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METHOD FOR DETERMINING
MODIFICATIONS TO SEMICONDUCTOR
OPTICAL FUNCTIONS

PRIORITY CLAIM

The present application claims priority to U.S. Provisional
Patent Application Ser. No. 60/475,919, filed Jun. 5, 2003,
and U.S. Provisional Patent Application Ser. No. 60/504,

890, filed Sep. 22, 2003, both of which are incorporated 1n
this document by reference.

TECHNICAL FIELD

The subject mvention relates to optical devices used to
non-destructively characterize thin films on semiconductor
walers. In particular, the present invention relates to tech-
niques for modeling changes mnduced 1n the dielectric prop-
erties of semiconductor materials as a result of effects such
as doping, strain or confinement so that measurements of
these ellects may be undertaken with a suitable optical
apparatus. Furthermore, the present invention facilitates the
modeling of dielectric properties simultaneously with
respect to these changes and other changes, for example
those due to varying alloy composition 1n S1Ge or other
compound semiconductors.

BACKGROUND OF THE INVENTION

As geometries continue to shrink, manufacturers of semi-
conductor devices need continually to improve the control of
theirr manufacturing processes. At the same time as layer
thicknesses and feature sizes decrease, so also the complex-
ity of the structures to be measured and of the materials
within those structures increases. In many cases 1t becomes
necessary to characterize material properties that were pre-
viously neglected to the first order, or to find new methods
of characterization where the limitations of previous meth-
ods have become significant obstacles to progress.

For a long time, optical techniques have been favored for
measuring the thicknesses and other properties of transpar-
ent or semi-transparent films. Techniques of this type,
known generally as optical metrology, operate by 1lluminat-
ing a sample with electromagnetic radiation (typically
referred to as a probe beam) and then detecting and analyz-
ing the reflected energy. They have the advantage of being
non-contact and non-destructive, and they can provide high
throughput and almost arbitrarily small measurement spot
s1zes (ultimately limited only by the wavelength of the probe
beam).

Two broad classes of optical technique commonly used in
this context are Reflectometry and Ellipsometry. In Reflec-
tometry, changes in the amplitude of the reflected light are
measured, usually as a function of either the angle of
incidence or the wavelength of the probe beam. The latter
case 1s more usually referred to as Spectrophotometry, or
just Spectrometry. In Ellipsometry, the change 1n polariza-
tion of the probe beam 1s measured, usually by quantifying
the difference in sample reflectance between s-polarized
light (in which the electric field vector 1s perpendicular to the
plane of incidence) and p-polarized (in which it 1s parallel to
the plane). This too can be carried out as a function of either
the angle of incidence or the wavelength of the light.

A variety of such techniques can be combined on a
common platform, as 1s the case with the Opti-Probe® tool
offered by the Assignee and conceptually described 1n U.S.
Pat. No. 5,798,837 which 1s incorporated 1n this document
by reference In particular, this tool combines a proprietary
method of single-wavelength Reflectometry, a method of
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2

Spectrophotometry and three complementary methods of
Ellipsometry which can be employed singly or in any
combination.

In addition to film thickness, techniques of this type may
be used to analyze a wide range of attributes including
refractive mndex and extinction, crystallinity, composition,
porosity and roughness. To measure the doping level 1n a
semiconductor material, however, 1t has often been neces-
sary to resort to a non-optical technique such as Secondary
Ion Mass Spectrometry (SIMS) or resistivity modeling.

An optical technique does not of course measure the
maternal attributes directly, but by comparing the retlected
light from the sample with the calculated reflectance of a
“model filmstack™. The computer program controlling this
process 1s customarily referred to as a “recipe”, and the aim
of the recipe 1s to find the model that 1s the most faithiul
possible representation of the sample. This 1s done by
regressively optimizing the parameters that describe the
model filmstack until there 1s the closest possible correspon-
dence between the calculated retlectance of the model and
the actual reflectance of the sample. The outputs from the
recipe are the parameters describing the model filmstack. It
1s customary to quantily the closeness of the correspondence

between the calculated and actual reflectances by means of
a “Residual” or “Goodness of Fit” (GOF) parameter.

It can therefore be seen that the success of such an
approach depends upon being able to choose parameters that
accurately represent the physical attributes of the sample.
For any film layer, these parameters include thickness as
well as dielectric properties of the matenal. Typically, these
parameters are expressed in terms of the sample’s optical
dispersion; that 1s, the manner 1n which the complex refrac-
tive index (N=n-1k) or complex dielectric function (&=, +
1=, ) varies as a function of the wavelength or (equivalently)
photon energy of the light. There 1s a large class of models
that enable these functions to be represented parametrically.
Simplest of all 1s the lookup-table approach, 1n which case
the values of n and k (or €, and &,) at each wavelength are
cllectively independent parameters, but it 1s usual to seek to
reduce the number ol parameters using a mathematical
formula of some sort. The most familiar 1s the Cauchy
model, whereby n and k are represented as an expansion of
the form

1] %)

(1)

H(A)—Hg+ﬁ+‘1—4+
ki Kz
kiA) = kD+F+A_4+

However, this still sufters from the drawback that n and k
are regarded as being independent functions, whereas 1n fact
they are not: they are related via the Kramers-Kronig trans-
form, viz.

(2)

n+ik=ve| + i

Eey(E)
2"

(3)

SI(ED) =1+

By far the most satisfactory models are those that explic-
itly satisty this condition, but even of these there are a great
many. Most mvolve the use of ensembles of oscillators,
either of classical Lorentz form (see, for example, C. Yga-
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rtua and M. Liaw, “Characterization of epitaxial silicon
germanium thin films by spectroscopic ellipsometry”, Thin

Solid Films 313-314, 237 (1998)) or of modified harmonic
form (see, for example, J. Leng, J. Opsal, H. Chu, M. Senko
and D. E. Aspnes, “Analytical representations of the dielec-
tric functions of materials for device and structural model-
ing”’, Thin Solid films 313-314, 132 (1998), C. C. Kim, J. W.
Garland, H. Abad and P. M. Raccah “Modeling the optlcal
dielectric function of semiconductors: extension of the criti-
cal-point parabolic-band approximation”, Phys. Rev. B45,
11749 (1992), or F. L. Terry, “A modified harmonic oscil-
lator approximation scheme for the dielectric constants of
AlxGal-xAs”, 1. Appl. Phys. 70, 409 (1991)). Models also
exist to combine two or more pre-existing Kramers-Kronig
consistent dispersions mnto a resultant dispersion, either via
an ecllective-medium approximation (EMA—see, {for
example, M. Erman, J. B. Theeten, P. Chambon, S. M. Kelso
and D. E. Aspnes, “Optical properties and damage analysis
of GaAs single crystals partly amorphized by 10n implan-
tation”, J. Appl. Phys. 36, 2664 (1984) which, incidentally,
also presents an early version of the harmonic oscillator
model) or an Alloy model (see, for example, D. E. Aspnes,
S. M. Kelso, R. A. Logan and R. Bhat, “Optical properties
of AlxGal-xAs™, I. Appl. Phys. 60, 754 (1986) and P. G.
Snyder, J. A. Woollam, S. A. Alterovitz and B. Johs, “Mod-
cling AlxGal-xAs optical constants as functions of compo-
sition”, J. Appl. Phys. 68, 5925 (1990)).

However, none of these techniques are naturally suited to
modeling the specific eflects that doping has upon the
dielectric functions of semiconductors. The presence of
dopants can have a significant eflect on the dielectric
response of semiconductor materials. To illustrate, FIG. 1
shows measured values for &, plotted as a function of
photon energies for Silicon. As shown, the &, curve has two
strong features. These occur at photon energies of ~3.4 eV
and 4.2 eV and are denoted “E1” and “E2” respectively. As
described 1n “Effects of Heavy Doping on the Optical
Properties and the Band Structure of Silicon” (L. Viha and
M. Cardona, Phys. Rev. B29, 6739 (1984), and contempo-
raneously by D. E. Aspnes, A. A. Studna and E. Kinsbron 1n
“Dielectric properties of heavily doped crystalline and amor-
phous silicon from 1.5 to 6.0 ¢V”, Phys. Rev. B29, 768
(1984)) the principal effect of doping on the optical prop-
erties of these materials 1s to suppress, and at higher doping
levels shift, the E1 and E2 features (with the effect on the E1
teature typically being more profound). This 1s verified by
modeling the dielectric function of a doped epitaxial Si film
(with a Boron content of ~2.5x10" c¢m™) on a nominally
undoped S1 substrate, as also shown in FIG. 1. The limita-
tions of the existing models are these: firstly, in the oscillator
methods each feature 1n the &, curve 1s made up of contri-
butions from more than one oscillator, so 1t 1s diflicult to
correlate subtle changes i1n the shapes of features with
specific oscillator parameters. Secondly, because of this
“nonlocal” nature of oscillator models, the ability to fit the
shape of a feature 1n one part of the spectrum where data 1s
available may be hindered by the unavailability of data from
another part of the spectrum. A practical example of this 1s
when a S1Ge layer buried under an epitaxial S1 cap must be
measured, as the S1 cap 1s opaque to wavelengths of light in
the DUV region (photon energies above ~3 e€V) and so no
information about the S1Ge 1s available 1n this range (which
includes the positions of both the E1 and E2 peaks). The
method of Herzinger et al., in U.S. Pat. No. 35,796,983,
would seem to address the first of these limitations but not
the second. Alloy or EMA models could be used to inter-
polate between different dispersion curves corresponding to
known levels of doping, but this could only work 11 all other
material properties (e.g. Germanium content 1n a S1Ge film)

could be assumed constant. Moreover, the component mod-
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4

cls with known doping levels would need to exist for the
particular combination of other material properties being
studied, and this would not generally be the case.

Other eflects that can cause similar subtle changes to the

dielectric functions of the film are strain (see for example U.
Schmid, J. Humlicek, F. Lukes, M. Cardona, H. Presting, H.

Kibbel, E. Kasper, K. Eberl, W Wegschelder and G. Abstre-
iter, “Optlcal transitions 1n strained Ge/Si1 superlattices™,
Phys. Rev. B45, 6793 (1992)) and (in very thin films, of the
order of tens of nanometers or less) quantum confinement
(see, Tor example, D. V. Lang, R. People, J. C. Bean and A.
M. Sergent, “Measurement of the band gap of Ge S1,_/S1
strained-layer heterostructures™, Appl. Phys. Lett. 47, 1333
(1985)).

There 1s therefore a need for a technique that can decouple
these subtle effects from the complex overall structure of the
semiconductor’s dielectric functions. Such a technique
should be able to distinguish changes i1n, for example,
doping level from other things that may aflect the material’s
optical properties (such as changing Ge content 1n a S1Ge
f1lm), extract such information even when optical data 1s
only available from a limited wavelength range (such as, for
example, a doped S1Ge layer buried under an epltaxml S1
cap), and enable an eflicient computational algorithm to
implement the technique 1n the context of real-time produc-
tion measurement. The present invention provides such a
technique.

SUMMARY

The present invention can be encapsulated 1n the assertion
that the eflect of changes such as doping, strain or confine-
ment upon the dielectric function of a semiconductor mate-
rial can be separated out as a perturbation upon the dielectric
function of the bulk matenal. Specifically, recapping equa-

tion (3) from the previous section,

Ez,(E)
o E? - Ej

(3)

ci(Ey) = 1 + dE

the functions €,'(E) and €,'(E) for the modified material can

be represented as superpositions of the functions &, (E) and
—,(E) for the corresponding bulk material plus perturbations
AE,(E) and A&,(E). Because the dielectric functions of the
modified and bulk material must both alike satisty equation
(3), we can write

(Ep=1+ | Ea®) 4k
E1lLo) = £ _E2

E(e(E) + Ay (E))
=}‘91(ED)+A£1(ED)=1+£&3 EZ_E{% dE

and by subtracting both sides of equation (3),

© FA&,(F)
ﬂSl (ED) — , E2 E2 d E

(4)

In general, 1t will be possible to obtain the values of the
tunctions &,(E) and &,(F) for the bulk material from some
other source, such as pre-existing lookup table (for a single-
clement semiconductor such as Silicon) or an Effective-
Medium or Alloy model (for an alloy semiconductor such as
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S1Ge). Therefore, 1t 1s only necessary to parameterize the
function A&,(E) and optimize the resulting parameters in
order to be able to obtain the whole dielectric function of the
modified material and, by correlation with the parameters,
the nature of the modification (e.g., the doping level or
amount of strain).

It may be further noted that by using the dielectric
functions from the bulk maternial, which by definition must
satisty equation (3), the need to do the Kramers-Kronig
integration from zero to 1nfinity 1s allayed. There 1s freedom
to parameterize the function A&,(E) 1n such a way as 1t 1s
equal to zero at all wavelengths away from the vicinities of
the strong features being modified, or, alternatively, 1n such
a way that the integration from zero to infinity may be done
analytically.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a graph showing measured &, curves (1.e. values
for &, plotted as a function of photon energies) for a
nominally undoped Silicon substrate and an epitaxially-
grown Si film doped with Boron to ~2.5x10"” cm™, respec-
tively.

FIG. 2A 1s a graph showing the measured &, curves of a
set of nominally undoped epitaxial S1Ge films having dif-
ferent Ge fractions ranging from zero to around 23%.

FIG. 2B 1s a graph showing the measured &, curves of a
set of epitaxial S1Ge films with a nominally constant (21%)
Ge fraction but vanations i Boron doping level between
zero and 1.0x10°° cm™.

FIG. 3A 1s a graph showing a peak suppression compo-
nent of a A&, (E) curve as provided by an embodiment of the
present mvention (equation (8)).

FIG. 3B 1s a graph showing the corresponding component
of Ac,(E), as obtained by a numerical Kramers-Kronig
transform of the curve 1n FIG. 3A.

FIG. 4A 1s a graph showing a peak shifting component of
a A&, (E) curve as provided by an embodiment of the present
invention (equation (9)).

FI1G. 4B 1s a graph showing the corresponding component
of Ac,(E), as obtained by a numerical Kramers-Kronig
transform of the curve 1 FIG. 4A.

FIG. SA 1s a graph showing the Cauchy Distribution
model (equation (10) with C<0) applied as a peak suppres-
sion function 1n A&, (E).

FIG. 5B 1s the corresponding component of A&, (E),
obtained by an analytical Kramers-Kronig transform as
shown 1n equation (12).

FIG. 6A 1s a graph showing how two Cauchy distribution
functions with opposite signs may be combined to form a
shifting function analogous to FIG. 4A.

FIG. 6B 1s the corresponding analytical Kramers-Kronig
transform.

FIG. 7A 1s a graph showing a single harmonic oscillator
applied as a peak suppression function in A&,(E).

FIG. 7B 1s the corresponding component of A&, (E).

FIG. 8 A 1s a graph showing how two harmonic oscillators
with opposite signs may be combined to form a shifting
function analogous to FIG. 4A.

FIG. 8B 1s the corresponding component of A&, (E).

FIGS. 9A through 9C are an example showing application
of the peak suppression and peak shifting functions (similar
to those shown 1n FIGS. 2 and 3) to lookup-table &, curves
for a crystalline Silicon sample.

FIGS. 10A through 10C are an example showing appli-
cation of the peak suppression and peak shifting functions to
EMA-modeled &, curves for a S1Ge sample.
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FIGS. 11A through 11E show the fits obtained to Beam
Profile Reflectometry, Spectrophotometry and Spectro-
scopic Ellipsometry curves for a nominally undoped SiGe
layer under a nominally undoped epitaxial S1 cap.

FIGS. 12A through 12E show the corresponding fits
obtained for a Boron-doped S1Ge layer under a nominally
undoped epitaxial S1 cap, 1f the doping of the S1Ge 1s not
explicitly accounted for in the model.

FIGS. 13A through 13E show the corresponding fits
obtained from the same sample as 1 FIGS. 12A through
12E, when the doping of the S1Ge 1s explicitly accounted for
by the present invention.

FIG. 14 shows the results of a simultaneous measurement
by means of the present invention of Ge fraction and Boron
doping level for a set of doped epitaxial S1Ge films with
nominally 21% Ge.

DETAILED DESCRIPTION OF TH.
PREFERRED EMBODIMENTS

(L]

An embodiment of the present invention provides a
method for modeling semiconductors that have been modi-
fied by doping, strain or quantum confinement. The model-
ing method starts with an existing model that provides the
functions €,(E) and &,(E) for an unmodified material. The
unmodified model may be 1 any form including lookup
table, critical poimnt (CP), eflective media approximation
(EMA) and others. The functions &,. (E) and &, (E) for the
corresponding modified material are defined as superposi-
tions of the functions &, (E) and &,(E) plus two perturbation
functions A&, (E) and A&,(E). One of three methods (each
of which 1s discussed below) 1s used to provide a param-
eterized definition for A&,(E). A&, (E) 1s then obtained from
AE,(E) using the equation (reprinted from above):

* FAey(E) . (5)

Agp (Ep) =
o E?—Ej

The function €, (E) and &, (E) (or functions that include
<,(E) and &,(E)) are typically used as part of a regression
based analysis 1n which empirically obtained values are
compared to values computed using &,. (E) and &, (E). The
comparison process 1s repeated while the parameters to
A&, (E) are varied until a desired goodness of fit 1s achieved.
At that point, the parameters correspond to the modifications
(c.g., doping or strain) applied to the original unmodified
material.

In general, solving equation (5) 1s non-trivial because 1t 1s
complicated by the presence of a singulanty at the point
where E=E This 1s true even where the function A&,(E) has
been defined 1n such a way as to be zero over most of the
energy range. The present invention provides three catego-
ries of solutions that address this difhiculty: firstly, a general
numerical solution for the Kramers-Kronig transform that
can transform any arbitrary form for A&,(E), together with
some examples of such forms; secondly, a mathematical
function (the Cauchy distribution) that can conveniently be
integrated analytically from zero to infinity; thirdly, an
oscillator model that satisfies the Kramers-Kronig condition
in i1ts formulation but which 1s here applied just to the
perturbation rather than to the whole dielectric function of
the matenal.

General Numerical Solution
As 1implied by Zettler et al (see 1.-T. Zettler, T. Trepk, L.
Spanos, Y.-Z. Hu and W. Richter, “High precision UV-
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visible-near-IR Stokes vector spectroscopy”, Thin Solid
Films 234, 402 (1993)), 1f the functlon A, 1s defined at a
number of discrete energies E |, - .E, then it 15 possible
to represent it analytically by means of a cubic spline
whereby 1n interval k:

AC,(E)=c "+c,"E+c"E*+c,"E? (6)

The integral containing EAE&,(E) can then be done ana-
lytically, term by term and interval by interval, using stan-
dard integrals by Prudmkov et al (A. P. Prudnikov, Y. A.
Brychkov and O. I. Marichev, “Integrals and Series”, Gor-
don and Breach, New York (1986)):

E 1 (7)
dE = —loolE* — E-

f E2 P 1E1 E+Eﬂ‘
E2-F2 B E-E
E E* E;
dE = — + oo E* —
A T R ]

f E e E’ . Egl E+Eﬂ‘
:__I_ . —_——
E? — F2 3 0 > E-E,

'

So long as A&, 1s calculated at a set of energies E',,
E'2 . E' different from the setE,, E, . .. E _at which AE
1S deﬁned then no singularities will be encountered as
final step, A&, 1tsell can be represented by a cubic sphne 1n
order to derive its values at E,, E, . . . E..

With this technique available to do the Kramers-Kronig,
transform, the function A&, can be constructed using any
arbitrary functions to achieve suppression/enhancement and/
or shifting of the peaks. One such set of functions 1is
described here. In any case, the first step 1s to 1dentify the
positions of the strong features in the &, curve, and the
procedure 1s then as follows.

Peak Suppression or Enhancement:

Define an amount of suppression, “S” and a breadth, “B”

for the suppression function. At all photon energies that are
within haltf the breadth of the peak position, define a
perturbation as:

SX(B = |E = Epgatl)
b

A(E) = (5)

This satisfies the condition that the maximum suppression
(when E=E__ .) should be equal to S, and allows S to be
negative 1 which case the peak i1s enhanced rather than
suppressed. FIG. 3A shows an example ofthe fitting function

for S=1.5 and B=0.13. The resulting transform 1s shown 1n
FIG. 3B.

Peak Shifting:
Define a shift “Sh” and an extent “X”. A sinusoidal

function 1s defined such that at energies within “Sh” of the
peak, the perturbation 1s

B — (EPfak - Sh)
Sh

(9)

A(E)= X X sin[

)

FIGS. 4A and 4B show an example of the fitting function,
and 1ts resulting transform, when X=1.5 and Sh=0.15.
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For a Silicon or S1Ge optical function, S, B, Sh and X can
be defined for each of the E1 and E2 peaks to obtain a total
of eight adjustable parameters.

Cauchy Distribution Solution

A second technique 1s to find a perturbation function A&,
with continuous dertvatives that can be analytically trans-
formed without having to go through the intermediate stage
of conversion to a cubic spline. These criteria are satisfied by
the Cauchy distribution which 1s generally written 1n the
form:

Agy(E) = D

where A represents the position of the peak, B represents the
breadth of the distribution and C 1s a scaling factor.

As shown 1n FIG. SA, the overall shape of the Cauchy
distribution is suitable for peak suppression 1n the &, curve.
It 1s also smooth and continuously diflerentiable. This con-
trasts to the equation used for peak suppression used within
the cubic spline solution (i.e. equation (8)). It also has the
virtue (unlike, for example, the normal distribution, the
Laplace distribution or numerous similar functions) that 1ts
Kramers-Kronig transform:

(11)

h C E
Ae(Ep) = R .EZ—EZJE
0O m-B- 1+( B ]} 0

has a closed analytical form, viz.

( A

A.(Eﬁ—Az—Bz).(;r+2tan‘l(g]]+ | (12)

\B-(E§ + A® + B%)- (2-log(Ey) — log(A* + B%))
(E5 + 2AEy + A2 + B2)(E5 — 2AE, + A? + B?)

Ag)(Ey) = - e

As a result, 1t 1s not necessary to use the cubic spline
method described previously to perform the Kramers-Kro-

nig transform. The function 1s straightforwardly calculated
as shown in FIG. 5B.

As noted, the Cauchy distribution 1s most easily applied
to perform peak suppression or enhancement. To perform
peak shifting, two diflerent approaches are possible. The
first 1s to use the previously described sinusoidal function
(equation (9)) and resort to the numerical Kramers-Kronig
technique. The second 1s to use a combination of separate
Cauchy distributions. Typically, this imnvolves two slightly
shifted distributions, one positive and the other negative, as
shown 1 FIG. 6A. The use of the separate Cauchy distri-
butions retains the advantage that the Kramers-Kronig trans-
form 1s directly integrable without the use of a cubic spline

function: the result of such an analytical integration 1s shown
in FIG. 6B.

Oscillator Solution

A third technique 1s to model the perturbation functions
A€, and A&, simultaneously using an oscillator model that
1s Kramers-Kronig consistent by design. Any oscillator
model that meets this requirement 1s suitable for this pur-
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pose. FIGS. 7A through 8B, which correspond to the cases
described for SA to 6B, were obtained using the simplest
possible harmonic oscillator model:

C (13)

Aei (E) + iAer(E) = _
ellB) Hiaelb) = T ~ T AT B

EXAMPLES

Example A

A set of data from a doped epitaxial substrate: there was
said to be ~600 A of doped Si on a standard crystalline
substrate, but the total lack of interference iringes in the data
indicates that there 1s no interface close to the surface. For
the purposes of the exercise, 1t 1s assumed that the whole
substrate 1s doped. FIG. 9A shows the spectrum obtained
using a crystalline S1 lookup-table model. Note, the sharp
feature at ~3700 A corresponding to the E1 peak energy of
~3.4 eV. After applying the two-parameter suppression
function described 1n equation (8), the results of FIG. 9B are
obtained. Not only is the sharp feature at ~3700 A now
accurately fitted, but the fit has also improved over the whole
wavelength range with the possible exception of the DUV
below 3000 A. This can be taken one step further by adding
a shiit function as described 1n equation (9) and performing

a similar perturbation upon the E2 peak. The result 1s shown
in FIG. 6C.

Example B

FIGS. 10A through 10C show the same sort of application
applied to representative data from an undoped S1Ge layer
under a doped Si1 cap. In this case, the dispersion of the cap
1s modified rather than the S1Ge itself. FIG. 10A shows the
fit to the data obtained when using a standard c-Si lookup
table to represent the cap, FIG. 10B shows the fit obtained
using the doped-S1 model derived above, and FIG. 10C
shows the result of doing a complete optimization using the
data point 1tself. Note how, with the doping model, a good
fit is obtained for the feature at ~3800 A (circled) which is

completely missed by the ¢-S1 model.

Example C

FIGS. 11 A through 11E show the {its obtained for several

of the optical technologies available on the Opti-Probe tool
from an undoped S1, 4,Ge, ,; layer under an undoped cap; as
can be seen, the fit to all technologies 1s very good. In FIGS.
12A through 12E, the corresponding data from a similar
waler with a doped S1Ge layer 1s shown, as fitted using the
same recipe that did not allow for the presence of doping.
The large errors in the fit clearly indicate the dangers of
leaving doping unaccounted for. FIGS. 13A through 13E
show the results of applying the present invention to the
same data, and shows that all of the technologies can

simultaneously be brought mnto good agreement.

Example D

FIG. 14 shows plots of Ge-fraction and E1 suppression
(“C” 1n equation (11)) for a set of single-layer S1Ge films on
S1 which had nominally constant Ge-fraction but varying
Boron levels as shown (the x-axis shows percentages of the
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maximum doping, which was here 1.0x10°° cm™). This
shows that the present invention 1s indeed applicable for the
simultaneous measurement ol Ge-fraction and doping level.

What 1s claimed 1s:
1. A method for optically evaluating a sample, the method
comprising;

defining a parameterized A<, perturbation function to
represent the difference between the &,' dispersion
curve of the sample and the &, dispersion curve of a
similar sample having a known dopant concentration;

defining a A&, perturbation function to represent the
difference between the &,' dispersion curves of the
sample and the similar sample having a known dopant

concentration, where the A&, perturbation function 1s
defined as a Kramers-Kronig transform upon the A&,

perturbation function;

illuminating the sample with a probe beam; and

detecting the reflected probe beam and generating output
signals wherein said output signals can be compared to
the A&, and A&, perturbation functions for evaluating
the sample.

2. A method as recited 1n claim 1 that further comprises:

applying a general function to perturb the strong features
of the &, curve of the similar sample;

representing the A&, perturbation curve as a cubic spline
function;

performing a Kramers-Kronig transformation by integrat-
ing the cubic spline function to obtain a corresponding
A€, curve; and

combining the perturbations upon &, and &, curves to
obtain a new dielectric function and hence n and k
curves for the sample.

3. A method as recited 1n claim 1 that further comprises:

applying a Cauchy distribution function to perturb the
strong features of the &, curve of the similar sample;

performing a Kramers-Kronig transformation by directly
integrating the Cauchy distribution function curve to
obtain a corresponding &, perturbation curve; and

combining the perturbations upon €, and &, curves to
obtain a new dielectric function and hence n and k
curves for the sample.

4. A method as recited 1n claim 1 that further comprises:

constructing a Kramers-Kronig consistent oscillator
model; and

obtaining the perturbation functions for the &, and <,
curves as respectively the real and imaginary parts of
the oscillator model.

5. An apparatus for optically evaluating a sample, the

apparatus comprising:

an 1llumination source for generating a probe beam:;

one or more optical components for directing the probe
beam at the sample and for gathering the reflected
probe beam:;

a detector for converting the reflected probe beam into
corresponding signals;

a processor for analyzing the signals to determine the
optical dispersion of the sample, the processor config-
ured to:

represent the difference between the &,' dispersion curve
of the sample and the &, dispersion curve of a similar
sample having a known dopant concentration using a
parameterized AE, perturbation function;

represent the diflerence between the &, dispersion curves
of the sample and the similar sample having a known
dopant concentration using a A&, perturbation func-
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tion, where the A&, perturbation function 1s defined as 7. An apparatus as recited in claam S5 1 which the
a Kramers-Kronig transtorm upon the A&, perturbation processor 1s configured to:
function; and apply a Cauchy distribution function to perturb the strong
repeatedly evaluating the A&, perturbation function features of the &, curve of the similar sample;

against the signals while changing the parameters 1 5
order to find the correct dispersion curve for the sample
and, by inference from the best-fit parameters, the
dopant concentration of the sample.

6. An apparatus as recited 1n claim 35 1 which the
processor 1s configured to: 10
apply a general function to perturb the strong features of

the &, curve of the similar sample;
represent the AS, perturbation curve as a cubic spline

perform a Kramers-Kromg transformation by directly
integrating the Cauchy distribution function curve to
obtain a corresponding &, perturbation curve; and

combine the perturbations upon &, and &, curves to
obtain a new dielectric function and hence n and k
curves for the sample.

8. An apparatus as recited in claam S 1 which the
processor 1s configured to:

function: construct a Kramers-Kronig consistent oscillator model;
perform a Kramers-Kronig transformation by integrating 15 @d | |

the cubic spline function to obtain a corresponding A&, obtain the perturbation functions for the €, and &, curves

curve; and as respectively the real and imaginary parts of the
combine the perturbations upon &, and &, curves to oscillator model.

obtain a new dielectric function and hence n and k
curves for the sample. £k k% ok
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