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SPRITE RENDERING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority from provisional appli-
cation No. 60/573,159, filed May 21, 2004.

BACKGROUND OF THE INVENTION

The present mvention relates to computer graphics, and
more particularly to rendering.

FIG. 2a illustrates typical stages in computer graphics
rendering which generate a two-dimensional 1mage on a
screen from an 1put program that defines a virtual three-
dimensional scene. In particular, the application (program)
stage 1cludes creation of scene objects 1n terms of primi-
tives (e.g., small triangles that approximate the surface of a
desired object together with attributes such as color and
texture); the geometry stage includes manipulation of the
mathematical descriptions of the primitives; and the raster-
1zing stage converts the three-dimensional description 1nto a
two-dimensional array of pixels for screen display.

FIG. 26 shows typical functions 1n the geometry stage of
FIG. 2a. Model transforms position and orient models (e.g.,
sets of primitives such as a mesh of triangles) 1n model/
object space to create a scene (of objects) 1n world space. A
view transform selects a (virtual camera) viewing point and
direction for the modeled scene. Model and view transforms
typically are afline transformations of the mathematical
descriptions of primitives (e.g., vertex coordinates and
attributes) and convert world space to eye space. Lighting
provides modifications of primitives to mclude light reflec-
tion from prescribed light sources. Projection (e.g., a per-
spective transform) maps from eye space to clip space for
subsequent clipping to a canonical volume (normalized
device coordinates). Screen mapping (viewport transform)
scales to x-y coordinates for a display screen plus a z
coordinate for depth (pseudo-distance) that determines
which (portions of) objects are closest to the viewer and will
be made visible on the screen. Rasterizing provides primi-
tive polygon interior fill from vertex information; e.g.,
interpolation for pixel color, texture map, and so {forth.
Programmable hardware can provide very rapid geometry
stage and rasterizing stage processing; whereas, the appli-
cation stage usually runs on a host general purposed pro-
cessor. Geometry stage hardware may have the capacity to
process 16 vertices 1n parallel and assemble primitives for
output to the rasterizing stage; and the rasterizing stage
hardware may have the capacity to process 3 primitive
triangles 1n parallel.

Image-based rendering uses two-dimensional 1mages as
primitives rather than models 1n three-dimensional space.
Two-dimensional 1mages avoid most of the processing of the
rendering pipeline, and thus speed up processing when
usable. Further, image-based rendering allows representa-
tion for dificult-to-model objects, such as clouds and fur.
Image-based rendering includes varieties such as sprites,
billboards, and impostors; see chapter 8 of T. Akenine-

Mboller and E. Haines, Real-Time Rendering (2d Ed., A K

Peters, 2002). In particular, billboarding orients a polygon to
tace the camera/viewer and renders an 1image on the polygon
analogous to a texture.
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2

Sprite3D (JSR-184) 1s an extension of the Node class in
microedition java and provides 1mage-based rendering:

java.lang.Object

+====- javax.microedition.m3g.Object3D

+==-=-javax.microedition.m3g. Transformable

+---- javax.mucroedition.m3g.Node

+----javax.microedition.m3g.Sprite3 )

A Sprite3D object includes methods getlmage( ) to get the
current 2D 1mage and getAppearnace( ) to get the current
compositing and fogging attributes of the object. Sprite3D
can be implemented with textured rectangles.

Various application programming interfaces (APIs) exist
for implementing the rendering pipeline, such as OpenGL
and DirectX, and hardware has been designed to support
these APIs. For this hardware, input vertices follow a rigidly
prescribed series of transformation (geometry stage) that
take the vertices from object coordinates to eye space
coordinates, to clip coordinates, to normalized device coor-
dinates, and finally to screen coordinates. In order to take
advantage of such hardware, applications must map their
computations into a form that fits the prescribed series of
transformations. In particular, the Sprite3D class of the
specification JSR-184 requires vector length computations
used to synthesize itermediate points in various coordinate
systems, and these computations do not fit the standard
rendering pipeline model. Thus there 1s a problem of 1mple-
menting JSR-184 sprites on standard graphics hardware.

SUMMARY OF THE INVENTION

The present invention provides methods of image-based
rendering of screen-aligned rectangles by revisions of mod-
clview matrices.

Preferred embodiments provide compatibility with com-
monly-used rendering hardware.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1a-1b are flow diagrams.

FIGS. 2a-2b show a rendering pipeline.
FIG. 3 illustrates network transmission.

DESCRIPTION OF THE PREFERR
EMBODIMENTS

T
.

1. Overview

Preferred embodiment methods provide image-based ren-
dering of screen-aligned rectangles by revision of the mod-
clview matrix. A first preferred embodiment revises the
modelview matrix to an upper left 3x3 diagonal with ele-
ments dx, dy, and O where dx 1s a scaled first column vector
length and dy 1s a scaled second column vector length. An
object space rectangle with vertices (0.5, £0.5, 0, 0) and
texture (2D 1mage) rendered by common rendering hard-
ware gives a screen-aligned rectangle with image. FIG. 1a 1s
a flow diagram; and FIG. 15 1llustrates a flow for rendering
hardware which includes vertex shaders with vertex genera-
tion which can perform the modelview matrix revision and
the object space rectangle.

Preferred embodiment systems perform preferred
embodiment methods with any of several types of hardware:
graphics processor units, digital signal processors (DSPs),
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general purpose programmable processors, application spe-
cific circuits, or systems on a chip (SoC) such as multicore
processor arrays or combinations of a DSP and a RISC
processor together with various specialized programmable
processors such as vertex shaders. A stored program in an
onboard or external (flash EEP)ROM or FRAM could
implement the signal processing. Analog-to-digital convert-
ers and digital-to-analog converters can provide coupling to
the analog world; modulators and demodulators (plus anten-
nas for air interfaces) can provide coupling for transmission
wavelorms; and packetizers can provide formats for trans-
mission over networks such as the Internet as illustrated in

FIG. 3.

2. Sprite3D Position and Size
Sprite3D can be implemented with textured rectangles. So

first, consider the Sprite3D computations for sprite position

and size. Presume the following notation: denote a point p

in three dimensions by its three coordinates p=(X, Y, 7Z);

also, let p.X denotes the X coordinate, and similarly for Y

and Z coordinates. A homogeneous three-dimensional point

has four coordinates, (X, Y, Z, W) where W 1s a scale factor,
and (X, Y, Z, W) corresponds to the non-homogeneous
three-dimensional point (X/W, Y/W, Z/W). Note that mul-
tiplying a homogeneous point by a scalar gives another
homogeneous point which corresponds to the same non-
homogeneous point as the original homogeneous point.

Sprite3D has the following steps for computing the sprite
position and size:

1) first, transform three homogeneous three-dimensional
reference points which lie 1 the X-Y plane (Z=0) from
object space to eye space using the model-view matrix M.
M 1n eflect rotates and translates object space to a
coordinate system aligned with the direction of view. In
particular, take the three reference points to be the origin,
(0,0,0,1), the X-axis reference point, (1,0,0,1), and the
Y-axis reference point, (0,1,0,1). Denote their transforms
as 0', X', and y', respectively.

Thus:
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Thus o' 1s a translation of the origin.

2) Note 11 the bottom row of the model-view matrix 1s not
[0 O 0 1], then the w components of o', X', and y' may
differ; so scale to the transformed points to make their w
components equal to 1. Of course, scaling a homogeneous
point does not atlect the corresponding three-dimensional
point.

3) Compute the (Euclidean) distance in eye space between
scaled o' and scaled x' and vy':

60

65

dx=||x"/x" w—o0’ w|
dv=|yy . w—oo’ w|

Recall o'.w denotes the w component of 4-vector o' and
similarly for x'.w and y'.w; that 1s, the divisions are the
scalings from step 2). Because the w components are all 1
alter scaling, so they cancel and do not disrupt the three-
dimensional distance computations.

4) Use dx and dy to construct a set of three points 1n eye
space defining a plane perpendicular to the viewing
direction (which was defined by M and 1s along the z axis
in eye space) and containing the transformed origin of
object space:

O =0
1
X' =0 +dx ’
0
O
0
S 1
Y =0 +dy .
0

The points X' and Y' 1n the plane represent the axes from the
origin O' with apparent length changes (dx, dy) due to the
rotation ol object space by M.

5) Transform points O', X', and Y' from eye space to clip
space by the 4x4 projection matrix P; this will be used to
clip ofl portions of the image of an object 1n object space
which lie outside of the eventual display (viewport) of the
image captured in the view defined by M.

o"=P O
x"=P X'
yH:P \%

6) As 1n step 2), scale these points by their w components to
have points with w components all equal to 1:

O"=0"/0" w
X"=x"/x"w

)& =y n/y W

7) Compute the (Euclidean) distances between the scaled
origin and the scaled reference points (so again the w
components cancel):

sw=[X"-0"

sy=|¥-0"|

8) Use sx and sy to construct a rectangle i normalized
device coordinates centered on the projected point o":

pfawerfeﬁzﬂll+(_SX//2: —S}F/Z: 0: 0)

=0"+(sx/2, —sv/2, 0, 0)

pfc}werrfghf
puppeﬁeﬁ:ﬂ”+(_‘gx’/2: S_}»’/Q, 0: 0)

=0""+(sx/2, s1/2, 0, 0)

Y upperright

This rectangle 1s then converted to viewport coordinates and
rendered using an application specified texture map.
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However, i 3D graphics hardware designed ifor
OpenGL® and Direct3D® vertices mput to the renderer
follow a ngidly prescribed series of transformations that
take them from object coordinates to eye space coordinates,
to clip coordinates, to normalized device coordinates, and
finally to screen coordinates. In order to take advantage of
such hardware, applications must map their computations
into a form that fits the prescribed series of transformations.
The foregoing JSR-184 computations of intermediate vector
lengths do not fit the standard graphics pipeline model, and
thus generally will not easily map to standard graphics
hardware.

3. First Preterred Embodiment

FIG. 1a 1s a flow diagram {for first preferred embodiment
methods of computation for sprite coordinate accomplish
those of JSR-184 Sprite3D but avoid the normalizations. In
particular, the JSR-184 computations can be recast as fol-
lows. Initially, presume the bottom row, [m30, m31, m32,
m33], of the modelview matrix, M, has the form [0, O, O, k]
with k non-zero; then the transformed origin and distances
computed 1n steps 2) and 3) of section 2 reduce to:

O'=(m03, ml13, m23, m33)
dx=(m00%+m10°4+m20°)V/k
dy=(m01%+m11%+m2 1)/

Next, construct the matrix M' as:

dx 0 0 m03]
0 dy 0 mi3
M’ =
0 0 0 m23
0 0 0 £k |

Then the normalized O', X', and Y' from step 4) are given by:

o
0
O =M
0
1
o
0
X' =M
0
1
0
1
Y =M’
0
1
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Indeed, M' transtorms a point (X, Y, O0) in the Z=0 plane of 65

object space to the scaled point (dx*X, dy*Y, 0'.z) in the
/=0'z plane 1n eye space.

6

Furthermore, presume the projection matrix, P, has the
form:

p00 0 p02 0 -

. 0 pll pl2 0

|0 0 p22 p23
0 0 -1 0

This 1s a typical projection matrix and corresponds to the
OpenGL function Frustum( ). For such a P, the normaliza-
tions of steps 6) and 7) of section 2 are made redundant. In
particular,

p00 0 p02 0O [m03
0 11 pl2 O mi3
0" = PO’ = S
0 0 p22 p23||m23
0 0 -1 0 ||m33
sOo o".w—m?23.
[ikewise,
p00 0 p02 0 [dx+m03
0 11 pl2 0O mi3
X" = PX = ep
0 0 p22 p23| m23
0 0 =1 0 || m33

Hence, x".w=m23.
Similarly, y".w=m23. Thus the overall computation 1s:

Sy = ||XH' _ OH”
= |Ix"”" = o”||/m23
= ||P(x" = o")ll /m23
'dx'
0
/m23
0
0
pO0 = dx
0
/m23
0

0
pO0 = dx [ m23|

Il
A~

In the same manner, sy=p11*dy/m23I. Thus the normaliza-
tions are redundant and can be eliminated.
In view of the foregoing, first preferred embodiment

methods proceed as follows:
A) Verily that the perspective matnix, P, has the form

p00 0 p02 0
0 pll pl2 O
0 0 p22 p23

0 0 -1 0
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This can be done during application design, for example by
creating the perspective matrix using the OpenGL function
glFrustum( ), or at compilation or initialization time.

B) Obtain the current modelview matrix, M, and verity that
the bottom row has the form [0 0 0 m33]. This can also
be made true by design; for example, 1t 1s true for any
matrix composed of rotations, translations, scalings, and
skewings. It 1s false when a secondary perspective pro-
jection 1s 1mposed on the scene, as for reflections and
shadow projection. However, sprites are not normally
used 1n such scenes, because the secondary projection
usually reveals the sprite for what it 1s; namely, a two-
dimensional rectangle, rather than the three-dimensional
object 1t appears to be from the camera’s point of view.

C) Compute dx and dy as the lengths of the vectors defined
by the first and second columns, respectively, of M and
divided by m33. Note that m33 commonly 1s equal to 1,
so the division may be unnecessary.

D) Construct matrix M' as:

dx 0 0 m03]
0 dy 0 mi3
M’ =
0 0 0 m23
0 0 0 m33]

And 1nstall M' as the current modelview matrix. The prior
matrix M 1s saved, such as by glPushMatrix( ).
E) Construct the object space rectangle whose corners are
the points
p0=(-0.5, -0.5, 0, 0)
p1=(0.5, -0.5, 0, 0)
p2=(0.5, 0.5, 0, 0)
p3=(-0.5, 0.5, 0, 0) and submit this rectangle to be
rendered 1n the normal way (1.e., geometry and raster-
1zing stages). The graphics hardware will respond by
applying the current matrix (M') followed by the pro-
jection matrix P. It will then perform clipping and
perspective division, followed by the viewport trans-

form. This will be equivalent to the steps 1)-8) of

JISR-184 described 1n section 2.

F) Restore the original modelview matrix, M, as the current
matrix; for example by glPopMatrix( ).

4. Preferred Embodiment Implementation with Vertex Shad-
ers

The method described 1n section 3 can be implemented 1n
soltware as part of an 1mplementation of the JSR-184
renderer, using standard graphics library calls for steps A),
B), and E). However, a further preferred embodiment imple-
mentation 1s possible for hardware that supports vertex
shaders with vertex generation. In vertex shader systems, the
geometry engine of the graphics hardware 1s programmable,
and the application program can supply a program to trans-
form the vertices from object space to viewport coordinates
and to set their attributes. In systems with vertex generation
the number of vertices input to the system can be different
from the number of vertices output. That 1s, the vertex
program can choose to emit more or fewer vertices into the
rasterization engine than the application submits.
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8

In a vertex shader system, the modelview and perspective
matrices are commonly available to the vertex shader as
data. In the preferred embodiment 1nstantiation, an applica-
tion that wishes to draw JSR-184 sprites would load a vertex
program for the purpose. The application would handle steps
A) and B) (venification of the forms of the modelview and
perspective matrices), and do sprite generation in software
for the very unusual case where the matrix form 1s not
suitable. In the normal case, 1t would submit a single vertex
to draw a sprite. The vertex program would 1gnore the input
vertex; 1stead, it would perform steps C) and D). It would
then generate the four points specified 1n step E) and apply
the modelview and perspective transforms (optionally com-
posed) to generate clip coordinates. It would submit these
four points to the back end for rendering as a quad or as a
pair of trniangles. (In vertex shader systems, the shader
program’s responsibility ends when the vertex 1s trans-
formed to clip coordinates. Clipping and transformation to
normalized device and viewport coordinates 1s handled by
dedicated hardware.) FIG. 15 1s a flow diagram.

What 1s claimed 1s:

1. A method of image-based rendering, comprising;:

(a) finding a first length of a first column vector of a first
modelview matrix;

(b) finding a second length of a second column vector of
said first modelview matrix;

(¢) constructing a second modelview matrix with:
(1) a first column vector of said second modelview

matrix having components all equal to O except the

first component equal to the quotient of said first
length divided by a fourth component of a fourth
column vector of said first modelview matrix;

(1) a second column vector of said second modelview
matrix having components all equal to O except the
second component equal to the quotient of said
second length divided by said fourth component of
said fourth column vector of said first modelview
matrix;

(111) a third column vector of said second modelview
matrix having components all equal to 0; and

(1v) a fourth column vector of said second modelview
matrix equal to said fourth column vector of said first
modelview matrix;

(d) constructing an object space rectangle subject to said
second modelview matrix; and

(¢) rendering said rectangle;

(1) whereby an 1mage associated with said rectangle can
be rendered on the rectangle.

2. The method of claim 1, wherein:

(a) after step (d) of claim 1, restoring said first modelview
matrix.

3. The method of claim 1, wherein:

(a) said unit rectangle has vertices at the four points (0.5,

+0.5, 0).

4. The method of claim 1, wherein:

(a) said steps (a)-(d) are implemented as a vertex shader
program for a graphics processing unit.

5. The method of claim 1, wherein:

(a) said 1image of (1) of claim 1 1s a texture.
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