12 United States Patent

Gillies et al.

US007203936B2

US 7,203,936 B2
Apr. 10, 2007

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(%)

(21)

(22)

(65)

(62)

(1)

(52)

(58)

DETERMINING GUARDING PREDICATE
FROM PARTITION GRAPH BASED
DEDUCTION TO GENERATE INVERSE
PREDICATE EXPRESSION FOR BRANCH
REVERSAL

Inventors: David Mitford Gillies, Bellevue, WA
(US); Ronnie Ira Chaiken,
Woodinville, WA (US)

Assignee: Microsoft Corporation, Redmond, WA
(US)
Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 261 days.

Appl. No.: 10/934,018
Filed: Sep. 2, 2004

Prior Publication Data

US 2005/0034113 Al Feb. 10, 2005

Related U.S. Application Data

Division of application No. 09/994,258, filed on Nov.
26, 2001, now Pat. No. 6,834,383,

Int. CI.

Go6l 9/44 (2006.01)

US.CL ..., T17/159;°712/226;712/234:
717/156

Field of Classification Search None

See application file for complete search history.

460 \

(56) References Cited
U.S. PATENT DOCUMENTS
5,650,948 A * T7/1997 Galtercoveviviinininnnnn, 716/3
5,742,803 A * 4/1998 Igarashi et al. 712/233
6,446,258 B1* 9/2002 McKinsey et al. 717/161
2001/0003822 Al* 6/2001 Hibi et al. 709/100

* cited by examiner

Primary Examiner—Kenneth S. Kim

(74) Attorney, Agent, or Firm—Merchant & Gould P.C.;
Ryan 1. Grace
(37) ABSTRACT

Described 1s a method that identifies a predicate expression
representing conditions in predicated assembly language
instructions that determine a direction of a conditional
branch instruction. The predicate expression 1s employed to
enable a transformation to be made that causes the condi-
tional branch instruction to trigger, or execute, when an
opposite condition 1s true. A method 1s directed to producing
a binary-level conditional branch reversal within a binary
program on a computer architecture that supports a predi-
cated execution. The method includes obtaining a predicate
expression representing a condition that influences a direc-
tion of program flow of the binary-level conditional branch
to be reversed, determining a binary-level transformation
that causes the binary-level conditional branch to be trig-
gered when an opposite condition 1s true, and modifying the
binary-level conditional branch with the determined binary-

level transformation, wherein the binary-level conditional
branch 1s reversed.

20 Claims, 9 Drawing Sheets

{ START '

UNIQUELY IDENTIFY PREDICATES
AND SPECULATIVE INSTRUCTIONS
THAT INFLUENCE THE BRANCH

402

DEDUCE RELIATIONSHIPS AMONG
THOSE PREDICATES

104

CONDUCT PREDICATE AWARE,
REACHING DEFINITION DATA
FLOW ANALYSIS TO FIND
INFLUENCES ON THE BRANCH

406

OBTAIN PREDICATE EXPRESSION
REPRESENTING THE GUARDING
PREDICATE OF THE BRANCH TO BE
REVERSED

408

U.S. Patent Apr. 10, 2007

ROM/RAM

OPERATING
SYSTEM

PROGRAM
MODULES

PROGRAM
DATA

105

Sheet 1 of 9

US 7,203,936 B2

- ol T W W W T g PR T R W W R T T A EOW TR R T e wr e v e lrwre-wr v mrw W Al ol e S R B B B A e e iy

102
N

(PROCESSING UNIT

.

‘\

J

106

107

REMOVABLE
STORAGE

NON-REMOVABLE
STORAGE

INPUT DEVICE(S)

OuTPUT DEVICE(S)

COMMUNICATION
CONNECTION(S)

FIG. 1

L L

OTHER
COMPUTING
DEVICES

U.S. Patent Apr. 10, 2007

200 —) \

COMPILER

208

BRANCH
REVERSER

Sheet 2 of 9

/

;

\

US 7,203,936 B2

<statement A>

else {

<statement B>

If (<condition 1> | | !<condition2) {

202

(p3) branch <target 1> ;;

(p1) cmp.pB, p4 = <condition 1>
(p2) cmp p5, p3 = <condition 2>;;

206
'\

—_

(p1) cmp p3, p4 = <condition 1>
(p2) cmp p5, p3 = <condition 2>;;

pb6 =.false. ;;
(p4) pb =.true. ;;

((p5) pb =.true. ;

(p6) branch <target 2> ;;

/\}10

~_

FIG. 2

N

U.S. Patent Apr. 10, 2007 Sheet 3 of 9 US 7,203,936 B2

300

START

IDENTIFY CONDITION THAT 302
DETERMINES DIRECTION OF

BRANCH
(FIG. 4)

MAKE TRANSFORMATION 304
THAT CAUSES BRANCH TO
TRIGGER WHEN OPPOSITE
CONDITION IS TRUE
(FIG. 7)

U.S. Patent Apr. 10, 2007 Sheet 4 of 9 US 7,203,936 B2

- —\

START

UNIQUELY IDENTIFY PREDICATES
AND SPECULATIVE INSTRUCTIONS
THAT INFLUENCE THE BRANCH

402

404
DEDUCE RELATIONSHIPS AMONG

THOSE PREDICATES

CONDUCT PREDICATE AWARE, 106
REACHING DEFINITION DATA

FLOW ANALYSIS TO FIND
INFLUENCES ON THE BRANCH

OBTAIN PREDICATE EXPRESSION 408
REPRESENTING THE GUARDING

PREDICATE OF THE BRANCH TO BE
REVERSED

FIG. 4

U.S. Patent Apr. 10, 2007 Sheet 5 of 9 US 7,203,936 B2

o500 ———\

RN

P1 P?

/N

P3.2

FIG. 5

U.S. Patent Apr. 10, 2007 Sheet 6 of 9 US 7,203,936 B2

600 —K

U.S. Patent

Apr. 10, 2007 Sheet 7 of 9

7004——\

START

COMPUTE AN
INVERSE
PREDICATE
EXPRESSION

704

SINGLE,

MATERIALIZED
PREDICATE

XPRESSION?

NO

MATERIALIZE
UNMATERIALIZED
EXPRESSIONS
(FIG. 8)

UNMATERIALIZED

NO

Y

REDUCE MULTIPLE
MATERIALIZED
EXPRESSIONS TO
SINGLE PREDICATE
(FIG. 9)

FIG. 7

US 7,203,936 B2

702

REPIACE
PREDICATE
WITH SINGLE

INVERSE
PREDICATE

706

RETURN

710

U.S. Patent Apr. 10, 2007 Sheet 8 of 9

804

UNMATERIALIZED
PREDICATE

FIND INVERSE 806
PREDICATE
EXPRESSION, A

808

FIND COMPARES THAT
DEFINE INVERSE PREDICATE
EXPRESSION, A

MARK COMPARES AS 510

US 7,203,936 B2

800

DEFINING A PSEUDO
PREDICATE REGISTER
SEARCH FOR A NON- 812
NO INTERFERING H/W
REGISTER 316
814 ?
BTAIN ATCH
GENERAL
NO PURPOSE
REGISTER
YES<
. Yy -
MODIFY INSTRUCTION TO 318
DEFINE REGISTER AS INVERSE
PREDICATE & INSERT NEW
COMPARE TO DEFINE REGISTER
.

RETURN

FIG. 8

U.S. Patent Apr. 10, 2007 Sheet 9 of 9 US 7,203,936 B2

900
START /

INSERT
INSTRUCTIONTO | g)g
TEST ON FAULTED

LOAD AND EXCLUDE

REVERSED BRANCH

SPECULATIVE

LOAD MAY AFFECT
PREDICATE?

IF FAULTED

902

USE PROTECTED | g10
BRANCH AS
NO BRANCH TO BE
REVERSED

EXPRESSION IS A
SINGLE MATERIALIZED
PREDICATE ?

904

NO

INSERT SEQUENCE OF
COMPARES TO REDUCE

PREDICATE EXPRESSION | ygg
906 TO SINGLE PREDICATE |

FIG. 9

US 7,203,936 B2

1

DETERMINING GUARDING PREDICATE
FROM PARTITION GRAPH BASED
DEDUCTION TO GENERATE INVERSE
PREDICATE EXPRESSION FOR BRANCH
REVERSAL

This application 1s a divisional of application Ser. No.

09/994,258, filed Nov. 26, 2001 now U.S. Pat. No. 6,834,
383, which application 1s incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates generally to computer-
executable software, and more particularly to optimizing
binary-level instructions.

BACKGROUND OF THE INVENTION
Today’s computer programming languages support con-
ditional branch instructions such as “if-then-else.,” “while

loops,” and the like. For computer program optimization,
compression, testing, or other purposes, 1t may be beneficial
to reorder code instructions to move instructions that are
more likely to be executed together in the run of the
program, closer together. The reordering of instructions can
sometimes be facilitated by conditional branch reversals. A
conditional branch reversal 1s an optimization technique that
reverses the order of code instructions following a condi-
tional branch instruction to improve program execution and
to make more effective use of instruction cache.

Several computer architectures support a process of con-
verting conditional branches 1n a program in order to utilize
predicated execution at the binary code level. The process
implements conditional branches in the binary code with
comparison instructions that set a predicate or binary truth-
value. Instructions that are control dependent on the branch
are converted to predicated instructions dependent on the
value of the corresponding predicate. Generalized predica-
tion provides the ability to determine whether or not to allow
(1.e., guard) the execution of virtually any mnstruction with a
runtime condition. However, guarding predicates create a
barrier to branch-reversal optimizations that has no equiva-
lent in source-code optimizations.

Additionally, branch reversals are difficult at the binary

level 1n computer architectures that support the use of

control speculative loading of instructions. A speculative
load allows an instruction to execute before the processor
knows 1f 1t 1s necessary. Typically, a special hardware bit
exists that allows control speculation to proceed without
causing unnecessary page faults or other exceptions. How-
ever, 1f a speculative load causes an exception, or faults, the
exception 1s not handled until 1it’s known that the load was
actually necessary. Instead, the hardware tags the ivalid
results with the special hardware bit. The special hardware
bit 1s propagated to all of the uses of the load. The result 1s
that predicates may no longer reflect the correct truth-values.
Thus, control speculative loading of instructions creates yet
another hurdle to implement branch reversals at the binary
level.

SUMMARY OF THE INVENTION

This summary of the mvention section 1s intended to
introduce the reader to aspects of the invention and 1s not a

complete description of the invention. Particular aspects of

the invention are pointed out 1n other sections herein below
and the imvention 1s set forth in the appended claims, which
alone demarcate 1ts scope.

10

15

20

25

30

35

40

45

50

55

60

65

2

The present invention 1s directed to a method of reversing
branches at the binary level on computer architectures that
support predicated execution. Briefly stated, described is a
method that identifies a predicate expression representing
conditions 1n predicated assembly language instructions that
determine a direction of a conditional branch instruction.
The predicate expression 1s employed to enable a transior-
mation to be made that causes the conditional branch
instruction to trigger, or execute, when an opposite condition
1s true.

In accordance with one aspect of the present invention, a
computer-implemented method 1s directed to producing a
binary-level conditional branch reversal within a binary
program on a computer architecture that supports a predi-
cated execution. The method includes obtaining a predicate
expression representing a condition that influences a direc-
tion of program tlow of the binary-level conditional branch
to be reversed, determining a binary-level transiformation
that causes the binary-level conditional branch to be trig-
gered when an opposite condition 1s true, and modifying the
binary-level conditional branch with the determined binary-
level transformation, wherein the binary-level conditional
branch 1s reversed.

In another aspect of the present invention, the above-
described method further includes obtaining the predicate
expression by uniquely 1dentitying predicates that intfluence
the direction of program flow of the binary-level conditional
branch to be reversed, deducing relationships between the
unmiquely 1dentified predicates, and based on the relation-
ships between the uniquely 1dentified predicates, determin-
ing at least one predicate that influences the direction of
program flow of the binary-level conditional branch.

In yet another aspect of the present invention, a computer-
implemented method 1s directed to obtaining a predicate
expression that determines a guarding predicate of a binary-
level conditional branch instruction within a binary pro-
gram. The computer-implemented method includes uniquely
identifying predicates that influence a direction of program
flow of the binary-level conditional branch to be reversed,
deducing relationships between the uniquely identified
predicates, and based on the relationships between the
umiquely 1dentified predicates, determining at least one
predicate that influences the direction of program tlow of the
binary-level conditional branch.

In still another aspect of the present invention, a com-
puter-implemented method i1s directed to determining a
binary-level transformation that causes a binary-level con-
ditional branch within a binary program to be triggered
when an opposite condition 1s true, comprising computing
an mverse predicate expression that describes the opposite
condition.

A more complete appreciation of the present immvention
and 1ts 1improvements can be obtained by reference to the
accompanying drawings, which are briefly summarized
below, to the following detailed description of illustrative
embodiments of the invention, and to the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advan-
tages of the present invention will become more readily
appreciated as the same becomes better understood by
reference to the following detailed description, when taken
in conjunction with the accompanying drawings, wherein:

FIG. 1 shows an exemplary system for practicing the
present invention;

US 7,203,936 B2

3

FIG. 2 shows a block diagram of one embodiment of
system components employing a branch reverser to reverse
branches at the binary code level on computer architectures

supporting predicated executions;
FIG. 3 1illustrates a tlow diagram generally showing one

embodiment of a process of branch reversals;

FIG. 4 1s a flow diagram 1illustrating one embodiment of
an 1nfluencing-conditions process to 1dentily predicate
expressions and conditions that influence a direction of a
branch to be reversed:;

FIG. 5 1s an illustration of a predicate partition graph for
an intermediate representation of predicated assembly code
fragment;

FIG. 6 shows a reaching definition relationship between
predicates 1n an intermediate representation of the predi-
cated assembly code fragment;

FIG. 7 1s a flow diagram illustrating one embodiment for
a process ol transforming a conditional branch so that 1t
triggers when an exact opposite condition 1s true;

FIG. 8 15 a tlow diagram 1illustrating one embodiment for
a process of materializing unmaterialized predicates in an
inverse predicate expression;

FIG. 9 15 a flow diagram 1illustrating one embodiment for

a process ol reducing multiple materialized predicates to a
single materialized predicate 1n an mverse predicate expres-
s1on, 1 accordance with the present invention.

DETAILED DESCRIPTION OF TH.
PREFERRED EMBODIMENT

L1

In the following detailed description, reference 1s made to
the accompamed drawings in which are shown specific
exemplary embodiments of the mnvention. These embodi-
ments are described 1n sufhcient detail to enable those
skilled 1n the art to practice the invention, and it 1s under-
stood that other embodiments may be utilized, and other
changes may be made, without departing from the spirit or
scope of the invention. The following detailed description 1s,
therefore, not to be taken 1n a limiting sense, and the scope
of the invention 1s defined only by the appended claims.
Referring to the drawings, like numbers indicate like parts
throughout the views.

Throughout the specification, and in the claims, the term
“signal” means at least one current signal, voltage signal,
clectromagnetic wave signal, or data signal. The meaning of
“a,” “an,” and “the” include plural references. The meaning
of “in” includes “in” and “on.”

Brietly stated, the present invention generally relates to
conditional branch reversals at the binary level to improve
execution speed and memory usage on computer architec-
tures that support predicated executions. The conditions that
determine the direction of a branch to be reversed are first
identified. Then a transformation 1s made at the binary level
that causes the branch to trigger when the exact opposite
condition 1s true.

[llustrative Operating Environment

FIG. 1 shows an exemplary system for practicing the
present invention, according to one embodiment of the
invention. As seen 1n FIG. 1, the system includes computing
device 100. In a very basic configuration, computing device
100 typically includes at least one processing unit 102 and
system memory 104. Processing unit 102 includes existing
physical processors, those in design, multiple processors
acting together, virtual processors, and any other device or
software program capable of interpreting binary executable
instructions. Depending on the exact configuration and type

5

10

15

20

25

30

35

40

45

50

55

60

65

4

of computing device, system memory 104 may be volatile
(such as RAM), non-volatile (such as ROM, flash memory,
etc.) or some combination of the two. System memory 104
typically includes an operating system 105, one or more
program modules 106, and may include program data 107.
Components of system memory 104 are discussed in more
detail in conjunction with FIG. 2.

Computing device 100 may also have additional features
or functionality. For example, computing device 100 may
also include additional data storage devices (removable
and/or non-removable) such as, for example, magnetic
disks, optical disks, or tape. Such additional storage 1is
illustrated 1n FIG. 1 by removable storage 109 and non-
removable storage 110. Computer storage media may
include volatile and non-volatile, removable and non-re-
movable media implemented 1n any method or technology
for storage of information, such as computer readable
istructions, data structures, program modules, or other data.
System memory 104, removable storage 109, and non-
removable storage 110 are all examples of computer storage
media. Computer storage media includes, but 1s not limited
to, RAM, ROM, EEPROM, flash memory or other memory
technology, CD-ROM, digital versatile disks (DVD) or other
optical storage, magnetic cassettes, magnetic tape, magnetic
disk storage or other magnetic storage devices, or any other
medium which can be used to store the desired information
and which can be accessed by computing device 100. Any
such computer storage media may be part of computing
device 100. Computing device 100 may also have input
device(s) 112 such as keyboard, mouse, pen, voice input
device, touch mput device, etc. Output device(s) 114 such as
a display, speakers, printer, etc. may also be included. All
these devices are known 1n the art and need not be discussed
at length here.

Computing device 100 may also include communications
connection(s) 116 that allow the device to communicate with
other computing devices 118, such as over a network.
Communications connection(s) 116 1s an example of com-
munication media. Communication media typically embod-
1es computer readable istructions, data structures, program
modules, or other data in a modulated data signal such as a
carrier wave or other transport mechanism and includes any
information delivery media. The term “modulated data sig-
nal” means a signal that has one or more of 1ts characteristics
set or changed 1n such a manner as to encode mformation 1n
the signal. By way of example, and not limitation, commu-
nication media includes wired media such as a wired net-
work or direct-wired connection, and wireless media such as
acoustic, RF, infrared and other wireless media. The term
computer readable media as used heremn includes both
storage media and communication media.

FIG. 2 shows a block diagram of system components 200
employing a branch reverser 208 to reverse conditional
branches at the binary code level on computer architectures
supporting predicated executions, according to one embodi-
ment of the mvention. System components 200 typically are
included 1n program modules 106 shown in FIG. 1. As
shown 1n FIG. 2, system components 200 include source
code 202, compiler 204, predicated assembly code 206,
branch reverser 208, and branch reversed predicated code
210.

Source code 202 1s typically written 1n a human-readable
programming language such as FORTRAN, C++, C#, or a
similar human-readable language. Source code 202 typically
includes human-readable software constructs that support
conditional branching of code flow during program execu-
tion. As 1illustrated in FIG. 2, source code 202 includes

US 7,203,936 B2

S

typical conditional branch instructions as a code fragment of
a larger program. Shown 1n the code fragment within source
code 202, 1s an if-statement that determines the truth hood
of <condition 1> and <condition 2>. If <condition 1> 1is
determined to be true or <condition 2> 1s determined to be
false, <statement A> 1s executed. However, 11 <condition 1>
1s determined not to be true and <condition 2> 1s determined
to be true, then <statement B> 1s executed.

Compiler 204 1s a program module that translates source
code 202 into machine language. Compiler 204 typically
generates assembly language first and then translates the
assembly language into machine language. A utility known
as a “link editor” (not shown) then combines the required
machine language modules ito an executable program that
can run 1n the computer, such as computing device 100
shown 1n FIG. 1.

Today’s typical compilers, such as compiler 204, attempt
to exploit the resources of computing device 100 (FIG. 1) by
producing optimized assembly language output. One
approach for optimizing compiler 204 output 1s to 1ncrease
the degree of parallelism within code nstructions. Comput-
ing architectures, that support predicated executions
increase the degree of instruction level parallelism by allow-
ing instructions to be converted to straight-line code guarded
by predicates. Predicates are typically implemented as truth-
values, represented by 1-bit Boolean registers.

Predicated assembly code 206 1llustrates an example of an
assembly code fragment of a binary program produced by
compiler 204 with instructions guarded by predicates. As
shown, the first instruction 1s a compare instruction that
cvaluates <condition 1> and sets predicates p3 and p4.
Predicates p3 and p4 are typically set to opposite truth-
values of each other. Similarly, the second instruction 1s also
a compare instruction, which sets predicates p5 and p3 to
opposite truth-values to each other. The final mstruction 1s a
branch, which triggers 11 predicate p3 1s true. As illustrated
in predicated assembly code 206, the instructions in the
assembly code fragment are guarded by predicates (p1, p2.
and p3). That 1s, the instructions only execute if the guarding
predicate register 1s true. For example, the second 1nstruc-
tion only executes if predicate p2 1s true.

The inventors have determined that output of static opti-
mization approaches such as described above with predi-
cated assembly code 206 however, may not be well suited
for the runtime behavior of a particular program such as
source code 202. This may be due to a variance 1n the usage
patterns of the program, or simply an overly aggressive
static compilation decision. Additionally, runtime behaviors
and branch behaviors are not usually understood at the time
of 1mitial compilation. Therefore, branch reverser 208
employs runtime data (data shown) that has been collected
on the compiler output and optimally performs an analysis
to determine which conditional branches should be reversed.

Branch reverser 208 1s configured to recerve runtime data,
together with predicated assembly code 206. After analysis
ol the conditions that determine the directions of the con-
ditional branches, branch reverser 208 transforms assembly
code fragment 206 to produce branch reversed predicated
code 210. Branch reversed predicated code 210 1s discussed
in detail below. Briefly, however, branch reversed predicated
code 210 1s configured to reverse the flow of conditional
branch instructions such that more likely conditions are
executed together.

Generalized Operation

The operation of the present imvention on computer
architectures supporting predicated executions will now be

10

15

20

25

30

35

40

45

50

55

60

65

6

described with respect to FIGS. 3, 4, and 7-9 which are
flowcharts 1llustrating one embodiment of a process of the
present invention. FIGS. 5 and 6 are employed to provide

illustrative examples to further aid in understanding the
flowcharts.

It will be understood that each block of the flowchart
illustrations (FIGS. 3, 4, and 7-9), and combinations of
blocks 1n the flowchart i1llustrations, can be implemented by
computer program instructions. These program instructions
may be provided to a processor to produce a machine, such
that the instructions, which execute on the processor, create
means for implementing the functions specified in the flow-
chart block or blocks. The computer program instructions
may be executed by a processor to cause a series of
operational steps to be performed by the processor to
produce a computer implemented process such that the
instructions which execute on the processor provide steps

for implementing the functions specified 1n the tlowchart
block or blocks.

Accordingly, blocks of the flowchart illustration support
combinations of means for performing the specified tunc-
tions, combinations of steps for performing the specified
functions and program instruction means for performing the
specified functions. It will also be understood that each
block of the flowchart illustration, and combinations of
blocks 1n the tlowchart 1llustration, can be implemented by
special purpose hardware-based systems which perform the
specified functions or steps, or combinations of special
purpose hardware and computer instructions.

FIG. 3 illustrates a flow diagram generally showing one
embodiment of a process of branch reversals on computer
architectures supporting predicated executions, in accor-

dance with the present invention. The branch reverser pro-
cess 300 begins, after a start block, at block 302.

At block 302, the process performs a predicate aware data

flow analysis of a predicated binary level code to 1dentify the
conditions that determine the directions of a branch. The

particular operations that may be performed at block 302 are
illustrated 1n detail in FIG. 4 and described in the related

discussion. The process control continues to block 304.

At block 304, the process employs the output from block
302 (1.e., the identified conditions that determine the con-
ditional branch directions) to make a transformation in the
predicated binary level code that causes the conditional
branch of interest to trigger, or execute, when an opposite
condition 1s true. The particular operations are illustrated 1n
detail in FIG. 7 and described 1n the related discussion. Upon
completion of block 304, the logical process control tlow
ends.

Identification of Conditions Influencing the Direction of a
Branch

FIG. 4 1s a flow diagram illustrating one embodiment of
an 1ntluencing-conditions process 400 to 1dentily the predi-
cate expressions and conditions that influence the direction
of a branch to be reversed, described above at block 302 in
FIG. 3, in accordance with the present invention.

As an example for aiding in the understanding of the
influencing-conditions process 400, predicated assembly
code 206 mn FIG. 2 illustrates the following predicated
assembly code fragment:

(pl) cmp p3, p4=<condition 1> (1)

(p2) cmp p3, p3=<condition 23;; (2)

(p3) branch <Target 1>;; (3)

US 7,203,936 B2

7

In the above example, the problem 1s to determine which
version of predicate p3 1s used by the branch instruction. As
shown, 1I predicate p2 1s always true, then the branch
depends only upon the second compare instruction, above. If
predicate p2 1s never true, and predicate pl 1s always true,
then the branch instruction depends only upon the first
comparison. However, 1f predicates pl and p2 are sometimes
true and sometimes false, then the branch depends upon both
of the 1llustrated compare instructions. Moreover, if there 1s
a condition where both predicates pl and p2 are {false
simultaneously, then the branch also depends upon some
other compare 1n the program, which 1s not shown 1in the
example of assembly code fragment above.

The influencing-conditions process 400 begins, after a
start block, at block 402 where the predicate binary level
code 1s configured into an intermediate representation that 1s
amendable to further analysis.

At block 402, each predicate and speculative load instruc-
tion of the predicate binary level code 1s uniquely numbered.
In one embodiment of the present invention, each predicate
1s represented by a new label that 1s numerically incre-
mented at the occurrence of the same predicate in the
predicate binary level code. For example, the above illus-
trated predicated assembly code fragment may be repre-
sented as follows:

(pl) cmp p3.1, pd4=<condition 1> (4)

(p2) cmp p3, p3.2=<condition 2>;; (3)

(p3.3) branch <Target 1>;; (6)

where each occurrence of predicate p3 1s represented by
either predicate p3.1, p3.2, or p3.3. IT it 1s determined that
other predicates, such as predicate pl, occurred in the
assembly code not shown, then it too would be incremented
employing a similar intermediate representation.

Alternative intermediate representations of the predicated
assembly code may be employed that provide a unique
identification of each predicate and speculative load mstruc-
tion. For example, Static Single Assignment (SSA) may be
employed to generate an intermediate representation of the
predicated assembly code, without departing from the spirit
or scope of the present mnvention.

Process control continues to block 404, where relation-
ships between the predicates 1n the intermediate represen-
tation of the predicated assembly are deduced. In one
embodiment of the present invention, a predicate partition
graph 1s constructed that illustrates the relationships among
the predicates. In a predicate partition graph, each node in
the graph represents a predicate and each edge on the graph
represents that there exists a partition of the predicate such
that a subset exists in the partition. An edge 1n the predicate
partition graph 1s directed and the edges created from the
same partition are given the same label. A predicate partition
graph 1s complete 1f the umiversal predicate set, U, 1s the
unique root. This makes every node reachable from the root,
as 1s required 1n predicate analysis. Although the predicate
partition graph precisely represents the predicate relation-
ships, for the same predicate assembly code, alternative
predicate partition graphs may be constructed without
departing from the scope or spirit of the present invention.

One embodiment of a predicate partition graph for the
intermediate representation of the example predicated
assembly code fragment, above, 1s illustrated 1n FIG. 5. The
root of the partition, U, 1s partitioned into predicate p1 node,
and predicate p2 node. Predicate pl node 1s partitioned into

5

10

15

20

25

30

35

40

45

50

55

60

65

8

predicate p3.1 node and predicate p4 node. Further, predi-
cate p2 node 1s partitioned into predicate p3.2 node and
predicate p5 node.

Completion of the predicate partition graph for the entire
intermediate representation of the assembly code enables the
construction of a global Predicate QQuery System (PQS)
based on the predicate partition graph to support a variety of
different queries on the identified predicate relations 1n
subsequent steps of the present invention. Process control
flow moves to block 406.

Returning to FIG. 4, at block 406, a predicate-aware,
reaching definition data tlow analysis 1s conducted on the
intermediate representation of the predicate assembly code.
A reaching definition 1s an analysis that discovers what
definitions of a certain object may reach a use of that object.
A definition 1s said to reach a use of an object 11 1t 1s possible
for the value defined at the definition to be intact by the time
control proceeds to that use. A given use may have several
definitions that reach it; and these defimitions are kept in a
list, or chain for the use. A traditional reaching definition
however does not adequately account for the complexity of
data flow with predicated expressions. For example, given
the following assembly code fragment, traditional reaching
definition analysis, should determine that the branch nstruc-

tion 1s reached by the second occurrence of predicate p3
(1nstruction (8)).

(7)

cmp p3, p4=<condition 1>

(8)

cmp pd, p3=<condition 2>;;

(9)

Once guarding predicates are included on 1instructions (7)
and (8) 1n the above example assembly code fragment, either
both, or neitther of the occurrences of predicate p3 could
reach the branch. Thus, 1n one embodiment of the present
invention reaching definition data flow analysis 1s modified
to include awareness of the relationships between predi-
cates.

In the predicated assembly code fragment illustrated
above (instructions (4)-(6)), one potential solution to the
predicate aware, reaching definition data flow analysis may
be the following logical expression 1dentitying the relation-
ships between predicates:

(p3) branch <Target 1>;;

p3.3={pl & p3.1}{p2 & p3.2} (10)
denoting that p3.3 1s determined by either predicate pl and
p3.1 or by predicates p2 and p3.2.

Process control flow continues to block 408, where for
cach conditional branch to be reversed in the program a
reduced predicate expression that represents the guarding
predicates on the branch 1s obtained from the output of block
406. Analysis of logical expression (10), above enables the
creation of a reduced reaching definition as illustrated 1n
FIG. 6. FIG. 6 shows a reaching definition relationship
between predicates 1n the intermediate representation of the
example predicated assembly code fragment (instructions
(4)-(6)).

One potential output of block 408, for the example
predicated assembly code fragment may be the simplified
logical expression showing the relationship between predi-
cates p3.1 and p3.2 to predicate p3.3

p3.3={p3.1|p3.2} (11)

After a predicate expression 1s generated for each condi-
tional branch to be reversed, process 400 returns to block
304 (shown 1n FIG. 3) to perform other actions.

US 7,203,936 B2

9

Transforming Conditions that trigger a Branch

FI1G. 7 1s a logical flow diagram generally 1llustrating one
embodiment of a transforming-branch process 700 to trans-
form a branch so that 1t triggers when an exact opposite
condition 1s true, described above at block 304 in FIG. 3, in
accordance with the present mnvention. Process 700 of FIG.
7 begins, after a start block, at block 702.

At block 702, the Predicate Query System constructed at
block 404 1 FIG. 4 1s employed for each branch to be
reversed to compute an mverse predicate expression for the
predicate expression generated at block 408, in FIG. 4.
Referring briefly to FIG. 6 as an example, the inverse
predicate for predicate p3.1 1s predicate p3.2. Process con-
trol flow continues to decision block 704.

At decision block 704, 1t 1s determined whether the
inverse predicate expression generated at block 702 1s
comprised of a single materialized predicate. A materialized
predicate 1s a predicate that actually appears in the predicate
assembly code. For example, 1n the predicate assembly code
istructions (4)—(6), above, predicates p4 and p5 actually
appear 1n predicate assembly code instructions. If 1t 1s
determined that the predicate expression comprises a single

materialized predicate, process control tlow proceeds to
block 706.

At block 706, the predicate on the branch to be reversed
1s replaced with the single materialized inverse predicate
found at block 702. Additionally, the <Target> of the branch
1s replaced with the location of the fall-through set of
instructions. The original <Target> of the branch 1s made the
new fall-through set of instructions. Process control flow

returns to after block 304 (shown 1n FIG. 3) to perform other
actions.

Alternatively, 1t at decision block 704 1t 1s determined that
the 1nverse predicate expression generated at block 702 1s
not comprised of a single materialized predicate, process
control flow moves to decision block 708.

At decision block 708, 1t 1s determined whether the
inverse predicate expression 1s comprised of one or more
predicates that do not exist in the program (i.e., are unma-
terialized predicates). Unmaterialized predicates may arise
where a conditional branch does not include an alternative
set of instructions to be executed upon failure of the con-

ditional branch (such as an “if-then” statement without an
“else” block).

If 1t 1s determined at decision block 708, that at least one
unmaterialized predicate exists in the inverse predicate
expression, process control flow moves to block 712. Block
712 1s 1illustrated in detail 1n FIG. 8 and described 1n the
related discussion. Briefly, however, block 712 materializes
the unmaterialized predicates 1n the inverse predicate
expression by finding or generating unused predicate regis-
ters. Upon materialization of the unmaterialized predicates,
process control flow returns to block 702 to continue logical
process control flow as described above.

Alternatively, 11 at decision block 708 1t 1s determined that
the inverse predicate expression generated at block 702
includes only materialized predicates, process control tlow
moves to block 710, where 1t 1s recognized that the inverse
predicate expression 1s comprised ol multiple materialized
predicates.

Block 710 1s illustrated i detail in FIG. 9 and described
in the related discussion. Briefly, however, at block 710 the
multiple maternialized predicates that comprise the inverse
predicate expression for a given branch 1s reduced to an
expression comprising a single materialized predicate. Upon
reducing the multiple materialized predicates to a single

10

15

20

25

30

35

40

45

50

55

60

65

10

maternalized predicate, process control tlow returns to block
702 to continue logical process control flow as described
above.

Matenalizing Unmaterialized Predicates

FIG. 8 1s a flow diagram illustrating one embodiment of
a process ol matenializing unmaterialized predicates in an
iverse predicate expression, described above at block 712

in FIG. 7, in accordance with the present invention. Process
800 of FIG. 8 begins, after a start block, at decision block
802.

At decision block 802, 1t 1s determined whether there are
any more unmaterialized predicates that need to be mater-
alized. If 1t 1s determined that there are no more unmateri-
alized predicates, process control tlow returns to block 712
in FIG. 7 to continue logical process control flow as
described above.

Alternatively, 11 1t 1s determined at decision block 802 that
there are more unmaterialized predicates to materialize,
process control flow moves to block 804, where the next
unmaterialized predicate 1s obtained for the mverse predi-
cate expression for the branch to be reversed. Process
control flow continues to block 806.

At block 806, an verse predicate expression, A, 1s
determined from the predicate query system (PQS), where
iverse predicate expression A 1s comprised only of mate-
rialized predicates. Process control tlow moves to block 808.

At block 808, the predicate aware, reaching definition
determined above in conjunction with FIG. 4, 1s employed
to determine compare instructions that define the compo-
nents of the mverse predicate expression A. Process control
flow continues to block 810.

At block 810, each compare instruction that 1s located at
block 808 1s marked or uniquely tagged as defining a pseudo
predicate register P. Additionally, each branch instruction to
be reversed 1s marked as employing pseudo predicate reg-
ister P, rather than the unmaterialized predicate. Process
control flow proceeds to block 812.

At block 812, a search 1s conducted for each pseudo
predicate register P, to determine 1f there exists a hardware
predicate register that does not interfere with pseudo predi-
cate register P. In one embodiment of the present invention,
the search results are determined by conducting a predicate-
aware liveness analysis to construct a predicate-aware inter-
terence graph. A predicate, or any variable 1n a program, 1s
live at an entry of a block of instructions 1f there 1s a direct
reference of the variable or predicate in that block of
instructions or at some point reachable from that block not
preceded by a definition. Two live ranges interfere with each
other 1f an allocation to the same predicate’s register
changes the meaning of the program. Alternatively, two live
ranges for predicates are said to interfere with each other, 1
one of them 1s live at the definition point of the other.
Process control flow proceeds to decision block 814.

At decision block 814, 1t 1s determined whether, based on
the interference analysis at block 812, for each pseudo
predicate register P there exists a hardware predicate register
that does not interfere with the live range of pseudo predi-
cate register P.

If 1t 1s determined at decision block 814 that for some
pseudo predicate register P there does not exist a non-
interfering hardware predicate register, then a general pur-
pose scratch register 1s obtained. The general purpose
scratch register 1s employed to save and restore predicate
registers, thus breaking the interference and freeing a predi-
cate register for pseudo predicate register P. Conditions may
arise where no general-purpose scratch register 1s available.

US 7,203,936 B2

11

Where no general purpose scratch register 1s available, a cost
decision 1s made to not reverse the aflected conditional
branch. However, iI a general-purpose scratch register 1s
located, process control flow moves to block 818.

Alternatively, at decision block 814 it 1s determined that
there 1s a non-nterfering hardware predicate register, pro-
cess control tlow proceeds to block 818.

At block 818, each compare nstruction located at block
808 1s modified to define pseudo predicate register P as the
inverse predicate. There may be compare 1nstructions where
there 1s no placeholder or available location to 1nsert pseudo
predicate register P. In such situations, one embodiment of
the present invention, based on a cost decision, determines
whether it 1s reasonable to continue to attempt to reverse the
conditional branch. If it 1s determined that the cost 1s too
high to continue to attempt to reverse the conditional branch
the branch 1s skipped and left in its original configuration.
Alternatively, 11 1t 1s determined to continue to attempt to
reverse the conditional branch then immediately after the
located compare instruction, a new compare instruction 1s
inserted that defines pseudo predicate register P.

By way of illustration, suppose that in the following
compare instruction predicate p0O 1s unavailable as a place-
holder, and the inverse of predicate pl 1s sought:

cmp pl, pO=<condition>;; (12)

The present invention inserts after the above example
compare instruction the following such that predicate p2 1s
associated with pseudo predicate register P and 1s the inverse
of predicate pl:

p2=cmp 1, 1;; to set predicate p2 to true
(pl) p2=cmp 1, O;; predicate p2 is set to false 1f

(13)

After block 818, 1f 1t 1s determined to continue to reverse
the conditional branch, process control flow returns block
702 1 FIG. 7 to continue logical process control flow as
described above.

predicate p 1 1s true

Reducing Multiple Materialized Predicates

FIG. 9 1s a flow diagram 1illustrating one embodiment of
a process of reducing multiple materialized predicates to a
single materialized predicate 1n an imnverse predicate expres-
sion, described above at block 710 1n FIG. 7, 1n accordance
with the present mvention. Process 900 of FIG. 9 begins,
after a start block, at decision block 902.

At decision block 902, 1t 1s determined whether any
speculative load computations reach the compare instruc-
tions producing any of the multiple materialized predicates.
Speculative loading of instructions requires special attention
because they typically employ a special hardware bit that
may 1mpact the truth-value of a predicate during a faulted
speculative load. In one embodiment of the invention, based
on a cost to continue, a conditional branch that 1s aflected by
speculative loading of instructions 1s not reversed. That 1s,
the process would terminate and the branch that 1s affected
by speculative loads would not be reversed.

In another embodiment of the present mvention, as illus-
trated 1n FI1G. 9, the process attempts to exclude execution
of reversed branches with faulted speculative loads. Thus, 1n
FIG. 9, 1f 1t 1s determined at decision block 902, that a
speculative load instruction affects the materialized predi-
cates for the branch to be reversed, process control tlow
proceeds to block 908.

At block 908, a scratch predicate register 1s obtained, as
described above, and a test mstruction for a faulted specu-

10

15

20

25

30

35

40

45

50

55

60

65

12

lative load 1s inserted before the conditional branch to be
reversed. A new copy of the branch instruction 1s created
called C. Yet, another branch instruction 1s created and
inserted 1immediately after the test instruction for faulted
speculative loads. This new second branch instruction 1s
enabled to branch to instruction C if the result of the test
instruction indicates no faulted speculative load 1s present.
Process control flow proceeds to block 910.

At block 910, instruction C 1s set to the branch instruction
that 1s to be reversed. Because of the test instruction that was
inserted during block 908, instruction C 1s free of the special
hardware bit that arises from faulted speculative loads.
Process proceeds to decision block 904.

At decision block 902, alternatively, if 1t 1s determined
that no speculative load instruction aflects the materialized
predicates for the branch to be reversed, process control flow
proceeds to decision block 904.

At decision block 904, 1t 1s determined if the predicate
expression 1s comprised of a single materialized predicate or
multiple materialized predicates. If it 1s determined that the
predicate expression 1s comprised ol a single materialized
predicate, process control flow moves to after block 710 1n
FIG. 7 to continue logical process control tlow as described
above.

Alternatively, 11 1t 1s determined at decision block 904 that
the predicate expression includes multiple materialized
predicates, process control tlow proceeds to block 906.

At block 906, immediately before the branch instruction
to be reversed, a sequence ol compare instructions are
inserted that reduce the predicate expression’s truth-value to
a value of a single matenialized predicate register. For
example, given that the predicate expression includes predi-
cates p4 and p3J, the following sequence of instructions could
be 1nserted:

pb=.dalse.;; (14)

(p4) po=true.; (15)

(p5) po=.true.;; (16)
where predicate p6 1s determined to be a free register.
Predicate p6 would then be available for use on the branch
instruction. Process control flow moves to atter block 710 1n
FIG. 7 to continue logical process control tlow as described
above.

The above specification, examples, and data provide a
complete description of the manufacture and use of the
composition of the mnvention. Since many embodiments of
the invention can be made without departing from the spirt
and scope of the mnvention, the ivention resides in the
claims hereinafter appended.

We claim:

1. A computer-implemented method for obtaining a predi-
cate expression that determines a guarding predicate of a
binary-level conditional branch instruction within a binary
program, comprising:

uniquely labeling predicates that influence a direction of

program flow of the binary-level conditional branch to
be reversed;
generating a predicate partition graph;
deducing relationships between the uniquely labeled
predicates from the generated predicate partition graph;

based on the relationships between the umiquely labeled
predicates, determining at least one guarding predicate
that influences the direction of program flow of the
binary-level conditional branch;

US 7,203,936 B2

13

inversing the at least one guarding predicate to generate
an inverse predicate expression; and
reversing the binary level conditional branch with the
inverse predicate expression.
2. The computer-implemented method of claim 1, further
comprising locating a speculative load instruction that
impacts a truth value of the guarding predicate associated
with the binary-level conditional branch.
3. The computer-implemented method of claim 2, further
comprising inserting into the binary program instructions to
exclude execution of the binary-level conditional branch 1n
response to a faulted speculative load.
4. The computer implemented method of claim 1, wherein
deducing the relationships includes conducting a predicate-
aware, reaching definition data flow analysis 1n association
with the predicate partition graph.
5. The computer implemented method of claim 1, further
materializing an unmaternialized predicate when the at least
one predicate 1n the inverse predicate expression 1s unma-
terialized.
6. The computer implemented method of claim 3, wherein
materializing the unmaterialized predicate comprises:
locating a free register to support the unmaterialized
predicate;
associating a new predicate with the free register; and
adding an instruction to define the new predicate as the
unmaterialized predicate, wherein the unmaterialized
predicate 1s materialized.
7. The computer implemented method of claim 6, wherein
locating the free register comprises conducting a predicate-
aware liveness analysis.
8. The computer implemented method of claim 1, further
comprising reducing the mnverse predicate expression to a
single predicate when the inverse predicate expression
includes multiple predicates.
9. The computer implemented method of claim 8, wherein
moditying the binary-level conditional branch comprises
replacing an existing guarding predicate with the single
predicate.
10. A system for obtaining a predicate expression that
determines a guarding predicate of a binary-level condi-
tional branch instruction within a binary program, the sys-
tem comprising:
a Processor;
a memory having computer-executable instructions stored
thereon, wherein the computer executable nstructions
are configured to:
umquely label predicates that influence a direction of
program tlow of the binary-level conditional branch
to be reversed;

generate a predicate partition graph;

deduce relationships between the uniquely labeled
predicates from the generated predicate partition
graph;

based on the relationships between the uniquely labeled
predicates, determine at least one guarding predicate
that influences the direction of program flow of the
binary-level conditional branch;

inverse the at least one guarding predicate to generate
an inverse predicate expression; and

reverse the binary level conditional branch with the
inverse predicate expression.

11. The system of claim 10, wherein the computer-
executable instructions are further configured to locate a
speculative load 1nstruction that impacts a truth value of the
guarding predicate associated with the binary-level condi-
tional branch.

10

15

20

25

30

35

40

45

50

55

60

65

14

12. The system of claim 11, wherein the computer-
executable 1nstructions are further configured to insert nto
the binary program instructions to exclude execution of the
binary-level conditional branch in response to a faulted
speculative load.

13. The system of claam 10, wherein the computer-
executable instructions are further configured to conduct a

predicate-aware, reaching definition data flow analysis in
association with the predicate partition graph.

14. The system of claam 10, wherein the computer-
executable 1nstructions are further configured to materialize
an unmaterialized predicate when the at least one predicate
in the mverse predicate expression 1s unmaterialized.

15. The system of claim 14, wherein the computer-
executable 1nstructions are further configured to:

locate a free register to support the unmaterialized predi-
cate;
associate a new predicate with the free register; and

add an instruction to define the new predicate as the
unmaterialized predicate, wherein the unmaterialized
predicate 1s materialized.

16. A computer-readable storage medium having com-
puter executable instructions for obtaining a predicate
expression that determines a guarding predicate of a binary-
level conditional branch instruction within a binary pro-

gram, the mstructions comprising:

uniquely labeling predicates chat influence a direction of
program flow of the binary-level conditional branch to
be reversed;

generating a predicate partition graph;
deducing relationships between the uniquely labeled
predicates from the generated predicate partition graph;

based on the relationships between the umiquely labeled
predicates, determining at least one guarding predicate
that intfluences the direction of program flow of the
binary-level conditional branch;

inversing the at least one guarding predicate to generate
an 1nverse predicate expression; and

reversing the binary level conditional branch with the
inverse predicate expression.

17. The computer-readable storage medium of claim 16,
further comprising locating a speculative load 1nstruction
that impacts a truth value of the guarding predicate associ-
ated with the binary-level conditional branch.

18. The computer-readable storage medium of claim 17,
turther comprising inserting 1into the binary program instruc-
tions to exclude execution of the binary-level conditional
branch 1n response to a faulted speculative load.

19. The computer-readable storage medium of claim 16,
further comprising materializing an unmaterialized predi-
cate when to at least one predicate in the mverse predicate
expression 1s unmaterialized.

20. The computer-readable storage medium of claim 19,
wherein materializing the unmaterialized predicate com-
Prises:

locating a 1Iree register to support the unmatenalized

predicate;

associating a new predicate with the free register; and

adding an instruction to define the new predicate as the
unmaterialized predicate, wherein the unmatenalized
predicate 1s materialized.

	Front Page
	Drawings
	Specification
	Claims

