US007222263B2

12 United States Patent (10) Patent No.: US 7,222,268 B2

Zaifman et al. 45) Date of Patent: May 22, 2007
(54) SYSTEM RESOURCE AVAILABILITY Primary Examiner—Robert Beausoliel
MANAGER Assistant Examiner—Marc Duncan
(74) Attorney, Agent, or Firm—Verrill Dana, LLP; Chris A.
(75) Inventors: Arthur L. Zaifman, Marblehead, MA Caseiro
(US); Stephen J. Ciavaglia,
Merrimack, NH (US) (57) ABSTRACT

(73) Assignee: Enterasys Networks, Inc., Andover,

MA (US) A hierarchical, distributed Availability Management (AM)

process for recovering from component failures 1n a data

(*) Notice: Subject to any disclaimer, the term of this _ _
processing system. The hierarchy of AM elements track a

patent 1s extended or adjusted under 35

U.S.C. 154(b) by 1275 days. fallure modality hierarchy of the data processing system

components. For example, the system hierarchy may include

(21) Appl. No.: 09/954,711 system cards, processors, and processes, 1n which case the
(22) Filed: Sep. 18, 2001 assocliated AM elements may be implemented at a card

manager (CM) level, a system manager (SM) level, and a

(65) Prior Publication Data process manager (PM) level. The AM hierarchy is designed
US 2002/0087687 Al Jul. 4, 2002 to achieve a failure granularity so that failures in the lower
levels of the hierarchy have less of an impact on the entire

Related U.S. Application Data system. Each AM element 1s responsible for receiving

fallure noftifications from processing system components
associated with a next lower level of the hierarchy. Upon
such indication, 1f the AM element determines that the failed
(60) Provisional application No. 60/233,393, filed on Sep. component may be restarted, 1f the failled component may be

(63) Continuation-in-part of application No. 09/954,471,
filed on Sep. 17, 2001.

18, 2000. restarted, the AM element then determines 1f 1t can be hot,
warm, or cold restarted and i1t does so without further

(51) Int. CI. notification or implication to system availability of other
Goot 11/00 (2006.01) components. Hot restart requires complete integrity of sate

(52) US.CL ..., 714/477; '714/48; °714/4 information, warm restart causes a recovery of last known
(58) Field of Classification Search 714/47, good state information, and a cold restart results in the

714/48, 4; 702/183, 182, 185; 710/110, re-initialization of state information. If, the component can-

710/104, 14; 713/1 not be restarted, then notification 1s provided to the next

See app]ica‘[ion file for comp]ete search history_ higher level of the hierarchy and the AM element itself

_ terminates. One of the AM processes may execute as an

(56) References Cited identity management protocol. The identity protocol sets a
U S PATENT DOCUMENTS temporary master state; waits a predetermined amount of

time; and then sets a final master state only 1f no other

4,965,743 A 10/1990 Malmn et al. 364/513 system card has asserted a temporary master state. The
(Continued) waiting time period 1s selected to be greater than the longest
_ - _ﬁ expected 1mitialization process for peer components 1n the
FOREIGN PATENT DOCUMENTS q
ystem.
EP 0416732 A 3/1991
(Continued) 91 Claims, 12 Drawing Sheets

— P P

crucarno | [crUcarpol ToPUCARD G CPU CARD 1
250-0 -~ | (DEFAULT MASTER MASTER MASTER
MASTER) WRITE REG READ REG READ REG
802-0 801-0 8041

-— E2
1= |
WINDOW OF
VUIINEHABILITY

CPUCARD 1
MASTER
WRITE REG

2501

f ¥ Yy Y Y L3
E1: TEMPORARILY UPDATES LOCAL MASTER REGISTER WTIH NON-MASTER IDENTITY

E2: READ GLOBAL MASTER REGISTER (NO CURRENT MASTER DETECTED!)

E3: TEMPORARILY UPDATES LOCAL MASTER REGISTER WITH MASTER |DENTITY
E4: READ GLOBAL MASTER REGISTER {ONLY 1 MASTER DETECTED!)

ES: PERMANENTLY UPDATES LOCAL MASTER REGISTER WITH MASTER IDENTITY
E6: PERMANENTLY UPDATES LOCAL MASTER REGISTER WITH MASTER IDENTITY

US 7,222,268 B2

Page 2
U.S. PATENT DOCUMENTS 6718481 Bl* 4/2004 FAU worveeoeeeeeeresrerennn, 714/4
6,718,486 B1* 4/2004 Roselli et al.o........... 714/41

5,487,131 A 1/1996 Kassatly et al. 395/62 6,854,069 B2* 2/2005 Kampe et al. ...ccoe......... 714/4
5,740,357 A 4/1998 Gardiner et al. 6,883,170 B1* 4/2005 GAarciacccoeevvevevveernn.. 718/1
5,796,990 A 8/1998 Erleetal. 395/500 2003/0196141 AL1* 10/2003 ShaW eoeevveeeveeeereeeen. 714/27
5,828,867 A 10/1998 Pennellccvvvveveennnnn.... 395/500 - -
5917,731 A 6/1999 Ferenczi et al. 364/578 FOREIGN PATENT DOCUMENTS
6,058,387 A 5/2000 Campbell et al. 706/60 Ep 0053011 A 11/1900
6,178,445 B1* 1/2001 Dawkins et al. 709/209 WO WOOTOTE38 A /1007
6,249,755 B1 6/2001 Yemini et al. 702/183
6,675,242 B2* 1/2004 Benson et al. 710/104 * cited by examiner

2
U.S. Patent May 22, 2007 Sheet 1 of 12 US 7,222,268 B

120

FIG. 1

1071

110
. G

US 7,222,268 B2

Sheet 2 of 12

May 22, 2007

U.S. Patent

¢ Ol

/1 MHOMLAN

= JE L3031

L-0¢2 HOSS3O0Hd O/l
¢-0ce

1-0¢¢é

0Gae goc

(S)HOSNIAS| *
4/1 Alvy o

U-0S¢

¥0c ANV1d
v.1v{d

l.l.l[llllllr..l\llll.ll[lil

¢0¢ INY1d

|||. 10HLNOO

1-05¢

£O0lL cO}

U.S. Patent May 22, 2007 Sheet 3 of 12 US 7,222,268 B2

AM OQUTPUT STATE O

AM INPUT STATE 1
SCO

AM INPUT STATE n

250-0

AM OUTPUT STATE 1

AM INPUT STAT .
o
AM INPUT STATE N

250-1
AM OUTPUT STATE n
AM INPUT STATE 1
scn
AM INPUT STATE 0 —~
-
250-n

DATA, RESET, PRESENCE

FIG. 3

US 7,222,268 B2

Sheet 4 of 12

May 22, 2007

U.S. Patent

v Old

(JUBAS 10} IIBM) M <= M
(1181681 B1IM-JBlSBW 0] pajiuiwod Alquspl) M <=0
(paJajunooua 101u0d Alnuapl peniwwog/Aresodwa)) | <=9
(pasidxe uoljeinp a1els asned ayy) 9 <= d

(jJuasaid si pied ndd auo Ajuo) D <=|

(uasa.ud s| pJed ndo auo uey) 8ioW) d <= |

SNOILLISNVH.L

e0v

G OIl4

ALILNZA]! d3L5VIA HLIM H31S193H H31SYIW VD07 S3LvadN ATININVYIANYI 93
ALIINSA] d31SVIA HLIM H3LSID3H HALSYIN V007 SALVAdN ATLNINYINHIC 63
(i03103130 HILSYW + AINO) HILSIDIY YILSYIN TVEOTD Qv3Y '+3

ALILNIAI H2LSVA HLIM H3LS193H 43 LSYN TYOO0T SALVAdN ANHYHOdWIL €3
(03103130 H3LSVIN INFHHND ON) H3LSIDIY YI1SYIN TVE0TH QvV3IH ‘23

ALILNIA! H3LSYW-NON HILM H31SIO3IH "I LSVYIA TVD0T SALvAdN ATNHYHOdWEL 13

US 7,222,268 B2

Sheet 5 of 12

May 22, 2007

1-v08 0-108

L QUYD D4 m:._mg 34y dv3d 534y dv3y ©3H J1LIHM
| -0GZ Ndo Ha1SYIN d31SVIN H31SVIN d31SVIN
L A4VO NdO L HVO NdD 0 d4vO NdD O QWV3 NdD

U.S. Patent

ALNIGVHANINA .
40 MOANIM
mm_ .

(HILSYIN
1nv43a)
0 4HVYO Ndo

0-09¢

US 7,222,268 B2

Sheet 6 of 12

May 22, 2007

U.S. Patent

9 DI

ALIINTA! HILSYIN-NON HLIM H3LS193H HILSVIN TvD01 SILYadN ATININVING I 93
(Ia3HSIAVLSI AQY3H TV HIALSYIN) HIALS1DIH HILSYIN TvE01D aQvaY ‘63
ALILNIAI HILSYW HLIM HI1SIHIY H3LSYIN WD STLVYAdN ATININYAHI #3
ALIINIQI HILSYIN HLIM H31S193H HILSYN T¥207 S3LVAdN ATHVYHOdN3L €3
(id3.103.130 H3LSYW LNIHHND ON) HALS1H3H HILSYW TvF01D avaY ‘23
ALIINIA HILSYN-NON HILM HILSI93H HILSYN T¥001 SALVAdN ATHYHOJWIL ‘13

-

ALIIGYHINTNA
40 MOCONIM

L QdVO
L-06¢ NdD

I e u._._m>>
d3LSVIN
L ddVO NdD

A S ' W S e e

W By A e e IR

pnls dew o =y By CEN

L-#08

0d4 dv3dd
d31L5VIN
| Q4v0 NdO

- @ @was T W e s

e @ ey by gl - T

—_— ey Ty s . - P ey . e

L-08

034 Qv3d

d31SVIN
0 ddv¥O NdO

ek Sk e ey Eppm i gy =aa Tew W

034 311dM
d41SVIA
O advd NdO

(H3LSYIN

17Nv430)

0 QHYD NdD |

- . -

0-052

US 7,222,268 B2

Sheet 7 of 12

May 22, 2007

U.S. Patent

(J81sBW US4IND 10U SBM pled pauedsp) N <= g

(Jo1sBW JUBLIND Sem pled pauedsp) | <=Q

SNOILISNVYHL

‘IIIII.I!II]I.IIII—IIIIII'-IIII

A e s Tpas Epen dna AL g B dam AR S Sy sEm e ST S TS e e s gt e

NSO

LOL

U.S. Patent May 22, 2007 Sheet 8 of 12 US 7,222,268 B2

BIT DEFAULT

FIELD R/W FUNCTION

801

0

SC MASTER STATE

FI1G. 8A

BIT FUNCTION
FIELD | R/W
802 = SCO PRESENT
SC1 PRESENT
SCn PRESENT
0X0000000 RESERVED
FIG. 8B
DEFAULT FUNCTION
803

OX00
0X000000

SOFTWARE SPECIFIED
RESERVED

FIG. 8C
HOST DEFAULT FUNCTION
804 ikl
- R 0X00 RSC AM STATE (SOFTWARE SPECIFIED)
R 0X00000 RESERVED
FIG. 8D
DEFAULT FUNCTION
805
0X0 AM RECEIVE DATA INTERRUPT
806G Gx00000 AM RESET INTERRUPT
(RSC HAS EEEN RESET)
807 Ox00000 AAM SLOT CHANGE INTERRUPT

(RSC INSERTED OR EXTRACTED)
0x0000000 |RESERVED

FIG. 8E

US 7,222,268 B2

Sheet 9 of 12

May 22, 2007

U.S. Patent

6 ‘Ol

“ WV U
» *

bt &

HL y3ovNYW 853004d - Nd

o e 6 HIDVNYIWN WILSAS - WS

HIOVUNVIA advD - WD G-€16

.-m‘m . xxx

ML

O-£l6

.mrmlm

/

___ [s LS OWNS SWS NS ons
206 \ [an]) " \[H] EN lan]/ "7 \ [H] aH |

216 cie cl6 e o le 0-Z16

106 Lo 1-0G2
LND
-1 16
E L-226 0-226 E
006

ASILON 13S3H

US 7,222,268 B2

Sheet 10 of 12

May 22, 2007

U.S. Patent

d OL 310N
FLYNIWHIL SAN3S 'O LYV1S3H LIONNVO Y i +

J0ILON JLVNINYHTL HOd O NO SANIJ3A Y »

N 1V SJLVNINGIL J 40 ALMNGISNOJS3Y -

01 "Oid

NS ‘WD ‘OM = d

HL 'Wd WS =D

Wd NS ‘WD =Y

® - O Gow

JOI1LON
JLVNINYDL

0001}

30/|LON
JLVNINYH3L

020}

2
S B
2,26
7,22

US

f12

Sheet 11 o

07

22,20

May

nt

Pate

U.S.

Rn

U.S. Patent May 22, 2007 Sheet 12 of 12 US 7,222,268 B2

913-q

. 911

FIG. 12

012

UsS 7,222,268 B2

1

SYSTEM RESOURCE AVAILABILITY
MANAGER

RELATED APPLICATION(S)

This application claims the benefit of U.S. Provisional
Application No. 60/233,3935, filed Sep. 18, 2000, entitled

“System High Availability Manager,” and 1s a Continuation-

in-Part of U.S. patent application Ser. No. 09/954,471 filed
Sep. 17, 2001 entitled “System Resource Availability Man-
ager,” the entire contents of which are incorporated herein
by reference.

BACKGROUND OF THE INVENTION

With the development of cost eflective data communica-
tions network infrastructures, such as IP-based data net-
works, 1t 1s increasingly common for such infrastructures to
support mission critical data processing applications. So-
called high availability computing systems originally devel-
oped for deployment 1n applications such as military, aircratt
navigation, and telephone central oflice uses are now
requirements 1n new deployments of these data communi-
cations networks. High availability 1s commonly achieved
with redundant components such as redundant processors
where failure modes result in a fail-over to a redundant
component. High availability can also be achieved by rap-
idly recovering the failed components. Fast recovery of
routing information in failure scenarios 1n network systems
1s 1mportant due to the relatively long time it takes to
regenerate this information 1n large and complex networks.

The most stringent requirements for high availability
demand continuous service with absolutely no loss of appli-
cation state. These systems attempt to maintain a log of all
transactions and their history; they are considered the
domain of so-called fault tolerant computing. These com-
puters often add redundancy to an extreme level as power
supplies, hardened storage sub-systems, hardware subjected
to stringent Mean Time Between Failure (MTBF) testing,
and the like. Continuous availability, both during equipment
tailure and during subsequent return to service of repaired
equipment, comes with a significant price and performance
penalty.

High availability computing as presently practiced
attempts to utilize the resources of redundant architectures.
This solution can address the redundancy needed for com-
ponents ol systems, such as a networking device such as
router, switch, or a bridge that 1s expected to serve a mission
critical role 1n assuring that, for example, connections to
many computers are maintained to the Internet. However,
the class of errors typically detected 1n such systems 1s less
comprehensive and the time to recover from such errors 1s
typically much longer than in a true fault-tolerant machine
architecture. As a result these architectures, even when they
provide for fault recovery only after tens or hundreds of
seconds, can be deployed for often at much less than the cost
of traditional fault-tolerant computing systems.

The most often configuration 1s a so-called dual redundant
architecture 1n which two data processing systems are
deployed as an active-standby or master/non-master states.
Hardware and/or software fail-over processes can be trig-
gered by hardware, or software detectors, to cause an active
or master process to be transierred to another active master
process without operator mtervention. Such application pro-
gram {fail-over typically requires that applications be
restarted from the beginning, however, with the loss of all

10

15

20

25

30

35

40

45

50

55

60

65

2

processing state not already committed to the secondary
storage device such as a disk.

In an application such as a networking device, actively
restarting the application 1n a functional processing node
typically assumes the responsibility for reassigning, for
example, the network addresses of the failed machine to the
new processor, as well as rebuilding critical information
such as routing tables. The transfer of network address and
connection information can be typically handled quite easily
and without complication.

As the size and complexity of data network increases, a
router located deep within a network may have received its
state information and constructed its routing table over the
course of time. If router table state information 1s lost, 1t can
be cumbersome and time-consuming to restart a router
process and rebuild a router table. The information can only
be restored by sending a long series of query and advertise-
ment commands through routing protocols, such as an
Interior Gateway Protocol (IGP) or an Exterior Gateway
Protocol such as BGP-4. Upon the restart, 1t may thus take
many seconds or even minutes, for router protocols to
completely rebuild such tables.

Even more severe situations can occur where the rebuld-
ing of the router table 1s not completed before real-time
topology changes 1n the surrounding network occur. In such
instances, the protocols may continuously reset themselves,
thereby ultimately creating a race condition in that the
process for rebuilding the router table never completes
without some sort of manual intervention.

It desirable therefore for such systems to adopt certain
high availability architectures, such as providing dual or
backup power supplies, dual and separate system processor
cards, and live isertion or “hot swap” capabilities that

support replacement failled components without shutting
down the entire system.

SUMMARY OF THE INVENTION

The present invention 1s directed to an Availability Man-
ager (AM) process for controlling the recovery from com-
ponent failures 1n a data processing system. The AM process
1s 1tsell a hierarchical, distributed, loosely-coupled set of
process elements that are related to one another 1 a hier-
archy that parallels a hierarchy associated with the failure
modalities of the data processing system components.
Within each given AM process element, failure notification
from a data processing system component 1s received. If the
data processing system component can be restarted by 1ts
associated AM process element, then that component is
restarted and the AM element continues, with no further
impact on system availability. However, 1f the data process-
ing system component cannot be restarted, the AM element
process terminates while providing a termination notice to a
next higher level layer of the AM element hierarchy. Com-
ponent failure notification thus continues up the level of the
AM element hierarchy until it either meets a level of the
hierarchy that can restart its associated component level, or
reaching a highest level of the hierarchy. In the preferred
embodiment, the highest level of the hierarchy uses a
mechanism such as a watchdog timer or reset circuit that
initiates a global system reset procedure.

It should be understood that a number of modifications
may be made to this general aspect of the present invention.
In particular, the data processing system components are, 1n
general, any sort of data processing component that may
perform one or more system functions. The components
may, for example, themselves be hardware components such

UsS 7,222,268 B2

3

as system circuit boards, processors, or software elements
such as application processes, threads, or operating systems,

and the like.

The failure notification provided may be a termination

notification and/or a process hang notification. In the case of 53

a component termination, the failure notification may carry
turther 1information that may permit the associated AM
clement to make a decision with respect to the ability to
restart. For example, the component termination notice may
provide component state information imndicating whether the
components own internal logic has terminated execution 1n
state where the monitored component itself can be restarted
without error.

However, underlying components such as operating sys-
tem components may further provide information to assist
the AM element 1n making a restart decision. For example,
the state of operating system entities, such as the state and
types of resources that were 1n use may be momitored by the
operating system, along with the state of other data process-
ing system components, and the like. This information may
then be forwarded by the operating system to the AM
clements so that the AM elements can determine whether a
particular component can be restarted.

Component hang states may be detected by using a
heartbeat protocol between an mterrupting-timer component
and an AM element(s) at the same level. In one embodiment,
the interrupting-timer handler can periodically send a known
signal to the AM element(s) at the same level of the
hierarchy. Upon reception of the signal, the AM element
updates a location known to the interrupting-timer handler
with a value acknowledging receipt of the signal (e.g.,
incrementing a counter). In this manner, when the interrupt-
ing-timer handler notices that an AM element has not
updated the well-known location after some predetermined
duration, 1t can be presumed that the respective AM element
1s hung. In this instance, the mterrupting-timer handler will
record the i1dentity of the hung element (and possibly other
state information that may prove useful for debugging and
other purposes) betfore causing the hung elements termina-
tion.

The AM element hierarchy ensures that component fail-
ures will be localized to the lowest possible level 1n the data
processing system component hierarchy to which a failure
can be 1solated. This prevents unnecessary global system
restarts which may, in turn, have an adverse aflect on system
availability as a whole.

Failure notification may be made by signaling in any
convenient fashion among the AM elements. In a preferred
embodiment, the AM elements execute as processes 1n a
distributed, multi-tasking operating system. In this environ-
ment, failure notification 1s preferably made through the use
ol 1nter-process operating system messages or signals.

In a case where the data processing system components
include system cards, processors, and application processes,
the AM elements may include, respectively, a watchdog
timer element, card manager (CM) elements, system man-
ager (SM) elements, and process manager (PM) elements. In
this case, where a failure notification 1s to be begin by a CM
clement, 1t suppresses its watchdog time update. Upon this
occurring, the watchdog timer expires, therefore causing a
reset for all components local to the associated system card.

With redundant components such as system cards, a
master state must be determined and upon component failure
or removal, a fail-over to the redundant components must
occur. In this protocol, a physical default master state may
be first assumed 1n such an approach when the master state
1s first asserted. However, a transition can be made to a

10

15

20

25

30

35

40

45

50

55

60

65

4

logical default master state if a subsequent read of master
state assertions from other components indicates that no
other component has asserted the master state. In addition,
if any component has a higher priority location with a master
state asserted even subsequently, the master state may still
be de-asserted and the commitment be made to the non-
master state.

A Depart State Machine 1s executed upon reset command
from another peer system component or 1f, for example, the
peer system component departs from the system, such as it
a system card 1s removed from a backplane. The Depart
State Machine determines i1f the departed component was
previously asserted the master state and, 11 so, then the Join
State Machine will be executed by the remaining compo-
nents.

BRIEF DESCRIPTION OF TH.

(L]

DRAWINGS

The foregoing and other objects, features and advantages
of the invention will be apparent from the following more
particular description of preferred embodiments of the
invention, as illustrated in the accompanying drawings in
which like reference characters refer to the same parts
throughout the diflerent views. The drawings are not nec-
essarily to scale, emphasis 1stead being placed upon 1llus-
trating the principles of the invention.

FIG. 1 1s a diagram of a data processing system 1n which
devices may make use of the present invention.

FIG. 2 1s a more detailed block diagram of a networking
device such as a router that uses the present mvention to
provide high availability.

FIG. 3 1s an mterconnect diagram for system cards.

FIG. 4 1s a state diagram for a Join State Machine.

FIG. 5 1s a diagram 1llustrating how signals pass between
two central processing unit (CPU) system cards.

FIG. 6 1s a diagram 1illustrating how a window of vulner-
ability may be shifted.

FIG. 7 1s a state diagram for a Depart State Machine.

FIGS. 8A through 8FE illustrate certain registers as used
for supporting an 1dentity protocol used by an Availability

Manager (AM).
FIG. 9 1s a software hierarchy diagram for the AM.

FIG. 10 1llustrates how a root element of the AM handles
terminate notices.

FIG. 11 illustrates how root processes communicate state
information with their peers 1n the hierarchy.

FIG. 12 illustrates a child process dependent restart sce-
nario.

DETAILED DESCRIPTION OF A PR
EMBODIMENT

L1
Y

ERRED

A description of preferred embodiments of the mvention
follows.

1. Overall System Hardware Architecture

The present invention relates to hardware and software
clements of a high Availability Manager (AM) as used 1n a
distributed data processing apparatus. The Availability Man-
ager 1s responsible for controlling certain dynamic events
that can occur 1n data processing systems that not only
contain a multiple Central Processing Unit (CPU) system
cards, but also where system cards contain any number of
processing units operating in parallel. The processing units
typically execute an operating system that 1s distributed,
multi-tasking, and fault tolerant.

UsS 7,222,268 B2

S

The mnvention seeks to implement the Availability Man-
ager on a hierarchical basis so that domains of related data
processing system functionalities and failure modalities.
Such domains may include intra-card domains (that 1s,
between processors on the same card), and inter-card
domains (that 1s, elements controlling card-to-card opera-
tions). In eflfect, each domain 1s aware of whether a mecha-
nism exists for sub-domains that it respectively monitors can
be restarted. If they cannot be restarted, then each domain
itself terminates, notifying 1ts respective higher-level
domain.

The 1nvention also includes both hardware and software
processes that perform a card 1dentity process to determine
which of a number of redundant cards will assume the role
ol system master.

The requirement of high availability relates to how
quickly a data processing system can recover from a failure
condition. This 1s a particularly acute problem 1n a system
such as networking devices used to implement a computer
network 100 such as shown in FIG. 1. The network 100 may,
for example, be the Internet 101 and consists of networking
devices such as switches 102, routers 103, bridges, gate-
ways. The networking devices 102, 103 are responsible for
providing communication connections between various data
processing sub-networks and systems. For example, the
network 100 may provide connections from a one end node
which 1s a file server 106 that stores a number of network-
accessible files on data storage devices 107 so that they are
made available to other end nodes like those at local area
network 108 that interconnects a number of personal com-
puters (PCs) 100. Likewise, connections may be made to
other sorts of sub-networks such as may be located at an
Internet Service Provider (ISP) 120 that provides dial-up
access through a bank of modems 121 to individual user PCs
123 located 1n residential homes.

The present mnvention provides high availability for data
processing systems such as the networking devices 102, 103
so that they not only recover from failure conditions as
quickly as possible by limiting the propagation of failure
notifications. In particular, the invention involves the moni-
toring of fine grain state information for each domain in a
hierarchy of software domains, and stopping failure notifi-
cation 1f a domain can be restarted.

FIG. 2 1llustrates a more detailed hardware block diagram
of one of the exemplary networking devices 200. As 1is
known 1n the art, a networking device 200 such as a router
102 or a switch 103 consists of elements associated with a
control plane function 202 and data plane function 204.
Generally speaking, the data plane 204 1s responsible for
moving payload information; that 1s, for forwarding the
actual data packets that are expected to be forwarded
between the end nodes 1n the network 100. The control plane
202 1s responsible for controlling the operation and configu-
ration and maintenance of the data plane elements 204, and
specifically, establishing and maintaining routing and for-
warding tables that represent the interconnection topology of
the routers 102 and switches 103 that comprise the network
100.

More particularly, the data plane 204 typically consists of
a number of mput/output (I/O) processors 220-1, 220-
2,...,220-i The I/O processors 220 are each responsible
for performing the core operations upon payload data that 1s
received through networking iterfaces 230. For example, in
an instance where the networking device 200 1s a router,
cach I/O processor 220 1s responsible for receiving data
packets from one or more of the network interfaces 230,
examining destination address field and ingress port infor-

10

15

20

25

30

35

40

45

50

55

60

65

6

mation, and performing a lookup in an associated routing
table. The routing table returns information such as an egress
port number, on which to forward the packet. The forward-
ing may be within a single 1/0 processor 220 or among the
group of I/O processors 220 associated with a particular
networking device 200.

The control plane 202 1s the focus of the implementation
of the present invention. In particular, the control plane 202
consists of one or more (typically, at least two) central
processing unit system cards 250-1 , . . ., 250-z (referred to
herein as CPU cards and/or system cards (SCs)), as well as
one or more timers 260, user interface circuitry 270, and data
storage interfaces 280.

Each of the SCs 250 may have a plurality of processors
252 located on 1t.

Each SC 250 has one or more timers 260. As will be
understood shortly, at least one of the timers 260 1s a
so-called watchdog timer used 1n the present mvention to
coordinate operations of highest instantiation of the hierar-
chy.

Environmental sensors 265 can be utilized to provide
signals to the SCs 250 indicating temperature, voltage, fan
state, and other environment conditions. The sensors 265
may provide signals indicating fault conditions to other
components of the system.

The disk interface 280 provides access to a non-volatile
storage device such as a Redundant Array of Independent
Disks (RAID) 285, or other non-volatile, persistent second-
ary storage system.

2. Master Identification Protocol

The Availability Manager (AM) makes use of both hard-
ware and software elements to manage certain dynamic
events that can occur 1n the device 200. Of 1nitial interest are
certain configuration sequences and information that are
used to ensure a situation where only one of the SCs 250 1s
designated as a master at any point in time. The designated
master card 1nherits responsibilities that distinguish 1t from
the other cards in the systems but 1t 1s otherwise 1dentical in
its implementation and configuration.

Certain dynamic events that are deterministically handled
by the Availability Manager include:

master v. non-master 1dentity selection (Join State
Machine)

non-master to master identity transition (Depart State
Machine)

An interconnected mesh interface 1s needed between all
SCs 1n order to convey state from a given SC 250 to all other
SCs 250. As shown 1n FIG. 3, a first SC0 connects to a write
bus to the other system cards SC1 , . .., SCn. In a system
in which there are only two SCs 250, the write bus from SCO
connects to the read bus of SC1 and the write bus from the
SC1 connects to the read bus SC0. The write bus and read
bus are implemented as an asynchronous bus interface in the
preferred embodiment. The interface may consist of an
address, an 8 bit data bus, and control signals.

The mesh interface described in FIG. 3 may include a
mechanism such as a shared data bus that may or may not
be redundant. Various physical architectures may be used to
implement the bus such as point-to-point, parallel bus, mesh
network, redundant bit lines, and so forth. What 1s important
1s that the bus 1s fully connected such that each system card
250 can both read and write mnformation from and to the
other system cards 250.

As will be understood shortly, each of the system cards
250 also have associated with them write registers, read
registers, and register logic circuits that permaits the convey-

UsS 7,222,268 B2

7

ing of state mmformation among the various cards. From a
soltware perspective, the needed hardware thus consists of
a set of registers and interrupt lines associated with each of
the system cards 250.

The registers include at least those shown 1 FIGS. 8A
through 8E as follows.

Slot Identity Register—Indicates the backplane slot posi-

tion of the associated system card.

Slot Presence Register—Indicates which backplane slot
positions are currently occupied and unoccupied by
other system cards.

Master Read Register—Indicates which system cards
have assumed the master 1dentity. Note this register 1s
cleared to the all zero state at a power-on, slot insertion,
or reset operation. Individual bits 1n this register are set
to zero 1f and when a corresponding system card resets
its state or 1s pulled from 1ts associated slot 1n a
backplane.

Master Write Register—Updated with a value of one
when the local system card wants to assume the master
identity. A side aflect of updating this register is that all
other system cards are interrupted with a master write
interrupt signal.

Reset Register—Resets the local system card and gener-
ates a reset iterrupt to all other system cards when
updated with a value of one.

Interrupt Status Register—Indicates which interrupts are
currently pending; that 1s, require servicing. There are
three possible sources of interrupts, a system card
removal 1nsertion event, a system card reset event, and
updates to the master write register.

The Identification Protocol software executes as a state
machine on at least one of the processors on each SC 250.
The two state machines 1include a Join State Machine (JSM)
and Depart State Machine (DSM). The two state machines
respectively are executed upon the joining of a system card
(at a power-on or after reset event) and upon the departing
of a system card (1.e., upon its termination). The two state
machines are preferably run synchronously, but are bounded
with respect to their completion times.

Jom State Machine (JSM)

The ISM 1s executed by an SC 250 at a power-on or after
reset event 1n order to determine which system card should
be designated as a master. The JSM 1s based upon the
concept of designating a default master. The default master
can be, for example, an SC 250 that currently occupies a
designated backplane slot. For example, the system card
with the lowest address (where zero 1s the lowest numbered
address slot) can be used as a default master. As will be
understood shortly, the adoption of a default master rule
climinates the possibility of a tie where two or more system
cards attempt to be a default master and attempt to assume
the master role at the same time.

There are also two types of default masters in the overall
system, including physical and logical. A Physical Default
Master (PDM) 1s the system card that currently occupies the
lowest physical slot 1n the backplane and 1s always singular.
A Logical Default Master (LDM) can be any system level
card other than the physically lowest. Multiple LDMSs can
exist simultaneously (although this condition will exist only
for a very brief period of time).

A sequence of states to implement the join state machine
with the above constraints 1s shown 1n FIG. 4. This state
machine has four states, including an mmitializing state,
(1)401, a paused state, (P)402, a commut state, (C)403, and
a wait state, (W)404. A summary of the transitions of the
state diagram 1n FIG. 4 1s shown next to the diagram. In

10

15

20

25

30

35

40

45

50

55

60

65

8

particular, state I may transition to state P when more than
one system card 1s present. State I transitions to state C when
only one system card 1s present. State P transitions to state
C when the pause state duration has expired. State C
transitions back to state I when a temporarnly committed
identity contlict 1s discovered. State C, however, will tran-
sition to a wait state when 1ts 1dentity has been commutted to
the master write register. The wait state W then just contin-
ues until some other event occurs, causing it to be removed
from the state, such as 1f another system card 250 1s removed
from the backplane or i1 such another system card 250 fails.

The mitializing state 1 1s responsible for performing the
following functions:

Determine the backplane slot position such as, for

example, reading the slot 1dentity register.

Determine if this particular system card 1s the default
master such as by reading the slot presence register
802.

Temporarily update the master write register 803 with
cither a master or non-master 1dentity, depending upon
the contents of the slot presence register.

Thus, a system card located 1n the lowest numbered active
slot can read the slot presence register. 11 bit field zero 1s not
set, 1t will conclude that there 1s no system card 250 1n slot
zero; therefore, 1t must assume responsibility as default
master even though it 1s not 1n the slot zero position.

From the mnitialization state 401, if more than one system
card 1s present, such as may be determined by reading the
slot presence register, then processing transiers to state 402.
If, however, only one SC 2350 is present, then the state
transitions to the commait state 403.

In an 1instance where more than one system card i1s
present, the pause state (P) 402 1s necessary. This ensures
that master write register updates are atomic. Since the
system lacks an inter-card test and set primitive instruction,
time delays instead are used to guarantee atomicity.

The particular race condition which the pause state (P)
402 attempts to eliminate 1s shown in FIG. 5. Consider a
case where there are at least two system cards 250-0 and
250-1. Each of the system cards 250 has 1ts associated
master write register 803 and master read register 804. The
vertical axis 1n FIG. 5 1llustrates time, and a particular period
of time referred to herein as the “window of vulnerability™
in which a particular race condition may be created.

From an mitial time, E1, system card 250-1 temporarily
updates 1ts local master write register 804-1 with the non-
master 1dentity. This 1s because system card 250-1 will have
been 1nstalled 1n slot one and detect the presence of another
system card in a lower numbered slot zero.

At a time E2, the system card 2350-1 reads its global
master register and determines that no current master has
been actually assigned.

At a next pomnt i time, E3, the system card 250-0
occupying the lowest numbered slot temporarily updates 1ts
local write register 803-0 with the master identity. At time
E4, 1t then reads the global master register, detecting that
only one master has been assigned 1n the system. At time ES,
the system card 250-1 will update its local master register
with the master i1dentity assigned from the global master
register. At time E6, the system card 250-0 permanently
updates its local master register with the master i1dentity.
Thus, 1t 1s possible for two or more system cards 250 to
assume the master 1dentity for a particular period of time.

This window 1s closed, however, if 1t 1s required that a
system card 250 must pause, that 1s, enter state P (FIG. 4),
after 1t temporarily updates its master write register 803. The
pause time should be larger than the time represented by the

UsS 7,222,268 B2

9

window of vulnerability. When the pause state 1s 1nserted,
the state diagram of FIG. 5 1s changed to that shown 1n FIG.
6.

In this scenario, as previously at time El, system card
250-1 updates 1ts local master write register with a non-
master 1dentity. As before, at time E2, the global master
register 1s read with no current master being detected by with
mo current master being detected at this time by system card
250-1. At time E3, system card 250-0 temporarily updates its
local master register with the master i1dentity (as 1t did
previously i FIG. 5). However, at time E4, system card
250-1 permanently updates 1ts local master register with the
master 1dentity. In aflect, the pause period has forced the
system card 250-1 to wait until time ES to read the global
master register. When that time, 1.e., the pause delay 601
finally expires and the global master register 1s read, the
proper master will have been established.

At time E6, therefore, when the system card 2350-0
attempts to permanently update its local master register with
the non-master 1dentity, only one master has been 1dentified.

The card occupying the lowest slot 1s thus the default
master and 1t 1s the only card allowed to assume master
identity during a temporary identity phase of the identity
protocol (1.e., 1t asserts the master i1dentity initially, but
downgrades to non-master when a conflict occurs at the
commit C state). The trivial case occurs when the protocol
clects the default master to be the committed master (1.e., the
protocol completes 1n a Physical Default Master (PDM)
mode. The complex case occurs when the protocol fails to
clect the default master in PDM mode forcing the protocol
to transition to a Logical Default Master (LDM) mode.

In LDM mode, 1t 1s possible for more than one card to
become the committed master (e.g., 1f system cards 250 in
slots 1, 2, and 3 are running the i1dentity protocol in lock-
step, all will commit to become master 1n the critical region).
Multiple committed masters create ties—but ties are broken
by the protocol in LDM mode. In particular, upon exit of the
critical region (1.e., the bounded read-modify-write
sequence), 1f any card in a higher numbered slot 1s also a
committed master, then it downgrades 1itself to the non-
master 1dentity. Correctness (1.¢., only one master will ever
exist before any layer above the 1dentity determination layer
1s informed of their identity) requires all cards to look
towards the higher numbered slots because the physical
default master will unconditionally assert master i1dentity
during its temporary identity phase. Since downgrades are
performed lazily (or unbounded) in the LDM mode, 11 a card
looked towards lower numbered slots, it may catch the
lowest slot card asserting 1ts temporary master 1identity and
perceive 1t as committed. Then, 11 the higher slot card failed
to downgrade before the lowest slot card completed its
critical region (1.e., lowest slot card sees another master
exists and downgrades to standby status), the result would be
a system with not elected master.

Correctness of the LDM phase (that 1s, ensuring that only
one master exists when complete) requires each participant
pause for a duration greater than or equal to the duration
defining the length of the vulnerability window. This post
critical region delay closes all timing windows where 1t 1s
possible for two or more cards to become master. The post
critical region delay guarantees that any card occupying a
higher slot than the card currently executing the LDM phase
identity protocol will (1) cause the higher slot card to leave
the critical region committed to standby identity, or (2) cause
the lower slot card to downgrade 1ts 1dentity to standby.

Returming attention to FIG. 4, the commuit state 403 1s a
state that marks the time when it 1s permitted for system card

10

15

20

25

30

35

40

45

50

55

60

65

10

250 to read the global master register, 1.e., the master read
register 804. Based upon its contents, that system card 250
can then commit to assuming either the master or non-
master role. The local master register (master write register)
may also have to be updated at this point i the temporary
identity conflicts with the committed 1dentity. A “contlict” 1s
defined as the occurrence of two or more enabled master
assertion bits 1n the master read register.

When the temporary and committed 1dentities contlict, the
commit state transitions certain default master nodes. In
particular, a Physical Default Master (PDM) mode 1s the
mode 1 which the commit state always starts. In the PDM
mode, all system cards 250, except the one in the lowest
occupied slot, temporarily update their associated master
write register 803 to indicate a non-master identity. The card
remains in this PDM mode, if, after reading the master read
register 804, at least one other card has asserted 1ts intention
to be master.

The commit state 403 transitions to a Logical Default
Master (LDM) mode 1f the contents of the master read
register 804 1s all zeros (1.e., no other card has asserted its
intention to be master). In LDM mode, the system card 250
behaves as 11 it occupies the lowest physical slot (that 1s, 1t
temporarily asserts 1ts intention to become the master after
transitioning back to the mmitialization state I). When the
system card 250 returns to the commit state 403 and reads
the master read register again, a rule 1s respected so that any
ties can be broken 1n a race-free manner. The rule 1s that 1
any system card 250 occupying a higher slot has 1ts master
bit asserted, then 1t must de-assert 1ts own master bit and
commit to being a non-master.

Depart State Machine (DSM)

The depart state machine 1s executed by a system card 250
as a result of receiving a reset command or a slot removal
insertion interrupt. One particular example of a reset com-
mand generated by the software elements of an Availability
Manager will be described below i greater detail 1n con-

nection with FIGS. 9 through 11.

In the event that any of these events, a new master system
card must be determined. It should be understood that the
correctness of the DSM state depends upon the Availability
Manager being able to clear the bit corresponding to the
departed system card 1n the global master read register so
that the other cards may properly determine the state of the
system cards.

A state diagram for the depart state machine 1s shown 1n
FIG. 7. It adds states 707, which 1s a determine state, and
state 708, which 1s a no-action state.

The determine state 707 has a responsibility for deter-
mining 1f the departed system card 250 was a current master

such as by reading the master read register. If this 1s the case,
then the JSM state machine should be executed.

I1 the no-action state 708 1s entered, then the departed card
was not the current master and the depart state machine wall
take no further action.

State transitions for the DSM thus include transitioning
from state D to state I if the departed card was the master,
and transitioning from state D to state N 11 the departed card
was not the current master.

As has been mentioned above, an Availability Manager-
based system will contain at least two or more system cards
(SCs) 250. Each SC 2350 has one of two states, master or
mactive. An SC 2350 1n the master state defines that system
card 250 as the system’s active processing circuit board. An
SC 250 1n the 1nactive state defines that SC 250 as assuming,
a “hot standby” status.

UsS 7,222,268 B2

11

Hardware 1n the monitor detects the master state provided
from each SC 250 to determine which SC 250 to commu-
nicate with. By design, one and only one SC 250 can be in
the master state with the other SCs 1n the 1nactive state at any
period 1n time.

It 1s possible to have the responsibility for determining,
asserting, and maintaining master/inactive C state 1 sofit-
ware. It 1s preferable, however, for hardware to be respon-
sible for sending and receiving the data and state informa-
tion between the SCs 250. Data trailic can be initiated by
soltware, however, with the hardware being responsible for
informing the software via interops of global SC state
changes.

Per system card hardware support elements consist of a
dedicated bus which passes state mnformation between the
system cards as 1s shown in FIG. 3. The write portion of the
bus allows an SC 250 to sends 1ts state information to all
other SCs referred to here as the redundant system cards
(RSCs). The read portion of the bus functions of the bus
allow an SC to receive or monitor RSC state information.
Thus, for example, a given card, SC1, may receive input
state information line 0 from SCO and 1nput state informa-
tion line n from SCn. Likewise, given system card SC1 may
output state information on the output state 1 portion of the
bus. Software transmits state information by routing to a
register known as the Availability Manager write register.

Interrupt support 1s provided such as by including a
received RSC reset, RSC read register update signal such as
by the RSC 1ssuing an AM write command, or an RSC slot
change. Each of these three asynchronous messages gener-
ates an interrupt on a system card; each RSC also resets the
RSC master read register.

A real-time clock watchdog timer 1s reserved for use by
other software elements. As will be described 1n further
detail below, a system card 2350 can be reset upon the
occurrence of a watchdog time out event.

The hardware registers needed to support the Availability
Manager are shown 1n FIGS. 8A through 8E.

The system card master register 801 shown i FIG. 8A
specifies system card master state sent to all target boards 1n
the system. Writing a logical 1 to the SC master state bit
places the system card 1n the “master” mode. If this bit 1s set
to zero, then the associated system card 250 1s not 1n the
master mode, 1.e., it has a non-master 1dentity. Each system
card 250 has 1ts own respective master system card master
register 801.

The system card slot presence register 802 indicates the
presence ol every system card 2350. This register, also
present on each system card 2350, thus has a bit associated
with each possible backplane slot. A bit 1s asserted if its
respective associated system card i1s inserted.

The AM master write register 803 1s used to transmit state
information to the RSCs. That 1s, a write to the AM master
write register 1n a particular system card 250 causes that
system card to 1ssue a write command via the bus to all the
other RSCs. This 1s accomplished in the preferred embodi-
ment by having the AM write register generate a read
interrupt to other RSCs. The RSC hardware receives the
interrupt; soltware on each RSC then reads its respective
AM read register 804. The values of the bit fields can be
specified 1n software, as has been described above.

The AM master read register 804 contains received Avail-
ability Manager status from the other RSCs. This register 1s
updated upon the 1ssuance by an RSC of a write to the write
bus. The AM master read register 804 1s a read-only register,
from the perspective of the associated system card.

10

15

20

25

30

35

40

45

50

55

60

65

12

The interrupt status register 805 contains a number of
fields 1dentifying interrupt causes. For example, these causes
may include the reset of an RSC, a read register update from
an RSC, or an RSC slot change, that 1s, an RSC board has
been mserted or removed. Note that the bits 2:0 are repli-
cated for each SC 250. Any interrupt bit asserted in this
register generates a dedicated Availability Manager interrupt
to the software level of the associated card. Typical Avail-
ability Manager information exchange consists of heartbeat
signals and state changes as will be described below, such as
heartbeats and process terminations.

One aspect of the present invention 1s therefore a method
for providing high availability in a multiprocessor system by
designating a master where the processors themselves do not
have inter-processor test and set primitive instructions. In
particular, a relative position in physical space 1s determined
for a designated component with respect to its physical
position as compared to other processors 1n this system. It 1s
then determined 1f the relative position corresponds to a
predetermined physical position associated with the physical
default master. I1 1t does, the designated component becomes
the master. If 1t does not, the component assumes a non-
master state. The contents of a global master register are then
updated to indicate whether the designated processor 1s the
default physical master. If the component 1s to assume the
master state, 1t first needs a period of time, or pauses, based
upon a window of vulnerability. This window of vulnerabil-
ity pause ensures that a possible race condition among the
processor 1s avoided in assigming the default master state.
The contents of the global master register are then read after
the end of the pause period to permit either assuming a
physical master role or the physical non-master role. Finally,
if the global master register, once read, indicates that no
processor has assumed the master role, then a default logical
master role will finally be assumed.

3. Hierarchical, Loosely-Coupled Availability Manager

The Availability Manager also includes a monitoring
component running in each of the processors 252 associated
with each system card 250. The monitoring aspect of the
Availability Manager 1s used primarily to eliminate unnec-
essary assertion of a system card reset state. A system card
reset 1s undesirable because 1t may cause a significant
disruption to availability due to 1ts high position 1 a
hierarchy. In particular, data processing system components
are considered to be arranged in a hierarchy. At a given
clement of the hierarchy, a mechanism exists for determin-
ing 11 the components at the current level of the hierarchy are
presently active. It the processing components at the current
level of the hierarchy terminate, hang, or enter another
non-deterministic undesirable state, the mechanism detects
this event and when necessary causes the components ter-
mination. When a component 1n the Availability Manager in
the next layer above receives the termination signal, 1t
determines 1f the component can be restarted. If the com-
ponent can be restarted, the AM element 1nitiates restart of
just that component. However, 1f the component cannot be
restarted, the present level of the AM hierarchy will termi-
nate 1tself thereby causing a termination signal to be sent to
the AM layer above.

Active failure notification can be implemented by having
a software element send out a signal when 1t terminates. In
addition, other system components can be classified 1n
domains according to the severity of the failures that they
can trigger. The severity indication can determine whether
the component can be restarted or whether 1t 1s the system
that must be restarted.

UsS 7,222,268 B2

13

More particularly now, FIG. 9 1s a software system
diagram of Availability Manager process 900 according to
the present invention. The AM 900 1s implemented at a
number of levels or domains. For example, a first domain
may be the inter-card domain 901 responsible for the AM
process at the level of a system card 250 component. The
inter-card domain 901 of the Availability Manager 900 thus
consists of a card manager (CM) element 911 associated
with each of the system cards 250. The CM element 911 1s
then made responsible for containing failure modalities
within 1ts own domain, e.g., also the system card level, 11 at
all possible.

Similarly, a next lower level domain 1s an “intra-card” or
processor level domain 902. This has a System Manager
(SM) associated with each of the processors 252 on the card.
Thus, for example, a card manager CM0 has a number of
lower level System Manager (SM) level components,

including SMO0 (912-0), SM1 (912-1), . . . , SMs (912-s).
Likewise, CM1 has associated SM processes SMO,
SM1 , ..., SMt and considered to its child or lower level

Processes.

(Given that each processor 252 may be executing a multi-
tasking operating system, it 1s therefore quite common that
a number of processes, process 0, process 1, . . ., process
p will be executing on any given processor 252. At a next
lower level of the AM 900 hierarchy, a Process Manager

(PM) 1s thus associated with each executing process on a
specific processor 252. These include PMO (913-0), PM1

(913-1), . . . PMp (913-p) 1n the 1llustrated example.

In a preferred embodiment, the CM level executes the
alorementioned 1dentity management process.

It should be understood that each process 913 may also
have a number of concurrent threads (TH). However, it
should be understood that in a preferred embodiment, the
Availability Manager does not deploy components to moni-
tor the specific threads TH components.

Failure modalities propagate up the hierarchy 1n a manner
which 1s deterministic and such that the various elements of
the Availability Manager hierarchy 900 may be as loosely
coupled as possible. Consider the canonical diagram of FIG.
10. This figure illustrates a portion of the hierarchy of the
Availability Manager 900. A given level of the hierarchy or
root node, R, (1000) has associated with 1t a number of lower
layer child nodes, C, (1010) and a parent node, P, (1020). A
root node R maybe any of the immediate levels of the
hierarchy, including the card manager CM, system manager
SM, or process manager PM. The child nodes CO0,
C1, ..., Cc-1 are associated with each of the lower level
clements of the hierarchy for the given root 1000. Similarly,
the notation P represents the parent or next higher level of
the Availability Manger hierarchy. Thus, in a case where the
root node 1000 1s considered to the be a system manager
level SM 912, child elements C0, C1, ..., Cc-1 will be the
next lower layer of the hierarchy, e.g., the process manager
PM. The parent node 1020 will be, 1n this instance, the card
manager CM.

It 1s the main responsibility of each root node R to
perform a particular task upon termination of its associated
child C. It limits 1ts involvement to the next child C and does
not, for example, attempt to control any of the lower layers
below. As an example, the threads TH will not be controlled
by the SM level since it 1s not involved directly 1n the
creation ol executing soitware elements at the TH level.

Each root R depends on 1ts child level C for terminate
notification. In a first instance, assume that the termination
notification 1s given by a child C1 to the root R. Upon
termination, the process R imnforms 1ts respective higher level

10

15

20

25

30

35

40

45

50

55

60

65

14

P of the termination, but only 11 this becomes necessary. The
termination notification to P will not be made 1f the child
process C can be restarted. Thus, only i1 the root level R of
the hierarchy cannot restart its child C, then 1t sends a
terminate notice to its parent P.

At the highest level of the Availability Manager 900, the
watchdog timer (WD), typically a hardware component, 1s
the parent of the connection manager CM. In this 1nstance,
the watchdog timer acts to bound the failure modalities and
reactivate the system cards individually, 1f it 1s at all pos-
sible, prior to 1ssuing a system reset command 922.

One percerved weaknesses 1n the present implementation
1s that 11 a watchdog timer hardware fails, the system will
never properly reset, but a watchdog timer 1s such a simple
mechanism, failure 1s extremely unlikely. In addition, a
fallure of C to notify R upon termination will also be
catastrophic, but the watchdog timer can be used here to
protect this from happening.

The watchdog timer may, for example, update at a given
frequency such as every five seconds. A watchdog timer
expiration threshold may be set at a multiple of update
frequency that equals the number of expected updates per
time slot. In this instance then, the worst case delay before
hang 1s detected 1s the number of PM elements participating
in the watchdog timer, times the expiration thresholds. In a
preferred embodiment, since a failure to provide a watchdog
update may occur at the end of the watchdog cycle, a period
of time equal to twice the expected update period of all AM
clements participating in the watchdog timer should expire
betore the watchdog timer sends a reset indication.

The watchdog timers 922 associated with each SC expect
to recerve periodic watchdog signals from their monitored
clements that, in the preferred embodiment, include both
CM and SM eclements. The exclusion of the PM elements
implies they may be restarted when they fail. Since the CM
1s allected by state changes external to the card 1n which 1t
1s running, any failure of the CM could result 1n the failure
to detect these state changes. In one embodiment, the SM
cannot be restarted and 1s therefore connected to the watch-
dog time to guarantee that the card will reset 11 1t fails. The
connection the SM has to the watchdog can be severed 11 and
when 1t can be restarted. Upon expiration of this watchdog
threshold time after missing a watchdog update, the watch-
dog timer will conclude that the monitored component, 1.e.,
the associated system card 250 must be reset. These reset
signals may be sent through a reset bus 927 as shown 1n FIG.
9. The fact that a given CM element 1s being reset 1s also
passed through the reset bus to CM elements at the same
level of the hierarchy. Such CM eclements may make a
decision as to whether they need to take action as a result of
the peer element having a watchdog timer reset event.

The CM, SM, and PM elements preferably contain logic
to detect 11 one of their components 1s hung. In the case of
the CM, the hang detection threshold must be less than the
watchdog threshold so that the hang event can be recorded
to a persistent storage device. If the watchdog threshold 1s
crossed, the system card 250 1s immediately reset.

The CM and SM elements may contain logic to detect 1f
one of theirr components 1s hung. The hang detection time-
out threshold must be less than the watchdog threshold so
that the hang event can be recorded to a persistent storage
device. I the watchdog threshold 1s crossed, the system card
250 should be immediately reset.

The system card and processor components dedicate an
interrupting high resolution timer on each system card. The
interrupt thread servicing the high resolution timer sends a
message to the components. If at least one reply 1s not

UsS 7,222,268 B2

15

received, the interrupt thread records the hang to persistent
store and then terminates the hung component. The high
resolution interrupt thread 1s thus considered to be more
resilient than the component 1t 1s monitoring, but not as
resilient as the watchdog timer.

The PM level 1s unique 1n its scale (i.e., the number of
peer elements can grown very large). The implementation
relies on the underlying operating system to provide a
dedicated timer thread to each PM that provides the same
services as the high-resolution interrupt thread provides to
the CM and SM elements. The hang detection logic incor-
porated by the children elements of the PM (1.¢., the threads)
1s application-specific given that the resulting tree of thread
structure can be dynamic.

There are two potential instances of restart ability of the
SM level components. If the SM level components are not
restartable, the following process may occur. If, 1n the event
that all SM peer elements lock up. In this event, the
watchdog timer will detect the lockup event and reset will
occur at the higher level. However, 1f the SM level compo-
nents are restartable, then the CM level component will
restart their associated high resolution timers. This, then,
limits the impact of the restart to the same level without
incurring the need to restart the CM level of the components
in the hierarchy.

As an alternative to the component level monitoring of
hang state, the AM hierarchy elements may themselves
perform active hang detection, 1n particular, the AM moni-
toring entities can also perform active hang detection among
peers 1n the hierarchy. This can be implemented, for
example, 1n a heartbeat network protocol as shown 1n FIG.
11. In this scheme, each root R0, R1 , ..., Rr 1s associated
with a particular level of the hierarchy 1s responsible for
periodically sending a heartbeat signal to 1ts respective
peers. Each root process R treats a heartbeat failure of one
of 1ts peers as a termination failure, the termination failure
1s recorded to a persistent log, such as an available disk
location, for assisting with debugging purposes. The termi-
nation failure i1s then reported to the higher level. In the
preferred embodiment, the heartbeat network i1s imple-
mented only at the CM level and SM level. In the case where
the root level R 1s the system manager SM, the failure of the
peer SM will be reported to the card manager CM. If the
tailure level 1s at the card manager CM, the peer failure will
be detected by the watchdog timer 922, since the falled AM
process will not report 1ts heartbeat message.

What 1s important to recogmize 1s that the heartbeat
tfunctions HB 1n each of the elements of the AM hierarchy
perform active monitoring and terminate upon a failure of
receipt of heartbeat from the monitored component. Ulti-
mately, the card managers CM, as a whole, rely upon a
hardware watchdog 922 to reset the card manager level CM
should the restart option not be possible.

The HB function 1s expected to operate at a specific
update frequency; that 1s, i1t 1s expected to provide to WD
922 an HB indication at defined time intervals. There 1s an
internal heartbeat frequency within each instance of a sys-
tem manager SM among 1its peers. The constraint here 1s that
the SM heartbeat frequency 1s, in the preferred embodiment,
selected to be higher than the watchdog timer frequency.
Thus, this ensures that 11 at least one SM 1s not hung, 1t will
detect that a hang condition exists among one of 1ts peers
and record 1t before the watchdog timer 922 expires and
automatically resets.

The watchdog timer 922 may be implemented with a time
slotted write to register scheme. In particular, each of the
system elements expected to be monitored by the watchdog

10

15

20

25

30

35

40

45

50

55

60

65

16

timer, such as the CMs 911 and SMs 912, may each have
associated a time slot 1n which they write an 1dentifying data
word to a watchdog timer register. Logic in the watchdog
timer 922 then detects a situation where an element fails to
update 1ts watchdog timer status, by determining when the
value 1n the register does not change from one time slot to
an adjacent time slot.

The reader can now understand how the mvention pro-
vides a hierarchical, loosely-coupled mechanism to recover
system state at as fine a grain as possible. For example, 1f an
individual software process can be recovered, the Process
Manager 913 will limit the failure modalities to that level of
the Availability Manager, and stop propagation of the ter-
mination notification before it reaches the watchdog timer
922.

In a preferred embodiment, a domain level of the data
processing system can have fault tolerant attributes associ-
ated with 1ts extent. For example, a process 903 may be
made separately responsible for saving its own state infor-
mation, as well as the data structure and boundary conditions
when 1t must terminate or on an event or on a periodic basis.
When that respective process 903 1s restarted by its PM 913,
it recovers from its last known good state.

This 1s particularly important 1n an application such as
networking, where the system 1s a router. A router database
generally represents information which has been devised
over a relatively long period of time. A master reset of the
entire system state will require rebuilding router databases
which may be extremely prohibitive 1n terms of availability.
For example, 1t 1s not uncommon for router table rebuilding
processes to take many seconds, or even minutes. During
this time period, the data processing system associated with
the end nodes of the network 100 would not be able to
communicate (FIG. 1), therefore providing an undesirable
situation. This 1s because the networking protocols associ-
ated with the control plane portion of routers can take a
relatively long time to rebuild routing tables.

Ideally, restart of a failed component should be attempted;
it can succeed within the time-out parameters of the net-
working protocols, the “failure” will not even be noticed by
the other networking devices in the network or the end
nodes. The interconnection topology of the routers as rep-
resented by their collective routing tables will remain stable.

For example, one would prefer to recover first at the
process level 903, then at the processor level 902 and card
level 901, failing to the system level watchdog reset 922
only in the most dire of circumstances. In general, the 1dea
1s that the fine grain state information 1s monitored and that
state 1s restored upon failure i1f possible. If 1t cannot be
recovered, then control 1s passed to the next higher level of
the AM 900 to make such a determination. The architecture
1s passive 1n the sense that a failure model 1s triggered on
termination versus an active determination of whether or not
a process 1s running properly. The monitor processes are
therefore necessarily more resilient than the elements they
are monitoring.

It should be evident now that various extensions and
modifications can be made to this preferred embodiment.

For example, process monitoring for hang states can also
be performed by polling in addition to heartbeat protocol
mechanisms among peers.

The operating system components may also maintain
information about which resources a process 903 uses while
running. The operating system can then provide this infor-
mation to assist the AM element in determiming whether or
not the component 903 can be warm restarted (that 1s,
restarted using the last known good state that was saved in

UsS 7,222,268 B2

17

persistent storage). Upon receipt of a process termination
signal, the operating system can proceed as follows: 1 the
error causes an inconsistency in the internal operating sys-
tem state, then information can be provided to indicate that
the particular process 1s not warm restartable.

For example, consider that a process makes use of an
operating system wide resource, such as system memory,
and the terminate modality of a program 903 is caused
because the resource, 1.e., memory, 1s exhausted. In such a
circumstance, the process cannot typically be warm
restarted.

In this embodiment, in the process termination code, a
message will be sent from the process manager PM to the
system manager SM indicating not only that the process 1s
terminated, but also information indicating that the operat-
ing system believes the process cannot be warm restarted.
Upon recerving this information, the respective system
manager SM receives the message indicating that the oper-
ating system cannot continue. It will then determine directly
that respective process PM cannot be warm restarted.

From the operating system perspective, 1f the process can
be warm restarted, an enftity separate from the operating
system may be checked. For example, the process 913 itselt
may provide in its termination message an indication from
its own perspective as to whether 1t 1s 1n a state that can be
warm restarted. This information can be processed to the SM
clement, and considered when deciding to warm restart the
process 913, or 1ts decision to terminate and notify the CM.

It should be understood that the AM elements may also
take 1nto consideration the restart dependencies of their
clements at the lower level of the hierarchy when making a
restart decision. For example, turn attention to FIG. 12
where 1t 1s shown an example of an SM element that 1s
monitoring three PM elements 913-a, 913-b, and 913-¢. The
PM element 913-a has associated with it a thread hierarchy
TH as was explained 1in connection with FIG. 10. The PM
clements 913-a and 913-b6 are components that are depen-
dent upon one another. In particular, they are tagged 1n such
a way that when one of them fails, they must all be restarted.
However, the PM element 913-g 1s not a member of the
same group of dependent AM elements. It 1s, for example,
monitoring components that do not have failure dependency
on other system components. The fact of failure dependency
can be recorded in the SM element 912 by creating an
clement restart dependency table 955 as shown. In this
example, the AM elements 913-aq and 913-b associated with
components that have a restart dependency are all labeled as
members of the group X. The SM element 912 thus keeps a
table indicating the process 1ds (PIDs) of each of the AM
clements associated with the components 1n the dependent
restart group X.

The restart dependencies are typically dictated by the
particular component hierarchy may further define whether
the restart must be cold, warm, or dependent upon other
components. When the SM element 912 receives a failure
indication from one of the PM elements 913-a or 913-5
associated with group X, 1t checks the dependency table 955.
Determining that a member of a group X has failed, the SM
clement will then proceed to request restart of the compo-
nents associated with the AM elements of group X. How-
ever, 1t will not attempt to restart the components associated
with AM element 913-¢ given that 1t 1s not a member of the
group X. In this scenario, since not all of the AM elements
at the child level of the SM element have failed, then no
failure 1indication need be given to the parent CM element.

Although the example of FIG. 12 1s shown 1n connection
with an SM element monitoring PM elements, it should be

10

15

20

25

30

35

40

45

50

55

60

65

18

understood that this restart dependency feature could also be
implemented at other levels of the hierarchy 900. What 1s
important to note 1s that the root element R may maintain
information regarding the failure dependencies of the moni-
tored child element C and restarting all dependent element
C upon notification of failure of one of the child elements 1n
an 1dentified dependent element group 955. This 1s done
without failing the other child elements that are not part of
the same dependency group X.

While this invention has been particularly shown and
described with references to preferred embodiments thereof,
it will be understood by those skilled 1n the art that various
changes in form and details may be made therein without
departing from the scope of the invention encompassed by
the appended claims.

What 1s claimed 1s:

1. A data processing system comprising:

a. a plurality of data processing system components, the
components each responsible for carrying out a subset
of data processing system functions;

b. a plurality of function domains, the domains having
associated with them subset of the data processing
system functions, with a plurality of peer domain level
components thus carrying out the data processing func-
tions for a given domain, and the plurality of domains
forming a domain hierarchy, at least one component of
at least one domain at a given level i the hierarchy
providing a failure notification, which 1s of a hang state
detected by a components peer element; and

c. a system availability manager comprising:

1. a plurality of Available Manager (AM) clements,
cach AM element associated with a corresponding
one of the data processing system components, the
AM elements thus also arranged in an AM hierarchy
that parallels the domain hierarchy, at least one AM
clement connected to receive failure notification
from one or more AM elements associated with the
data processing system components associated with
a next lower domain level, peer AM elements par-
ticipate 1n a heartbeat protocol to detect a component
hang state such that during their normal state execu-
tion, wherein peer AM elements located at the same
level 1n the AM hierarchy provide a heartbeat signal
notification in a determined sequence to at least one
of 1ts peer AM elements.

2. A system as in claim 1 wherein each AM element

determines 11 the component 1n the next lower domain level

from which a failure notification was received can be
restarted.

3. A system as in claim 2 wherein each of the AM
clements additionally determines if the failure-notifying
component can be restarted, and 1f 1t can be restarted, the
AM element making the determination causes that compo-
nent to be restarted, without notifying a higher level AM
clement in the AM hierarchy.

4. A system as 1mn claam 3 wheremn if any of the AM
clements determines that the failure-notifying component
cannot be restarted, the determining AM element sends a
failure notification to a higher AM component in the AM
hierarchy.

5. A system as 1n claim 2 wherein the failure notification
includes information as to whether the logical state of the
component 1tself indicates the component can be restarted.

6. A system as in claim 2 wherein components are
classified 1n the hierarchy with regard to a potential severity
indication of their failure modalities.

7. A system as 1 claim 2 wherein each of the AM
clements determines whether the associated component

UsS 7,222,268 B2

19

itself can be restarted without aflecting operation of other
data processing system components.

8. A system as in claim 2 wherein at least some of the
components ol the data processing system are operating
system components, each of the AM elements runs an
application space as a process under an operating system,
and the failure notification 1s made by signaling the associ-
ated AM eclement through an operating system

9. A system as 1n claim 1 wherein the failure notification
1s caused by termination ol processing by the monitored
component.

10. A system as 1n claim 1 wherein the failure notification
1s caused by an error state in the monitored component.

11. system as 1n claim 1 wherein the AM element failure
notification is constrained to the next higher AM element in
the hierarchy.

12. A system as in claim 1 wherein the AM element failure
notification 1s constramned to the next higher level AM
clement 1n the hierarchy, such that a higher level AM
clement 1n the hierarchy will then be given control over
determining whether to send further failure notifications up
the AM element hierarchy.

13. A system as 1n claim 1 wherein the data processing
system components are both hardware and software com-
ponents.

14. A system as 1n claim 13 wherein the software com-
ponents include, but are not limited to, operating system
hardware.

15. A system as 1n claim 13 wherein the software com-
ponents comprise application program processes.

16. A system as 1n claim 1 wherein the failure notification
1s a component execution termination notice.

17. A system as 1n claim 1 wherein the failure notification
1s a hang state notice.

18. A system as 1n claim 1 wherein the heartbeat protocol
1s carried out for AM elements associated with a one of a
card manager (CM) level or a system manager (SM) level 1n
the AM hierarchy.

19. A system as in claim 18 wherein at least one of the
peer AM elements reports the hang state by ceasing to send
update signals to a hardware component.

20. A system as in claim 19 wherein the hardware
component 1s a watchdog timer component.

21. A system as 1n claim 20 wherein the update signals are
time slotted, such that a given AM element 1s assigned a
predetermined slot in which the watchdog timer component
expects to recerve an update signal.

22. A system as 1n claim 21 wherein a failure to detect a
hang state results in restarting the watchdog timer.

23. A system as 1n claim 21 wherein the heartbeat signal
1s a read of a unique value by the watchdog timer.

24. A system as 1n claim 21 wherein the update signal 1s
a data word unique to the reporting AM element.

25. A system as 1n claim 1 wherein prior to the failure
notification, at least one of a given group of data processing,
system components stores state information in a persistent
storage medium.

26. A system as 1n claim 25 wherein the state information
storage 1s program driven, event driven, periodically driven,
or termination triggered.

27. A system as 1n claim 25 wherein the state information
as selected from the group consisting of a machine state,
application configuration state, or application data state.

28. A system as 1n claim 1 wherein the heartbeat protocol
1s not carried out for AM elements associated with data
processing components having specific hang detection logic.

29. A data processing system comprising:

a. a plurality of data Processing system components, the

components each responsible for carrying out a subset

of data processing system functions;

10

15

20

25

30

35

40

45

50

55

60

65

20

b. a plurality of function domains, the domains having
associated with them subset of the data processing
system functions, with a plurality of peer domain level
components thus carrying out the data processing func-
tions for a given domain, and the plurality of domains
forming a domain hierarchy, at least one component of
at least one domain at a given level 1in the hierarchy
providing a failure notification; and

c. a system availability manager comprising:

1. a plurality of Available Manager (AM) elements,
cach AM element associated with a corresponding
one of the data processing system components, the
AM elements thus also arranged in an AM hierarchy
that parallels the domain hierarchy, at least one AM
clement connected to receive failure notification
from one or more AM elements associated with the
data processing system components associated with
a next lower domain level, the AM element failure
notification 1s constrained to the next higher AM
clement 1n the hierarchy, wherein the AM failure
notification to the higher level AM component 1n the
AM hierarchy causes the AM elements that are peers
of the failure-notifying AM elementto be terminated.

30. A data processing system comprising:

a. a plurality of data processing system components, the
components each responsible for carrying out a subset
of data processing system functions;

b. a plurality of function domains, the domains having
associated with them subset of the data processing
system functions, with a plurality of peer domain level
components thus carrying out the data processing func-
tions for a given domain, and the plurality of domains
forming a domain hierarchy, at least one component of
at least one domain at a given level 1in the hierarchy
being restartable; and

c. a system availability manager comprising: a plurality of
Availability Manager (AM) eclements, each AM ele-
ment associated with a corresponding one of the data
processing system components, the AM elements thus
also arranged i an AM hierarchy that parallels the
domain hierarchy, at least one AM element connected
to restart one or more AM elements associated with the
data processing system components associated with a
next lower domain level, the at least one AM element
may access operating system component state informa-
tion regarding whether an operating system underlying
a terminating component of the plurality of data Pro-
cessing system components considers that the compo-
nent can be restarted.

31. A system as i claim 30 wherein the terminating
component itsell contains the operating system component
state 1information.

32. A system as 1n claim 31 wherein the at least one AM
clement uses the operating system component state infor-
mation to determine whether the component can be
restarted.

33. A system as 1n claim 30 wherein upon receiving a
termination notice, the AM element may access component
originated state information regarding whether according to
the components own logic, the component can be restarted.

34. A system as in claim 33 wherein the termination notice
itsell contains the component originated state information.

35. A system as 1n claim 34 wherein the AM element may
also access operating system component state information
regarding whether an operating system underlying the ter-
minating component considers that the component can be
restarted.

UsS 7,222,268 B2

21

36. A system as 1n claim 35 wherein the AM element first
uses the operating system component state mformation to
determine whether the component can be restarted, and such
indication 1s positive, then the AM element uses the com-
ponent originated state imnformation.

37. A system as 1n claim 30 wherein the AM element
hierarchy includes a system manager root level, process
manager child level, and card manager parent level in the

AM element hierarchy.
38. A system as 1n claim 30 wherein the AM element

hierarchy includes a card manager root level, system man-
ager child level, and watchdog timer parent level 1n the AM

clement hierarchy.

39. A data processing system comprising:

a. a plurality of data processing system components, the
components each responsible for carrying out a subset
ol data processing system functions;

b. a plurality of function domains, which are selected
from the group consisting of system, card, processor,
process, and application process threads, the domains
having associated with them subset of the data pro-
cessing system functions, with a plurality of peer
domain level components thus carrying out the data
processing functions for a given domain, and the plu-
rality of domains forming a domain hierarchy, at least
one component of at least one domain at a given level
in the hierarchy being restartable; and

c. a system availability manager comprising: a plurality of
Availability Manager (AM) eclements, each AM ele-
ment associated with a corresponding one of the data
processing system components, the AM elements thus
also arranged 1n an AM hierarchy that parallels the
domain hierarchy, at least one AM element connected
to restart one or more AM elements associated with the
data processing system components associated with a
next lower domain level.

40. A system as 1n claim 39 wherein at least one thread

domain does not have associated AM elements.

41. A data processing system comprising:
a. a plurality of data processing system components which

maintain internal state information, which 1s selected
from the group consisting of processor execution state,
configuration state, and application data state, in per-
sistent storage to permit warm restart processing, the
components each responsible for carrying out a subset
ol data processing system functions;

b. a plurality of function domains, the domains having
associated with them subset of the data processing
system functions, with a plurality of peer domain level
components thus carrying out the data processing func-
tions for a given domain, and the plurality of domains
forming a domain hierarchy, at least one component of
at least one domain at a given level in the hierarchy
being restartable; and

C. a system availability manager comprising: a plurality of
Availability Manager (AM) eclements, each AM ele-
ment associated with a corresponding one of the data
processing system components, the AM elements thus
also arranged 1n an AM hierarchy that parallels the
domain hierarchy, at least one AM element connected
to restart one or more AM elements associated with the
data processing system components associated with a
next lower domain level.

42. A system as in claim 41 wherein the system 1s

deployed as a networking device, and the internal state
information 1s selected from the groups consisting of routing

table, forwarding table, switching table, or other networking,
configuration data.

10

15

20

25

30

35

40

45

50

55

60

65

22

43. A system as 1n claim 41 wherein an operating system
component reclaims resources upon termination of a process
clement.

44. A system as 1n claim 41 wherein an operating system
component maintains state information regarding resources

In use by executing processes.

45. A system as 1n claim 44 wherein the operating system
derives information regarding whether a process can be
restarted by examining the state information regarding
resources in use.

46. A system as 1n claim 41 wherein if component failure
causes 1nconsistency in internal operating system state, the
associated processes are considered to be nonrestartable.

4'7. A system as 1n claim 41 wherein a component will be
subjected to a warm or cold restart process depending upon
whether complete stored state information i1s available and
valid.

48. A data processing system comprising:

a. a plurality of data processing system components, the
components each responsible for carrying out a subset
of data processing system functions;

b. a plurality of function domains, the domains having
associated with them subset of the data processing
system functions, with a plurality of peer domain level
components thus carrying out the data processing func-
tions for a given domain, and the plurality of domains
forming a domain hierarchy, at least one component of
at least one domain at a given level i the hierarchy
being restartable; and

. a system availability manager comprising: a plurality of
Availability Manager (AM) elements, each AM ele-
ment associated with a corresponding one of the data
processing system components, the AM elements thus
also arranged i an AM hierarchy that parallels the
domain hierarchy, the AM element lierarchy includes
a process manager root level, thread child level, and
system manager parent level in the AM element hier-
archy, and at least one AM element connected to restart
one or more AM elements associated with the data
processing system components associated with a next
lower domain level.

49. A data processing system comprising:

a. a plurality of data processing system components, the
components comprising system cards, processors, and
soltware processes that execute on the processors, the
components thus forming a function domain hierarchy;

b. a plurality of Availability Manager (AM) eclements,
cach AM element associated with at least one of the
data processing system components, the AM elements
also arranged 1n a hierarchy that parallels the domain
hierarchy such that a card manager (CM) element in the
AM hierarchy 1s associated with a system card com-
ponent; a system manager (SM) element 1n the AM
hierarchy 1s associated with a processor component; a
process manager (PM) in the AM hierarchy 1s associ-
ated with a software process component; with at least
one ol the AM elements participating 1n an identity
management protocol with at least one of the AM
clements connected to restart components associated
with a next lower domain level.

50. A system as 1n claim 49 wherein card manager (CM)
clement of the AM hierarchy performs an i1dentity manage-
ment protocol for system card components.

51. A system as 1n claim 50 wherein the identity man-
agement protocol identifies which system card 1s to be
considered a master.

UsS 7,222,268 B2

23

52. A system as 1n claim 49 wherein peer AM elements
detect a hung component by sending a heartbeat signal at a
determined time period interval.

53. A system as in claim 52 wherein the determined time
period interval at which the heartbeat signal 1s sent 1s less
than a time-out duration associated with a watchdog timer
that 1s monitoring at least one AM element.

54. A system as 1n claim 52 wherein a heartbeat timeout
threshold 1s selected so that 1f at least one AM element
among a set of peer AM elements 1s hung, the peer AM
clement that detected the hang state will detect and record
the hung state before expiration of a watchdog timer.

55. A system as 1n claim 52 wherein the heartbeat signals
coupled from an AM element to a heartbeat register asso-
ciated with the watchdog timer are time slotted.

56. A system as 1n claim 52 wherein the AM element and
its peers are located at a system manager (SM) level 1n the
AM hierarchy associated with monitoring processor com-
ponents.

57. A system as 1n claim 49 wherein a hardware compo-
nent detects an event that all AM elements at the same level
hang.

58. A system as 1n claim 49 wherein a card manager (CM)
level 1n the AM hierarchy 1s associated with a system card
component, and a system manager (SM) level in the AM
hierarchy 1s associated with a processor component, and
wherein a failure notification by a card manager (CM)
clement 1s provided to a watchdog timer element.

59. A system as 1n claim 58 wherein the watchdog timer
1s connected to mitiate a reset for selected components of the
data processing system.

60. A system as in claim 59 wherein a reset initiated by the
watchdog timer starts an i1dentity management process in
one of the components.

61. A system as 1n claam 60 wherein the i1dentity man-
agement process executes 1n one of the AM elements.

62. A system as 1n claim 60 wherein the data processing
system components comprise system cards, and the identity
management process 1s executed to 1dentily a master system
card.

63. A system as 1n claam 62 wherein the i1dentity man-
agement process 1dentifies the master system card without
using a prior central system resource set.

64. A system as 1n claam 63 wherein the i1dentity man-
agement process uses information concerning physical loca-
tion 1dentification of the system cards, system card present
information, and a register write protocol that ensures sin-
gular assertion ol master state for a given system card.

65. A system as in claim 64 wherein the 1dentity manager
process ensures singular assertion of the master state by the
process of a. setting a temporary master state; b. waiting a
predetermined period of time; c. setting a final master state
only 1f no other system card has asserted temporary or
master state.

66. A data processing system comprising:

a. a plurality of data processing system components the

components comprising system cards, processors, and
soltware processes that execute on the processors, the

components thus forming a function domain hierarchy;
b. a plurality of Availability Manager (AM) elements,
cach AM element associated with at least one of the
data processing system components, the AM elements
also arranged 1n a hierarchy that parallels the domain
hierarchy such that a card manager (CM) element 1n the
AM hierarchy 1s associated with a system card com-
ponent; a system manager (SM) element 1n the AM
hierarchy 1s associated with a processor component; a
process manager (PM) 1n the AM hierarchy 1s associ-
ated with a software process component; with at least

5

10

15

20

25

30

35

40

45

50

55

60

65

24

one of the AM elements connected to restart compo-
nents associated with a next lower domain level,
wherein 11 a given root element, R, in the AM hierarchy
has at least one child element, C, and at least one parent
clement, P, the root element R 1s responsible for deter-

mining a failure notification only for its child elements
C, and reporting the fact of a failed child AM element

C to the parent element P 11 the child element C cannot
be restarted.

67. A system as 1n claim 66 wherein a decision regarding
whether a given child element C can be restarted 1s made
from mformation provided by the child C with the failure
notification.

68. A system as 1n claim 66 wherein a decision regarding
whether a given child element C can be restarted 1s made
from information provided by peer AM elements to the root
clement R.

69. A system as 1n claim 66 wherein a sub-group, X, of
chuld element C are considered to have restart dependency,
and upon failure notification of one element C in the group
X, restarting all other elements C that are a member of the
group X.

70. A system as 1n claim 69 wherein the elements C that
are not members of the group X are not restarted.

71. A system as 1n claim 69 wherein the fact of the failed
clement C 1s not reported to the parent element P 1f all
members of the group X can be restarted.

72. A method for determining which of a plurality of data
processing system components are to assert a master state,
and which are to assert a non-master state after a system
reset with no retention of prior state information, the process
comprising a join protocol that 1s executed on each system
component, the join protocol comprising the steps of:

a. entering an initialization state;

b. determining a physical position for the component with
respect to other components 1n the system;

c. determining a physical position for the component with
respect to a card slot location 1n a backplane;

d. reading state information as to master state assertions
by other components;

¢. temporarily mitializing a local master state register to
the asserted state, 1f no other component has asserted
the master state;

f. waiting a predetermined pause period;
g reading other components master state assertions; and

h. committing to assume the master state for further
execution should no other component have asserted the
master state during the waiting period.

73. A method as 1n claim 72 wherein the step of commit-
ting to assume the master state 1s as a Physical Default
Master state.

74. A method as in claim 73 wherein the step of commit-
ting to assume the master state additionally comprises the
step of: transitioning to a Logical Default Master 11 the read
of the master state assertions by the other components
indicates that no other component has asserted the master
state.

75. A method as 1n claim 73 wherein while 1n a Logical
Default Master mode, additionally comprising the steps of:
in the commit step, determining if any other component has
a higher priority location with a master state asserted;
waiting a secondary pause period; and i1f so, then de-
asserting the master state and committing to a non-master
state.

76. A method for determining which of a plurality of data
processing system components are to assert a master state,
and which are to assert a non-master state after a system
reset with no retention of prior state information, the process

UsS 7,222,268 B2

25

comprising a join protocol that 1s executed on each system
component, the join protocol comprising the steps of:

a. entering an initialization state;

b. determining a physical position for the component with
respect to other components in the system;

c. reading state information as to master state assertions
by other components;

d. temporarily initializing a local master state register to
the asserted state, if no other component has asserted
the master state;

¢. waiting a predetermined pause period, wherein the
pause period 1s greater than the longest expected 1ni-
tialization process for components 1n the system to read
a master state register, determine a state that 1t should
assume, and assume the determined state;

f. reading other components master state assertions; and

g committing to assume the master state for further
execution should no other component have asserted the
master state during the waiting period.

77. A method for determining which of a plurality of data
processing system components are to assert a master state,
and which are to assert a non-master state after a system
reset with no retention of prior state information, the process
comprising a join protocol that 1s executed on each system
component, the join protocol comprising the steps of:

a. entering an 1nitialization state;

b. determining a physical position for the component with

respect to other components in the system:;

¢. determining a physical position for the component with
respect to respect to a card slot location 1n a backplane;

d. reading state information as to master state assertions
by other components;

¢. temporarily mitializing a local master state register to
the asserted state, if no other component has asserted
the master state:

. waiting a predetermined pause period;

g, reading other components master state assertions;

h. committing to assume the master state for further
execution should no other component have asserted the
master state during the waiting period; and

1. executing a Depart State Machine upon receipt of a reset
command from another data processing system com-
ponent.

78. A method as 1n claim 77 wherein the Depart State
Machine comprises the step of: determining 11 a departed
component was previously the master; and 11 so, executing
the join protocol.

79. A method as 1n claim 77 wherein the reset command
1s received from a watchdog timer.

80. A method as in claim 79 wherein a watchdog timer
1ssues the reset command upon termination notification from
an Availability Manager (AM) process.

81. A method as 1n claim 80 wherein the AM process 1s
a distributed hierarchy of AM processes having loosely
coupled AM process elements that monitor corresponding
data processing system components.

82. A method as in claim 81 wherein the AM element
hierarchy includes a card manager root level, system man-
ager child level, and watchdog timer parent level 1n the AM
clement hierarchy.

83. A method as 1n claim 81 wherein the AM element
hierarchy includes inter-card, intra-card, and processor lev-
els.

84. A method as 1n claim 81 wherein the data processing
system components comprise system cards, processors, and

10

15

20

25

30

35

40

45

50

55

60

26

soltware processes associated with inter-card, intra-card,
and processor levels 1n the AM hierarchy, respectively, and
a card manager (CM) level in the AM hierarchy 1s associated
with a system card component, a system manager (SM) level
in the AM hierarchy is associated with a processor compo-
nent, a system manager (SM) level 1n the AM hierarchy 1s
associated with an operating system soltware component,
and a process manager (PM) level in the AM hierarchy 1s
associated with an executing application process soltware
component.

85. A method as in claim 81 wherein one or more of the
AM elements participate 1n an i1dentity management proto-
col.

86. A method as 1n claim 77 wherein the reset command
1s 1nvoked by a restart decision made by an AM element.

87. A hierarchical, distributed, loosely coupled Availabil-
ity Management (AM) method for recovering from failure of
execution of one or more data processing system compo-
nents, wherein the data processing system components
include at least two or more system cards, and at least two
AM element processes are associated with monitoring the
status of at least two of the system cards, the process
comprising the steps of:

a. executing a plurality of AM element processes 1n a
multi-tasking environment, the AM element processes
arranged 1n a hierarchy, with the hierarchy of the AM
clements corresponding to a failure modality hierarchy
of the data processing system components;

b. within a given AM element process, receiving a ter-
mination notice from one of the data processing system
components;

c. 1f the data processing system component can be
restarted by the AM element process, then restarting the
component;

d. if the data processing system component cannot be
restarted by the AM element process, providing a
termination notice to a higher level AM element pro-
CESS;

¢. terminating execution of the AM element process;

f. 1f one of the system cards provides a termination
indication to 1ts associated AM process, determining 1f
the system card can be restarted:

g. 11 the system card can be restarted, then asserting a
system card restart command;

h. if the system card cannot be restarted by the AM
process, asserting a system reset signal; and

1. thereby constraining restarts of the entire system only to
instances where lower level component parts cannot be
restarted.

88. A method as 1n claim 87 additionally comprising:
failing over to a second system card 11 in step (h) the system
card can be restarted.

89. A method as in claim 87 wherein an identity manage-
ment protocol 1s executed as part of restarting a higher level
component.

90. A method as 1n claim 87 wherein peer AM elements
participate 1n a heartbeat protocol to detect a component
hang state in other peered AM elements.

91. A method as 1 claim 90 wherein the heartbeat
protocol 1s providing a heartbeat signal i a determined
sequence to peer AM elements.

	Front Page
	Drawings
	Specification
	Claims

