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1
RECONFIGURABLE TRACE CACHE

FIELD OF THE INVENTION

The present invention relates to computer systems; more

particularly, the present invention relates to central process-
ing units (CPUs).

BACKGROUND

In high-performance, superscalar microprocessors, a
decoded 1nstruction cache (or trace cache) 1s used to
improve performance. This type of instruction cache
improves the bandwidth, throughput, and latency of “fetch”
and “decode” portions of microprocessors by quickly send-
ing packets of decoded macro-instructions (called micro-
operations) into the core of the microprocessor. At the end
of the pipeline that fetches and decodes macro instructions,
the micro-operations are typically assembled into packets
and written 1nto a trace cache on their way 1nto an allocation
pipeline.

For many applications, the trace cache performance 1s
strongly correlated to hit rate. Large trace cache arrays
provide high hit rates but consume a great deal of power.
General-purpose applications exhibit different size require-
ments on the trace cache for realizing their performance
benelits. Some applications require only a small size.

However for others, the performance continues to
improve as the size 1s increased. 1T the trace cache 1s larger
than 1s needed for a given application to achieve an accept-
able level of performance, the over allocation of cache
resources will consume unnecessary power. If the trace
cache 1s too small, the application may not achieve an
acceptable level of performance. Additional resources can
be added to improve the performance. However, increased
power consumption may degrade the performance benefit.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be understood more fully from
the detailed description given below and from the accom-
panying drawings of various embodiments of the invention.
The drawings, however, should not be taken to limit the
invention to the specific embodiments, but are for explana-
tion and understanding only.

FIG. 1 illustrates one embodiment of a computer system;

FI1G. 2 1llustrates one embodiment of a central processing,
unit;
FIG. 3 illustrates an exemplary trace cache; and

FIG. 4 illustrates one embodiment of a reconfigurable
trace cache;

FIG. 5 illustrates one embodiment of a temporal relation-
ships graph.

DETAILED DESCRIPTION

A reconfigurable trace cache (RTC) described. In one
embodiment, a RTC can be dynamically reconfigured for
cach application requirement, to reduce power consumption
or to improve performance. In a further embodiment, a RTC
uses profile techniques to guide the reconfiguration of cache
structures. For applications that require a smaller size,
profile hints are provided to the RTC for disabling parts of
the cache arrays to reduce unnecessary power consumption.
For other resource hungry applications, the RTC uses a
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2

temporal-based indexing technique to improve performance
without requiring a significant amount of hardware
resources.

In the following description, numerous details are set
forth. It will be apparent, however, to one skilled 1n the art,
that the present invention may be practiced without these
specific details. In other instances, well-known structures
and devices are shown 1n block diagram form, rather than 1n
detail, in order to avoid obscuring the present imnvention.

Reference in the specification to “one embodiment™ or
“an embodiment” means that a particular feature, structure,
or characteristic described in connection with the embodi-
ment 1s included 1n at least one embodiment of the invention.
The appearances of the phrase “in one embodiment” 1n
various places 1n the specification are not necessarily all
referring to the same embodiment.

FIG. 1 1s a block diagram of one embodiment of a
computer system 100. Computer system 100 includes a
central processing unit (CPU) 102 coupled to bus 105. In
one embodiment, CPU 102 is a processor 1n the Pentium®
family of processors including the Pentium® II processor
family, Pentium® III processors, and Pentium® IV proces-
sors available from Intel Corporation of Santa Clara, Calif.
Alternatively, other CPUs may be used.

A chipset 107 1s also coupled to bus 105. Chipset 107
includes a memory control hub (MCH) 110. MCH 110 may
include a memory controller 112 that 1s coupled to a main
system memory 115. Main system memory 115 stores data
and sequences of 1nstructions and code represented by data
signals that may be executed by CPU 102 or any other
device included 1n system 100.

In one embodiment, main system memory 115 includes
dynamic random access memory (DRAM); however, main
system memory 115 may be implemented using other
memory types. Additional devices may also be coupled to
bus 105, such as multiple CPUs and/or multiple system
memories.

In one embodiment, MCH 110 1s coupled to an input/
output control hub (ICH) 140 via a hub interface. ICH 140
provides an interface to input/output (I/O) devices within
computer system 100. For instance, ICH 140 may be
coupled to a Peripheral Array Interconnect bus adhering to
a Specification Revision 2.1 bus developed by the PCI
Special Interest Group of Portland, Oreg.

FIG. 2 1llustrates one embodiment of CPU 102. CPU 102
includes an instruction cache 210, decoder 220, multiple
branch predictor 230, selection logic 240, execution core
250, fill unit 260 and trace cache 270. Instruction cache 210
stores 1nstructions that are to be executed at execution core
250. Decoder 220 1s coupled to 1nstruction cache 210, and 1s
implemented to decode instructions received from instruc-
tion cache 210.

Multiple branch predictor 230 predicts branches that are
to be executed. Selection logic 240 selects data that 1s to be
transmitted from trace cache 270. Execution core 250 per-
forms allocation, execution, retirement and branch update
services on recerved micro-operations. Fill unit 260 forms
traces from 1nstructions recerved from instruction cache 210.
Trace cache 270 stores mstruction traces. In one embodi-
ment, a trace 1s a set of dynamically formed, logically
contiguous decoded-instruction blocks.

FIG. 3 illustrates an exemplary trace cache. The trace
cache includes a tag array, a data array and a next fetch
address (NFA) array. The tag, data and NFA arrays each
include way entries. During operation of the conventional
trace cache mechanism, a next fetch address unit generates
fetch addresses and the multiple branch predictor 230 pre-
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dicts multiple branches per access. Both the trace cache and
instruction cache 210 are accessed simultaneously.

If there 1s a hit detected 1n the trace cache, a trace 1is
fetched with iternal branch path information within the
tetched trace. The multiple branch predictor 230 provides
the current prediction information to the selection logic 240
to check with the internal branch information. If matched,
the entire trace 1s fetched to the execution core 250.

If a part of the trace 1s matched, the matching part of the
trace 1s fetched. The fill unit 260 forms a trace by collecting,
fetched instructions either from the trace cache or the
instruction cache 210. To form a trace, instructions are
collected into a bufler until the fill unit finalizes the trace.
The finalized trace 1s written to the trace cache 1f 1t 1s not
already present in the cache. Typically, the trace 1s finalized
when the trace includes 16 instructions, 3 conditional
branches, a single indirect branch, return, or trap mstruction,
or merging the mcoming block of mstructions would result
in a trace that 1s larger than 16 instructions.

However as discussed above, some applications require
only a small size trace cache, while others require a cache
with an increased size. If the trace cache 1s larger than 1s
needed for a given application to achieve an acceptable level
ol performance, the over allocation of cache resources will
consume unnecessary power. It the trace cache 1s too small,
the application may not achieve an acceptable level of
performance.

According to one embodiment, trace cache 270 1s a RTC
that can be dynamically reconfigured to meet the perior-
mance requirement of various applications without wasting
unnecessary power. FIG. 4 illustrates one embodiment of
trace cache 270 implementing a RTC. Trace cache 270
includes a tag array 410, a data array 420 and a next fetch
address (NFA) array 430.

According to one embodiment, each cache array 1s
divided into two banks having a multitude of ways. In a
turther embodiment, each way within the cache arrays stores
conventional trace cache entries and temporal trace cache
entries. The temporal entries implement a temporal-based
indexing technique that directly maps traces to the cache
entries for reducing conflict misses. In one embodiment,
cach selected trace 1s assigned with an index to the cache
entry.

For the temporal-based indexing technique, trace cache
270 uses temporal indexes to access the cache arrays for
selected traces. The temporal indexes are generated by the
profile technique and communicated through branch ISA.
When the fill umit forms a trace, the temporal index 1is
extracted from the first branch 1n the trace.

This mdex 1s used to allocate entries 1n trace cache 270
structures 1nstead of a part of the fetch address of the trace.
However, 1t there 1s no valid temporal index generated for
the trace, the fetch address 1s used. If the profile information
1s representative of real data, only inirequently-occurring
traces will use these entries. Entries that are accessed using,
temporal indexes are named temporal trace cache entries.

In one embodiment, NFA array 430 caches all temporal
indexes 1n addition to fetch addresses. NFA 430 1s respon-
sible for generating the next indexes and fetch addresses to
access all three array structures in trace cache 270. Decoder
logic for each cache array uses the “use temporal index bit”
from NFA array 430 to select which partition to access. For
accessing the conventional trace cache entries, the logic 1s
associated with a mask register, whose value is set by the
profile technique to indicate the size. This 1s used for
selecting appropriate index bits from a fetch address since
the size changes depending on applications. The temporal
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4

indexes are appropriately generated by the profile technique
for each application to match with 1ts partition.

In one embodiment, a profile technique implemented
during application compiling enables the trace cache 270
mechanism to specily where to store dynamically formed
traces for an eflicient use of storage. The technique uses a
profiling model that stmulates a conventional trace cache to
identify the dynamic traces and their execution behavior.
The profiler then uses a temporal-based placement algorithm
to generate an 1ndex number for each selected trace.

The index number 1s attached with the first branch instruc-
tion that forms the trace. Each branch ISA 1s augmented with
a temporal trace cache mdex field. When forming a trace
during run-time, the fill unit 260 extracts the index number
from the first branch and uses the index number to allocate
an entry 1n the cache 270 arrays. If there 1s no temporal index
found, as 1 a conventional trace cache, a part of fetch
address 1s used for indexing.

The trace cache 270 array entries can be reconfigured 1nto
temporal index entries and conventional entries for each
application based on the profiling. In one embodiment, there
are two main tasks to complete the process. The first task 1s
to collect profile information on traces that are generated
dynamically. The second task 1s to use the profile informa-
tion to generate temporal-based indexes of the traces.

In one embodiment, the temporal trace cache entry par-
tition need not be a power of 2 since 1t 1s accessed through
direct-mapped 1indexes 1nstead of fetch addresses. Any arbi-
trary number of entries within the size of the index bits can
be added to this partition for better performance.

Referring back to FIG. 4, each cache 270 array includes
associated bank enable logic. For instance, bank enable logic
412 1s associated with tag array 410, bank enable logic 422
1s associated with data array 420, and bank enable logic 432
1s associated with NFA array 432. Bank enable logic 412
cnables the selection of either bank 0 or bank 1 in order to
access the cache arrays.

The size of trace cache 270 may determined during
profiling. In one embodiment, a profile mechanism examines
performance for an application as the size of trace cache 270
1s increased. A profiling model that simulates a conventional
trace cache can be used to collect such mformation. If an
application falls into a small size resource category, the
proflle mechanism generates appropriate size hints to disable
banks and entries of the RTC to reduce unnecessary power
consumption.

The disable hints can be communicated through an
istruction set architecture to a disabling logic 1n the trace
cache 270 before the execution of each application. In one
embodiment, trace cache 270 1s designed with bank and
entry disable logic to take advantage of the profile hints. For
example, 1t the size of the trace cache 270 1s 1024-entry
arrays and each array 1s divided into 2 banks, a bank disable
hint can be generated to only enable 312-entry arrays. A
similar method can be used for reconfiguring the number of
entries for each bank of the RTC arrays.

Thus, for smaller applications trace information may be
stored 1n only one bank, enabling the other bank to be
disabled. As a result, power may be conserved at trace cache
270. I the application requires larger cache arrays, both
banks may be used, with the bank enable logic selecting
which bank to access data.

As discussed above, there are two tasks to complete the
process (e.g., collect profile information on dynamic traces
and generating temporal-based directly-mapped indexes for
selected traces). Collecting profile information involves a
dynamic sequence of fetched traces from trace cache 270.
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Using a profiling model that simulates the trace cache,
whenever a trace 1s fetched from trace cache 270, the trace’s
fetch address and path information are recorded. This pro-
vides the order 1n which traces are executed during run-time.
This 1s referred to as the dynamic execution sequence of
traces.

To 1dentily traces that are frequently executed, dynamic
execution count information 1s collected for each unique
trace. Identitying frequently executed traces helps to reduce
the number of traces to process by discarding those traces
that are seldom executed. This 1s referred to as unique trace
information.

The temporal-based directly-mapped index generation
uses the profile information from the task 1 to generate an
index number for each selected trace. First unmique traces that
are frequently executed are selected. This technique uses the
dynamic execution count information collected for each
unique trace to determine traces that are frequently executed.
A simple threshold value 1s used to discard traces that have
lower execution frequencies. In one embodiment, the thresh-
old value 1s application dependent. The threshold value 1s set
by considering the total percentage of dynamic execution
counts covered by the selected unique traces.

Next, temporal relationship graphs among the selected
unique traces are constructed. The graph 1s similar to the
contlict graph of a graph-coloring-based register allocation
technique. FIG. § 1llustrates one embodiment of a temporal
relationships graph. Referring to FIG. 5, nodes T1-13 are
shown. Fach node 1n the graph represents a selected unique
trace.

Each edge indicates temporal relationship between unique
traces. At the beginning, there are no edges between nodes.
Edges are added by processing the dynamic execution
sequence ol traces. Whenever two fraces execute in an
interleaved manner, an edge 1s added between the corre-
sponding two nodes. Each edge 1s associated with a counter.
The counter keeps track of the number of times those two
traces are interleavingly executed.

The algorithm to generate such a graph can be best
described with an example. Consider two unique traces T1
and T2. When processing the dynamic execution sequence
of the traces, the sequence of dynamic execution, T1 —>T2
—>11 1s encountered. In other words, T1 1s executed first.
Subsequently, T2 1s executed and T1 i1s executed again.
Thus, the two traces T1 and T2 have a temporal relationship
during dynamic execution. This implies that T1 and T2 need
to be present 1n the trace cache during the same time frame.

It 1s desirable that trace cache 270 allocates separate
entries for traces 11 and T2 so that they do not overwrite
cach other. With this algorithm traces that do not exhibit
temporal relationships can also be 1dentified. In the temporal
relationship graph these traces do not have an edge between
them (e.g., the T2 and T3 case 1n FIG. §). For each edge, a
counter 1s added to keep track of the number of times the two
traces executed in an interleaved manner.

If the counter value 1s lower than a threshold, the asso-
clated edge may be discarded to reduce the number of
temporal relationships. After processing the whole sequence
of dynamic execution, the final graph represents the tempo-
ral relationships among traces. If there are many edges with
counter values above a threshold, it can be concluded that
there are many traces that are to have separate entries 1n the
trace cache. Otherwise many trace cache entries can be
reused by different traces such that the traces can “fit” nto
a smaller trace cache and perform as well as a larger trace
cache.
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A simple method to determine temporal relationships
among traces (e.g., traces that are executed 1n an interleaved
manner) 1s to use time stamps while processing the traces in
the order of their dynamic execution. Table 1 shows Time
Stamp Method for Temporal Relationships.

TABLE 1
Time Stamp Time Stamp
Initial Time Values after Values after
Unique Stamp executing executing
Traces Values Tl —> 12 —-—>13 T1 -T2 -—213 —>1T1
T1 0 1 1 —> 4
T2 0 2 2
T3 0 3 3

Table 1 shows the dynamic execution sequence of the
traces, T1->12 —>T3 —->T1. To each unique trace, T1, T2,
and T3, a time stamp 1s attached such as a sequence number.
All of the time stamps of each unique trace 1s mitialized to
0. In this example, the time stamp for T1 1s examined
whenever the first execution of T1 1s encountered to verily
whether T1 has been executed before.

I1 T1 has not been executed before, the time stamp for T1
1s updated to 1. The next executed trace 1s T2, which 1s time
stamped with 2. Stmilarly, the trace T3 will have 3 as 1ts time
stamp. Subsequently, when trace T1 1s again encountered,
and before its stamp 1s updated, it 1s observed that T1 was
executed before and has a time stamp. The current potential
time stamp for T1 1s 4.

At this time, the T1 time stamp (1) 1s compared with all
time stamps of the unique traces (e.g., T2 and T3 in this
case). If the time stamps of the unique traces are higher than
the T1 time stamp (1), the unique traces have a temporal
relationship with T1. In this example, both T2 and T3 have
a temporal relationship with T1. For each 1dentified temporal
relationship, an edge 1s added 1n between.

As discussed above, FIG. 5 shows an edge between T1
and 12, and another edge between T1 and T3. Also, the
counters on each edge are incremented to indicate the
repetition of temporal relationships between the traces. The
time stamp of T1 1s then changed to the current time stamp,
4. This process continues until the end of the dynamic
execution sequence of traces 1s reached.

After the temporal relationship graphs are constructed, a
temporal-based index number 1s assigned to each selected
unique trace. This process involves the algorithm assigning
a trace cache entry index number to each unique trace based
on the temporal relationship graph. In one embodiment, this
process 1s similar to graph-coloring-based register alloca-
tion. A stack 1s used to push the graph nodes. As a node 1s
popped from the stack, graph coloring 1s performed. The
color for each node 1ndicates an index to the trace cache for
cach unique trace. A detailed description of this process has
not been described since one of ordinary skill 1n the art waill
appreciate that it 1s similar to well-known register allocation
techniques.

The Reconfigurable Trace Cache described above will
enable the reduction of power consumption 1n future high-
end microprocessors. The RTC 1s designed to reduce sig-
nificant power consumption for a class of applications that
require less resources and improve performance for another
class that requires more resources. In addition, the RTC
exploits profile hints to gude the reconfiguration of the
arrays and indexing mechanism to achieve such a reduction
in power and improvement in performance.

Whereas many alterations and modifications of the
present invention will no doubt become apparent to a person
of ordinary skill in the art after having read the foregoing
description, 1t 1s to be understood that any particular embodi-
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ment shown and described by way of illustration 1s 1n no
way 1ntended to be considered limiting. Therefore, refer-
ences to details of various embodiments are not intended to
limit the scope of the claims which in themselves recite only
those features regarded as the mvention.

What 1s claimed 1s:

1. A computer system comprising a microprocessor hav-
ing a dynamically re-configurable trace cache to provide
application specific configuration of the trace cache, the
trace cache including:

a tag array;

a data array; and

a next fetch address (NFA) array,

wherein the tag array, the data array and NFA array each
store one or more fetch address entries and one or more

temporal address entries.
2. The computer system of claim 1 wherein the micro-

processor further comprises:
a fill unit to form micro-operations; and

branch prediction logic.
3. The computer system of claim 2 wherein the micro-

processor further comprises an execution core to execute the
micro-operations.

4. The computer system of claim 1 wherein each trace
stored 1n the trace cache 1s assigned an index value.

5. The computer system of claim 4 wherein the tag array,
the data array and the NFA array each comprise a decoder to
access a trace stored in the one or more temporal address
entries using an ndex value.

6. The computer system of claim 1 wherein the one or
more temporal address entries are generated by simulating to
identify dynamic traces, the execution behavior of the
dynamic traces and generating an index value for each
identified trace.

7. A microprocessor comprising:

an 1nstruction cache to recerve and store the micro-
operations as cache lines; and
a trace cache, coupled to the instruction cache, that 1s
dynamically re-configurable using profile information
to provide application specific configuration of the
trace cache, the trace cache including:
a tag array;
a data array; and
a next fetch address (NFA) array,
wherein the tag array, the data array and NFA array
cach store one or more fetch address entries and one
or more temporal address entries.
8. The microprocessor of claim 7 further comprising;:

a fill unit to form micro-operations; and
branch prediction logic.
9. The microprocessor of claim 7 wherein the one or more

temporal address entries are generated by simulating to
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identify dynamic traces, the execution behavior of the
dynamic traces and generating an index value for each
identified trace.

10. The microprocessor of claim 7 further comprising an
execution core to execute the micro-operations.

11. The microprocessor of claim 7 wherein each trace
stored 1n the trace cache 1s assigned an index value.

12. The microprocessor of claim 11 wherein the tag array,

the data array and the NFA array each comprise a decoder to
access a trace stored 1n the one or more temporal address
entries using an index value.

13. A trace cache comprising;:
a tag array;
a data array; and

a next fetch address (NFA) array;

wherein the tag array, the data array and NFA array each
store one or more fetch address entries and one or more
temporal address entries.

14. The trace cache of claim 13 wherein each trace stored
in the trace cache 1s assigned an index value.

15. The trace cache of claim 14 wherein the tag array, the
data array and the NFA array each comprise a decoder to
access a trace stored in the one or more temporal address
entries using an index value.

16. The trace cache microprocessor of claim 13 wherein
the one or more temporal address entries are generated by
simulating to 1dentily dynamic traces, the execution behav-

1ior of the dynamic traces and generating an index value for
cach identified trace.

17. A computer system comprising:

a microprocessor having a dynamically re-configurable
trace cache to provide application specific configura-
tion of the trace cache, the trace cache including:

a tag array;
a data array; and
a next fetch address (NFA) array,

wherein the tag array, the data array and NFA array each
store one or more fetch address entries and one or more

temporal address entries;
a chipset coupled to microprocessor; and
a main memory coupled to the chipset.

18. The computer system of claim 17 wherein each trace
stored 1n the trace cache 1s assigned an index value.

19. The computer system of claim 18 wherein the tag
array, the data array and the NFA array each comprise a
decoder to access a trace stored 1n the one or more temporal
address entries using an index value.
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