12 United States Patent

Wu et al.

US007203963B1

(10) Patent No.: US 7,203,963 B1
45) Date of Patent: Apr. 10, 2007

(54) METHOD AND APPARATUS FOR
ADAPTIVELY CLASSIFYING NETWORK
TRAFFIC

(75) Inventors: Shyhtsun Felix Wu, Davis, CA (US);
Aiguo Fei, San Jose, CA (US);
Fengmin Gong, Livermore, CA (US)

(73) Assignee: McAfee, Inc., Santa Clara, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 134(b) by 1048 days.
(21) Appl. No.: 10/172,740
(22) Filed: Jun. 13, 2002

(51) Int. CL

GO6F 21/00 (2006.01)

GO6F 9/00 (2006.01)

GO6F 11/00 (2006.01)

HO4L 29/02 (2006.01)
(52) US.CL ..., 726/23;726/3; 726/11;

709/224

(58) Field of Classification Search None

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

5,557,742 A 9/1996 Smaha et al.
5,621,880 A 4/1997 Lermuzeaux et al.
5,769,942 A 6/1998 Maeda

5,798,706 A 8/1998 Kraemer et al.
5,805,801 A 9/1998 Holloway et al.
5,812,763 A 9/1998 Teng

5,864,683 A 1/1999 Boebert et al.
5,892,903 A 4/1999 Klaus

5,898,830 A 4/1999 Wesinger, Jr. et al.
5,905,859 A 5/1999 Holloway et al.
5,919,257 A 7/1999 Trostle

5,919,258 A 7/1999 Kayashima et al.
5,940,591 A 8/1999 Boyle et al.
6,052,788 A 4/2000 Wesinger, Jr. et al.
6,088,804 A 7/2000 Hill et al.

partition tree,
variables

l s 402

Receive

6,119,236 A 9/2000 Shipley

(Continued)
OTHER PUBLICATIONS

Giovanm Vigna, et al., “NetSTAI: A Network-Based Intrusion
Detection System,” Department of Computer Science, University of
California Santa Barbara, pp. 1-46. Supported under Agreement

No. F30602-97-1-0207.

(Continued)

Primary Examiner—Gilberto Barron, Ir.

Assistant Examiner—A. Nobahar

(74) Attorney, Agent, or Firm—Zilka-Kotab, PC;
Christopher J. Hamaty

(57) ABSTRACT

A method of adaptively classifying information using a
binary tree comprises establishing a binary tree including a
set of binary sequences each representing one or more
network addresses. Once network traflic 1s received having
identifiers describing network traflic sources, the 1dentifiers
are correlated to binary sequences within the binary tree. A
revision metric 1s formed based on this correlating, and the
binary tree 1s then revised according to this revision metric.

A method of blocking a DDOS attack comprises establishing
a binary tree including a set of binary sequences, each of
these binary sequences representing one or more network
addresses. When network traflic 1s received having i1denti-
fiers describing network traflic sources, the identifiers are
correlated to binary sequences within the binary tree. Once
a DDOS attack notification signal 1s received, a selected
binary tree path within the binary tree 1s 1dentified as a low
cost blocking path within the binary tree. Network traflic
correlated to a binary sequence corresponding to the selected
binary tree path 1s blocked.

21 Claims, 6 Drawing Sheets

— | 400

Fpltﬂ

Evaluate
¢ast fungtion

/#18

Split bins
with highest [
cost

-

Contract bins
with lowest
cost

4i¢

max.cost
-

K.min.cost?

for every bm

US 7,203,963 Bl
Page 2

U.S. PATENT DOCUMENTS

6,154,844 A 11/2000 Touboul et al.

6,178,509 Bl 1/2001 Nardone et al.

6,185,678 Bl 2/2001 Arbaugh et al.

6,185,689 Bl 2/2001 Todd, Sr. et al.

6,243,815 Bl 6/2001 Antur et al.

6,301,699 B1 10/2001 Hollander et al.
2002/0009076 Al 1/2002 Engbersen et al. 370/389
2003/0076848 Al 4/2003 Bremler-Barr et al. 370/412
2004/0117478 Al* 6/2004 Trwlzi et al. 709/224

OTHER PUBLICATIONS

Y. F. Jou, et al., and S.F. Wu, et al., “Design and Implementation of
a Scalable Intrusion Detection System for the Protection of Network
Infrastructure,” Advanced Networking Research, MCNC, RTP, NC,
et al., pp. 15.

Ivan Krsul, “Computer Vulnerability Analysis Thesis Proposal,”
The COAST Laboratory, Department of Computer Sciences,
Purdue University, IN, Technical Report CSD-TR-97-026. Apr. 15,
1997, pp. 1-23.

Matt Bishop, “Vulnerabilities Analysis,” Department of Computer
Science, University of Califorrnia at Davis, pp. 1-12.

Matt Bishop, “A Taxonomy of UNIX System and Network Vulner-
abilities,” CSE-95-10,May 1995, pp. 17.

Matt Bishop, et al., “A Critical Analysis of Vulnerability Taxono-
mies,” CSE-90-11, Sep. 1996, pp. 1-14.

Dawn X. Song, et al., “Advanced and Authenticated Marking
Schemes for IP Traceback,” Report No. UCB/CSD-00-1107, Com-

puter Science Division (EECS), University of California, Berkeley,
Jun. 2000, pp. 1-11.

Chien-Lung Wu, et al., IPSec/PHIL (Packet Header Information
List): Design, Implementation, and Evaluation, NC State University,
Raleigh, NC, et al., pp. 6.

Allison Mankin, et al., “On Design and Evaluation of “Intention-
Driven” ICMP Traceback,” USC/ISI, et al., pp. 7.

Brian Carrier, et al., “A Recursive Session Token Protocol for Use
in Computer Forensic and TCP Traceback,” CERIAS, Purdue
University, West Lafayette, IN, et al., 2002 IEEE, pp. 7.

Stefan Savage, et al., “Practical Network Support for IP Traceback,”
Department of Computer Science and Engineering, University of
Washington, Seattle, WA. Copyright 2000, pp. 12.

Diheng Qu, et al., “Statistical Anomaly Detection for Link-State
Routing Protocols,” Computer Science Department, North Carolina
State University, Raleigh, NC, et al.., Supported under Contract No.
F30602-96-C-0325, pp. 9.

* cited by examiner

U.S. Patent Apr. 10, 2007 Sheet 1 of 6 US 7,203,963 B1

12 14

10
T

16 20
Packet Classification Module
Packet Blocking Module j;
| Bin Blocking Routine
30
Rate Control Routine
In-line Traffic Profile Storage
24
Cenrtal Module
— 26
DPDOS Detection Module
18

32

FIG.

m »
< (DIH
= 9¢ J[NPOIA]
x UOI}019(]
- sOdd
= £
A J[NPON
m TOIIUO))
sm]-g30
2 "N ST
) S[NPON QPO
Qurzrzzzdy, SVl [| WOWRYISSeID L

L) o) 5 | ~1979ed weansQ

19308]

001

44 0C

U.S. Patent

U.S. Patent Apr. 10, 2007 Sheet 3 of 6 US 7,203,963 B1

§ 200
10101101

20

Packet

Classification
Module

200

T+ [10101701] -+ [10010101] ---- [03000000

202

FIG. 3

US 7,203,963 B1

Sheet 4 of 6

Apr. 10, 2007

U.S. Patent

. 9
DI I 11
Q=T +---- [0 H 0
\ / Jle 0
[=U=-=n- -l 0 I 0 I |0
/\ : /_\ ZI€ v
O=U--+------ . [] 0
| /o\ o / \ / \ o N 0I€
SO
\/ \/ / \ / \ / / 80t
=t =e e T 0 T 0 | 0 [10J1 O
\/ \/ \ \ / \ / \ \/
2 SALRAELLELS | 0 ! 0 07c 1] 0
N\ / \ 90¢
4 L SARAAER AL L 0 T4 0
7zs
14013
QL -eeecceccaccraaanacecataaaann I
I p_ 1 0
O”.ﬁO NQM.
S[NPOA
UOTJBOIJISSB)
00§ ~ 1porg

00¢

U.S. Patent Apr. 10, 2007 Sheet 5 of 6 US 7,203,963 B1

- 400
Initialize
partition tree,
variables
402
Receive
packets
404 418
Increment | .
bin | Split bins
counters with highest
CcoOst
416
406
No Time | Contract bins

to update with lowest

partition cost
trec?
Yes
408 Yes 414
N max.cost

Update 0 >

variables K.min.cost?

using bin

counters

410 Yes 4]2

Evaluate
cost function
| for every bin

rlG. 5

US 7,203,963 B1

Sheet 6 of 6

Apr. 10, 2007

U.S. Patent

9 Did b0 E.II_“@% oz | N TS %7980 |zzs

899 £99 8¢9 /=959 —~#59 59 059
%%%_ i I @@ % :;ui_ EE
$£9 m% 929 | ~#z9 | ~zz9 A 029
s (5T (0T t& EN Em iag

A
I Ve m@ ol m s | m R e
3uoy postaoy LCESE | [19V | | SOTT]| €89 ||STTOEK| | STIS l.o% l.@.m - 0ST |
ey 98 x ¢=¢ | COSV || 8T9'C 4 ' 200°T | | €TL°S J J 01T
m Tl pyc T\-0L6 Tgu6 + % ¢+ %m+ 70¢ 095

@

TUNO? UIq C81 oom [oﬁo I oom
G=te e L 9ps i\ ppe | Lps w 0% m mﬁ. 9¢¢ w w%m
0z§
MHHHIH Nm
976 —" / ﬁm

i

o
Ty
W
-
iy
oy
P
N
—
L

US 7,203,963 Bl

1

METHOD AND APPARATUS FOR
ADAPTIVELY CLASSIFYING NETWORK
TRAFFIC

BRIEF DESCRIPTION OF THE INVENTION

This invention relates to computer network security. More

specifically, this invention relates to a method and apparatus
for adaptively partitioning information received from a
network.

BACKGROUND OF THE INVENTION

Many networked computational resources such as com-
puters, storage devices, switches, routers, and the like are
vulnerable to distributed denial of service (DDOS) attacks.
Such an attack typically involves a large number of remotely
controlled computers that are used to deluge a target com-
puter with an excessive amount of information. This infor-
mation usually takes the form of specially crafted Internet
Protocol (IP) packets that trigger a flood of packets at the
target. The sheer number of such requests overwhelms the
target’s ability to respond, eflectively removing it from
service by preventing 1t from doing anything else. Com-
pounding this problem 1s the fact that damage from such
DDOS attacks 1s not limited to the target itself. Rather,
attacks are also capable of overwhelming any networked
device 1n the path leading to the target.

A typical DDOS attack 1s characterized by a sudden
increase, or burst, in trathc volume, 1.e. an increase in the
rate (often measured in packets per second or bytes per
second) at which information 1s transferred across a network
to the target computer. As this attack 1s often made up of
packets or other information arriving from a finite number of
different attacking computers, one method of blocking
DDOS attacks relies upon determining the sources of an
attack and blocking information from these sources. How-
ever, 1t 1s often diflicult to differentiate between benign
information sent from computers not mvolved 1n a DDOS
attack, and information sent as part of the attack itself. While
one reliable approach for accomplishing such differentiation
involves scanning the content of all information received,
such an approach can involve a prohibitive amount of
computational resources, especially during periods of high
network traflic. It 1s therefore desirable to develop a method
for partitioning information into categories based on
whether 1t 1s 1nvolved 1n a DDOS attack, without scanning,
the content of the information recerved.

The ability to tell the difference between legitimate infor-
mation and a DDOS attack 1s made more dithicult by the fact
that sources of network mformation may change over time,
as some computers stop transmitting information to the
target and others begin. It 1s therefore also desirable to
develop a method for partitioming information that adapts to
changes 1n the number and i1dentity of computers transmit-
ting information.

SUMMARY OF THE INVENTION

A method of adaptively classitying information using a
binary tree comprises establishing a binary tree including a
set ol binary sequences each representing one or more
network addresses. Once network tratlic 1s received having,
identifiers describing network tratlic sources, the 1dentifiers
are correlated to binary sequences within the binary tree. A
revision metric 1s formed based on this correlating, and the
binary tree 1s then revised according to this revision metric.

5

10

15

20

25

30

35

40

45

50

55

60

65

2

A method of blocking a DDOS attack comprises estab-
lishing a binary tree including a set of binary sequences,
cach of these binary sequences representing one or more
network addresses. When network traflic 1s received having
identifiers describing network tratlic sources, the 1dentifiers
are correlated to binary sequences within the binary ftree.
Once a DDOS attack notification signal 1s received, a
selected binary tree path within the binary tree 1s identified
as a low cost blocking path within the binary tree. Network
tratlic correlated to a binary sequence corresponding to the
selected binary tree path 1s blocked.

The mnvention 1s advantageous in that 1t establishes a
binary sequence capable of identifying sources of a DDOS
attack by examining the address, and not the content, of
information sent. By avoiding an examination of such con-
tent, the methods of the invention can block the sources of
a DDOS attack with minimal computational resources. The
invention 1s further advantageous 1n that 1t revises the binary
sequence to reflect changes in the computers contributing to

the DDOS attack.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the nature and objects of the
invention, reference should be made to the following
detailed description taken 1n conjunction with the accom-
panying drawings, in which:

FIG. 1 illustrates a computer that may be operated 1n
accordance with an embodiment of the present invention.

FIG. 2 illustrates the operation of an embodiment of the
present mvention.

FIG. 3 illustrates the operation of an embodiment of the
present 1vention.

FIG .4 illustrates the formation of a binary sequence in
accordance with an embodiment of the invention.

FIG. 5 1illustrates processing steps associated with an
embodiment of the present invention.

FIG. 6 1llustrates the revising of a binary sequence in
accordance with an embodiment of the imnvention.

Like reference numerals refer to corresponding parts
throughout the several views of the drawings.

DETAILED DESCRIPTION OF TH.
INVENTION

(Ll

FIG. 1 1llustrates a computer 10 that may be operated 1n
accordance with an embodiment of the present invention.
The computer 10 1s a standard computer including a Central
Processing Unmit (CPU) 12 for processing instructions, and a
network connection 14 for transmitting and recerving infor-
mation from a computer network, each of which 1s con-
nected by a bus 16. Also connected to the bus 16 1s a
memory 18. The memory 18 stores a number of computer
programs, including a packet classification module 20, a
packet blocking module 22, a control module 24, and a
DDOS detection module 26. The packet blocking module 22
includes a number of components such as a bin blocking
routine 28, rate control routine 30, and 1n-line trathic profile
storage 32.

FIG. 2 illustrates the operation of the computer 10 1n
accordance with an embodiment of the present invention. In
operation, the computer 10 receives information, such as an
IP packet stream 100, through 1ts network connection 14.
The packet classification module 20 then reads the IP
addresses of these packets and classifies them using a binary
tree, each branch of which 1s capable of classifying packets
as belonging to a different category. A separate bin, or

US 7,203,963 Bl

3

counter, 1s then used to keep count of the number of IP
packets that match each branch. The count for each bin 1s
stored 1n the 1n-line trathic profile storage 32, which provides
a profile describing the various IP addresses transmitting 1P
packets to the computer 10, and the amount of traflic arriving,
from each address. From time to time, the control module 24
reads the count for each bin and uses this information to
revise the binary tree and 1ts associated bins. The revised tree
1s then transmitted back to the packet classification module
20, where 1t 1s used to monitor and classity the packet stream
100.

When the DDOS detection module 26 1indicates a DDOS
attack, the control module 24 signals the packet blocking
module 22 to designate certain bins for blocking. Any IP
packets falling into such blocked bins are then discarded.
The packet blocking module 22 blocks bins either according
to a stmple bin blocking accomplished by the bin blocking
routine 28, or according to a rate limiting scheme accom-
plished by the rate control routine 30.

The above discussion 1illustrates three basic functions of
an embodiment of the present invention: 1) the classitying or
partitioning of information into bins according to a binary
tree, 2) the revising of this binary tree and 1ts associated bins,
and 3) blocking DDOS attack information according to the
bins 1t 1s partitioned into. Attention now turns to a more
detailed explanation of each of these three basic functions.

The partitioning function 1s discussed first. FIG. 3 1llus-
trates the operation of an embodiment of the present inven-
tion for partitioning information into bins. As information
such as an IP packet arrives, it 1s partitioned mnto a bin
according to 1ts IP address or some other source identifier.
The packet classification module 20 possesses a bin corre-
sponding to every possible IP address. It thus reads the
address 200 of an mcoming IP packet (for simplicity, the
address shown 1s 8 bits long), increments the approprate bin
202, and passes the packet on. As each bin represents an 1P
address or group of IP addresses, the packet classification
module 20 keeps a count of the amount of trathic arriving,
from various addresses.

It should be noted that the example of FIG. 3 has been
simplified 1n a number of ways for the purpose of illustra-
tion, and should not be construed as so limited. For example,
while the address 200 1s represented as an 8 bit binary
sequence, current IP addresses are 32 bits long. Obviously,
the invention should be construed to cover the classification
of IP packets according to addresses that are of arbitrary
length, including those that are 8 bits, as well as 32 bits, 1n
length. Likewise, while the address 200 i1s deemed as
representing the address of an IP packet, the invention
should be construed as including the classification of any
form of networked information. Finally, the invention
should not be limited to classifying and counting according
to IP addresses. Rather, the address 200 should be consid-
ered as representative of any 1dentifier capable of highlight-
ing the origin or source of information.

FIG. 4 1illustrates further details of a binary sequence
according to an embodiment of the present imvention. A
binary tree 300 1s constructed, beginning with a binary 0 at
the n=0 level, and branching into binary 0 and 1 nodes at the
n=1 level. Each of these, 1n turn, branches into 0 and 1 nodes
at the next level down, so that every level n has 2" nodes,
half of which have a value of 0 and half of which have a
value of 1.

The lone binary 0 at the n=0 level 1s used simply to begin
the binary tree, and 1s 1ignored for other purposes. By starting,
at the n=1 level and traversing down levels along any
pathway, the pattern of nodes selected delineates a binary

5

10

15

20

25

30

35

40

45

50

55

60

65

4

sequence that can be matched to an IP address or other
binary information identifier. For example, the pattern of
nodes 302-316 can denote, in order, the binary pattern
00100101, the same as the IP address 200. It can be seen,
then, that each bottom-level node (also called a leat node)
represents an address or addresses. A corresponding bin 202
1s associated with each leaf node to keep a count of the
number of packets with addresses that match 1ts sequence.

It should be observed that sequences of different length
are capable of representing diflering numbers of addresses,
with shorter sequences representing more addresses and
longer ones representing fewer. The sequence of nodes
302-316, for mstance, defines an 8 bit binary sequence that
can match only one 8-bit address: 00100101. The sequence
of nodes 320326, on the other hand, 1s only 4 bits in length:
1000. As such, 1t only matches the first 4 bits of an 8 bat

address, and 1s thus capable of matching up to 16 different
8 bit addresses (e.g., 10000001, 10001010, 10001111, etc.).

Depending on the length of each sequence, then, certain bins
202 are capable of representing many different addresses. It
should also be observed that, because shorter sequences
represent more addresses, such a binary tree covers the
entire binary address space, 1.e. the various leal nodes
collectively represent every possible address.

-

The packet classification module 20 uses a binary tree
such as the tree 300 of FIG. 4 to determine the appropriate
bin corresponding to each packet’s IP address. It then
increments the bin counter and passes the packet on. In the
present example, the packet classification module 20 would
read the address 200 of an mcoming packet, compare the
address 200 to the binary tree 300 to note that 1t matches the
sequence 302-316, and increment the counter of the corre-
sponding bin 202. The packet would then get passed on to
the blocking module 22 for possible blocking, or to be
simply passed along to its intended destination.

The partitioning of information according to a binary tree
having been explained, attention now turns to revising the
binary tree and its associated bins. As one embodiment of
the mvention blocks information according to the bin its
address matches, it 1s helptul to effectively capture as much
good (not 1nvolved 1 a DDOS attack) traffic 1in as few bins
as possible, and to block the rest. Methods of adapting, or
revising, the binary tree are now discussed that seek to
maximize the amount of DDOS attack traflic blocked, while
minimizing the amount of good tratlic that also gets blocked
in the process.

FIG. 5 illustrates processing steps associated with an
embodiment of the mvention for revising binary trees and
their associated bins. A binary tree, which can also be termed
a partition tree as 1t 1s used to partition network tratlic, 1s first
initialized (step 400). Also mitialized are variables including
a long_term_count array used to keep long-term track of the
amount of traflic matching each sequence, and a bin_count
array to keep short-term track of network tratlic for each bin.

A percent array 1s also used to calculate the percent of total
traflic each bin accounts for.

The partition tree can be mitialized 1n various ways, all of
which are consistent with the invention. For example, 11 1t 1s
known beforechand that benign network trafhic will arrive
from certain addresses, the partition tree can be set at a
specific configuration to match as much of this benign traflic
with as few sequences as possible. The partition tree can also
simply be initialized as an even tree with a given number of
levels, where each level 1s fully populated. In the example of
FIG. 4, the binary tree 300 can be 1mitialized as an even tree

US 7,203,963 Bl

S

that extends only down to the n=2 level. As such, 1t would
have four bins, corresponding to IP addresses that begin with

the digits 00, 01, 10, and 11.

Once the partition tree 1s 1mtialized and bins have been
established, the embodiment of the invention scans the
source addresses of IP packets or other network information
(step 402). It then compares their IP addresses or other
identifiers to the various branches of the partition tree to
determine a matching sequence, and increments the appro-
priate bin counter bin_count[1] (step 404).

From time to time, the partition tree 1s updated to reflect
any changes 1n traflic. Typically, the partition tree 1s updated
cither at fixed time intervals or after a certain amount of
network traflic has been received. A check 1s thus made to
determine whether 1t 1s time to update the partition tree (step
406). I1 1t 1s not, the method proceeds back to step 402 and
continues to receive and process information in the usual
manner. If the time has come to update the partition tree, the
bin counters bin_count[i] are used to update various vari-
ables (step 408), which in turn are used to update the
partition tree.

In short, the bin_count array 1s used to update the long-
_term_count array, which simply keeps a running count of
the total amount of information counted in each bin. In
pseudo-code, the algorithm for adding the bin_count array to
the long_term_count array 1s as follows:

total_count=0 for (1=1, N) long term_count[i]
=long 3 term_count[1]*age_factor+bin_count[i]
total_count=total_count+long_term_term_count

[i] (1)

where
N=total number of bins
age_factor<1.0

In other words, the “old” long-term count array 1s dis-
counted by an age factor to reduce the impact of older traflic
count samples. The short-term count array 1s then added 1n,
resulting in an updated long-term count array that contains
all count information but that 1s also weighted toward more
recent count mnformation due to the age factor. The total-
_count value 1s simply a number retlecting the total amount
of information received, such as the total number of IP
packets received, with older count information discounted.

Observe that the long-term count array essentially keeps
a running tally of all count information ever collected. On
certain computers, this may eventually result in overtlow
errors as the accumulated count grows too big for the
long-term count array to store. This problem can be allevi-
ated by setting the age factor to a sufliciently small value,
thus effectively decrementing each counter and preventing it
from growing too large. The problem can also be addressed
via other methods, all in keeping with the scope of the
invention, such as periodically dividing every bin in the
long-term count array by a multiple of some number like 10,
or by subtracting a large constant from every bin. Finally, the
problem 1s also easily solvable by choosing the correct
precision value for each counter. For example, if a bin
receives a packet every second and the profiles are updated
every hour, a short-term counter will not exceed
60*60=3600. Over time, 1t can be observed that the upper
bound on the total count corresponding to this bin 1s 3600/
(1-age_factor). Thus, even 1t age_factor 1s set as large as
0.99999, a standard double precision counter (currently 8
bytes on most 32 bit machines) should not overtlow.

10

15

20

25

30

35

40

45

50

55

60

65

6

Once the long-term count array 1s updated, each bin’s
percentage of network traflic 1s also revised as:

(2)

A cost Tunction 1s then evaluated for every bin, as well as
for any parent modes where both child nodes are leaf nodes,
or leal parents (step 410). This cost function 1s used as a

revision metric to determine which, if any, bins (1.e., leaf
nodes of the partition tree) should be updated, and 1s based
on the following equation:

percent[i]=long term_count[i]/total count

C[1]=percent[1]/2" (3)

where
C[1]=cost function for bin 1
n=depth, or level, or node 1

It can be observed that the cost function measures both the
percent of total traflic falling into a particular bin and the
fraction of total address space, 1.e., all possible addresses,
that the bin covers. Note that the fraction of address space
a bin covers 1s purely a function of the level at which it 1s
located. For instance, 1n FIG. 4, node 304 1s located at level
n=2, and would cover one quarter of all possible address
space, while node 316, at level n=8, would cover only
1/2%=1/256 of all address space. Consequently, bins with
high cost values will tend to cover large amounts of address
space and receive large amounts of network trafhic, while
bins with low cost values will typically cover little address
space and receive small amounts of traffic.

Recall, however, that it 1s a goal to generate a partition
tree that divides the greatest amount of traflic into the least
amount of address space. This 1s accomplished by setting a
maximum number of bins, or leaf nodes of the partition tree,
and splitting those bins with the highest cost values until the
maximum number of bins 1s reached. Thus, once the cost
function 1s evaluated for every bin, the current number of
bins 1s compared to the maximum number of bins (step 412).
If the maximum number of bins has already been reached,
a check 1s made to determine whether the highest cost value
of all the leal nodes, as calculated according to equation (3),
1s greater than a constant K times the lowest cost value of all
leat parent nodes (step 414). I not, the algorithm leaves the
partition tree unchanged and returns to step 402. Otherwise,
the two child nodes of the leal parent with the lowest
associated cost are contracted into the leaf parent (step 416).
The node corresponding to the highest-cost bin then spawns
two new nodes, with two new bins, beneath 1t (step 418).

I1 the maximum number of bins has not yet been reached,
the method simply proceeds directly to step 418 instead of
contracting other nodes first. If two nodes are merged into
their leal parent, as in step 414, their bin counts are added
together to form the new bin count for the parent node.
Conversely, 11 a node 1s split, 1ts bin count 1s divided evenly,
with each new bin receiving half of the old bin count.

As an aside, i1t should be noted that the invention, with
regard to the number of bins, simply discloses a maximum
number and nothing more. As a result, the maximum number
of bins can be determined by any method, analytical, empiri-
cal, or otherwise, while remaining within the scope of the
invention. Typically though, the maximum number i1s chosen
empirically based on a balancing of at least two factors.
First, a large maximum number can result 1n too many bins
for the CPU 12 to process. Second, a small maximum
number can result in too few bins with which to differentiate
between good and bad traflic, resulting 1n the loss of too
much benign network traflic whenever a bin 1s blocked.
Accordingly, the maximum number 1s often chosen empiri-

US 7,203,963 Bl

7

cally, based on the individual trailic characteristics of a
computer 10, 1n order to balance both these factors.

The methods of FIG. 5 are best illustrated by example.
FIG. 6 1llustrates the revising of a binary sequence according
to the above methods. Here, a partition tree S00 has ten leaf
nodes 502-520, each with a corresponding bin counter
530-548. Three leaf parents 522526 also exist. Assume for
purposes of this example that bin counters 530-548 have
cach tallied the number of IP packets shown. For each leaf
node 502520, these bin counters 530-548 indicate the
number of IP packets that have arrived, with IP addresses
matching each respective sequence, since the last revision of
the partition tree 500.

Further assume that age_factor 1s assigned a value of 0.5,
and K=2.0. Each long-term count bin 560578, containing
past accumulated bin count imnformation, 1s first multiplied
by 0.5 to account for 1ts age. Each new value 1s then added
to the value of the corresponding bin counter 530548,
producing revised long-term bin counters 390 . 608. These
revised long-term bin counters 590-608 are subsequently
used to calculate updated percentile values 620—638 accord-

ing to equation (2), which 1n turn are used to calculate cost
values 650668 for each leal node 502-520. Cost values

680684 are also calculated for each leaf parent 522-526.

Notice that ten leaf nodes 502520 currently exist. It the
maximum number of bins 1s set to ten, meaning that this
maximum has already been reached, then this embodiment
of the mvention seeks to contract two nodes while dividing
another, thus keeping the total number of bins constant.
Alternatively, the partition tree 500 remains unaltered. It
must, then, be determined whether the maximum cost value
1s more than K times the minimum cost value. Here, the
maximum cost value 1s cost value 658, which has a value of
1.92. This value 1s greater than 2.0 times the mimimum cost
value 680 of leaf parent 522, or 0.86. The two nodes 504,
506 are thus contracted 1nto leal parent (now a leal node)
522. The highest cost leal node 510 (now a leaf parent) 1s
then split into two leaf nodes O and 1, located at the n=5
level. Each long-term count value i1s divided or combined
accordingly. That 1s, the two long-term count values 592,
594 are combined to form a single long-term counter that has
a value of 542.54600.5=1143. Similarly, the counter 598 is
divided evenly between the two new leal nodes, where each
1s assigned a counter having a value of 5115/2=2557.3.

If the maximum number of bins 1s set to a number greater
than ten, this embodiment of the invention instead seeks to
divide the highest-cost leal node without contracting any
others. Here, node 510 would be divided as above, produc-
ing two new leal nodes at the n=5 level, each having a bin
counter set to a value 01 2557.5. In e1ther case, the short-term
bin counters 530548 are then set to zero, and the present
embodiment uses the revised partition tree 500 to continue
partitioning IP packets.

A third aspect of the ivention, blocking information
according to the bin 1t 1s partitioned into, 1s now discussed.
Blocking typically occurs upon a signal from the DDOS
detection module 26 that a DDOS attack has begun. Meth-
ods of detecting DDOS attacks are known 1n the art and
include detection based on threshold information transfer
rates and/or packet profiling. A novel approach to DDOS
attack detection 1s also disclosed 1n a co-pending U.S. patent
application entitled “Method and Apparatus for Detecting a
Distributed Denial of Service Attack,” filed on Jun. 13,
2002, hereby incorporated 1n 1ts entirety. The present inven-
tion therefore includes the detection of DDOS attacks by any
known method, including those described above.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

Once the packet blocking module 22 receives an indica-
tion of a DDOS attack from the DDOS detection module 26
or another source, 1t can block incoming information, thus
staving off the DDOS attack, in a number of ways. In one
embodiment, the bin blocking routine 28 blocks information
by sorting each bin according to 1ts cost value, then blocking
those bins with the lowest cost value. Observe that the
numerator of equation (2) represents the percent of total
tratlic that falls mto a particular bin, while the denominator
represents the percent of all address space that the bin
covers. Leal nodes with low cost values receive relatively
little benign traflic yet are capable of blocking a relatively
large number of potential DDOS attack sources. In FIG. 6
for example, leal node 508 covers 4 of the address space,
as 1t 1s one of only four nodes at the n=2 level. In actuality
though, 1t receives far less traflic than this: 0.76%. Thus,
cven assuming that all 0.76% of this traflic 1s benign,
blocking IP packets that match leal node 508 blocks traflic
from 25% of all possible DDOS attack sources, while only
climinating 0.76% of good traflic. In contrast, leal nodes
with high cost values receive a comparatively large amount
of good traflic, and should not be blocked. For instance,
while blocking leal node 512 would prevent 26.14% of all
good traflic from being recerved, an average of only 6.25%
of all DDOS attack sources would be stopped.

One embodiment 1n accordance with this aspect of the
invention thus sets a threshold percentage of benign traflic
that can be blocked during a DDOS attack, and sorts all bins
according to their cost values. When an indication of a
DDOS attack 1s recerved, bins are blocked starting with the
lowest-cost bin and successively progressing through the
next-lowest cost bins until the threshold percentage of
benign tratlic has been blocked. The remaining bins, con-
tamning higher percentages of benign ftraflic, remain
unblocked. In the example of FIG. 6, assume that the
threshold percentage 1s set as 10%, 1.e., 1t 1s considered
acceptable to block up to 10% of network traflic during a
DDOS attack, but no more. Upon an 1ndication of a DDOS
attack, this embodiment of the invention would first block
traflic matching leal node 516, as 1t has the lowest cost value
664. Here, 12.5% of all IP addresses are blocked, but only
0.60% of all benign traflic 1s actually lost. Next, leafl node
502 1s also blocked, again blocking another 12.5% of all
potential DDOS attacks but resulting in a total of 0.60%+
0.89%=1.49% of bemign ftrailic lost. Similarly blocked
would be leal nodes 508, 504, and 506 respectively, result-
ing 1n another 25%+6.25%+6.25%=37.5% of 1P addresses
blocked while blocking a total of 1.49%+0.76%+3.25%+
3.60%=9.10% of good tratlic. This embodiment would then
stop here, as the next-lowest cost node, leal node 514, would
result 1n the loss of an additional 4.09% of good ftraflic,
pushing the total percentage of lost ftraflic to
9.10%+4.09%=13.19%, well over the 10% maximum
threshold.

Other embodiments also exist in accordance with this
aspect of the invention. For example, the threshold can be set
as an absolute amount of information received, instead of a
percentage. In such an embodiment, the maximum threshold
could be set as a bin count or long-term count value, and
low-cost bins could be successively blocked until the total
bin count or long-term count 1s reached.

Another embodiment blocks bins according to the rate at
which they receive information. The flood of information
arriving during a DDOS attack typically results 1n one or
more bins receiving information at a high rate. Upon an
indication of a DDOS attack then, the rate control routine 30
applies a rate-limiting scheme to block bins that receive

US 7,203,963 Bl

9

information at or above a certain threshold rate. One

embodiment that blocks bins 1n this manner utilizes a dual

token bucket rate limiting scheme. Such schemes are known

in the art for tratlic policing. In this embodiment, a number

ol constants are first defined:

Total=running count of total number of packets, or other
pieces ol mformation, received by all bins

stderr=0.001, or some other small value (utilized 1n certain
embodiments of the invention, as described below)

A number of arrays are also defined, each array having an
clement corresponding to each bin of the particular tree:
TokenRatel=token rate for first bucket
TokenDepthl=token depth for first bucket
TokenRate2=token rate for second bucket
TokenDepth2=token rate for second bucket
NTokensl=number of tokens for first bucket
NTokens2=number of tokens for second bucket
Index=1ndex of the packet, or other piece of information, last

seen for that bin

Conceptually, the dual token bucket rate limiting scheme
sets up two buckets of sorts, into which a stream of tokens
1s poured. As IP packets (or other information) arrive, a
token 1s removed. If these packets arrive too quickly, the
buckets are emptied of tokens, and remaining packets are
blocked until the bucket fills again. The token rates, or the
rate at which tokens are poured into the buckets, and token
depths, or the number of tokens each bucket can hold, are
thus used as parameters to allow the algorithm to control the
rate at which each bin can receive packets.

Once an indication of a DDOS attack 1s received, the rate
control routine 30 uses the dual token bucket scheme to limait
the rate at which each bin receives packets. The two buckets
for each bin 1 receive tokens as a function of packet arrival,
instead of time. That 1s, each bucket receives a fixed number
of tokens every time the computer 10 receives a packet.
Thus, whenever a bin 1 receives a packet, the appropriate
number of tokens 1s calculated and placed 1n 1ts first bucket:

tokens=TokenRatel /i]*(Total-Index[i]) NTokensl1 /i]
=NTokens1 fi]+tokens

The number of tokens 1n each bucket, though, 1s capped
by the depth of the bucket. In other words, the bucket can
only contain a fixed number of tokens. Here, the first bucket
1s limited to TokenDepthl tokens. If NTokens[1] exceeds this
number, 1t 1s reduced to TokenDepthl tokens instead. After
that, the number of tokens 1s reduced by one to account for
the newly arrived packet:

NTokens]1 fi|=Ntokensl fi]-1

If this operation results 1n Ntokens1[1] falling below 1, the
newly arrived packet 1s blocked. If not, the packet i1s passed
through the second bucket in the same fashion as above,
although this bucket has a diflerent token rate and bucket
depth:
tokens=TokenRate2 /i]*('Total-Index[])
NTokens2/i]=NTokens2/i]+tokens
if (N'Tokens2/i]>TokenDepth2/i]) then

NTokens2 /i]=TokenDepth2/i/
endif
if (Ntokens2/i]<1) then

block packet
clse

NTokens2 /i]=NTokens2/i]-1
endif

It 1s worth noting that the invention utilizes dual token
buckets to achieve superior performance over single token
bucket schemes. The existence of two buckets allows con-

10

15

20

25

30

35

40

45

50

55

60

65

10

stants to be chosen so as to optimize the performance of each
bucket for different goals. For instance, TokenRatel can be
chosen as a small value while TokenDepthl can be some-
what large, creating a first bucket that governs packet rates
cllectively. Conversely, TokenRate2 can then be chosen as a
larger value and TokenDepth2 can be set at a small valve,
allowing the second bucket to control packet bursts. Taken
together, two buckets thus offer superior performance over
a single token bucket. This does not, however, imply that
single token bucket schemes are outside the scope of the
invention. Rather, this aspect of the mmvention should be
construed to include both single and dual token bucket rate
limiting schemes.

From the above, 1t can be seen that the rate at which each
bin allows or blocks packets can be controlled by properly
selecting values for TokenRatel, TokenDepthl, Token-
Rate2, and TokenDepth2. In one embodiment, these con-
stants are chosen as functions of the well-known standard
deviation statistic. For each bin, a mean value can be
calculated reflecting the average count that the bin contains
over time. In conventional statistics, the standard deviation
measuring the amount of variation in this mean value 1s

defined as:

T (4)

where
T=total number of times bin 1 1s sampled
x,~" bin count for bin i
X v —average of all T bin count samples for bin 1
This standard deviation 1s then used to calculate the two

token rate and bucket size values as follows:

TokenRatel /i/=K1*(percent[i/+K2*0)) (5)

TokenRate2 /ij=K3*(percent[i{/+K4*0)) (6)

TokenDepthl/i/=K5*(percent[i/+K6*0;) (7)

(8)

Here, this embodiment of the invention includes the
determination of the various constants K1-K8 by any
method. For instance, the constants K1-K8 can be deter-
mined empirically using rate samples from a number of
DDOS attacks, or experimentally by establishing difierent
values for each constant and determining the effectiveness of
the resulting TokenRate and TokenDepth values for blocking
DDOS attacks. Finally, the constants K1-K8 can be deter-
mined analytically using various mathematical critena.

Calculating this standard deviation statistic requires the
computer 10 to buller T samples for each bin. As T must be
statistically significant 1 order to represent an adequate
measure of the degree to which a bin count can vary, a large
amount of memory may be required. To alleviate this
drawback, an alternate embodiment seeks to approximate o
in a less computationally intensive manner. Subsequent to
the calculations of process (1) above, an approximation of
the standard deviation 1s assessed:

i (total_bin_count>0) then

for (1=1, N)

total _bin_count=total _bin_count+bin_count|i]

for (1=1, N)

bin_sample=bin_count[1]/total_bin_count

TokenDepth2/i/=K7*(percent[i/+K8*0;)

US 7,203,963 Bl

11

long_term_bin_count=long_term_count|1]/total_count
stderr[/]=sqrt{age_factor*stderr[i]*+(1-age_factor)*
(bin_sample-long_term_bin_count)}
Here, a standard error statistic 1s calculated for each bin
as a function of the difference between the percent of current
traih

ic falling into that bin, and the percent of traflic that has
historically fallen into that bin. Note that this 1s similar to the
standard deviation statistic for each bin, which 1s a function
of the difference between the bin count and the average of
all bin count samples for that bin. Note also that equation (4)
requires the bullering of T bin counts for every bin, whereas
equation (9) does not. The stderr(1) quantity can then be used
as a less computationally intensive approximation of o 1n
equations (5)—(8).
The foregoing descriptions of specific embodiments of the
present invention are presented for purposes of 1llustration
and description. They are not intended to be exhaustive or to
limit the invention to the precise forms disclosed. Obviously,
many modifications and variations are possible 1n view of
the above teachings. The embodiments were chosen and
described 1n order to best explain the principles of the
invention and 1ts practical applications, to thereby enable
others skilled in the art to best utilize the mmvention and
vartous embodiments with various modifications as are
suited to the particular use contemplated. It 1s intended that
the following claims and their equivalents define the scope
of the mvention.
What 1s claimed 1s:
1. A computer implemented method of adaptively classi-
tying information using a binary tree, comprising:
establishing a binary tree including a set of binary
sequences, each binary sequence of said set of binary
sequences representing one or more network addresses;

receiving network traflic having identifiers describing
network trafhic sources;

correlating said 1dentifiers to binary sequences within said

binary tree;

forming a revision metric based upon said correlating; and

revising said binary tree according to said revision metric;

wherein said revising includes updating a particular
binary sequence of said set of binary sequences so as to
reduce the number of network addresses represented;

wherein said updating includes determining said revision
metric based upon the percentage of said network
traflic having said identifiers correlating to said par-
ticular binary sequence, and based upon the number of
network addresses within said one or more network
addresses, said updating further including lengthening
said particular binary sequence according to an evalu-
ation of said revision metric.

2. The computer implemented method of claim 1 wherein
said establishing includes establishing binary sequences
cach having a long term count value for noting an amount of
said network tratlic received from said one or more network
addresses and a short term count value for updating said long
term count value, and wherein said correlating includes
incrementing said short term count value and periodically
incorporating said short term count value into said long term
count value.

3. The computer implemented method of claim 1 wherein
said revising includes revising said set of binary sequences
so as to correlate a greater number of said i1dentifiers to a
smaller number of said network addresses.

4. The computer implemented method of claim 1 further
including the step of blocking said network traflic upon
correlating said 1dentifiers to selected binary sequences
within said binary tree.

10

15

20

25

30

35

40

45

50

55

60

65

12

5. The computer implemented method of claim 4 wherein
said recerving includes receiving malicious network traflic
involved 1n a distributed denial of service attack and benign
network tratlic not involved 1n a distributed denial of service
attack, and wherein said blocking includes identifying

selected binary sequences for blocking a large amount of
said malicious network trafl

ic while blocking a small

amount of said benign network traflic.
6. The computer implemented method of claim 4 wherein
said correlating includes correlating said i1dentifiers so as to
produce 1dentified network traflic, and said blocking
includes blocking said identified network traflic according to
the rate at which said i1dentified network traflic 1s received.
7. The computer implemented method of claim 6 wherein
said blocking includes blocking said identified network
traflic according to a token bucket rate limiting scheme.
8. The computer implemented method of claim 6 wherein
said blocking includes blocking said identified network
traflic according to a dual token bucket rate limiting scheme.
9. A computer implemented method of blocking a distrib-
uted denial of service attack, comprising:
establishing a binary tree including a set of binary
sequences, each binary sequence of said set of binary
sequences representmg one or more network addresses;

recerving network traflic having identifiers descnbmg
network traflic sources;

correlating said 1dent1ﬁers to binary sequences within said

binary tree;

recerving a distributed denial of service attack notification

signal;

identifying a selected binary tree path withuin said binary

tree, said 1identifying including 1identifying said selected
binary tree path as a low cost blocking path within said
binary tree;

blocking network traflic correlated to a binary sequence

corresponding to said selected binary tree path; and

dynamically rev1smg said set of bmary sequences 1o

reflect changes 1n said network traflic;

wherein said dynamically revising 1ncludes updating a

particular binary sequence ol said set of binary
sequences so as to increase the number of said network
addresses represented;
wherein said updating includes determining a revision
metric based upon the percentage of said network
traflic having said identifiers correlating to said par-
ticular binary sequence, and based upon the number of
network addresses within said one or more network
addresses, said updating further including shortening
said particular binary sequence according to an evalu-
ation of said revision metric.
10. A computer implemented method of blocking a dis-
tributed denial of service attack, comprising:
cstablishing a binary tree including a set of binary
sequences, each binary sequence of said set of binary
sequences representmg one or more network addresses;

recerving network trathic having identifiers descrlbmg
network traflic sources;

correlating said 1dentifiers to binary sequences within said

binary tree;

receiving a distributed denial of service attack notification

signal;

identilying a selected binary tree path within said binary

tree, said 1dentifying including 1dentifying said selected
binary tree path as a low cost blocking path within said
binary tree;

blocking network traflic correlated to a binary sequence

corresponding to said selected binary tree path; and

dynamically rewsmg said set of bmary sequences 1o

reflect changes in said network traflic;

US 7,203,963 Bl

13

wherein said dynamically revising includes updating a
particular binary sequence of said set of binary
sequences so as to reduce the number of network
addresses represented,;

wherein said updating includes determining a revision
metric based upon the percentage of said network
traflic having said identifiers correlating to said par-
ticular binary sequence, and based upon the number of
network addresses within said one or more network
addresses, said updating further including lengthening
said particular binary sequence according to an evalu-
ation of said revision metric.

11. The computer implemented method of claim 9

wherein said blocking includes discarding said network
trailic based upon the result of said correlating.

12. A computer readable memory that can direct a com-
puter to function 1n a specified manner, comprising:

instructions to establish a binary tree including a set of
binary sequences, each binary sequence of said set of
binary sequences representing one or more network
addresses;

istructions to recerve network traflic having identifiers
describing network tratlic sources;

instructions to correlate said identifiers to binary
sequences within said binary tree;

istructions to form a revision metric based upon said
correlating; and

instructions to revise said binary tree according to said
revision metric:

wherein said instructions to revise include nstructions to
update a particular binary sequence of said set of binary
sequences so as to increase the number of said network
addresses represented;

wherein said instructions to update include structions to
determine said revision metric based upon the percent-
age ol said network traflic having said i1dentifiers cor-
relating to said particular binary sequence, and based
upon the number of network addresses within said one
or more network addresses, said instructions to update
further 1including instructions to shorten said particular
binary sequence according to an evaluation of said

revision metric.

13. The computer readable memory of claim 12 wherein
said 1nstructions to establish include nstructions to establish
binary sequences each having a long term count value for
noting an amount of said network trathic received from said
one or more network addresses and a short term count value
for updating said long term count value, and wherein said
istructions to correlate include instructions to increment
said short term count value and 1nstructions to periodically
incorporate said short term count value into said long term
count value.

14. The computer readable memory of claim 12 wherein
said instructions to revise include instructions to revise said
set of binary sequences so as to correlate a greater number
of said identifiers to a smaller number of said network
addresses.

15. The computer readable memory of claim 12 further
including instructions to block said network traflic upon
correlating said 1dentifiers to selected binary sequences
within said binary tree.

16. The computer readable memory of claim 135 wherein
said instructions to receive include instructions to receive
malicious network trathic involved 1n a distributed demial of
service attack and benign network traflic not mnvolved 1n a
distributed denial of service attack, and wherein said instruc-
tions to block include instructions to 1dentily selected binary

10

15

20

25

30

35

40

45

50

55

60

65

14

sequences for blocking a large amount of said malicious
network trathic while blocking a small amount of said benign
network tratfic.

17. The computer readable memory of claim 15 wherein
said 1nstructions to correlate include instructions to correlate

said 1dentifiers so as to produce identified network traflic,
and said 1nstructions to block include instructions to block

said 1dentified network tratlic according to the rate at which
said 1dentified network traflic 1s received.

18. The computer readable memory of claim 17 wherein
said 1nstructions to block include instructions to block said
identified network traflic according to a token bucket rate
limiting scheme.

19. The computer readable memory of claim 17 wherein
said 1nstructions to block include instructions to block said
identified network traflic according to a dual token bucket
rate limiting scheme.

20. A computer implemented method of classifying infor-
mation utilizing a binary tree for identifying a distributed
denial of service attack, comprising:

establishing a binary tree including a set of binary

sequences, each binary sequence of said set of binary
sequences representing one or more network addresses;
recerving network traflic;

identifying a distributed demal of service attack associ-

ated with said network traflic utilizing said binary tree;
and

dynamically revising said set of binary sequences to

reflect changes 1n said network traflic;

wherein said dynamically revising includes updating a

particular binary sequence of said set of binary
sequences so as to increase the number of said network
addresses represented;

wherein said updating includes determining a revision

metric based upon the percentage ol said network
traflic having identifiers correlating to said particular
binary sequence, and based upon the number of net-
work addresses within said one or more network
addresses, said updating further including shortening
said particular binary sequence according to an evalu-
ation of said revision metric.

21. A computer program product embodied on a computer
readable medium for classilying information utilizing a
binary tree for identifying a distributed demial of service
attack, comprising:

computer code of establishing a binary tree including a set

of binary sequences, each binary sequence of said set of
binary sequences representing one or more network
addresses;

computer code for receiving network traflic;

computer code for identitying a distributed demial of

service attack associated with said network trathc uti-
lizing said binary tree; and

computer code for dynamically revising said set of binary

sequences to reflect changes 1n said network traflic;

wherein said dynamically revising includes updating a

particular binary sequence of said set of binary
sequences so as to reduce the number of network
addresses represented;

wherein said updating includes determining a revision

metric based upon the percentage of said network
traflic having identifiers correlating to said particular
binary sequence, and based upon the number of net-
work addresses within said one or more network
addresses, said updating further including lengthening
said particular binary sequence according to an evalu-
ation of said revision metric.

.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,203,963 B1 Page 1 of 1
APPLICATION NO. : 10/172740

DATED . April 10, 2007

INVENTOR(S) . Wu et al.

It Is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

col. 14, line 46 replace “of ™ with --for--.

Signed and Sealed this

Second Day of February, 2010

Lo ST s

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

