.

Traces of the source training data set may be analyzed at
block 335, along with the third trace, to determine the
optimization of the third function, as indicated at block 340.
For example, i1 the optimization 1s determined to be a value
close to 1, then the third function may be close to optimal 1n
terms of low-level execution. In another example, an opti-
mization close to 0 may indicate that performance of the
third function may be significantly improved.

An 1ssue may be defined as mefliciency 1n a program. For
example, execution of a function may provide a trace for
which an event statistic 110 may equal zero. The 1ssue 1n this
example may be that the event did not occur during execu-
tion of the function. For example, if an 1ssue arises with
respect to the third function, as determined at diamond 345,
the severity of the 1ssue may be determined at block 350. For
example, 1ssues of diflerent types may be assigned different
severity values, though some types of issues may be
assigned the same severity value. In some embodiments, the
severity of an 1ssue may indicate the importance of its
resolution. In some embodiments, a threshold may be estab-
lished. For example, a severity above the threshold, as
determined at diamond 355, may indicate that the 1ssue 1s a
performance problem. In some embodiments, 1ssues that do
not qualily as performance problems may not be resolved.

For example, if no other performance problems have a
higher severity than the performance problem regarding the
third function, as determined at diamond 360, a set of
instructions included 1n the third function may be modified
to resolve the performance problem regarding the third
function, as indicated at block 365. If another performance
problem has a higher severity than the performance problem
regarding the third function, as determined at diamond 360,
the performance problem having the highest severity may be
determined at block 370. In such a case, a set of instructions
included 1 a function associated with the performance
problem having the highest severity may be modified to
resolve the performance problem having the highest sever-
ity, as indicated at block 375.

While the present invention has been described with
respect to a limited number of embodiments, those skilled in
the art will appreciate numerous modifications and varia-
tions therefrom. It 1s intended that the appended claims
cover all such modifications and variations as fall within the
true spirit and scope of this present invention.

What 1s claimed 1s:

1. A method comprising:

executing a first function having a known optimization

and a second function, the first function to provide a
first trace and the second function to provide a second
trace; and

US 7,228,534 B2

7

analyzing the first trace and the second trace to determine

an optimization of the second function.

2. The method of claim 1 further including randomly
selecting the first trace to determine the optimization of the
second function.

3. The method of claim 1 further including normalizing a
number of times an event occurs during execution of the first
function.

4. The method of claim 1 including training an expert
system using the first trace and analyzing the second trace
using the expert system.

5. The method of claim 1 including training a partition
tree system using the first trace and analyzing the second
trace using the partition tree system.

6. The method of claam 1 including training a gradient
boosted tree system using the first trace and analyzing the
second trace using the gradient boosted tree system.

7. The method of claim 1 further including executing a
third function having a known optimization, the third func-
tion to provide a third trace, and analyzing the first trace and
the second trace includes analyzing the third trace.

8. The method of claim 7 including executing a first
function that 1s optimized and executing a third function that
1s un-optimized.

9. An article comprising a medium storing instructions
that, 1t executed, enable a processor-based system to:

execute a first function having a known optimization and

a second function, the first function to provide a first
trace and the second function to provide a second trace;
and

analyze the first trace and the second trace to determine an

optimization of the second function.

10. The article of claim 9 further storing mstructions that,
iI executed, enable the system to randomly select the first
trace to determine the optimization of the second function.

11. The article of claim 9 further storing istructions that,
il executed, enable the system to normalize a number of
times an event occurs during execution of the first function.

12. The article of claim 9 storing instructions that, 1f
executed, enable the system to train an expert system using
the first trace and to analyze the second trace using the
expert system.

13. The article of claim 9 storing instructions that, 1f
executed, enable the system to train a partition tree system
using the first trace and to analyze the second trace using the
partition tree system.

14. The article of claim 9 storing instructions that, 1f
executed, enable the system to train a gradient boosted tree
system using the first trace and to analyze the second trace
using the gradient boosted tree system.

10

15

20

25

30

35

40

45

8

15. The article of claim 9 further storing mstructions that,
iI executed, enable the system to execute a third function
having a known optimization, the third function to provide
a third trace, and to analyze the third trace.

16. The article of claim 15 storing instructions that, i
executed, enable the system to execute a first function that
1s optimized and to execute a third function that i1s un-
optimized.

17. A system comprising: a processor-based device; and a
storage coupled to said device storing instructions that, 1f
executed, enable the processor-based device to enable a:
Means for executing a first function having a known opti-
mization and Means for executing a second function, the
first function to provide a first trace and the second function
to provide a second trace, and a Means for analyzing the first
trace and the second trace to determine an optimization of
the second function.

18. The system of claim 17 further storing instructions
that, 11 executed, enable the processor-based device to ran-
domly select the first trace to determine the optimization of
the second function.

19. The system of claim 17 further storing instructions

that, 1t executed, enable the processor-based device to nor-
malize a number of times an event occurs during execution

ot the first function.

20. The system of claim 17 storing instructions that, 1f
executed, enable the processor-based device to train an
expert system using the first trace and to analyze the second
trace using the expert system.

21. The system of claim 17 storing instructions that, 1f
executed, enable the processor-based device to train a par-
tition tree system using the first trace and to analyze the
second trace using the partition tree system.

22. The system of claim 17 storing instructions that, 1f
executed, enable the processor-based device to train a gra-
dient boosted tree system using the first trace and to analyze
the second trace using the gradient boosted tree system.

23. The system of claim 17 further storing instructions
that, 1f executed, enable the processor-based device to
execute a third function having a known optimization, the
third function to provide a third trace, and to analyze the
third trace.

24. The system of claim 23 storing instructions that, 1f
executed, enable the processor-based device to execute a
first function that 1s optimized and to execute a third function
that 1s un-optimized.

	Front Page
	Drawings
	Specification
	Claims

