12 United States Patent

Ohazama et al.

US007225207B1

(10) Patent No.: US 7,225,207 B1
45) Date of Patent: May 29, 2007

(54) SERVER FOR GEOSPATIALLY ORGANIZED
FLAT FILE DATA

(75) Inventors: Chikai J Ohazama, Sunnyvale, CA
(US); Phillip C Keslin, San Jose, CA
(US); Mark A Aubin, Sunnyvale, CA

(US)
(73) Assignee: Google Inc., Mountain View, CA (US)

(*) Notice: Subject to any disclaimer, the term of tha

S

patent 1s extended or adjusted under 35

U.S.C. 1534(b) by 632 days.
(21) Appl. No.: 10/270,272
(22) Filed: Oct. 10, 2002

Related U.S. Application Data

(60) Provisional application No. 60/328,487, filed on Oct.

(38) Field of Classification Search 707/1-10,
707/100-104.1, 200-205; 709/203; 701/213

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,901,428 B1* 5/2005 Frazier et al. 709/203
2003/0069693 Al* 4/2003 Snapp et al. 701/213

* cited by examiner

Primary Examiner—Mohammad Al
(74) Attorney, Agent, or Firm—Fenwick & West LLP

(57) ABSTRACT

A flat file data organization technique 1s used for storing and
retrieving geospatially organized data. The invention
reduces transier time by transferring a few large files in lieu
of a large number of small files. It also moves the process of
locating a given data file away from the file system to a

10, 2001. proprietary code base. Additionally, the invention simplifies
database management by having quadtree packets generated
(51) Int. CL. on demand.
GO6F 17/30 (2006.01)
(52) US.CL ..., 707/203;°707/104.1 6 Claims, 13 Drawing Sheets
- ol
QuadTreePackel | Quad TreePacket 2
fﬁ@iﬁ?@i {C}D{}{C}ﬁ}
%WJ “‘:‘EEET,‘LETEEZZE‘;TJ”‘ |
2ot A 3018
QuﬂdTrecQuﬂntum List] QuadTmEQuﬂnlum List 2
{}{}{}{Dﬁ} S on {}DQ}{}{} 2108
____________________________________ To\ J0I(

15 there another
Quad TrecQuantum
w st 17

Is there another
QuadTreeQuantum
i List 27

%3

™a

Add QuadTreeQuanium 2

Quad TreeQuantum l1sl

ta merged

Create Merped | - ?
QuadTreePacket iy

A

Merge the Quad TreeQuantums together

-
v

Mut merged CQuadTreeJuantum
into Merged QuadlreeQuantum List
4

l fli}

1s the cinld number of
QuadTreePostion |
lessfgrealer/oqual than
the child number of
Quad TreePosition 27

Y 308 1 $08
Get first/ned] Is there another No | Add QuadTreeQuantum | Merped
Quad TreeQuantum | Quad TrecQuantum to merged i QuadTrecQuantum List
e i ouiteedunaist | e Ny [e
y &
Compute Get first/next
QuadTreel'osition of QuadTreeOuantum ik D‘f:} Compute ‘
o Qo et b2 o Sttt = 2o
mbisth 5 3& [7'-" {'} nLlist2 3

2

15 the level of
CuadTreePosition |
lesshgreater/equal than
the level af
{JuadTreePosttion 27

egu il

fess

‘“3“4 v

Into Quad TreeQuantum List 1

Put back Quad TreeQuantum 1] ™

greater r
Add Quad TreeQuantum 2 Put back Quad TrecCriantum 2
to Merged > Inte Quad TreeQuantum List 2
Quad Tree{uantum Lisi e _Tj 7
t
g { Y
E314 Add QuadTreeQuantum |
to Merged "'%
QuadTrce?uuntum List

\
¥

U.S. Patent May 29, 2007 Sheet 1 of 13 US 7,225,207 B1

(100
s [0 (_______________
-] e < BT S o Lo A
| } o ‘F“‘.b‘frib'-=i§=-'i5=w_ﬂ=i;'; :
Get Root : | @f;‘;ﬁs&&ﬁ%&%ﬁ' I
QuadTreelndexSection |®-----~-=----- > bl S Sinn _&.:.""::r F==--
fom KFF_ors A=
é) ' "
PN | ===
_______________________ |
! KFF :
[{ 000 \ 70 £
QuadTreePosition (o2 E
2 I
:
'.‘
— - e
|
! :
Does Quad [reelndexSection No Get next QuadTreelndexSection \
contam the node described e ke (€T +
by the QuadTrecPosition? = :
6 o ;
} B i
i
i
{ Yes ((o Y E
S ,
} _ 1 [ok ‘
- — e e e iy :
| = :
| : :
; " i I
Get the QuadTreelndexNode Get the QuadTreeFileList : :
‘ associated with the ! '
dentified by the QuadTreePosttion 4---------- e R R e bbb Dl
from the QuadTreeindexSection QuadTreelndexSection :
mineuaginee from KFF E
i
| O [] :
L — — :
:
:
— i
\
107 :
I
E
| e
Get the QuadTreeFile Entries v
from the QuadTreeFileList -
| pomted to by the QuadTreeindexNode Get Quad TreeFilePosition
and size of Data Name
Data Packet from
— QuadTreelile Entry
——
i St I\-I‘e Does Data Name cxist m the Yes Get Data Packet —— [
. am QuadTreeFile Entries? At QuadTreePosition

No

//12, — {13

CData Packet Not Found) Data Packet Found

FIG. 1

U.S. Patent May 29, 2007 Sheet 2 of 13 US 7,225,207 B1

Legend

- Datapacket

O QuadTreelndexNode

—> QuadTreeFilePosition

20 QuadTreelPosition

——— - QuadTreeFileEntry

E - QuadTreeFileList

FRdle, - QuadTreelndexSection

{:} - QuadTreeQuantum

{}{}{}{} {} - QuadTreelacket

FIG. 1A

U.S. Patent

QuadTreelosition
of the QuadTreePacket

2

May 29, 2007

Get the QuadTreelndexSection
that imcludes Quad TreclndexiNode
at the QuadTreePosition from KFF

e
oueammapmonnr || Sl
identified by the Quad TreePosition QuadTreeind .
from the Quad TreelndexSecton ' fom KFE

Q

Sheet 3 of 13 US 7,225,207 B1

mi

‘#f
d"‘

i&e&é&&&-ﬂ:--_&-&

nbTee §° 45~ 227 55

A

\’J .
W

[]

Get the QuadTreeFikeEntrics

from the QuadTreel ke List
pointed 10 by the QuadTrecindexNode

20%

Create QuadTreePosition
for I#chid 0

Create QuadTreePosition
for 2= child
2

Create QuadTreePosition

for 34 child
2>

Create QuadTreePosition
for 2= chiid I

Create a2 QuadTrecQuantum
from the Quad TreeFileEntries

i

Add QuadTrecQuantum
to the Quad TreeQuantom List

Do the children at
Quad TreePostion extend beyond
the Quad TreePacketDepth?

TN
Quad TreeQuantum List
OG0 |
| Ay
> Is there a 2% child Is this the last
T at Quad TrecPos tion? Quad TreelndexNode
(o be processed?
No
Yes 2t 1
<> Is there a 34 child | . _
. at Quad TreePasition? Create Quad TreePacket
Is therea 4% child
gt Quad TreePosition?
§ Ol

FIG. 2

U.S. Patent

May 29, 2007

Create QuadTreeQuantum List
from QuadTreePacket |

v

QuadTreeCQuantum List |

slelelele

- i e oy un W EE R mk TN AN B gy o e s T A Ea oam S

e g W e e W W OB B B B Em A g A A ey g W e e A

Create QuadTreeQuantum List
from QuadTreePai: ket 2
3o\R

J—

QuadTrccQuantum List 2

{DG{}{} 2108

Zalﬁr

- O S T W EE EE TS OWE Y A R EE O B EE A e ey W W O W B B B B TS S ay o m EE By W A W

o2

Is there another No
QuadTrecQuantum
n List 17

Yes

Z

Sheet 4 of 13

So\Y

Is there another
QuadTreeQuantum
n List 27

to merged
QuadTreeQuantum list

Add QuadTreeQuanium 2

US 7,225,207 B1

— e e e TR e e ™ e o o e T o agy g e wer g SR

Get first/nexst 1~
QuadTreeQuantum
from List |

i
4

Compute
QuadTreePositwon of
next QuadTreeQuantum

in List | D\r\b(f

R N iaiinieliel

Add QuadTreeQuantum 1
to merged

QuadTreeQuantum list

Is there another
QuadTreeQuantum
n List 27

Get first/next
1l 209

QuadTreeQuantum

P Ay Sl

Create Merged 1 - ke
QuadTreePacket H

3

Merged

QuadTreeQuantum List

OO0 /4

from List 2

<12

Merge the QuadTreeQuaniums together

Is the child number of
QuadTreePosiion |
less/greater/equal than

the child number of
QuadTreePosition 27

Put merged Quad TreeQuantum

nto Merged QuadTreeQuantum List |

greater

LZM v

-

Compute

QuadTreePosiion of
next QuadTreeQuantum

nList2 5 |

T 2o

Is the level of
CQuadTreePosition |

less/greater/equal than

the level of
QuadTreePosition 27

greater

3![

J———

Put back QuadTreeQuantum |
Into QuadTreeQuantum List 1

Add QuadTreeQuantum 2
to Merged
Quad TreeQuantum 115t

jtils’ (

316

h

Put back QuadTrceQuantum 2
Into QuadTreeQuantum List 2 |

FIG. 3

' Add QuadTreeQuantum |

to Merged
l QuﬂdTree(?uantum List

\

35

U.S. Patent May 29, 2007 Sheet 5 of 13

Has the user ~ o |
repisterad the client

Application”?

Yes

No

Get First Name. Last Name. and
Registration Id from User

Get Encryption Key
From Server Hﬁg

Encrypt Fust Name, i

Last Name, and
=" — 0
Registration Id - T

Send Encrypted message
To Server for Verfication - Mo 5,

e b

Is ot a valid NG

Registration 1d?

Exn

Yes

Send Encrypted
Registration [d and request HO¥
a Session Key

Ho"
No

/

Is it a valig

. Exit
Registration [d? ~

Yes

Send as sessjon key
back to clent
"
Y14

US 7,225,207 B1

~ L o77

U.S. Patent May 29, 2007 Sheet 6 of 13 US 7,225,207 B1

Send Session Key
With a data packet
Request to the server

Decrypt the Session Key
On the server side

-

Get Expration time So
Get Package Ids S'O‘-[

Get Curmrent Time S"Df’

[s the current
trime past the

expiraton timg”?

Deny Access
404 error

[s the data packet
requested accessible

to the user given the
list of package Ids?

Deny Access
404 error fD c?

Yes

Send Requested

Data Packet

U.S. Patent May 29, 2007 Sheet 7 of 13 US 7,225,207 B1

List of

gm————— vadTree Structure
Data ltems Q

- -

o)

ol

\

—b{_ Get [Data ltem from List

Add Data Item nto l ______

QuadTree Structure l) -
Get Data Items in Node (07

i,

|4------4
|

I I R

Get Node from
QuadTree Structure

-y B S ws e um Em B W B B e e v W R bt e g oo bk am gy AR am SR

Create Data Packet |\, £ oF
For Data Itemns

Yes Are there more
[Data Items In
the List?

D e :
oAk, S fogd, AR L. A bady |
Q,o L1 Put Data Packet P ‘-nhTrt: V= w8 AT T !
mnto KrF : (: ‘ﬁﬁé‘.@%} :.
: IO AT
- [Poo pul Ermmamratommmtdoess |
Loo [e -
lCoo K¥F K
Yes Are there more Az
nodes m the
QuadTree Structure?
O

No

FIG. 6

U.S. Patent May 29, 2007 Sheet 8 of 13 US 7,225,207 B1

705

~

Kevhole Earthviewer 3D
Data . Earthserver
(ustomer Migration Hatfile Datastream
Data B Database 3

Tool

Server

S (ksffdl}) Ser Earthvie wer HT ML i
i __k. —

70 | 7o 2 703 7oA o0

FIG. 7

U.S. Patent May 29, 2007 Sheet 9 of 13 US 7,225,207 B1

;; 0 0\
/0 0 O O
/00000000

I =

Quadtree Data File
Packet List

KO 02

f.’ot

FIG. 8

U.S. Patent May 29, 2007 Sheet 10 of 13 US 7,225,207 B1

Q00

chiid 3
QoL “oLe

child (chid 1
A0 A Aol D

parent

U.S. Patent May 29, 2007 Sheet 11 of 13 US 7,225,207 B1

(OO
Data Section o /

U.S. Patent May 29, 2007 Sheet 12 of 13 US 7,225,207 B1

BaseTree ’ | OC

U.S. Patent May 29, 2007 Sheet 13 of 13 US 7,225,207 B1

[Zoo
--.-——'""—-_-
SubTree
HO] \
r-_/a '"""Z;é'""l;&“:% """ PR 5 """ ;T:?:?."i
| 6 EN ,6 3 J ,© :
0! :@.&@1&2 :&&éﬁ&q PYETN B RG, B8y, iy, ARbns,

L |
|
]
b - m a\. m Em ;
|
:

Pr oy o p o g e e o it R W W A S gy T O WT W i TR == "TTr . - IR i

US 7,225,207 Bl

1

SERVER FOR GEOSPATIALLY ORGANIZED
FLAT FILE DATA

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims prionity from U.S. provisional

patent application Ser. No. 60/328,487 for “Server For
Geospatially Organized Flat File Data,” filed Oct. 10, 2001,

the disclosure of which 1s incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention 1s related to organization and pro-
cessing of flat file data, and more particularly to systems,
methods, and computer program products for delivering
content from several flat file databases that can reside locally
and/or remotely.

2. Description of the Background Art

Conventionally, stored data on a server i1s organized
according to a plurality of files 1n a file system. In an
application for storing, retrieving, and drawing geospatially
organized data (such as an interactive viewer for geospatial
data), each node may use a separate file for each drawable,
with the various files being orgamized in a hierarchy of
directories. Data representing imagery can be stored in
basically the same way, possibly with different directory
hierarchy and file naming protocols (for example, the clip-
gen format). Quadtree packets, which are the data files that
are sent to the client that describe the quadtree structure and
contents of the database, are computed beforehand and
stored as files on the server. If a large amount of data 1s to
be managed, creation and storage of such a database can
overload a conventional file system. In order to mitigate the
strain on the file system, a special output format may be
employed to transfer the files. Even with such an arrange-
ment, large amounts of data can result 1n corruption of the
file system.

SUMMARY OF THE INVENTION

In order to avoid the excessive transier time and inefli-
ciency ol using a conventional file system, the present
invention employs a flat file data organization technique,
referred to herein as “Keyhole Flatfile,” or KFF, for storing,
and retrieving geospatially organized data. KFF reduces
transier time by transferring a few large files 1n lieu of a
large number of small files. It also moves the process of
locating a given data file away from the file system to a
proprietary code base. Finally, KFF makes database man-
agement much easier by having the quadtree packets gen-
erated on demand. Items can be added to the database by
simply 1nserting the files rather than inserting and regener-
ating the approprniate quadtree packets. Keyhole Flatfile
assumes very low cache coherency, to account for the fact
that 1n an application such as a geospatial data viewer, users
might be looking at multiple different places on the globe, so
that requests are likely to hit disparate parts of database and
not just one location. Given this scenario, it 1s beneficial to
mimmize disk seeks. The indexing system of Keyhole
Flatfile 1s a quadtree-based structure, wherein each node
points to a location 1n a binary file that contains the data files.

In practice, the Keyhole Flatfile system has actually
benefited significantly from the caching of the file system.
Since 1t was designed for the worst-case scenario, 1t per-
forms better than expected during normal access to the

10

15

20

25

30

35

40

45

50

55

60

65

2

server. A memory caching system may be employed 1n
conjunction with Keyhole Flatfile, 1f desired. Performance
may be further improved by adding more memory to the
SErver.

Kevhole Flatfiles may be accessed directly over the
Internet by applications such as Earthviewer 3D and Earth-
viewer PocketPC. Earthviewer HTML viewer accesses the
data directly on the server and delivers the rendered image
to the web browser.

The present mvention uses a quadtree index not only to
help find data objects within a massive database, but also for
fast delivery of the quadtree index itself to a remote appli-
cation. This 1s accomplished by a four-level sectioning of the
quadtree index, which allows for the quadtree packets to be
generated with a minimal amount of reads from disk. The
invention further provides the ability to quickly merge
quadtree packets on the fly, thus allowing delivery of mul-
tiple databases without requiring that they be preprocessed
into one database. Such functionality has benefits 1n the
management of the database and for rapid deployment of
new data.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a flow chart of KFF data retrieval according to
one embodiment of the present invention.

FIG. 1A 1s a legend for various Figures of the present
application.

FIG. 2 1s a flow chart of Quadlree packet generation
according to one embodiment of the present invention.

FIG. 3 1s a flow chart of Quadlree packet merging
according to one embodiment of the present invention.

FIG. 4 1s a tlow chart of obtaining a session key according,
to one embodiment of the present invention.

FIG. 5 1s a flow chart of using a session key with a data
packet according to one embodiment of the present mven-
tion.

FIG. 6 1s a flow chart of general data migration according,
to one embodiment of the present invention.

FIG. 7 1s a flow chart of the basic system flow according
to one embodiment of the present invention.

FIG. 8 1s a diagram showing a QuadTree packet and data
file list according to one embodiment of the present inven-
tion.

FIG. 9 1s a diagram showing a QuadTree-based approach
to spatially organize data according to one embodiment of
the present invention.

FIG. 10 1s a diagram showing a data section according to
one embodiment of the present invention.

FIG. 11 15 a diagram showing a basetree structure accord-
ing to one embodiment of the present invention.

FIG. 12 1s a diagram showing a subtree structure accord-
ing to one embodiment of the present invention.

DETAILED DESCRIPTION OF TH.
PREFERRED EMBODIMENTS

(Ll

Definitions

EarthServer DataStream—A server employing the tech-
niques of the present invention.

Earthviewer 3D—A client application for viewing data
provided via EarthServer DataStream.

Earthviewer PocketPC—A client application for viewing
data provided via EarthServer DataStream.

US 7,225,207 Bl

3

Earthviewer HTML—An HTML-based viewer for view-
ing data provided via EarthServer DataStream.

Kevhole Binary File (KBF)—A file containing drawable
packets that are concatenated one after another with a header
describing where 1t should go in the database attached to the
front of each packet.

Kevyhole Flat File (KFF)—A file containing a set of data
packets that are spatially indexed. It 1s the primary data
format for EarthServer DataStream.

Raw Flat File (FF)—A file contaiming imagery or terrain
tiles that are concatenated one after another with a header
describing where 1t should go in the database attached to the
front of each tile.

dbRoot—A file containing the version and channel infor-
mation of a given KFFDB. It 1s used 1n deployment of a

KFFDB to the EarthViewer 3D client.

QuadTree Packet—The QuadTree packet contains a set of
nodes organized in recursive order describing the contents of
the database at those specific nodes. This 1s the data packet
that 1s sent to the EarthViewer 3D client to tell it what 1s
contained 1n the KFFDB database.

Drawable Packet—This packet contains a set of draw-
ables that can include, etSite (labeled points), etStreet
(labled lines for drawing streets), and etPolyLines (multi-
point line). These packets are associated with a particular
node 1n the QuadTree and are sent to the client in order to
draw such things as roads, points of interest, and state
borders.

Image Tile—This 1s a one section of 1magery at a par-

ticular resolution and position (1.e. a particular point 1n the
QuadTree).

Terrain Tile—This 1s a one section of the terrain at a
particular resolution and position (i1.e. a particular point in

the QuadTree).
System Architecture

Referring now to FIG. 7, the basic tlow of the EarthServer
DataStream product consists of first taking the customer’s
data 701 and converting 1t via a data migration tool 702 into
a Kevhole Flatfile Database (KFFDB) 703. This KFFDB 1s
then transferred over to EarthServer DataStream server 704
and 1ts contents are then delivered to the Earthviewer

products (such as Earthviewer 3D 705 and/or Earthviewer
HTML 706) over the Internet.

Data Migration

Referring now to FIG. 6, there 1s shown a tlowchart of
data migration as performed by data migration tool 702
according to one embodiment of the present invention. Tool
702 gets 602 a data item from list 601 of data items, and adds
603 the data item to QuadTree structure 605. If, 1n 604, there

are more data 1tems 1n list 601, tool 702 returns to step 602.
Otherwise, 1t proceeds with steps 606 through 610. Tool 702

gets 606 a node from QuadTree structure 605 and gets 607
data 1tems in the node. It then creates 608 a data packet for
the data items and puts 609 the data packet imnto Keyhole
Flatfile database 703. If, in 610, there are more nodes in
QuadTree structure 605, tool 702 returns to step 606. Oth-
erwise the data migration process 1s complete.

Keyhole Flat File Database

The KFFDB 703 can come i two forms. One 1s a
Kevhole Flatfile (KFF) and the other 1s a combination of a
KFF and a set of Keyhole Binary Files (KBF).

There are three main parts to a KFF file:
Data 1000

Baselree 1100

SubTree 1200

5

10

15

20

25

30

35

40

45

50

55

60

65

4

Retferring now to FIG. 8, there 1s shown an example of a
QuadTree packet 801 and data file list 802 according to one
embodiment of the present invention. Referring also to
FIGS. 10, 11, and 12, there are shown examples of structures
for data section 1000, Baselree 1100, and SubTree 1200
respectively. The data section 1000 contains the data files
1001 that are mserted into the KFF. The Baselree 1100
contains all the nodes 1101 A at the base of the tree, which
are all nodes 1101A that reside on the first 12 levels. The
SubTree contains all the nodes 1101B below the base of the
tree. The nodes 1101 of the QuadTree packet 801 are stored
in four-level packets; each packet has an associated list of
data file names and locations. Each node 1101 indexes into
that list to store the data file names and locations that are
associated with that particular node 1101. The list of data file
names and locations 1s stored 1n the data section 1000.

In one embodiment, the data section 1000 holds data files
1001 and QuadTreeFileLists, the Baselree section 1100
holds QuadTreelndexSections 1101 A for the first 12 levels
of the QuadTreelndex, and the Sub’lree section 1200 holds
QuadTreelndexSections 1101B for the levels below level 12
of the QuadTreelndex. Each section includes a set of files.

In the KFF, file space of deleted files 1s left unused.
Theretfore, over time with deletions and additions into the
KFF, the data file can become fragmented. In the case of
replaced files, the space 1s reused if the new file 1s less than
or equal to the size of the old file. By storing QuadTree
packet data file lists 802 1n the data section, the imnvention
allows base 1100 and SubTree 1200 sections to remain
uniragmented, since QuadTree packets are atomic units (1.¢.,
space for all 85 nodes are allocated when a QuadTree packet
1s created) while data file lists 802 can change 1n size.

(Given the case where the data files 1001 are inserted 1nto
the KFF, the KFF can stand alone as a KFFDB 703 {for the
EarthServer DataStream.

The second form of the KFFDB 703 includes a KBEF. In
this case, the KFF 1s used as an index file into the KBFE,
which acts as the source for all of the data files. In one
embodiment, the KBF file 1s used only with drawable
packets (such as streets, polylines, sites, and the like), while

the FF file format 1s used for imagery and terrain tiles. The
KBE/KFF form of the KFFDB 703 may be used for main-

tamning large KFFDBs 703 such as the Earthserver ASP
database, since 1t allows for small incremental updates to the
database rather than a completely new KFFDB 703.

In one embodiment, KFFDB 703 1s implemented using
the following files. For a KFFDB 703 called “kiidb.sample™,
files might include:
fidb.sample
fidb.sample. 1
fidb.sample.2
fidb.sample.base
fidb.sample.sub
fidb.sample.sub.1

The data section 1000 1s the first three files (kildb.sample,
kitdb. sample 1, and kildb.sample.2); the Baselree section
1100 1s 1n the fourth file (kiidb.sample.base), and the Sub-
Tree section 1200 1s 1n the last two files (kifdb.sample.sub
and kildb.sample.sub.1). In this embodiment, each section 1s
split up 1nto a series of files of predetermined size (such as
one gigabyte, for example). Numbered file names such as

kfldb.sample.1 and kiidb.sample.2 represent the split files.
In this embodiment, the collection of these six files would be

the KFF.
For the KBF/KFF form, in one embodiment the imple-
mentation would consist of the following files. For a KFFDB

703 called “kiidb.sample™, files might include:

~ A AR A

US 7,225,207 Bl

Tdb.sample
Tdb.sample.base
Tdb.sample.sub
Tdb.sample.subl
restaurantdata.kbt
streetdata. kbt
imagerydata.t
The first four files (kildb.sample, kildb.sample.base,
kitdb.sample.sub, and kildb.sample.subl) are the KFF that
acts as the index into the last three files (restaurantdata. kbf,
streetdata.kbi, and imagerydata.il), which contain data such
as streets, points, lines, imagery and terrain. The last three
files do not require the kbi/.iI extension.

EarthServer DataStream Server
In one embodiment, the EarthServer DataStream Server
includes the following components:

KFFDB 703
dbRoot

Apache modules

mod flatfile
mod earthrender

mod_dbrootmerger
KFFDB 703 1s the database that 1s to be delivered by the
server. dbRoot maintains the version and content informa-

tion of the KFFDB 703. The Apache modules deliver the
contents of the KFFDB 703.

KFFDB 703

The EarthServer DataStream server can merge multiple
KFFDBs 703 1n addition to multiple remote databases. The
local databases are directly attached and the remote data-
bases are accessed via the mod flatfile HTTP intertace. In
one embodiment, mod_flatfile allows ten local databases and
ten remote databases to be merged, although in other
embodiments additional databases may be merged. In one
embodiment, EarthServer DataStream allows for one remote
database to be merged—specifically, the Earthserver ASP. In
alternative embodiments, any number of databases can be
merged together. In one embodiment, the mod_earthrender
module can only have one remote database and up to ten
local databases; 1n other embodiments, this module can
include any number of databases.

dbRoot

The dbRoot file contains the current version of the
KFFDB 703. In one embodiment, dbRoot 1s the first thing
that the Earthviewer 3D client asks for when 1t starts up so
that 1t knows whether the data files 1t has in 1ts cache are
current or not. The dbRoot also contains information on
what data 1s contained on each channel. It can potentially
contain any other registry values that need to be set or
changed in the Earthviewer 3D client, such as the domain
name of the stream server, clip texture settings, and default
values of buttons.

The dbRoot file also contains the encryption key that 1s
used by the EarthServer DataStream Server to encrypt the
content that 1s being delivered. The encryption key 1s also
used by the client to decrypt the incoming data files.

In one embodiment, whenever the KFFDB 703 1s changed
on the server, the dbRoot version number must be incre-
mented. IT any additional channels of data have been added,
in one embodiment they are recorded 1n the dbRoot file 1n
order for the Earthviewer 3D client to be aware of their
existence.

In one embodiment, the dbRoot file 1s created using the
dbRoot tool. The channel information for a given KFFDB
703 1s set by attaching a text file with the dbRoot. The text
file 1n the ETA format takes the following form:

~ OO

[

10

15

20

25

30

35

40

45

50

55

60

65

<etStruct> [export.layers]

1
<etLayer> [Channel A]
{
"recreation” 0.0 128 true " "
h
<etLayer> [Channel B]
{
"building” 0.0 129 true """
{
<etLayer> [Channel C]
{
"bang” 0.0 130 true """
h
h

For each entry 1n the list, the name of the channel 1s placed
in the brackets [|. The first value 1n an entry 1s the type of
icon to use 1n the “Show Me/Popular Locations™ section of
the Earthviewer 3D client. In one embodiment, the possible
values for this are:

“american-flag”

“asian-tflag”

“auto”

“auto-service”

“bang”

“bars”

“building”™

“dining”

“fast-food”

“four-dollars™

“french-flag”

“1talian-tlag™

“mexican-tlag”

“misc-dining”

“one-dollar”

“parks”

“recreation”

“three-dollars”

“transportation”

“two-dollars™

The second value 1s whether the channel 1s turned on (1.0)

or oil (0.0) by default. The third value 1s the channel number.
The fourth value 1s whether the channel 1s to show up 1n the

“Show Me/Popular Locations™ list (true/false). The fifth
value sets the channel to be triggered by a button on the

Earthviewer 3D UI. The possible values are:

“borders”™

“roads™

“terrain’

“weather”

Other values can also be set using the ETA file format.

mod _flatfile

This module delivers data files directly from the KFFDB
703 and generates Quadlree packets on demand for the
KFFDB 703. This 1s the main interface for Earthviewer 3D
and Earthviewer PocketPC. Files are accessed by asking for
the Quadlree node location described by a branching tra-
versal guide (BTG) and the name of the file. Data packets
just use a BTG. The URI formats for requesting these data
objects are as follows:

Data Files:

http://stream.earthviewer.com/flatfile?1]1-<BTG>-<data-
filename>

Example: http://stream.earthviewer.com/flatfile?1] -
010302-1.1

US 7,225,207 Bl

7

Data File Name Formats:

l.<Versions
t.<versions
d.<channel>.<version>

image tiles:
terrain tiles:
data files:

QuadTree Packets:
8-bit Quadlree Packets:

http://stream.earthviewer.com/flatfile?ql-<BTG>
16-bit QuadTree Packets:

http://stream.earthviewer.com/flatfile?q2-<BTG>

Example: http://stream.earthviewer.com/flatfile?q]l -

010302

mod earthrender

This module delivers image files for viewing the KFFDB
703 through an HTML interface. The following are the
parameters for defining a desired 1mage:

lat=[float] Sets the latitude of the center pixel of the image.
long=[float] Sets the longitude of the center pixel of the image.
level=[int] Sets the level to access the database.

xs1ze=[1nt] Sets the width of the image.

ys1ze=[1nt] Sets the height of the image.

Sets what channels to turn on in the 1image
(1.e. turn on 1, 3, 34 then string 1s 001003034)

clist=[string]

plat=[float] Sets the latitude of the annotation point.
plong=[float] Sets the longitude of the annotatin point.
pname=|[string] Sets the label of the annotation point.
ypsearch=[string] Sets the string to search for in the yp database.

filetype=[string] Sets what type of file to return.

jpeg = "jpg"
oif ="gif"
eta = "eta”

If value 1s 1 then sends over comma-delineated
list of visible sites/POIs 1n the 1mage.

textnum=/[1nt]

mod_dbrootmerger

This module delivers the dbRoot file. It also merges the
dbRoot file with the dbRoot file of remote KFFDBs 703 so
that when changes are made to remote KFFDBs 703 1t 1s
reflected as a change in the delivered database from the
EarthServer DataStream Server. The delivered version num-
ber 1s computed by adding all of the version numbers of each
dbRoot together, therefore if any of the dbRoots get upreved
then the merged dbRoot gets upreved. It also can merge the

channel content information from other remote KFFDBs
703, 1f desired.

Session Key Verification and Access Control Layer
Restrictions

The EarthServer DataStream works 1n conjunction with
an authorization server that passes out session keys to
registered users. The session keys are needed for two
reasons: to validate the user and to restrict access to the
database.

The validation 1s done both at the authorization server and
the stream server. The authorization server only gives out
session keys to registered users. These session keys have an
expiration time that 1s checked by the stream servers, so old
session keys can not be stolen and reused.

The session keys also contain additional information that
tells the stream server which parts of the database a par-
ticular user 1s allowed to access. This 1s conveyed through
the use of package IDs, where each package ID grants

10

15

20

25

30

35

40

45

50

55

60

65

8

database access for a particular region, at a particular
resolution, and for a particular channel (i1.e. imagery, terrain,
roads, restaurants, etc.).

System

In one embodiment, the present mvention runs on a
conventional computer, having components such as the
following:

1x866 MHz Pentium III

512 MB Main Memory

18 GB Hard Disk Space

In another embodiment, the present invention runs on a
conventional computer, having components such as the

following:
2x1 GHz Pentium III

1 GB Main Memory

36 GB Hard Disk Space

In yet another embodiment, the present invention runs on
a conventional computer, having components such as the
following:

2x1.26 GHz Pentium III

2 GB Main Memory

72 GB Hard Disk Space

One skilled 1n the art will recognize that many other types
of hardware components may be used 1n connection with the
present invention. Component characteristics may aflect the
performance of EarthServer DataStream (ESDS) as follows.

CPU: The processor speed mainly aflects how fast ESDS
can deliver earthrender images. A faster processor will allow
for more 1mages to be delivered per second. The main
processor-heavy elements of mod_flatfile are encryption,
compression, and Quadlree packet generation.

Memory: The amount of main memory helps tremen-
dously 1n system caching of file blocks. This increases the
speed at which data packets can be pulled out of the KFFDB
703 and therefore general performance of ESDS.

Hard Drive: The more disk space that i1s available, the
more of the KFFDB 703 that can be cached on the local disk,
and the fewer requests need to be made to the remote server
(1.e. Earthserver ASP). In the case of an NFS-mounted NAS
device, 1t could reduce need to access the NAS device by
caching previously requested locally. Also for earthrender,
the local drive can be used to cache decompressed 1mage
tiles, which can tremendously increase performance. The
main factor that aflects KFFDB 703 read performance 1s
disk seek time, and disk seek time 1s directly related to
rotational speed. Therefore higher rotational speed generally
results in 1improved performance.

Module Directives

The following 1s a list of directives for each module. The
directives with the * next to them are required directives and
the others are optional. There 1s an explanation of each
directive below along with an example of how to use them.

mod flatfile
*KitFlatfileDatabasePath—a list of kil database paths

Example:

KiiFlatfileDatabasePath /gaiadb/dbl/kitdb.dbl/gaiadb/
db2/kiidb.db2

KiiFlatfileDatabaseURL—a list of kil database URLs

Example:

KiiFlatfileDatabaseURL stream.earthviewer.com stream-
.companyA.com

*KilDatabaseRootPath—the path for the dbRoot file

Example:

KiiDatabaseRootPath /var/www/dbroot/dbRoot.verl

KiiFlatiileLogFilePath—the path for flat file log

Example:

KiiFlatlileLogFilePath /var/www/logs/kildblog

US 7,225,207 Bl

9

KilFlatfileSessionCheckLevel—the session check level
(0—only valid cookie, 1—valid cookie or no cookie, 2—no
restrictions)

Example:

KiiFlatfileSessionChecklLevel 2

KiiFlatfileBinaryLog—ftlag for using binary log

Example:

KiiFlatfi.

eBinaryLog On
KiiFlatfileBinaryLog Off

KiiFlatfileCacheFilePath—the path for cache file

Example:

KftFlatfileCacheFilePath /var/www/esds-cache/

KftFlatfileMaximumCacheSize—the maximum number
of MB of the cache file

Example:
KitFlatfileMaximumCacheSize 1000

KiiFlatfile ACLDictionaryPath—the path for the ACL dic-
tionary
Example:

KiiFlatfile ACLDictionaryPath

/var/fwww/acl/ACL. dictl
KiiFlatlile ACLIndexPath—the path for the ACL index

Example:
KftFlatfile ACLIndexPath /var/www/acl/ACL. 1index 1

KiiFlatiile ACLDetfaultPolicyPath—the path for the ACL
default policy

Example:
KiiFlatfile ACLDefaultPolicyPath

/var/fwww/acl/ACL. defl
KiiFlatlileACLMemoryResident—iflag for whether the
dictionary 1s memory resident or not

Example:

KiiFlatlile ACLMemoryResident On

KiiFlatfile ACLMemoryResident Off

KiiFlatfileCopyrightListPath—the path for the copyright
list file

Example:

KiiFlatiileCopyrightListPath

/var/wwwi/crlist/copyrightlist.cri
mod earthrender
*KitEarthrenderDatabasePath—a list of kif
paths
Example:
KilEarthrenderDatabasePath
1adb/db2/kildb.db2
KiiEarthrenderDatabaseURL—a list of k
URLs
Example:
KiiEarthrenderDatabaseURL stream.earthviewer.com
*Kil TexturePath—the path for the texture image files
Example:
KifTexturePath /var/www/textures/
KiIYPServerUrlPath—the url for the ypserver
Example:
KiTYPServerUrlPath http://yp.earthviewer.com/cgi-bin/

ypsearch_beta?long=% li&lat=% Ili&dlat=% li&dlong=%
lf&name=% s

KftEarthrenderCheckl evel—the check level for access

(O—full access, 1—SF only, 2—ACL/SessionKey
restricted access)

Example:
KftEarthrenderCheckl evel 2

KitEarthrenderACLDictionaryPath—the path for the
ACL dictionary

database

/gaiadb/db1/kiidb.db1/ga-

T database

10

15

20

25

30

35

40

45

50

55

60

65

Example:

Kit

[

10

EarthrenderACLDictionaryPath

/var/fwww/acl/ACL. dictl

KAT

index
Example:

HarthrenderAClL IndexPath

K1t

[

HarthrenderACLIndexPath—the path for the ACL

/var/fwww/acl/ACL. index 1

KiTE

Kit

[

HarthrenderACLDefaultPolicyPath—the path for the
ACL default policy
Example:

EarthrenderACLDetfaultPolicyPath

/var/fwww/acl/ACL. defl

Kf__JarthrenderACLMemoryRe31dent—ﬂag for whether
the dictionary 1s memory resident or not

Example:

KilEarthrenderACLMemoryResident On

KiiEarthrenderACLMemoryResident Off

KitEarthrenderCopyrightListPath—the path for the copy-
right list file

Example:

KilEarthrenderCopyrightlListPath

/var/wwwi/crlist/copyrightlist.cri
mod_dbrootmerger

KiiDbRootMergerURL—a list of kil database URLs
Example:
KiIDbRootMergerURL stream.earthviewer.com

*Ki

file

Example:

Kt

‘DbRootMergerDbRootPath

‘DbRootMergerDbRootPath—the path for the dbRoot

/var/www/dbroot/dbRoot.verl

KiIDbRootMergerPostambleMerge—flag for whether to
merge the postambles

Example:
KiIDbRootMergerPostambleMerge On

KiIDbRootMergerPostambleMerge Ofl
Tools

1s used to convert customer data into
kb1 or kil files. It 1s the main tool used for data migration,
as shown 1n FIG. 6.

dbroottool—This tool 1s used to create the dbRoot file. It

can read the contents of a dbRoot file, write out a new
dbRoot file, or increment the version number of a dbRoot

file.

kbitokdr ile.
This mainly pertains to drawables such as points and lines.
fitokti—This tool 1s used to add an I file 1nto a kdT file.

This mainly pertains to imagery and terrain.

kitperf—This 1s a tool to measure the performance of t
EarthServer DataStream. It takes a log file form the apac
server and sends those requests to a given server.

kftview—This tool 1s used to view the contents of a kil
file, just like traversing through directories on a unix file
system.

kflreadlog—This tool 1s used to read the binary log file
generated by the mod_{flatfile module.

Libraries

kift—This library 1s used to create and modify kil files.

kbi—This 1s a header file that provides classes to create,
read, and write kbi files.

gtpgen—This library 1s used to create/modily drawable

packets and QuadTree packets.

1C
1C

US 7,225,207 Bl

11

jpegbutier—This library 1s used to create 2D representa-
tions (such as JPEG 1images) from the KFFDB 703 database.

Methods

Referring now to FIGS. 1 through 6, there are shown flow
charts of various methods according to the present inven-
tion. The following components, associated with KFF, are
used 1n the various methods as depicted in FIGS. 1 through
6. Referring also to FIG. 1A, there 1s shown a legend

indicating symbols for the various components described
below.

Data Packet

Summary: This 1s a collection of bytes that contain data
about a geospecific area of the earth. This data can be of any
type: 1imagery, terrain, vectors, points, etc.

QuadTreelndexNode

Summary: This 1s one node of the QuadTreelndex. The
node contains two numbers, oflset and length, which refers
to a particular section of the QuadTreeFileList of the
QuadTreelndexSection associated with the node. This sec-
tion contains the list of data packets that are associated with
the node, where each item 1n the list tells the name of the
data packet, the location of the data packet, and the size of
the data packet.

QuadTreeFilePosition

Summary: This data item contains two numbers, data file
index and data file offset, which are used to store the location
of a particular data packet. The data file index tells which file
it 1s contained 1n, and the data file oflset tells where 1n that
file the data packet 1s located.

QuadTreePosition

Summary: This data item contains a particular position of
a node 1n the QuadTree by specilying the level of the node

and a list of what child was traversed at each level.
QuadTrecFileEntry

Summary: This data item contains three things: name
string, QuadlreePosition, and data packet size. These
describe the name of the data packet, the location of the data
packet, and the size of the data packet.

QuadTreeFileList

Summary: This data item 1s a set of QuadTreeFileEntries.
It 1s associated with a QuadTreelndexSection and it 1s the list
of all the data packets that are contained within that par-
ticular QuadTreelndexSection.

QuadTreelndexSection

Summary: This data item 1s a four-level section of the
QuadTreelndex consisting of QuadIreelndexNodes and an
associated QuadTreeFileList. It also contains QuadTreePo-
sitions for all the children of the fourth-level nodes.

QuadTreelndex

Summary: Referring now to FIG. 9, there 1s shown the
QuadTreelndex indexing system to the KFF file that tells
what 1s 1n the database and where 1n the database 1t resides.
It uses a QuadTree-based approach to spatially organize the
data. This means each node of the Quadlree has four
chuldren 902A—C, where each child 902 covers one quarter
of 1ts parent’s 901 defined area.

QuadTreeQuantum

Summary: This data item contains information about a
particular node 1 the QuadTree that i1s delivered to the
Earthviewer 3D client. This QuadTree 1s different from the
QuadTreelndex; the information 1n the node 1s specific to the
Earthviewer 3D client. The node contains version numbers
for 1magery, terrain, cache node, and channels. It also
contains children existence information.

10

15

20

25

30

35

40

45

50

55

60

65

12

QuadTreePacket

Summary: This data item includes a recursively ordered
list of QuadTreeQuantums, which describes a section of the
Earthviewer 3D client QuadTree.

KFF Data Retrieval

FIG. 1 1s a flow chart of KFF data retrieval according to
one embodiment of the present invention. The system gets
101 root QuadTreelndexSection from KFF 703 and deter-
mines 103 whether QuadlreeIndexSection contains the
node described by QuadTreePosition 102. If not, the system
gets 104 the next QuadlreelndexSection from KFF 703. If
QuadTreelndexSection does contain the node, the system
gets 105 the QuadlreelndexNode identified by the
QuadTreePosition from the QuadTreelndexSection, and gets
106 the QuadTreeFileList associated with the QuadTreeln-
dexSection from KFF 703. Then, the system gets 107 the
QuadTreeFileEntries from the QuadlreeFileList pointed to
by the QuadTreelndexNode and determines 109 whether
Data Name 108 exists in the QuadTreeFileEntries.

If Data Name 108 does not exist in the QuadTreeFileEn-
tries, the system returns 112 a returns 113 a “Data Packet Not
Found.” If Data Name 108 does exist in the QuadlreeFi-
leEntries, the system gets 110 QuadTreeFilePosition and
s1ze of Data Name 108 Data Packet from QuadTreeFileEn-
try. The system then gets 111 Data Packet at QuadTreePo-
sition, and returns 113 a “Data Packet Found.”

QuadTree Packet Generation

FIG. 2 1s a flow chart of QuadTlree packet generation
according to one embodiment of the present invention. The
system gets 202 the QuadTreelndexSection that includes the

QuadTreelndexNode at the (QuadlreePosition 201 from
KFF 703. The system then gets 203 the QuadTreeIndexNode
identified by the QuadTreePosition 201 from the QuadTree-
IndexSection, and gets 204 the QuadTreekileList associated
with the QuadTreelndexSection from KFF 703. The system
then gets 205 the QuadTreeFileEntries from the QuadTreekE-
ileList pointed to by the QuadTreelndexNode, and creates
206 a QuadTreeQuantum from the QuadTlreeFileEntries.

The system then adds 209 the QuadTreeQuantum to the
QuadTreeQuantum list 210. Also, 1t determines 207 whether
the children at the QuadTreePosition 201 extend beyond the
QuadTreePacketDepth 208. If not, the system determines
213 whether there 1s a first child at the QuadTreePosition
201; 1 so, 1t creates 214 a QuadTreePosition for the first
c_nld The system determines 2135 whether there 1s a second
chuld at the QuadTlrecPosition 201; 1f so, 1t creates 216 a
QuadTreePosition for the second cﬁ_'lild. The system deter-
mines 217 whether there 1s a third child at the QuadTreePo-
sition 201; if so, it creates 218 a QuadTreePosition for the
third child. The system determines 219 whether there 1s a
fourth child at the QuadTreePosition 201; 11 so, it creates 220
a QuadTreePosition for the fourth child.

The system then determines 211 whether this 1s the last
QuadT

reclndexNode to be processed. It so, 1t creates 212 the

QuadTreePacket 801 from the QuadlreeQuantum list 210.
QuadTlree Packet Merging,

FIG. 3 1s a flow chart of QuadIree packet merging
according to one embodiment of the present mnvention. The

system merges QuadTreePacketl S801A and
QuadTrecPacket2 801B as {follows. It creates 301A
QuadTrecQuantumlistl 210A 1from QuadlreePacketl

801A, and creates 301B QuadTreeQuantumlist2 210B from
QuadTreePacket2 801B. The system then determines 302
whether there 1s another QuadTreeQuantum in Listl 210A.
If not, the system determines 303 whether there 1s another

QuadTreeQuantum 1n List2 210B. If not, the system adds

US 7,225,207 Bl

13

304 QuadTreeQuantum?2 to the merged QuadTreeQuantum-
List 210C and creates 311 a merged QuadTreePacket 801C.

If, 1n 303, the system determines that there 1s another
QuadTreeQuantum 1n List2 210B, 1t proceeds directly to
step 311 to create a merged QuadTreePacket 801C.

If, in 302, the system determines that there i1s another
QuadTreeQuanturn 1mn Listl 210A, 1t gets 305 the first or
next QuadTreeQuantum from Listl 210A, computes 306 the
QuadTreePosition of the next QuadTreeQuantum in Listl
210A, and determines 307 whether there i1s another
QuadTreeQuantum 1n List2 210B. If not, the system adds
308 QuadTreeQuantuml to the merged QuadlreeQuantum-
List 210C and creates 311 a merged QuadlrecPacket 801C.

If, in 307, the system determines that there i1s another
QuadTreeQuantum in List2 210B, 1t gets 309 the first or next
QuadTreeQuantum from List2 210B and computes 310 the
QuadTreePosition of the next QuadlreeQuantum 1n List2
210B. Then, 1t determines 311 whether the level of
QuadTreePositionl 1s less than, greater than, or equal to the
level of QuadTreePosition2. It the level of QuadTreePosi-
tionl 1s less than the level of QuadTreePosition2, the system
puts back 317 QuadTreeQuantum?2 into QuadTreeQuantum-
List2 210B, adds 318 QuadTreeQuantuml to the merged

QuadTreeQuantumlist 210C and creates 311 a merged
QuadTreePacket 801C.

If, in 311, the system determines that the level of
QuadTreePositionl 1s greater than the level of QuadTreePo-
sition2, 1t puts back 315 QuadlreeQuantuml into Quad
TreeQuantumlistl 210A, adds 316 QuadlreeQuantum?2 to
the merged QuadTreeQuantumlist 210C and creates 311 a
merged QuadTreePacket 801C. It also returns to step 302.

If, mn 311, the system determines that the level of
QuadTreePositionl 1s equal to the level of QuadTreePosi-
tion2, 1t determines 312 whether the child number of
QuadTreePositionl 1s less than, greater than, or equal to the
child number of QuadTreePosition2. If the child number of
QuadTreePositionl 1s less than the child number of
QuadTreePosition2, the system puts back 315 QuadTre-
cQuantuml into QuadTreeQuantumlistl 210A, adds 316
QuadTreeQuantum?2 to the merged QuadTreeQuantumlist
210C and creates 311 a merged QuadTreePacket 801C. It
also returns to step 302. If, in 312, the child number of
QuadTrecPositionl 1s greater than the child number of
QuadTrecPosition2, the system puts back 317 (Quad
TreeQuantum2 1mnto QuadTreeQuantumlist2 210B, adds
318 QuadTreeQuantuml to the merged QuadlreeQuantum-
List 210C and creates 311 a merged QuadlrecPacket 801C.
If, 1n 312, the child number of QuadTreePositionl 1s equal
to the child number of QuadTreePosition2, the system
merges 303 the QuadlreeQuantums together, puts 314 the
merged QuadTreeQuantum into the merged QuadTreeQuan-
tumList 210C, and creates 311 a merged QuadTreePacket
801C. It also returns to step 302.

Obtaining a Session Key

FI1G. 4 1s a flow chart of obtaining a session key according,
to one embodiment of the present invention. The system
determines 401 whether the user has registered the client
application. If not, 1t gets 402 the first name, last name, and
registration ID from the user. Next, the system gets 403 the
encryption key from the server. Next, 1t encrypts 404 the first
name, last name, and registration ID, and sends 405 the
encrypted message to the server for verification. If the server

indicates 406 that the registration ID 1s not valid, the system
exits 407.

If, 1n 406, the server indicates that the registration ID 1s
valid, or 1if, 1n 401, the system determines that the user has

10

15

20

25

30

35

40

45

50

55

60

65

14

registered the client application, the system sends 408 the
encrypted registration ID and requests a session key.

The system then determines 409 whether the registration
ID 1s valid. If so, 1t sends 411 a session key back to the client.
If not, the system exits 410.

Using a Session Key

FIG. 5 1s a flow chart of using a session key with a data
packet according to one embodiment of the present inven-
tion. The system sends 501 the session key with a data
packet request to the server. Next, it decrypts 302 the session
key on the server side, and gets expiration time 302, package
IDs 503, and current time 305. The system then determines
506 whether the current time 1s past the expiration time. If
so, 1t denies 507 access.

If the current time 1s not past the expiration time, the
system determines 508 whether the data packet requested 1s
accessible to the user given the list of package 1Ds. If not,
it denies 509 access. If the data packet 1s accessible, the
system sends 310 the requested data packet.

In the above description, for purposes ol explanation,
numerous specific details are set forth 1n order to provide a
thorough understanding of the invention. It will be apparent,
however, to one skilled in the art that the invention can be
practiced without these specific details. In other instances,
structures and devices are shown in block diagram form 1n
order to avoid obscuring the invention.

Retference 1n the specification to “one embodiment™ or
“an embodiment” means that a particular feature, structure,
or characteristic described in connection with the embodi-
ment 1s included 1n at least one embodiment of the invention.
The appearances of the phrase “in one embodiment” 1n
various places 1n the specification are not necessarily all
referring to the same embodiment.

Some portions of the detailed description are presented in
terms of algorithms and symbolic representations of opera-
tions on data bits within a computer memory. These algo-
rithmic descriptions and representations are the means used
by those skilled 1n the data processing arts to most eflec-
tively convey the substance of their work to others skilled in
the art. An algorithm 1s here, and generally, conceived to be
a self-consistent sequence of steps leading to a desired
result. The steps are those requiring physical manipulations
of physical quantities. Usually, though not necessarily, these
quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated. It has proven convenient at
times, principally for reasons of common usage, to refer to
these signals as bits, values, elements, symbols, characters,
terms, numbers, or the like.

It should be borne 1n mind, however, that all of these and
similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the discussion, 1t 1s appreciated that through-
out the description, discussions utilizing terms such as
“processing’”’ or “computing’”’ or “calculating” or “determin-
ing” or “displaying” or the like, refer to the action and
processes ol a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the com-
puter system’s registers and memories to other data
similarly represented as physical quantities within the com-
puter system’s memories or registers or other such informa-
tion storage, transmission or display devices.

The present mvention also relates to an apparatus for
performing the operations herein. This apparatus may be
specially constructed for the required purposes, or it may

US 7,225,207 Bl

15

comprise a general-purpose computer selectively activated
or reconfigured by a computer program stored in the com-
puter. Such a computer program may be stored 1n a computer
readable storage medium, such as, but i1s not limited to, any
type of disk including floppy disks, optical disks, CD-
ROMs, and magnetic-optical disks, read-only memories
(ROMs), random access memories (RAMs), EPROMs,
EEPROMSs, magnetic or optical cards, or any type of media
suitable for storing electronic mnstructions, and each coupled
to a computer system bus.

The algorithms and displays presented herein are not
inherently related to any particular computer, network of
computers, or other apparatus. Various general-purpose sys-
tems may be used with programs in accordance with the
teachings herein, or 1t may prove convenient to construct a
more specialized apparatus to perform the required method
steps. The required structure for a variety of these systems
appears from the description. In addition, the present inven-
tion 1s not described with reference to any particular pro-
gramming language. It will be appreciated that a variety of
programming languages may be used to implement the
teachings of the invention as described herein.

As will be understood by those familiar with the art, the
invention may be embodied 1n other specific forms without
departing from the spirit or essential characteristics thereof.
For example, the particular architectures depicted above are
merely exemplary of one implementation of the present
invention. The functional elements and method steps
described above are provided as illustrative examples of one
technique for implementing the invention; one skilled 1n the
art will recognize that many other implementations are
possible without departing from the present invention as
recited 1n the claims. Likewise, the particular capitalization
or naming of the modules, protocols, features, attributes, or
any other aspect 1s not mandatory or significant, and the
mechanisms that implement the invention or its features may
have different names or formats. In addition, the present
invention may be implemented as a method, process, user
interface, computer program product, system, apparatus, or
any combination thereof. Accordingly, the disclosure of the
present invention 1s intended to be illustrative, but not
limiting, of the scope of the mnvention, which 1s set forth 1n
the following claims.

What 1s claimed 1is:

1. A method of merging a first packet of geospatial data

with a second packet of geospatial data, comprising;:

a) creating a first list of node descriptors from the first
packet of geospatial data;

b) creating a second list of node descriptors from the
second packet of geospatial data;

¢) 1f at least one node descriptor remains in the first list:
c.1) obtaining a next node descriptor in the first list;
c.2) determining a first position associated with the

node descriptor in the first list, the first position
having a first level;

d) 11 at least one node descriptor remains in the first list
and at least one node descriptor remains 1n the second
l1st:

d.1) obtaining the next node descriptor in the second
list;

d.2) determining a second position associated with the
node descriptor 1n the second list, the second posi-
tion having a second level;

d.3) 11 the first level 1s less than the second level, adding
the node descriptor 1n the first list to a merged list of
node descriptors; and

10

15

20

25

30

35

40

45

50

55

60

65

16

d.4) 1t the first level 1s greater than the second level,
adding the node descriptor 1n the second list to the
merged list of node descriptors;

¢) 1f at least one node descriptor remains in the first list
and no node descriptors remain 1n the second list:
¢.1) adding the node descriptor in the first list to the
merged list of node descriptors;

1) 11 no node descriptors remain in the first list and at least

one node descriptor remains in the second list:

1.1) adding the node descriptor in the second list to the

merged list of node descriptors; and

g) creating a merged packet from the merged list.

2. The method of claim 1, wherein step d) further com-
Prises:

d.5) if the first level 1s equal to the second level:

d.5.1) determining a first child number of the first
position and a second child number of the second
position;

d.5.2) 11 the first child number 1s less than the second
child number, adding the node descriptor in the
second list to the merged list of node descriptors;

d.5.3) if the first child number 1s greater than the second
child number, adding the node descriptor 1n the first
l1st to the merged list of node descriptors; and

d.5.4) if the first child number 1s equal to the second
child number, merging the node descriptor 1n the first
l1st with the node descriptor in the second list and
adding the merged node descriptor to the merged list
of node descriptors.

3. A computer program product for merging a first packet
ol geospatial data with a second packet of geospatial data,
comprising;

a computer-readable medium; and

computer program code, encoded on the medium, for:

a) creating a first list of node descriptors from the first
packet of geospatial data;

b) creating a second list of node descriptors from the
second packet of geospatial data;

¢) if at least one node descriptor remains 1n the first list:
c.1) obtaiming a next node descriptor 1n the first list;
c.2) determining a first position associated with the

node descriptor 1n the first list, the first position
having a first level;

d) 11 at least one node descriptor remains 1n the first list
and at least one node descriptor remains in the
second list:

d.1) obtaining the next node descriptor 1n the second
l1st;

d.2) determining a second position associated with
the node descriptor 1n the second list, the second
position having a second level;

d.3) 1f the first level 1s less than the second level,
adding the node descriptor in the first list to a
merged list of node descriptors; and

d.4) 11 the first level 1s greater than the second level,
adding the node descriptor in the second list to the
merged list of node descriptors;

¢) 1f at least one node descriptor remains 1n the first list
and no node descriptors remain in the second list:
¢.1) adding the node descriptor in the first list to the

merged list of node descriptors;

1) 1 no node descriptors remain in the first list and at
least one node descriptor remains 1n the second list:
.1) adding the node descriptor 1n the second list to

the merged list of node descriptors; and

g) creating a merged packet from the merged list.

US 7,225,207 Bl

17

4. The computer program product of claim 3, wherein the
computer program code for performing step d) further
comprises computer program code for:

d.5) 1f the first level 1s equal to the second level:

d.5.1) determining a first child number of the first
position and a second child number of the second
position;

d.5.2) 11 the first chuld number 1s less than the second
child number, adding the node descriptor in the
second list to the merged list of node descriptors;

d.5.3) 11 the first child number 1s greater than the second
child number, adding the node descriptor 1n the first
l1st to the merged list of node descriptors; and

d.5.4) 1f the first child number 1s equal to the second
child number, merging the node descriptor in the first
l1st with the node descriptor in the second list and
adding the merged node descriptor to the merged list
of node descriptors.

5. A system for merging a first packet of geospatial data
with a second packet of geospatial data, comprising;:

a node descriptor list module, for creating a first list of
node descriptors from the first packet of geospatial data
and for creating a second list of node descriptors from
the second packet of geospatial data;

a merge module, coupled to the node descriptor list
module, for, if at least one node descriptor remains in
the first list:

obtaining a next node descriptor in the first list;

determining a {irst position associated with the node
descriptor 1n the first list, the first position having a
first level;

if’ at least one node descriptor remains 1n the first list
and at least one node descriptor remains in the
second list:

10

15

20

25

30

35

18

obtaining the next node descriptor in the second list;

determining a second position associated with the
node descriptor in the second list, the second
position having a second level;

11 the first level 1s less than the second level, adding
the node descriptor 1n the first list to a merged list
of node descriptors; and

if the first level 1s greater than the second level,
adding the node descriptor in the second list to the
merged list of node descriptors;

if’ at least one node descriptor remains 1n the first list
and no node descriptors remain in the second list:
adding the node descriptor in the first list to the
merged list of node descriptors;
if no node descriptors remain in the first list and at least
one node descriptor remains 1n the second list:
adding the node descriptor 1in the second list to the
merged list of node descriptors; and
creating a merged packet from the merged list.
6. The system of claim 5, wherein 11 the first level 1s equal
to the second level, the merge module performs the steps of:
determining a first child number of the first position and
a second child number of the second position;

if the first child number 1s less than the second child
number, adding the node descriptor 1n the second list to
the merged list of node descriptors;

11 the first child number 1s greater than the second child
number, adding the node descriptor 1n the first list to the
merged list of node descriptors; and

if the first child number 1s equal to the second child
number, merging the node descriptor 1n the first list
with the node descriptor in the second list and adding
the merged node descriptor to the merged list of node
descriptors.

	Front Page
	Drawings
	Specification
	Claims

