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METHOD AND PROCESSOR INCLUDING
LOGIC FOR STORING TRACES WITHIN A
TRACE CACHE

BACKGROUND OF THE INVENTION

1. Field of the Invention

This mvention 1s related to the field of processors, and
more particularly, to probing a trace cache within a proces-
SOF.

2. Description of the Related Art

Instructions processed 1 a processor are encoded as a
sequence ol ones and zeros. For some processor architec-
tures, mstructions may be encoded with a fixed length, such
as a certain number of bytes. For other architectures, such as
the x86 architecture, the length of instructions may vary. The
x86 processor architecture specifies a variable length
istruction set (1.e., an instruction set in which various
istructions are each specified by differing numbers of
bytes). For example, the 80386 and later versions of x86
processors employ between 1 and 15 bytes to specily a
particular instruction. Instructions have an opcode, which
may be 1-2 bytes, and additional bytes may be added to
specily addressing modes, operands, and additional details
regarding the instruction to be executed.

In some processor architectures, each instruction may be
decoded 1nto one or more simpler operations prior to execu-
tion. Decoding an instruction may also mvolve accessing a
register renaming map in order to determine the physical
register to which each logical register 1n the instruction maps
and/or to allocate a physical register to store the result of the
instruction.

Instructions may be fetched into the decode portion of a
processor based, 1n part, on branch predictions made within
the processor. In general, the bandwidth of the instruction
fetch and decode portions of a processor may determine
whether the execution cores are fully utilized during each
execution cycle. Accordingly, it 1s desirable to be able to
provide enough bandwidth in the instruction fetch and
decode portions of the processor to keep the execution core
as tully supplhied with work as possible.

Most processors employ one or more cache memories for
storing Irequently or recently used information. Typical
caches, such as an L1 or L2 cache, for example, may be
organized as a collection of blocks of memory that are
referred to as cache lines. Cache lines may be easily stored
and accessed since they are aligned, contiguous blocks of
memory. Generally speaking, when a cache line must be
invalidated, 1t may be a simple process of comparing a probe
address to the physical address 1n the cache tags of all cache
lines at 1ndices that could be holding the probe’s data. The
list of cache indices simply comes from the probe address
bits that correspond to the cache index bits.

Later generation processors typically use some form of
trace cache for caching mstructions that have been decoded
into operations that are commonly referred to as micro-ops.
Trace caches may store streams of decoded structions or
‘traces’. There 1s generally no requirement that these 1nstruc-
tions be sequential and the first instruction 1n the trace 1s not
necessarily aligned on any particular boundary. Thus, 1t may
be problematic to invalidate trace cache entries correspond-
ing to a given probe address.

SUMMARY

Various embodiments of a method for storing traces
within a trace cache of a processor are disclosed. In one
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2

embodiment, a processor 1s contemplated, which includes a
trace cache memory coupled to a trace generator. The trace
generator may be configured to generate a plurality of traces
cach including one or more operations that may be decoded
from one or more instructions. Each of the operations may
be associated with a respective address. The trace cache
memory 1s coupled to the trace generator and includes a
plurality of entries each configured to store one of the traces.
The trace generator may be further configured to restrict
cach of the traces to include only operations having respec-
tive addresses that fall within one or more predetermined
ranges ol contiguous addresses.

In one specific implementation, a starting address of the
one or more predetermined ranges of contiguous addresses
may be based upon the respective address of a given one of
the one or more operations within each of the plurality of
traces. In one such implementation, the starting address of
the one or more predetermined ranges of contiguous
addresses may be based upon the respective address of a first
operation within each of the traces.

In another specific implementation, each of said one or
more predetermined ranges of contiguous addresses 1s sepa-
rated by a predetermined number of contiguous addresses.

In another implementation, the one or more predeter-
mined ranges of contiguous addresses includes a first range
of contiguous addresses as determined by the respective
address of a given one of the operations and a next N
sequential ranges of contiguous addresses, where N 1s any
number.

In still another specific implementation, the one or more
predetermined ranges ol contiguous addresses includes a
first range ol contiguous addresses as determined by the
respective address of a given one the operations and a next
sequential range of contiguous addresses.

In another embodiment, a method for storing traces within
a trace cache of a processor includes generating a trace
including one or more operations decoded from one or more
instructions. Each of the operations may be associated with
a respective address. The method further includes storing the
trace 1n a trace cache entry within a trace cache memory.
However, the method further includes restricting each of the
traces to include only operations having respective addresses
that fall within one or more predetermined ranges of con-
tiguous addresses.

BRIEF DESCRIPTION OF TH.

L1l

DRAWINGS

FIG. 1 1s a block diagram of one embodiment of a
Processor.

FIG. 2 1s a block diagram of one embodiment of a trace
cache of the processor of FIG. 1.

FIG. 3 a flow diagram describing operation of one
embodiment of the trace cache logic of the processor of FIG.
1.

FIG. 4 1s a block diagram of one embodiment of a trace
cache subsystem.

FIG. 5 1s a block diagram of one embodiment of a
computer system.

FIG. 6 1s a block diagram of one embodiment of another
embodiment of a computer system.

While the invention 1s susceptible to various modifica-
tions and alternative forms, specific embodiments thereof
are shown by way of example in the drawings and will
herein be described i1n detail. It should be understood,
however, that the drawings and detailed description thereto
are not itended to limit the mvention to the particular form
disclosed, but on the contrary, the intention 1s to cover all
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modifications, equivalents, and alternatives falling within
the spirit and scope of the present invention as defined by the
appended claims. Note, the headings are for organizational
purposes only and are not meant to be used to limit or
interpret the description or claims. Furthermore, note that
the word “may” 1s used throughout this application 1n a
permissive sense (1.€., having the potential to, being able to),
not a mandatory sense (1.e., must). The term “include™ and
derivations thereof mean “including, but not limited to.” The
term “‘connected” means “directly or indirectly connected,”
and the term “coupled” means “directly or indirectly
coupled.”

DETAILED DESCRIPTION

Turning now to FIG. 1, a block diagram of one embodi-
ment of a processor 1s shown. Processor 100 may be
designed to be compatible with the x86 architecture. Pro-
cessor 100 1s configured to execute instructions stored in a
system memory 200. Many of these instructions operate on
data stored in system memory 200. System memory 200
may be physically distributed throughout a computer system
and may be accessed by one or more processors 100.

In the illustrated embodiment, processor 100 includes an
instruction cache 106 and a data cache 128. Processor 100
also 1ncludes a prefetch unit 108 coupled to system memory
200. Prefetch unit 108 may prefetch nstruction code from
system memory 200 for storage within instruction cache
106. In one embodiment, prefetch umt 108 may be config-
ured to burst code from the system memory 200 into
istruction cache 106. Prefetch umit 108 may employ a
variety of specific code prefetching techniques and algo-
rithms. Prefetch unit 108 may also fetch instructions from
instruction cache 106 and traces from trace cache 160 into
a dispatch unmit 104. Instructions may be fetched from
instruction cache 106 in response to a given instruction
address missing within trace cache 160. Likewise, mstruc-
tions may be fetched from system memory 200 1n response
to a given address missing within instruction cache 106.

Dispatch unit 104 may be configured to receive mstruc-
tions from instruction cache 106 and to receive decoded
and/or partially decoded operations from trace cache 160.
Dispatch unit 104 may include a decode unit 140 for
decoding instructions received from instruction cache 106.
Dispatch unit 104 may also include a microcode unit (not
shown) for use when handling microcoded 1nstructions.

The dispatch unit 104 1s configured to dispatch operations
to scheduler(s) 118. In one embodiment, one or more
schedulers 118 may be coupled to receive dispatched opera-
tions from dispatch unit 104 and to 1ssue operations to one
or more execution cores 124. Execution core(s) 124 may
include a load/store unit 126 configured to perform accesses
to data cache 128. Results generated by execution core(s)
124 may be output to a result bus 130. These results may be
used as operand values for subsequently 1ssued 1nstructions
and/or stored to a register file 116. A retire queue 102 may
be coupled to scheduler(s) 118 and dispatch unit 104. The
retire queue may be configured to determine when each
1ssued operation may be retired.

Instruction cache 106 may temporarily store mstructions
prior to their receipt by dispatch unit 104. Instruction code
may be provided to instruction cache 106 by prefetching
code from the system memory 200 through prefetch unit
108. Instruction cache 106 may be implemented 1n various
configurations (e.g., set-associative, fully-associative, or
direct-mapped).
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4

Dispatch unit 104 may output signals including bit-
encoded operations executable by the execution core(s) 124
as well as operand address information, immediate data
and/or displacement data. Decode unit 140 may decode
certain instructions mto one or more operations executable
within execution core(s) 124. Simple mstructions may cor-
respond to a single operation while more complex nstruc-
tions may correspond to multiple operations. Upon receiving
an operation that mnvolves the update of a register, the
dispatch unit 104 may reserve a register location within
register file 116 to store speculative register states. It 1s noted
that 1n an alternative embodiment, a reorder bufler (not
shown) may be used to store one or more speculative register
states for each register. A register map 134 may translate
logical register names of source and destination operands to
physical register names 1n order to facilitate register renam-
ing. Register map 134 may track which registers within
register file 116 are currently allocated and deallocated.

When operations are handled by dispatch unit 104, 11 a
required operand i1s a register location, register address
information may be routed to register map 134 (or a reorder
bufler). For example, 1n the x86 architecture, there are eight
32-bit logical registers (e.g., EAX, EBX, ECX, EDX, EBP,
ESI, EDI and ESP). Physical register file 116 (or a reorder
bufler) includes storage for results that change the contents
of these logical registers, allowing out of order execution. A
physical register in register file 116 may be allocated to store
the result of each operation that modifies the contents of one
of the logical registers. Therefore, at various points during
execution ol a particular program, register file 116 (or, 1n
alternative embodiments, a reorder builer) may have one or
more registers that contain the speculatively executed con-
tents of a given logical register.

Register map 134 may assign a physical register to a
particular logical register specified as a destination operand
for an operation. Register file 116 may have one or more
previously allocated physical registers assigned to a logical
register specified as a source operand 1n a given operation.
The register map 134 may provide a tag for the physical
register most recently assigned to that logical register. This
tag may be used to access the operand’s data value in the
register file 116 or to receive the data value via result
forwarding on the result bus 130. If the operand corresponds
to a memory location, the operand value may be provided on
the result bus (for result forwarding and/or storage in
register file 116) through load/store unit 222. Operand data
values may be provided to execution core(s) 124 when the
operation 1s 1ssued by one of the scheduler(s) 118. Note that
in alternative embodiments, operand values may be pro-
vided to a corresponding scheduler 118 when an operation 1s
dispatched (instead of being provided to a corresponding
execution core 124 when the operation 1s 1ssued).

In one embodiment, processor 100 supports out of order
execution. A retire queue 102 (or, alternatively, a reorder
builer) may keep track of the original program sequence for
register read and write operations, allow for speculative
instruction execution and branch misprediction recovery,
and facilitate precise exceptions. In one embodiment, retire
queue 102 may function similar to a reorder bufler, but may
not provide any data value storage. In an alternative embodi-
ment, retire queue 102 may provide data value storage for
speculative register states and also support register renaming
and thus may function more like a reorder bufler. In one
embodiment, retire queue 102 may be implemented 1n a
first-1in-first-out configuration in which operations move to
the “bottom” of the bufler as they are validated, thus making
room for new entries at the “top” of the queue. As operations
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are retired, retire queue 102 may deallocate registers 1n
register file 116 that are no longer needed to store specula-
tive register states and provide signals to register map 134
indicating which registers are currently free. By maintaining
speculative register states within register file 116 (or, 1n
alternative embodiments, within a reorder builer) until the
operations that generated those states are validated, the
results of speculatively-executed operations along a mispre-
dicted path may be invalidated in the register file 116 1f a
branch prediction 1s 1ncorrect.

Retire queue 102 may also provide signals identifying
program traces to trace generator 170. lrace generator 170
may also be referred to as a fill unit. Trace generator 170
may store traces identified by retire queue 102 into trace
cache 160. Each trace within trace cache 160 may include
operations that are part of several diflerent basic blocks. A
basic block 1s a set of operations that begins just after a
branch operation and ends with another branch operation,
such that 11 any one of the operations 1n a basic block 1s
executed, all of the operations 1n that basic block will be
executed.

As will be described 1n greater detail below 1in conjunction
with the descriptions of FIG. 2 through FIG. 5, i one
embodiment trace cache 160 may include a plurality of
locations for storing trace cache entries. The traces stored
into trace cache 160 may include several decoded or par-
tially decoded operations. As used herein, a “trace” 1s a
group ol operations that are stored within a single trace
cache entry 1n the trace cache 160. Trace generator 170 may
also be configured to restrict the set of operations that are
stored 1n a given trace based upon the address associated
with each operation. In addition, 1n one embodiment pro-
cessor 100 may include trace cache control logic (not shown
in F1G. 1) that may be configured to provide control over the
probing of trace cache 160.

Prefetch unit 108 may fetch operations from trace cache
160 into dispatch unit 104. When operations are fetched
from the trace cache (as opposed to when instructions are
loaded from instruction cache 106), the decode unit 140 may
be at least partially bypassed, resulting in a decreased
number of dispatch cycles for the cached operations.
Accordingly, the trace cache 160 may allow the dispatch unit
104 to amortize the time taken to partially (or fully) decode
the cached operations in decode unit 140 over several
execution 1terations 1f traces are executed more than once.

The bit-encoded operations and immediate data provided
at the outputs of dispatch unit 104 may be routed to one or
more schedulers 118. Note that as used herein, a scheduler
1s a device that detects when operations are ready {for
execution and 1ssues ready operations to one or more
execution units. For example, a reservation station i1s a
scheduler. Each scheduler 118 may be capable of holding
operation miformation (e.g., bit encoded execution bits as
well as operand values, operand tags, and/or immediate
data) for several pending operations awaiting issue to an
execution core 124. In one embodiment, each scheduler 118
may not provide operand value storage. Instead, each sched-
uler may monitor 1ssued operations and results available 1n
register file 116 1n order to determine when operand values
will be available to be read by execution core(s) 124 (from
register file 116 or result bus 130). In one embodiment, each
scheduler 118 may be associated with a dedicated execution
corec 124. In another embodiment, a single scheduler 118
may 1ssue operations to more than one of the execution
core(s) 124.

Schedulers 118 may be provided to temporarily store
operation information to be executed by the execution
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core(s) 124. As stated previously, each scheduler 118 may
store operation information for pending operations. Addi-
tionally, each scheduler may store operation information for
operations that have already been executed but may still
reissue. Operations are 1ssued to execution core(s) 124 for
execution 1n response to the values of any required
operand(s) being made available 1n time for execution.
Accordingly, the order in which operations are executed may
not be the same as the order of the original program
instruction sequence. Operations that involve data specula-
tion may remain in scheduler(s) 118 until they become
non-speculative so that they may be reissued 1f the data
speculation 1s 1ncorrect.

In one embodiment, each of the execution core(s) 124
may include components configured to perform integer
arithmetic operations of addition and subtraction, as well as
shifts, rotates, logical operations, and branch operations. A
floating-point unit may also be included to accommodate
floating-point operations. One or more of the execution
core(s) 124 may be configured to perform address genera-

tion for load and store memory operations to be performed
by load/store umt 126.

The execution core(s) 124 may also provide information
regarding the execution of conditional branch instructions to
branch prediction unit 132. If information from the execu-
tion core 124 idicates that a branch prediction 1s imcorrect,
the branch prediction unit 132 may flush instructions sub-
sequent to the mispredicted branch that have entered the
instruction processing pipeline and redirect prefetch unit
108. The redirected prefetch unit 108 may then begin
tetching the correct set of instructions from 1nstruction cache
106, trace cache 160, and/or system memory 200. In such
situations, the results of 1nstructions in the original program
sequence that occurred after the mispredicted branch
istruction may be discarded, including those which were
speculatively executed and temporarly stored in load/store
unmit 126 and/or register file 116.

Results produced by components within execution core(s)
124 may be output on the result bus 130 to the register file
116 11 a register value 1s being updated. If the contents of a
memory location are being changed, the results produced
within execution core(s) 124 may be provided to the load/
store unit 126.

Load/store unit 126 provides an interface between execu-
tion core(s) 124 and data cache 128. In one embodiment,
load/store unit 126 may be configured with a load/store
bufler with several storage locations for data and address
information for pending loads or stores. The load/store unit
126 may also perform dependency checking for load instruc-
tions against pending store instructions to ensure that data
coherency 1s maintained.

Data cache 128 1s a cache memory provided to tempo-
rarily store data being transierred between load/store umit
126 and the system memory 200. Like the mstruction cache
106 described above, the data cache 128 may be imple-
mented 1 a variety ol specific memory configurations,
including a set associative configuration. Additionally, data
cache 106 and instruction cache 128 may be implemented 1n
a unified cache in some embodiments.

It 1s noted that processor 100 may also include and/or be
coupled to other components 1n addition to those shown
here. For example, additional levels of cache such as an L2
cache, for example, may be included (internal and/or exter-
nal to processor 100) between processor 100 and system
memory 200. Similarly, processor 100 may include a
memory controller configured to control system memory
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200 1n some embodiments. Additionally, the interconnec-
tions between logical components may vary between
embodiments.

Trace Cache

Referring to FIG. 2, one embodiment of an exemplary
trace cache of FIG. 1 1s shown. Trace cache 160 of FIG. 2
includes several entries designated 162A through 162N,
where N may be any number. As described further below,
cach trace cache entry 162 may store a trace that includes
one or more decoded instructions 1635 or operations. Since
there 1s no requirement that the decoded instructions be
stored sequentially, the decoded instructions 165 1n a trace
may not be stored in program order. For example, a given
entry 162 may store both a branch instruction and the
instruction that 1s the destination of the branch when the
branch 1s taken (as opposed to the instruction that follows
the branch in program order). In some embodiments, the
decoded nstructions 165 1n each trace cache entry 162 may
be stored 1n at least partially decoded form. As used herein,
the term “trace” refers to a group of operations decoded from
one or more instructions stored 1n a single trace cache entry

162.

In the illustrated embodiment, a trace cache entry 162
may store up to eight component operations included n a
group ol decoded and/or partially decoded instructions in
operation storage units 166(a)-166(/2). Note that other
embodiments may include fewer or additional operation
storage units 166, allowing storage of diflerent numbers of
operations within each trace cache entry 162.

Certain operation storage units 166 within a trace cache
entry 162 may be reserved for certain types of operations.
For example, in one embodiment, a portion of the operation
storage units (e.g., 166(a)-166(d)) may be used to store
memory operations. Similarly, another portion of the opera-
tion storage units (e.g., 166(e)-166(%2)) may be used to store
data operations. It 1s noted that other embodiments may
associate certain types of operations with certain operation
storage units differently (or not at all).

In addition to including several operation storage units
166, cach trace cache entry 162 also includes an 1dentiiying
tag 164 and flow control information 168. Tag 164 may be
similar to a tag in mnstruction cache 106, allowing prefetch
unit 108 to determine whether a given operation hits or
misses 1n trace cache 160. For example, tag 164 may include
all or some of the address bits 1dentitying the address of the
carliest instruction within a given trace. (e.g., the tag may
include the address of the earliest istruction, in program
order, stored within that trace). In another embodiment, the
tag may 1nclude enough information that the address of each
instruction (or at least the first instruction within each trace)
may be independently identified using the information
stored 1n the trace.

In the 1llustrated embodiment, each trace may also include
up to two branch instructions. Other embodiments may
include fewer or additional branch 1nstructions within each
trace. Flow control information 168 may include a label (not
shown) for each branch instruction included within the trace.
The label may be an indication i1dentifying the address to
which control should branch depending on the resolution
(taken, not taken) of a respective branch. Thus, each 1tem of
flow control mmformation 168 may be associated with a
particular branch operation. For example, 1n one embodi-
ment, one flow control information storage location within
a trace may be associated with the first branch operation 1n
the trace and the other flow control information storage
location may be associated with the second branch in the
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trace. Alternatively, the flow control information may
include tags or other information identifying the branch
operation with which that flow control information 1s asso-
ciated. In yet other embodiments, a branch prediction and/or
information identifying which flow control information cor-
responds to a branch operation may be stored with that
branch operation within operation storage 166.

Probing a Trace Cache for Invalidation

As mentioned previously, there may be limited informa-
tion about instruction boundaries within a trace. For
example, 1 instructions are partially decoded into their
component operations prior to storage in a trace, no infor-
mation delineating the different instructions in that trace
may be included in the trace. Furthermore, 11 after being
decoded, component operations of different instructions are
combined, reordered, and/or modified, 1t may be even more
difficult to 1dentily 1nstruction boundaries. Consequentially,
invalidating trace cache entries corresponding to a trace
cache probe address may be dithcult.

Turning to FIG. 3, a flow diagram describing operation of
one embodiment of trace cache logic of processor 100 1is
shown. Beginning 1n block 300, as described above, instruc-
tions may be fully or partially decoded 1nto their component
operations by decode unit 140. As retire queue 102 provides
the operations to trace generator 170, trace generator 170
may generate traces including one or more of the operations.
During the generation process, trace generator may group
the operations based upon the respective addresses of the
operations (block 310). To simplily probing trace cache 160,
trace generator 170 may restrict which instructions or opera-
tions may be stored together in a single trace. In one
embodiment, trace generator 170 may restrict each trace to
include only operations having respective addresses that fall
within one or more predetermined ranges ol contiguous
addresses (block 320). For example, instructions or opera-
tions that come from the same contiguous and/or aligned
umt of memory defined by the first mstruction in the trace
and instructions or operations that come from the next N
sequential contiguous and/or aligned unit of memory may be
stored together in the same trace. In one embodiment, N may
be one, although other embodiments are contemplated in
which N may be any number of sequential contiguous and/or
aligned units of memory. Each trace generated 1n this way
may then be stored within trace cache 160 (block 330).

In the embodiments described above, no additional tag
storage may be necessary since reasonable sizes of the
contiguous and/or aligned units of memory may be much
smaller than a physical page (e.g., <<4 KB). Instead, the
physical tag of the first instruction may be incremented to
obtain the next sequential contiguous and/or aligned unait.
However, in cases where the trace cache entry 1s 1n the last
contiguous and/or aligned unit of memory in a physical
page, a simple increment of the physical tag may not yield
the address of the next sequential contiguous and/or aligned
unit of memory due to paging in a virtual memory system.
In such cases, extra tag storage may be necessary to store
additional address tags for the next sequential contiguous
and/or aligned unit of memory that crosses the page bound-
ary. Although these entries having the extra tag storage may
be grouped together since the high-order index bits may all
have a value of one.

A trace cache such as trace cache 160 containing traces
constructed as described above may be probed by searching
the trace cache entries that have index bits 1n common with
the probe address. In one embodiment, 1f there are trace
cache 1index bits below the granularity of the probe address,
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those trace cache index bits may be unspecified and all
corresponding trace cache indices are searched. Since the
istructions from the next sequential contiguous and/or
aligned unit of memory are allowed to be stored within a
trace, the probe address 1s decremented by the size of the
contiguous and/or aligned unit of memory and the trace
cache indices specified by that address must be searched.
Similarly, the probe address 1s decremented when compared
against the tags of these trace cache indices. It the probe 1s
to the first contiguous and/or aligned unit of memory, then
the decremented probe address wraps 1n the trace cache from
the first set of indices to the last set of indices. In addition,
due to paging, the extra tags are used in the comparison and
not the trace cache tags. Since some traces may not contain
instructions from the next contiguous and/or aligned unit of
memory, a bit may be used to identily those trace cache
entries. Thus, when one of those entries 1s probed on behalf
of a decremented probe address, the bit may be used to
determine that there i1s no need to perform an invalidation.

In another embodiment, the predetermined range of
addresses may include two or more distinct address ranges
separated by a predetermined number of addresses. In such
an embodiment, a first contiguous and/or aligned unit of
memory having a first predetermined address range may be
defined starting with the address of the first instruction 1n the
trace. Then, a second contiguous and/or aligned umit of
memory having a second predetermined address range may
be defined at some predetermined number of addresses away
from the first range. Further, additional contiguous and/or
aligned umits of memory having a additional predetermined
address ranges may be defined at some predetermined
number of addresses away from the second and subsequent
address ranges.

Performing probe comparisons and invalidations, if
needed, may take a significant amount of time. As described
below, processor 100 includes a mechanism that allows trace
cache fetching to continue, unless the fetch address matches
the probe address or the modified probe address.

Referring to FIG. 4, a block diagram of one embodiment
of a trace cache subsystem 400 1s shown. Components
corresponding to those shown in FIG. 1 and FIG. 2 are
numbered 1dentically for clarity and simplicity. Trace cache
subsystem 400 includes trace cache 160 coupled to a trace
cache control unit 465. Trace cache subsystem 400 also
includes a trace cache probe storage 470 that 1s coupled to
trace cache control unit 465.

Trace cache control unit 465 1s configured to receive a
trace cache probe and to store the address associated with the
probe into trace cache probe storage 470. The probe address
may remain stored within trace cache probe storage 470 (and
1s thus referred to as an outstanding probe address) until the
probe completes. In one embodiment, 1n response to receiv-
ing a trace fetch, trace cache control umit 465 may compare
the address associated with the trace fetch to the address
stored within trace cache probe storage 470. If the trace fetch
address matches the outstanding probe address, trace cache
control unit 46 may block or “hold ofl”” that fetch to allow
the probe to complete. However, if the trace fetch does not
match the outstanding probe address, trace cache control
unit 46 may allow the trace fetch to proceed. In response to
allowing the fetch to proceed, trace cache control unit 4635
may provide the trace fetch request to trace cache 160. Trace
cache 160 may subsequently provide the requested trace to
the requester. Hence probe reads/invalidates may use spare
cycles that are not used by the trace fetcher.

In one embodiment, trace cache probe storage 470 may be
a storage suitable for storing one outstanding probe address.
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However, 1n other embodiments, trace cache probe storage
470 may be a storage suitable for storing a plurality of probe
addresses. In any embodiment, trace cache probe storage
470 may be implemented using a variety of storage mecha-
nisms such as a hardware register set, a probe address table
in a RAM structure or some other suitable storage structure,
for example.

Exemplary Computer Systems

Referring to FIG. 5, a block diagram of one embodiment
of a computer system 1s shown. Components that correspond
to those illustrated 1 FIG. 1 are numbered identically for
clarity and simplicity. Computer system 600 includes a
processor 100 coupled to a variety of system components
through a bus bridge 602. Processor 100 may include an
embodiment of a trace cache 160 as described above.
Computer system 600 also includes a main memory 604 that
1s coupled to bus bridge 602 through a memory bus 606, and

a graphics controller 608 1s coupled to bus bridge 602
through an AGP bus 610. Several PCI devices 612A-612B

are coupled to bus bridge 602 through a PCI bus 614. A
secondary bus bridge 616 may also be provided to accom-
modate an electrical interface to one or more EISA or ISA
devices 618 through an FISA/ISA bus 620. In this example,
processor 100 1s coupled to bus bridge 602 through a CPU
bus 624 and to an optional L2 cache 628. It 1s noted that in
other embodiments, processor 100 may include an 1inte-
grated L2 cache (not shown).

Bus bridge 602 provides an interface between processor
100, main memory 604, graphics controller 608, and devices
attached to PCI bus 614. When an operation 1s received from
one of the devices connected to bus bridge 602, bus bridge
602 1dentifies the target of the operation (e.g., a particular
device or, 1n the case of PCI bus 614, that the target 1s on PCI
bus 614). Bus bridge 602 routes the operation to the targeted
device. Bus bridge 602 generally translates an operation
from the protocol used by the source device or bus to the
protocol used by the target device or bus.

In addition to providing an interface to an ISA/EISA bus
for PCI bus 614, secondary bus bridge 616 may incorporate
additional functionality. An input/output controller (not
shown), either external from or integrated with secondary
bus bridge 616, may also be included within computer
system 600 to provide operational support for a keyboard
and mouse 622 and for various serial and parallel ports. An
external cache unit (not shown) may also be coupled to CPU
bus 624 between processor 100 and bus bridge 602 in other
embodiments. Alternatively, the external cache may be
coupled to bus bridge 602 and cache control logic for the
external cache may be integrated into bus bridge 602. L2
cache 628 1s shown 1n a backside configuration to processor
100. It 1s noted that L2 cache 628 may be separate from
processor 100, integrated into a cartridge (e.g., slot 1 or slot
A) with processor 100, or even integrated onto a semicon-
ductor substrate with processor 100.

Main memory 604 1s a memory in which application
programs are stored and from which processor 100 primarily
executes. A suitable main memory 604 may include various
types of DRAM (Dynamic Random Access Memory). For
example, a plurality of banks of SDRAM (Synchronous
DRAM) or Rambus DRAM (RDRAM) may be used.

PCI devices 612A—612B are illustrative of a variety of
peripheral devices such as network interface cards, video
accelerators, audio cards, hard or floppy disk drives or drive
controllers, SCSI (Small Computer Systems Interface)
adapters and telephony cards. Similarly, ISA device 618 is
illustrative of various types of peripheral devices, such as a
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modem, a sound card, and a variety of data acquisition cards
such as GPIB or field bus interface cards.

Graphics controller 608 1s provided to control the render-
ing of text and images on a display 426. Graphics controller
608 may embody a typical graphics accelerator generally
known 1n the art to render three-dimensional data structures
that can be effectively shifted into and from main memory
604. Graphics controller 608 may therefore be a master of
AGP bus 610 1n that 1t can request and receive access to a
target interface within bus bridge 602 to thereby obtain
access to main memory 604. A dedicated graphics bus
accommodates rapid retrieval of data from main memory
604. For certain operations, graphics controller 608 may
turther be configured to generate PCI protocol transactions
on AGP bus 610. The AGP interface of bus bridge 602 may
thus include functionality to support both AGP protocol
transactions as well as PCI protocol target and initiator
transactions. Display 626 i1s any electronic display upon
which an 1mage or text can be presented. A suitable display
626 includes a cathode ray tube (“CRT”), a liquid crystal
display (“LCD™), etc.

It 1s noted that, while the AGP, PCI, and ISA or FISA
buses have been used as examples in the above description,
any bus architectures may be substituted as desired. It 1s
turther noted that computer system 600 may be a multipro-
cessing computer system including additional processors
(e.g., processor 100a shown as an optional component of
computer system 600). Processor 100a may be similar to
processor 100. More particularly, processor 100a may be an
identical copy of processor 100 1n one embodiment. Pro-
cessor 100a may be connected to bus bridge 602 via an
independent bus (as shown 1n FIG. 6) or may share CPU bus
624 with processor 100. Furthermore, processor 100a may
be coupled to an optional L2 cache 628a similar to L2 cache
628.

Turning to FIG. 6, a block diagram of another embodi-
ment of a computer system 1s shown. Components that
correspond to those illustrated in FIG. 1 are numbered
identically for clarity and simplicity. Computer system 700
includes several processing nodes 712A, 712B, 712C, and
712D. Each processing node 1s coupled to a respective
memory 714A—714D via a memory controller 716 A—716D
included within each respective processing node
712A-712D. Additionally, processing nodes 712A-712D
include interface logic (IF 718 A—-L) used to communicate
between the processing nodes 712A-712D. For example,
processing node 712A includes interface logic 718 A for
communicating with processing node 712B, interface logic
718B for communicating with processing node 712C, and a
third interface logic 718C for communicating with vet
another processing node (not shown). Similarly, processing
node 712B includes interface logic 718D, 718E, and 718F;
processing node 712C includes interface logic 718G, 718H,
and 7181; and processing node 712D includes interface logic
718, 718K, and 718L. Processing node 712D 1s coupled to
communicate with a plurality of mput/output devices (e.g.,
devices 720A—720B 1n a daisy chain configuration) via
interface logic 718L. Other processing nodes may commu-
nicate with other I/O devices 1n a similar fashion.

In the illustrated embodiment, processing nodes
712A-712D implement a packet-based link for inter-pro-
cessing node commumication. The link 1s implemented as
sets of unidirectional lines (e.g., lines 724A are used to
transmit packets from processing node 712A to processing,
node 712B and lines 724B are used to transmit packets from
processing node 712B to processing node 712A). Other sets
of lines 724C—724H are used to transmit packets between

10

15

20

25

30

35

40

45

50

55

60

65

12

other processing nodes as illustrated i FIG. 7. Generally,
cach set of lines 724 may include one or more data lines, one
or more clock lines corresponding to the data lines, and one
or more control lines indicating the type of packet being
conveyed. The link may be operated in a cache coherent
fashion for communication between processing nodes or 1n
a non-coherent fashion for communication between a pro-
cessing node and an I/0 device (or a bus bridge to an I/O bus
of conventional construction such as the PCI bus or ISA
bus). Furthermore, the link may be operated mn a non-
coherent fashion using a daisy-chain structure between 1/0
devices as shown. It 1s noted that a packet to be transmaitted
from one processing node to another may pass through one
or more intermediate nodes. For example, a packet trans-
mitted by processing node 712A to processing node 712D
may pass through either processing node 712B or processing
node 712C as shown in FIG. 17. Any suitable routing
algorithm may be used. Other embodiments of computer
system 700 may include more or fewer processing nodes
then the embodiment shown 1n FIG. 7.

Generally, the packets may be transmitted as one or more
bit times on the lines 724 between nodes. A bit time may be
the rising or falling edge of the clock signal on the corre-
sponding clock lines. The packets may include command
packets for initiating transactions, probe packets for main-
tamning cache coherency, and response packets from
responding to probes and commands.

Processing nodes 712A—712D, 1n addition to a memory
controller and interface logic, may include one or more
processors. Broadly speaking, a processing node includes at
least one processor and may optionally include a memory
controller for communicating with a memory and other logic
as desired. More particularly, each processing node
712A-712D may include one or more processors such as
processor 100 of FIG. 1. As such, each processing node
712A-D may include a trace cache 160 and associated logic
as described above in conjunction with the descriptions of
FIG. 1 through FIG. 4.

Memories 714A—614D may include any suitable memory
devices. For example, a memory 714A—714D may include
one or more types of DRAM such as RAMBUS DRAMs
(RDRAMSs), synchronous DRAMSs (SDRAMSs), double data
rate SDRAM (DDR SDRAM), or static RAM, etc. The
address space ol computer system 700 may be divided
among memories 714A-714D. Each processing node
712A-712D may include a memory map used to determine
which addresses are mapped to which memories
714A-714D, and hence to which processing node
712A-712D a memory request for a particular address
should be routed. In one embodiment, the coherency point
for an address within computer system 700 1s the memory
controller 716 A—716D coupled to the memory storing bytes
corresponding to the address. In other words, the memory
controller 716 A—716D 1s responsible for ensuring that each
memory access to the corresponding memory 714A-714D
occurs 1n a cache coherent fashion. Memory controllers
716 A—716D may include control circuitry for interfacing to
memories 714A-—714D. Additionally, memory controllers
716 A—716D may include request queues for queuing
memory requests.

Interface logic 718A—718L may include a variety of
buflers for receiving packets from the link and for buflering
packets to be transmitted upon the link. Computer system
700 may employ any suitable flow control mechanism for
transmitting packets. For example, 1n one embodiment, each
interface logic 718 stores a count of the number of each type
of bufler within the receiver at the other end of the link to
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which that interface logic 1s connected. The interface logic
does not transmit a packet unless the receiving interface
logic has a free buller to store the packet. As a receiving
bufler 1s freed by routing a packet onward, the receiving
interface logic transmits a message to the sending interface
logic to indicate that the bufler has been freed. Such a
mechanism may be referred to as a “coupon-based” system.

I/O devices 720A—720B may be any suitable I/O devices.
For example, I/O devices 720A—720B may include devices
for communicate with another computer system to which the
devices may be coupled (e.g., network interface cards or
modems). Furthermore, /O devices 720A-7208B may
include video accelerators, audio cards, hard or floppy disk
drives or drive controllers, SCSI (Small Computer Systems
Interface) adapters and telephony cards, sound cards, and a
variety ol data acquisition cards such as GPIB or field bus
interface cards. It 1s noted that the term “I/O device” and the
term ‘“‘peripheral device” are intended to be synonymous
herein.

As used herein, the terms ““clock cycle” or “cycle” refer
to an interval of time 1n which the various stages of the
istruction processing pipelines complete their tasks.
Instructions and computed values are captured by memory
clements (such as registers or arrays) according to a clock
signal defining the clock cycle. For example, a memory
clement may capture a value according to the rising or
talling edge of the clock signal.

Numerous variations and modifications will become
apparent to those skilled 1n the art once the above disclosure
1s Tully appreciated. It 1s intended that the following claims
be interpreted to embrace all such variations and modifica-
tions.

What 1s claimed 1s:

1. A processor comprising:

a trace generator configured to generate a plurality of
traces each including one or more operations, wherein
said one or more operations are decoded from one or
more instructions, wherein each of said one or more
operations 1s associated with a respective address;

a trace cache memory coupled to said trace generator,
wherein said trace cache memory includes a plurality of
entries each configured to store one of said plurality of
fraces;

wherein said trace generator 1s further configured to
restrict each of said plurality of traces to include only
operations having respective addresses that fall within
one or more predetermined ranges of contiguous
addresses.

2. The processor as recited 1n claim 1, wherein a starting,
address of said one or more predetermined ranges ol con-
tiguous addresses 1s based upon said respective address of a
given one of said one or more operations within each of said
plurality of traces.

3. The processor as recited 1n claim 1, wherein starting
address of said one or more predetermined ranges ol con-
tiguous addresses 1s based upon said respective address of a
first operation of said one or more operations within each of
said plurality of traces.

4. The processor as recited 1in claim 2, wherein each of
said one or more predetermined ranges of contiguous
addresses 1s separated by a predetermined number of con-
tiguous addresses.

5. The processor as recited in claim 2, wherein said one
or more predetermined ranges of contiguous addresses
includes a first range of contiguous addresses as determined
by said respective address of a given one of said one or more
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operations and a next N sequential ranges of contiguous
addresses, where N 1s any number.

6. The processor as recited in claim 2, wherein said one
or more predetermined ranges of contiguous addresses
includes a first range of contiguous addresses as determined
by said respective address of a given one of said one or more

operations and a next sequential range of contiguous
addresses.

7. The processor as recited in claim 1 further comprising
a trace cache control unit coupled to said trace cache
memory and configured to receive a trace cache probe and
to store 1n a trace cache probe storage, an address corre-
sponding to said trace cache probe until said trace cache
probe completes.

8. The processor as recited 1n claim 7, wherein said trace
cache control unit 1s further configured to determine whether
a trace cache probe to a particular address 1s outstanding 1n
response to receiving a trace cache fetch to said particular
address by comparing said particular address to said address
corresponding to said trace cache probe stored within said
trace cache probe storage.

9. The processor as recited 1n claim 8, wherein said trace
cache control umit 1s further configured to block said trace
cache fetch in response to determining that said trace cache
probe to a particular address 1s outstanding.

10. A method comprising:

generating a trace including one or more operations
decoded from one or more instructions, wherein each
of said one or more operations 1s associated with a
respective address;

storing said trace in a trace cache entry within a trace
cache memory;

restricting said trace to include only operations having
respective addresses that fall within one or more pre-
determined ranges ol contiguous addresses.

11. The method as recited in claim 10, wherein a starting
address of said one or more predetermined ranges ol con-
tiguous addresses 1s based upon said respective address of a
given one of said one or more operations within said trace.

12. The method as recited 1n claim 10, wherein starting
address of said one or more predetermined ranges ol con-
tiguous addresses 1s based upon said respective address of a
first operation of said one or more operations within said
trace.

13. The method as recited in claim 11, wherein each of
said one or more predetermined ranges of contiguous
addresses 1s separated by a predetermined number of con-
tiguous addresses.

14. The method as recited in claim 11, wherein said one
or more predetermined ranges of contiguous addresses
includes a first range of contiguous addresses as determined
by said respective address of a given one of said one or more
operations and a next N sequential ranges ol contiguous
addresses, where N 1s any number.

15. The method as recited in claim 11, wherein said one
or more predetermined ranges of contiguous addresses
includes a first range of contiguous addresses as determined
by said respective address of a given one of said one or more
operations and a next sequential range of contiguous
addresses.

16. The method as recited 1n claim 10 further comprising
receiving a trace cache probe and storing in a trace cache
probe storage, an address corresponding to said trace cache
probe until said trace cache probe completes.
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17. The method as recited in claim 16 further comprising 18. The method as recited 1n claim 17 further comprising
in response to receiving a trace cache fetch to a particular blocking said trace cache fetch in response to determining
address, determining whether a trace cache probe to said that said trace cache probe to a particular address 1s out-
particular address 1s outstanding by comparing said particu- standing.

lar address to said address corresponding to said trace cache 5
probe stored within said trace cache probe storage. £k ok k%
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