US007200620B2
a2 United States Patent (10) Patent No.: US 7,200,620 B2
Gupta 45) Date of Patent: Apr. 3, 2007
(54) HIGH AVAILABILITY DATA REPLICATION 6,578,056 B1* 6/2003 Lamburt 715/500.1
OF SMART LARGE OBJECTS 6,615,219 B1* 9/2003 Bruso et al. 707/102
2003/0037029 Al* 2/2003 Holenstemn et al. 707/1
(75) Inventor: Ajay K. Gupta, Fremont, CA (US) 2003/0208511 Al1* 11/2003 Earl et al. 707/204
2004/0267843 Al* 12/2004 Dinh et al. 708/204

(73) Assignee: International Business Machines

* cited by examiner
Corporation, Armonk, NY (US)

Primary Examiner—John Cottingham

(*) Notice: Subject to any disclaimer, the term of this Assistant Examiner—Dennis Vautrot

patent 1s extended or adjusted under 35 (74) Attorney, Agent, or Firm—IJames A. Lucas; Driggs,
U.S.C. 134(b) by 509 days. Hogg & Fry Co., LPA

(21) Appl. No.: 10/674,149 (57) ABSTRACT
(22) Filed: Sep. 29, 2003 In a database, a high availability data replicator (28, 46, 48)
synchronizes primary and secondary servers (10, 30). A
(65) Prior Publication Data smart large object application program interface (82) resides
US 2005/0071389 A1 Mar 31 2005 on the secondary server (30). A cache module (108) creates
’ a memory cache (88) corresponding to a smart large object
(51) Int. Cl. responsive to a smart large object read operation requested
GOGF 12/00 (2006.01) by a client (86). A smart large object read module (110)
GO6F 17/30 (2006.01) executes thfa read operation witﬁ.lout acquiring a.lock on the
7)) TRV T &) o 707/201 corresponding smart large object. An exception module
(58) Field of Classification Search 707/100 s, (1V2) sends an exception fo the client (36) responsive to a
2077200 S’ synchronizing event ot the high availability data replicator

(28, 46, 48) moditying said smart large object. On the

See application file for complete search history. primary server (10), log entries of the modifying operation

(56) References Cited are ordered so that a log entry updating a large object header
N of said smart large object 1s consistent immediately upon
U.S. PAITENT DOCUMENTS execution on the secondary server (30).
5937415 A 8/1999 Shefhicld et al.
6,457,065 Bl 9/2002 Rich et al. 16 Claims, 2 Drawing Sheets

IS ST I TN TR I T S S B e s B SEEne DEES T B T S T DI S B B e e maa—— s T e elinn s e e e e il S Jge——

10 ®/72 Shared mem 18 Non-volatile
— memory 16

[workspace 20 | dbspace 14

Primary
server

Logical log
buffer 22

logspace 24

sbspace 60

process 12

Smart LO

ACCCSS
API 62

HDR
bufter 28

Loheader |
cache 68

US 7,200,620 B2

Sheet 1 of 2

Apr. 3, 2007

U.S. Patent

[OIA

09 ddedsqs

P 3eds30]

_
|
!
_
_
|
|
|
m H1 edsqp
|
|
|
_
_
_
_
_
_

01 AIouwrduu
JIB[OA-UON]

07 ddedsyaom

Q0 IYIBD

I2pedayor|

8T 195ynq
ddH

77 g
S0] [BII30]

8

[WW PIIBYS

dde 70SH

79 IdV
$SIIIE

o1}l -

71 ssddoad
JIAIDS

ATeULL]

e e —— — —————— — ——— o—]

US 7,200,620 B2

Sheet 2 of 2

Apr. 3, 2007

U.S. Patent

70T dMmpow
uondadxy

LiE] o'

Q01 dnpowa
21ip] 49"

001 2[npow

epdn 9f dnpour
— Aejdaa 807
78 IV $Sde
O] Heuws

7€ $sdd0ad |e—
JIAIIS
ATBPUOIIQ

QR dYded
IdPeIYO|

8¢ J13pnq
AJH

Ch PHnq
30] [8J1307]

0 ddedsyaom

¢ WU PIIBYS

08 ddedsqs

p ddedsdo

¥€ edsqp

0¢ AIOUIdU
J[IIB[OA~UON]

Us 7,200,620 B2

1

HIGH AVAILABILITY DATA REPLICATION
OF SMART LARGE OBJECTS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to the art of information
processing. It finds particular application in high availability
database systems employing smart large objects, and will be
described with particular reference thereto. However, the
present 1invention 1s useful 1 integrating other data objects
stored outside the primary database space with high avail-
ability backup and load-sharing database systems.

2. Description of Related Art

High availability data replication provides a hot backup
secondary server that 1s synchronized with a primary data-
base server. Data replication 1s achieved by transferring log
entries of database transactions from the primary server to
the secondary server, where they are replayed to provide the
synchronization. Besides providing a hot backup, the sec-
ondary server advantageously provides read-only access to
the database, which permits client load to be balanced
between the primary and secondary servers.

A problem arises, however, 1n synchronizing smart large
objects using high availability data replication. A smart large
object includes a dedicated space that stores binary or
textual content in a random access format. Smart large
objects that store binary data are called smart binary large
objects (smart BLOB’s), while smart large objects that store
textual content are called smart character large objects
(smart CLOB’s). Smart large objects expand the capabilities
of the database system by enabling clients to selectively
access data from a large block of data without acquiring the
entire block of data. Smart BLOB’s are particularly flexible
insofar as they impose substantially no limitations on the
type of stored binary data. Thus, a smart BLOB can contain
an 1mage, audio recording, spreadsheet, or otherwise-for-
matted data 1n a random access format adapted for a par-
ticular client application.

However, smart large objects are not compatible with high
availability data replication. Inconsistencies in replicating
transactions mvolving smart large objects arise from inter-
ference by other transactions that access the smart large
object, including client read-only access requests. Moreover,
client reads can be corrupted if the log replay process
updates or deletes the smart large object during the read
operation. Because of such dithiculties, high availability data
replication heretofore has been limited to database systems
that do not employ smart large objects.

The present invention contemplates an improved method
and apparatus which overcomes these limitations and others.

SUMMARY OF THE INVENTION

In accordance with one aspect, a method 1s performed in
a database including primary and secondary servers and a
replicator that copies database log entries between the
primary server and the secondary server and replays said log,
entries on the secondary server. A transaction is 1nitiated on
the secondary server that includes reading a smart large
object. Responsive to the imitiating, a memory cache corre-
sponding to the smart large object 1s created. Said memory
cache includes a large object header. Responsive to a replay
on the secondary server of a log entry that alters said smart
large object, an exception 1s sent to said transaction.

In accordance with another aspect, 1n a database including
primary and secondary servers and a high availability data

10

15

20

25

30

35

40

45

50

55

60

65

2

replicator adapted to synchronmize the secondary server with
the primary server, a smart large object application program
interface resides on the secondary server. A smart large
object read module 1s adapted to read data from a smart large
object without acquiring a lock on said smart large object.
Said read data 1s communicated to a client. An exception
module 1s adapted to send an exception to said client
responsive to a synchronizing event of the high availability
data replicator modifying said smart large object.

In accordance with yet another aspect, an article of
manufacture comprising one or more non-volatile storage
media encodes instructions for performing a high availabil-
ity data replication process that synchronizes a secondary
server with a primary server of a database that includes
smart large objects. The process includes: ordering log
entries of a smart large object modilying operation per-
formed on the primary server 1n a selected order wherein a
log entry corresponding to updating a large object header of
said smart large object 1s consistent immediately upon
execution; transierring log entries including said log entries
of said smart large object modilying operation from the
primary server to the secondary server; and replaying said
transierred log entries on the secondary server, the replaying
of said log entries of said smart large object moditying
operation being performed in the selected order without
locking said smart large object on the secondary.

Numerous advantages and benefits of the invention will
become apparent to those of ordinary skill in the art upon
reading and understanding this specification.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may take form 1n various components and
arrangements of components, and 1n various process opera-
tions and arrangements ol process operations. The drawings
are only for the purposes of illustrating preferred embodi-
ments and are not to be construed as limiting the invention.

FIG. 1 shows a block diagram of a primary server side of
a database system that includes high availability data repli-
cation and smart large objects.

FIG. 2 shows a block diagram of a secondary server side
of the database system.

DETAILED DESCRIPTION OF TH.
PREFERRED EMBODIMENTS

L1l

With reference to FIG. 1, a primary server side 10 of a
database system includes a primary server process 12, which
can execute on a server computer, mainframe computer,
high-end personal computer, or the like. The primary server
process 12 maintains a primary database space 14 on a
non-volatile storage medium 16, which can be a hard disk,
optical disk, or other type of storage medium. The server 12
executes a suitable database system program, such as an
IBM Informix Dynamic Server program or a DB2 database
program, both available from IBM Corporation, or the like,
to create and maintain the primary database. The database 1s
suitably configured as one or more tables describable as
having rows and columns, 1n which database entries or
records correspond to the rows and each database entry or
record has fields corresponding to the columns. The database
can be a relational database, a hierarchal database, a network
database, an object relational database, or the like.

Portions of the database contents, or copies thereof,
typically reside in a more rapidly accessible shared random
access memory 18, such as a random access memory
(RAM). For example, a database workspace 20 stores data-

Us 7,200,620 B2

3

base records currently or recently accessed or created by
database operations. The server 12 preferably executes data-
base operations as transactions each including one or more
statements that collectively perform a database operation. A
transaction optionally acquires exclusive or semi-exclusive
access to rows or records read or modified by the transaction
by acquiring a lock on such rows or records. A lock prevents
other transactions from changing content of the locked row
or record to ensure data consistency during the transaction.

A transaction can be committed, that 1s, made irrevocable,
or can be rolled back, that 1s, reversed or undone, based on
whether the statements of the transaction successtully
executed and optionally based on other factors such as
whether other related transactions successiully executed.
Rollback capability 1s provided in part by maintaining a
transaction log that retains information on each transaction.
Typically, a logical log buffer 22 maintained in the shared
memory 18 receives new transaction log entries as they are
generated, and the logical log bufler 22 1s occasionally
flushed to a log space 24 on the non-volatile storage 14 for
longer term storage. In addition to enabling rollback of
uncommitted transactions, the transaction log also provides
a failure recovery mechanism. In the event of a database
tailure, the stored logs can be replayed so as to recreate lost
transactions.

With continuing reference to FIG. 1 and with further
reference to FIG. 2, to provide further reliability and robust-
ness of the database, a high availability data replicator
maintains a synchronized duplicate database on a secondary
server side 30. As shown 1n FIG. 2, the secondary server side
30 includes a secondary server process 32 that maintains a
secondary database space 34 on a non-volatile storage
medium 36. A shared random access memory 38 contains a
database workspace 40 for the secondary database, and a
logical log bufler 42 holding transaction logs of transactions
occurring on the primary server 10, which are occasionally
transierred to a log space 44 on the non-volatile storage
medium 36 for longer term storage of transaction logs.
Preferably, the secondary side 30 1s physically remote from
the primary side 10. For example, the primary and secondary
sides 10, 30 can be in different buildings, different cities,
different states, or even different countries. This preferred
geographical remoteness enables the database system to
survive even a regional catastrophe. Although geographical
remoteness 1s preferred, 1t 1s also contemplated to have the
primary and secondary sides 10, 30 more proximately
located, for example 1n the same building or even in the
same room.

The high availability data replicator includes a high
availability data replicator (HDR) bufler 28 on the primary
side 10, a high availability data replicator (HDR) bufler 48
on the secondary side 30, and a log replay module 46 on the
secondary side. The high availability data replicator (HDR)
builer 28 on the primary side 10 receives copies of the data
log entries from the logical log bufler 22. Contents of the
data replicator bufler 28 on the primary side 10 are occa-
sionally transferred to the high availability data replicator
(HDR) butler 48 on the secondary side 30. On the secondary
side 30, the log replay module 46 replays the transferred log
entries stored in the replicator buller 48 to duplicate the
transactions corresponding to the transierred logs on the
secondary side 30.

Preferably, the logical log bufler 22 on the primary side 10
1s not tlushed to the log space 24 on the non-volatile storage
medium 16 until the primary side 10 receirves an acknowl-
edgment from the secondary side 30 that the log records
were recerved from the data replicator bufler 28. This

10

15

20

25

30

35

40

45

50

55

60

65

4

approach ensures that substantially no transactions commiut-
ted on the primary side 10 are left uncommitted or partially
committed on the secondary side 30 if a failure occurs.
Optionally, however, contents of the logical log builer 22 on
the primary side 10 can be flushed to the log space 24 on
non-volatile memory 16 after the contents are transierred to
the data replicator builer 28.

Users access the primary side 10 of the database system
to perform database read and database write operations. As
transactions execute on the primary side 10, transaction log
entries are created and transferred by the high availability
data replicator to the secondary side 30 where they are
replayed to maintain synchronization of the duplicate data-
base on the secondary side 30 with the primary database on
the primary side 10. In the event of a failure of the primary
side 10 (for example, a hard disk crash, a lost network
connection, a substantial network delay, a catastrophic earth-
quake, or the like) user connections are switched over to the
secondary side 30. Moreover, the secondary side 30 also
provides read-only access to the database to help balance
user load between the primary and secondary servers 10, 30.

The database includes smart large objects, such as smart
binary large objects (smart BLOB’s) and smart character
large objects (smart CLOB’s). Smart large objects expand
the capabilities of the database system by enabling definition
of large segments of storage that can be randomly accessed
by the user. That 1s, the user can access selected content of
the smart large object without retrieving the entire object.

A smart BLOB stores substantially any type of binary
data, such as spreadsheets, program-load modules, digitized
volce patterns, images, and so forth, in a random access
format. A smart CLOB 1s similar to a smart BLOB, but 1s
typically limited to character content. Smart CLOB’s are
used to store large text files such as lists, description
paragraphs, and the like, 1n a random access format.

Smart large objects are stored and accessed in a diflerent
manner from other database content. Referring to the pri-
mary side 10, smart large object data 1s stored 1n a smart
large object space 60 on the non-volatile memory 16. A
smart large object access application program interface
(API) 62 serves as an interface for randomly accessing
content of smart large objects stored 1n the smart large object
space 60. In the 1llustrated embodiment, an ESQL applica-
tion 66 executing on the primary side 10 accesses a smart
large object via the smart large object access API 62. To
provide rapid random access to a smart large object, a large
object header cache 68 or other memory cache correspond-
ing to the smart large object 1s created in shared random
access memory 18.

Similarly, on the secondary side 30, smart large object
data 1s stored in a smart large object space 80 on the
non-volatile memory 36. A smart large object access appli-
cation program interface (API) 82 serves as an interface for
randomly accessing content ol smart large objects stored in
the smart large object space 80. In the 1llustrated embodi-
ment, a client application 86 executing on the secondary side
30 accesses a smart large object 1n read-only mode via the
smart large object access API 82. To provide rapid random
read access to a smart large object, a large object header
cache 88 or other memory cache corresponding to the smart
large object 1s created in shared random access memory 38.

On the primary side 10, operations performing read or
write access to a smart large object preferably acquire a lock
72 on the smart large object to ensure data consistency. For
example, when the ESQL application 66 accesses a smart
large object to perform a modification, deletion, or data read

Us 7,200,620 B2

S

of the smart large object, the smart large object access API
62 acquires the lock 72 on the smart large object 1n the smart
large object space 60.

On the secondary side 30, database access 1s limited to
read-only operations. When the client application 86
accesses a smart large object via the smart large object
access APl 82 to perform a data read, a “dirty” read 1is
preferably performed in which no lock on the smart large
object 1s obtained. Client-mnitiated locks on the secondary
side can potentially interfere with log replay operations
performed by the log replay module 46.

To ensure data consistency on the secondary side 30,
several measures are preferably taken. On the primary side
10, the smart large object access API 62 preferably orders
log entries of each smart large object modifying operation 1n
a selected order such that the log entry corresponding to
updating of a large object header 1s consistent immediately
upon execution. On the secondary side 30, the log entries of
cach smart large object modilying operation are replayed 1n
that same selected order. This ensures that any large object
header update replayed on the secondary side 30 1s 1mme-
diately consistent, even 1f subsequent log entries fail to be
applied on the secondary side 30. The log entries are applied
on the secondary side 30 without locking. It 1s possible that
log entries subsequent to the large object header update log
entry may fail to be applied. In one such case where
subsequent log entries may fail to be applied, another
transaction accesses the smart large object between the time
of the large object header update and the attempted appli-
cation of the subsequent log entries.

In the case of a smart large object modifying operation on
the primary side 10 that allocates new space to the smart
large object, the selected order 1s such that the space 1s first
allocated, and then the large object header i1s updated. The
log entries are replayed 1n that same order on the secondary
side 30. This ensures that when the large object header 1s
updated, the space 1s already allocated so that the updated
large object header 1s immediately consistent with the acces-
sible allocated memory.

In another example of selected ordering, when a smart
large object modifying operation on the primary side 10
deallocates new space from the smart large object, the
selected order 1s such that the large object header 1s first
updated to indicate the deallocation, and then the space 1s
deallocated. The log entries are replayed 1n that same order
on the secondary side 30. This ensures that the header does
not incorrectly indicate allocated space that 1s no longer
allocated to the smart large object.

The opposite order, 1n which the space 1s first deallocated
and then the header 1s updated, could result 1n an 1nconsis-
tency if the deallocation 1s applied but the subsequent header
update fails to be applied. In such a circumstance, a future
read operation attempting to access content from the deal-
located space will incorrectly determine from the header that
the deallocated space 1s still available.

Another measure preferably taken to ensure data consis-
tency 1s to provide an exception to the client application 86
in the event that a log replay operation modifies the smart
large object during the dirty read operation associated with
the client application 86. An update module 100 of the smart
large object access API 82 on the secondary side 30 per-
forms the smart large object modification. Before perform-
ing the updating, the update module 100 determines whether
there are any client applications, such as the exemplary
client application 86, which are in the process of reading
data from the smart large object to be updated. If such a

10

15

20

25

30

35

40

45

50

55

60

65

6

contlict exists, the update module 100 triggers an exception
module 102 to send an exception 104 to the client applica-
tion 86.

Further processing depends upon the type of modification
performed on the smart large object and the corresponding
type of exception 104 sent by the exception module 102. For
most types of modifications, exception 104 1s an error code
sent to the client application 86. The update module 100
performs the update of the smart large object and then
communicates the update to a cache module 108 that created
and maintains the large object header cache 88 associated
with the dirty read operation. The client application 86
responds to the error code 104 by reimitiating the dirty read,
which a read module 110 of the smart large object access
API 82 executes once the large object header cache 88 1s
updated by the cache module 108.

If the modification 1s a delete operation that deletes the
smart large object, then the exception 104 1s preferably
replaced by an invalidation 112 that invalidates the large
object header cache 88. This invalidation 1s approprate
since the smart large object 1s deleted and no longer can be
accessed. The client application 86 suitably responds to the
invalidation 112 by producing a suitable failure error code.
Optionally, the mvalidation 112 1s accompanied by excep-
tion 104 which directly tells the client application 86 that the
dirty read has failed.

The database system and processing 1s typically imple-
mented using one or more computer programs, each of
which executes under the control of an operating system,
such as OS/2, Windows, DOS, AIX, UNIX, MVS, or so
forth, and causes one or more computers to perform the
desired database processing including high availability data
replication and smart large object processing as described
herein. Thus, using the present specification, the database
system and processing may be implemented as a machine,
process, or article of manufacture by using programming
and/or engineering techniques to produce soitware, firm-
ware, hardware or any combination thereof.

Generally, the computer programs and/or operating sys-
tem are all tangibly embodied 1n one or more computer-
readable devices or media, such as memory, data storage
devices, and/or data communications devices, thus making a
computer program product or article of manufacture accord-
ing to the mvention. As such, the term “article of manufac-
ture” as used herein 1s intended to encompass a computer
program accessible from any computer readable device,
media, computer network, or the like.

Moreover, the computer programs and operating system
are comprised ol instructions which, when read and
executed by one or more computers, cause said computer or
computers to perform operations to implement the database
processing including high availability data replication and
smart large object processing as described herein. Under
control of the operating system, the computer programs may
be loaded from the memory, data storage devices, and/or
data commumnications devices into the memories of said
computer or computers for use during actual operations.
Those skilled 1n the art will recognize many modifications
may be made to this configuration without departing from
the scope of the present mvention.

The invention has been described with reference to the
preferred embodiments. Obviously, modifications and alter-
ations will occur to others upon reading and understanding
the preceding detailed description. It i1s intended that the
invention be construed as including all such modifications
and alterations insofar as they come within the scope of the
appended claims or the equivalents thereof.

Us 7,200,620 B2

7

Having thus described the preferred embodiments, what 1s
claimed 1s:

1. In a database including a read/write primary and a
read-only secondary server, and a high availability data
replicator that copies database log entries from the primary
server 1o the secondary server and replays said log entries on
the secondary server consistent with the log entries on the
primary server, a method comprising:

initiating a transaction on the secondary server that

includes reading a smart large object, the transaction
initiated without locking the smart large object on the
secondary server;

responsive to the mitiating, creating a memory cache on

the secondary side corresponding to the smart large
object, said memory cache including a large object
header:; and

responsive to a replay on the secondary server of a log

entry by said replicator that alters said smart large
object, sending an exception to said mitiated transac-
tion.

2. The method as set forth 1n claim 1, turther comprising:

committing said replay of said log entry on the secondary

server to alter said smart large object on the secondary
Server;

updating said large object header to generate an updated

large object header; and

completing said transaction using said updated large

object header.

3. The method as set forth 1n claim 2, wherein the sending,
of an exception to said transaction comprises:

sending an error code to a user read thread that generated

said transaction.

4. The method as set forth 1n claim 1, further comprising:

committing said replay of said log entry on the secondary

server to delete said smart large object on the secondary
server; and

invalidating said large object header.

5. The method as set forth 1n claim 1, further comprising:

allocating new space to said smart large object on the

primary server, the allocating including;:

allocating a memory page on the primary server to
provide said new space, and

subsequent to the allocating of a memory page, updat-
ing a header of the smart large object on the primary
Server;

wherein the allocating of the memory page and the

updating of the header are logged on the primary server

to define at least a portion of said log entry that alters

said smart large object.

6. The method as set forth 1n claim 1, further comprising:

deallocating memory from said smart large object on the

primary server, the deallocating including:
updating a header of the smart large object on the
primary server, and
subsequent to the updating, deallocating said memory;
wherein the updating and deallocating are logged on the
primary server to define at least a portion of said log
entry that alters said smart large object; and

updating the header and deallocating the memory on the

secondary side 1n the same order as on the primary side.

7. The method as set forth in claim 1, wherein the
iitiating of a transaction on the secondary server that
includes reading a smart large object comprises:

initiating a transaction on the secondary server that

includes reading one of a smart binary large object
(smart-BLLOB) and a smart character large object

(smart-CLOB).

10

15

20

25

30

35

40

45

50

55

60

65

8

8. The method as set forth 1n claim 1, further comprising:

performing a modilying transaction on the primary server
that alters said smart large object; and

logging said moditying transaction on the primary server
to generate at least a portion of said log entry that alters
said smart large object.

9. The method as set forth in claim 8, wherein the
performing of said moditying transaction comprises:

acquiring a lock on said smart large object on the primary
Server.

10. The method as set forth 1n claim 1 wherein the primary
server contains database workspace that 1t shares with the
secondary server.

11. In a database including a primary and a secondary
server and a high availability data replicator adapted to
synchronize the secondary server with the primary server, a
smart large object application program interface residing on
the secondary server, the smart large object application
program 1nterface comprising:

a smart large object read module adapted to read data
from a smart large object without acquiring a lock on
said smart large object, said read data being commu-
nicated to a client:

an exception module adapted to send an exception to said
client responsive to a synchronizing event of the high
availability data replicator moditying said smart large
object;

an update module adapted to update said smart large
object responsive to said synchronizing event; and

a cache module adapted to create a memory cache of said
smart large object, said smart large object read module
accessing said memory cache during a read, said cache
module being further adapted to update said memory
cache responsive to said updating of said large smart

object.

12. An article of manufacture comprising one or more
non-volatile storage media encoding instructions for per-
forming a high availability data replication process that
synchronizes a secondary server with a primary server of a
database that includes smart large objects, the process com-
prising:

ordering log entries of a smart large object modilying

operation performed on the primary server 1n a selected
order wherein a log entry corresponding to updating a
large object header of said smart large object 1s con-
sistent 1immediately upon execution;

transierring log entries including said log entries of said
smart large object moditying operation from the pri-
mary server to the secondary server;

identifying a read operation accessing said smart large
object, and communicating an exception and error code
to a client associated with the read operation;

replaying said transferred log entries on the secondary
server, the replaying of said log entries of said smart
large object modifying operation being performed 1in
the selected order without locking said smart large
object on the secondary server, thereby 1nsuring con-
sistency of the data being transierred from the primary
server to the secondary server, wherein the replaying of
the log entries includes moditying said smart large
object on the secondary server; and

communicating an exception including said error code to
said client.

13. The article of manufacture as set forth in claim 12,
wherein:

Us 7,200,620 B2

9

the replaying of said log entries of said smart large object
modifying operation includes deleting said smart large
object on the secondary server; and
the communicating of an exception includes imvalidating
a large object header associated with said read opera- 5
tion.
14. The article of manufacture as set forth in claim 12,
wherein said smart large object modilying operation
includes allocating memory to said smart large object, and

10

ordering a log entry corresponding to updating a header of
the smart large object before a log entry corresponding
to deallocation of memory, whereby replaying of said
log entries of said smart large object moditying opera-
tion on the secondary server in the selected order
updates said header on the secondary server before
deallocating memory on the secondary server.

16. The article of manufacture as set forth in claim 12,
wherein said ordering of log entries of a smart large object

said ordering comprises: 10" modifying operation comprises:

ordering a log entry corresponding to allocation of
memory before a log entry corresponding to updating a
header of the smart large object, whereby replaying of
said log entries of said smart large object modifying
operation on the secondary server in the selected order 15
allocates memory on the secondary server before
updating said header on the secondary server.

15. The article of manufacture as set forth 1in claim 12,
wherein said smart large object modilying operation
includes deallocating memory from said smart large object, 20
and said ordering comprises:

ordering log entries of one of:

a smart binary large object (smart BLOB) modilying
operation, and

a smart character large object (smart CLOB) modilying
operation, performed on the primary server 1 a
selected order wherein a log entry corresponding to
updating a large object header of said smart large object
1s consistent immediately upon execution.

	Front Page
	Drawings
	Specification
	Claims

