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METHOD AND SYSTEM FOR PREDICTING
MULTI-VARIABLE OUTCOMES

CROSS-REFERENC.

L1

This application claims the benefit of U.S. Provisional
Application No. 60/368,586, filed Mar. 29, 2002, which
application 1s incorporated herein, in its entirety, by refer-
ence thereto.

FIELD OF THE INVENTION

The present invention relates to software, methods, and
devices for evaluating correlations between observed phe-
nomena and one or more factors having putative statistical
relationships with such observed phenomena. More particu-
larly, the software, methods, and devices described herein
relate to the prediction of the suitability of new compounds
for drug development, including predictions for diagnosis,
ellicacy, toxicity, and compound similarity among others.
The present invention may also be applicable 1n making
predictions relating to other complex, multivariate fields,
including earthquake predictions, economic predictions, and
others. For example the transmission of seismic signals
through a particular fault may exhibit significant changes in
properties prior to fault shifting. One could use the seismic
transmissions of the many small faults that are always active
near major fault lines.

BACKGROUND OF THE INVENTION

The application of statistical methods to the treatment of
disease, through drug therapy, for example, provides valu-
able tools to researchers and practitioners for effective
treatment methodologies based not only on the treatment
regimen, but taking into account the patient profile as well.
Using statistical methodologies, physicians and research
scientists have been able to identify sources, behaviors, and
treatments for a wide variety of illnesses. Thus, for example,
in the developed world, diseases such as cholera have been
virtually eliminated due in great part to the understanding of
the causes of, and treatments for, these diseases using
statistical analysis of the various risk and treatment factors
associated with these diseases.

The most widely used statistical methods currently used
in the medical and drug discovery fields are generally
limited to conventional regression methods which relate
clinical variables obtained from patients being treated for a
disease with the probable treatment outcomes for those
patients, based upon data relating to the particular drug,
drugs or treatment methodology being performed on that
patient. For example, logistic regression methods are used to
estimate the probability of defined outcomes as impacted by
associated information. Typically, these methods utilize a
sigmoidal logistic probability function that 1s used to model
the treatment outcome. The values of the model’s param-
cters are determined using maximum likelihood estimation
methods. The non-linearity of the parameters in the logistic
probability function, coupled with the use of the maximum
likelithood estimation procedure, makes logistic regression
methods complicated. Thus, such methods are often inet-
tective for complex models 1n which interactions among the
various clinical variables being studied are present, or where
multivariable characterizations of the outcomes are desired,
such as when characterizing an experimental drug. In addi-
tion, the coupling of logistic and maximum likelithood
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methods limits the validation of logistic models to retro-
spective predictions that can overestimate the model’s true
abilities.

Such conventional regression models can be combined
with discriminant analysis to consider the relationships
among the clinical variables being studied to provide a linear
statistical model that 1s effective to discriminate among
patient categories (e.g., responder and non-responder).
Often these models comprise multivariate products of the
clinical data being studied and utilize modifications of the
methods commonly used in the purely regression-based
models. In addition, the combined regression/discriminant
models can be validated using prospective statistical meth-
ods 1n addition to retrospective statistical methods to provide
a more accurate assessment ol the model’s predictive capa-
bility. However, these combined models are eflective only
for limited degrees of interactions among clinical variables

and thus are 1nadequate for many applications.
The Stmilarity Least Square Modeling Method (SMILES)

disclosed 1n U.S. Pat. No. 3,860,917 (of which the present
inventor 1s a co-inventor), and which 1s hereby incorporated,
in 1ts entirety, by reference thereto, 1s capable of predicting
an outcome (Y) as a function of a profile (X) of related
measurements and observations based on a viable defimition
of similarity between such profiles. SMILES fails, however,
to provide a means to effectively handle multiple outcome
variables or outcomes of diflerent types. For multiple out-
come variables, or Y-variables, SMILES analyzes each
Y-vaniable separately as independent measurements or
observations. Thus, one obtains a separate model for each
Y-variable. When the Y-variables measure the same phe-
nomena, they likely have induced interdependencies or
communalities. It becomes diflicult to perform analysis with
separate independent models. Nuisance and noise factors
complicate this task even further.

What 1s needed, therefore, are methods of providing
statistically meaningtul models for analyzing the Y-variables
as an ensemble of related observations, to produce a a
common model for all Y-variables as a function of multiple
X-variables to obtain a more eflicient model with better
leverage on common phenomena and less noise.

SUMMARY OF THE INVENTION

The present invention includes systems, methods and
recordable media for predicting multi-variable outcomes
based on multi-variable mputs. In one aspect of the mven-
tion, a predictor model 1s generated by: a) defining an 1nitial
model as Model Zero and mputting Model Zero as initial
column(s) one or more of a similarity matrix T; b) perform-
ing an optimization procedure (e.g., least squares regression
or other linear regression procedure, non-linear regression
procedure, maximum entropy procedure, mini-max entropy
procedure or other optimization procedure) to solve for
matrix values of an o matrix which 1s a transformation of
outcome profiles associated with mput proﬁles ¢) calculat-
ing a residual matrix ¢ based on the diflerence between the
actual outcome values and the predicted outcome values
determined through a product of matrix T and matrix ., d)
selecting a row of the a residual matrix € which contains an
error value most closely matching a pre-defined error crite-
rion; ¢) identifying a row from a matrix of the multivariable
inputs which corresponds to the selected row from the
residual matrix €; 1) calculating similarity values between
the 1dentified row and each of the rows in the matrix of the
multivariable inputs, including the identified row waith 1tself;
g) populating the next column of stmilarity matrix T with the
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calculated similarity values 1f 1t 1s determined that such
column of the identified row 1s not collinear or nearly
collinear with Model Zero and columns of previously 1den-
tified rows, the similarity values for which were used to
populate such previous columns of similarity matrix T; and
h) repeating steps b) through g) until a predefined stopping
criterion has been reached.

In another aspect of the present mvention, the predictor
model may be used to predict multi-variable outcomes for
multi-variable income data of which the outcomes are not
known.

In another aspect of the present invention, the model
learns to represent a process from process profile data such
as process mput, process output, process parameters, process
controls and/or process metrics, so that the trained model 1s
useful for process optimization, model-based process con-
trol, statistical process control and/or quality assurance and
control.

In another aspect of the present invention, a model may be
used to seli-predict multi-varniable profiles, wherein the input
multivariable profiles are used to predict the input multi-
variable profiles themselves as multi-variable outputs.

In another aspect of the present invention, the self-
prediction model 1s used 1teratively to impute data values to
missing data values in the multivariable mput profiles.

In another aspect of the present invention, a model 1s used
to simultaneously predict both multi-variable X-1nput pro-
files and multi variable Y-output profiles based on the
multi-vaniable X-1nput profiles.

In another aspect Y-columns may be similarity values of
a select subset of the original Y-variables by analogy to
S-columns as similarity values of the X-vanables.

In another aspect of the present invention, score functions
may be optimally assigned to the predicted multi-variable
outcomes for use 1 any multivariate distribution process,
such as ordinal, logistic, and survival probability analysis
and predictions.

In yet another aspect, the 1dentified rows, also described
as math-functional “tent pole” locations, may be tested for
cllipticity as a function of the X-space, using the Marquardt-
Levenberg algorithm, and then ranked according to the
testing.

Still turther, the present invention may include determin-
ing one or more decay constants for each of the identified
rows of X-profiles (tent pole locations) used to calculate
similarity values to populate the T matrix (similarity matrix).

Methods, systems and recordable media are disclosed for
generating a predictor model for predicting multivariable
outcomes (a matrix of rows of Y-profiles) based upon
multivariable mputs (a matrix of rows of X-profiles) with
consideration of nuisance or noise variables, by analyzing
cach X-profile row of multivariable inputs as an object;
calculating similarity among the objects; selecting tent pole
locations determined to be critical profiles in supporting a
prediction function for predicting the Y-profiles; determin-
ing a maximum number of such profiles by model properties
such as collinearity or max {fit error or least squares sum of
squared errors; and optimizing the final number of tent poles
by prospective “true” prediction properties such as the
mimmum of the sum of squared “prospective errors or
ensemble errors” between the Y-profile predictions and the
know Y-profile value(s).

According to the present invention, the dimensions of the
data can be reduced to a lower dimension as defined only by
necessary critical components to represent the phenomenon
being modeled. Hence, in general, the present invention 1s
valuable to help researchers ““see” the high-dimensional
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patterns from limited noisy data on complex phenomenon
that can involve multiple mputs and multiple consequential
outputs (e.g., outcomes or responses).

The present invention can optimize the model fit and/or
the model predictions and provides diagnostics that measure
the predictive and {it capabilities of a derived model. Input
proflle components may simultaneously be included as
outcome variables and vice versa, thus enabling a nonlinear
version ol partial least squares that induces proper matrix-
cigenvalue matching between mput and output matrices.
Eigenvalue matching 1s well-practiced as linear transforma-
tions related to generalized singular value decompositions
(GSVD). The present invention can also be used for seli-
prediction imputation and smoothing, e.g., predicting
smoothed and missing values 1n iput data based on key
profiles in the input data.

The present mvention includes the capability to measure
the relative importance of individual mput variables to the
prediction and {it process by nonlinear statistical parameters
calculated by the Marquardt-Levenberg algorithm. The
present invention can also associate decay constants with
cach location (tent poles) which is usetful to quantily types
and scopes of the influence of that profile on the model, 1.e.,
local and/or global eflect.

The present invention finds a critical subset of data points
to optimally model all outcome variables simultaneously to
leverage both communalities among outcomes and unique-
ness properties of each outcome. The method relates mea-
sured variables associated with a complex phenomenon
using a simple direct functional process that eliminates
artifactual inferences even 1f the data 1s sparse or limited and
the variable space 1s high dimensional. The present inven-
tion can also be layered to model higher-ordered features,
e.g., output of a GSMILES network can be mput to a second
GSMILES network. Such GSMILES networks may include
teedback loops It profiles include one or more ordered
indices such as “time,” GSMILES networks can incorporate
the ordering of such indices (1.e., “time” series). GSMILES
also provides statistical evaluatlons and diagnostics of the
analysis, both retrospective and prospective scenarios.
GSMILES reduces random noise by combining data from

replicate and nearby adjacent information (1.e., pseudo-
replicates).
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s an architecture diagram showing examples of
input sources that may supply data to the predictor system
according to the present ivention.

FIG. 2 1s a schematic diagram 1llustrating the ability of
GSMILES to relate Y-profiles to X-profiles through an
X-profile similarity map that performs nonlinear-X trans-
forms of strategic Y-profiles. The similarity matrix assuming
no Model Zero (1.e., null Model Zero) 1s renormalized so
that each row becomes a vector of convex coeih

icients, 1.e.,
whose sum equals one with each coetlicient 1n 1interval [0,1].

FIG. 3 1s an example matrix containing a training set of
X-profiles, Y-profiles, and a noise or nuisance profile used
by GMILES 1n forming a predictor inference model. Such
nuisance profile can represent many variables, 1.e., a vector
of noise factors usually with specifics unknown.

FIG. 4 1s a diagram of a function 400 shown 1n a
three-dimensional space, illustrating support locations along
the function that can be “supported” by critical values (or
profiles, 1.e., the locations for the alpha coeflicients repre-
senting the size and direction of the “tent pole™) 1n the X-Y
space.
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FIG. § 1llustrates an example of an initial model (Model
Zero) used to solve for the critical profiles, 1n the example
shown, the first critical profile or tent poles 1s being solved
for.

FIG. 6 shows the error matrix resulting from processing,
using the example shown 1n FIG. 5.

FIG. 7 shows a second iteration, following the example of
FIGS. 5 and 6, used to solve for the second tent pole.

FIG. 8 shows an example of a test X-profile being
iputted to GSMILES 1n order to predict a Y-Profile for the

SAIIC.

FI1G. 9 1s a tlow chart showing one example of an iterative
procedure employed by GSMILES 1n determining a predic-
tor model.

FIG. 10 1s a flow chart representing some of the important
process steps 1in one example of an 1iterative algorithm that
the present invention employs to select the columns of a
similarity matrix.

FIG. 11 1s a graph plotting the maximum absolute (en-
semble) error versus the number of tent poles used in
developing a model (training or fit error versus the number
ol tent poles).

FI1G. 12 1s a graph plotting the square root of the sum of
the squared LOO errors divided by the number of terms
squared against the number of tent poles, as a measure of test
or validation error

DETAILED DESCRIPTION OF TH.
INVENTION

L1l

Before the present mmvention 1s described, 1t 1s to be
understood that this mvention 1s not limited to particular
statistical methods described, as such may, of course, vary.
It 1s also to be understood that the terminology used herein
1s for the purpose of describing particular embodiments only,
and 1s not mtended to be limiting, since the scope of the
present invention will be lmmited only by the appended
claims.

Where a range of values 1s provided, 1t 1s understood that
cach intervening value, to the tenth of the unit of the lower
limit unless the context clearly dictates otherwise, between
the upper and lower limits of that range 1s also specifically
disclosed. Each smaller range between any stated value or
intervening value 1n a stated range and any other stated or
intervening value 1n that stated range 1s encompassed within
the mvention. The upper and lower limits of these smaller
ranges may independently be included or excluded in the
range, and each range where either, neither or both limaits are
included 1n the smaller ranges 1s also encompassed within
the 1nvention, subject to any specifically excluded limit in
the stated range. Where the stated range includes one or both
of the limits, ranges excluding either or both of those
included limits are also included in the mvention.

Unless defined otherwise, all technical and scientific
terms used herein have the same meaning as commonly
understood by one of ordinary skill in the art to which this
invention belongs. Although any methods and systems simi-
lar or equuvalent to those described herein can be used 1n the
practice or testing of the present invention, the preferred
methods and systems are now described. All publications
mentioned herein are incorporated herein by reference to
disclose and describe the methods and/or systems 1n con-
nection with which the publications are cited.

It must be noted that as used herein and 1n the appended
claims, the singular forms “a”, “and”, and “the” include

plural referents unless the context clearly dictates otherwise.
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6

Thus, for example, reference to “a variable” includes a
plurality of such vanables and reference to “the column”
includes reference to one or more columns and equivalents
thereol known to those skilled in the art, and so forth.

The publications discussed herein are provided solely for
their disclosure prior to the filing date of the present appli-
cation. Nothing herein i1s to be construed as an admission
that the present mvention 1s not entitled to antedate such
publication by virtue of prior invention. Further, the dates of
publication provided may be diflerent from the actual pub-
lication dates which may need to be independently con-
firmed.

Definitions

“Microarrays” measure the degree to which genes are
expressed 1n a particular cell or tissue. One-channel microar-
rays attempt to estimate an absolute measure of expression.
Two-channel microarrays compare two different cell types
or tissues and output a measure of relative strength of
CXpression.

“RTPCR” designates Real Time Polymerized Chain
Reaction, and includes techniques such as Tagman™, for
example, for high resolution gene expression profiling.

“Bioassays” are experiments that determined properties
of biological systems and measure certain quantities.
Microarrays are an example ol bioassays. Other bioassays
are fluorescence assays (which cause a cell to fluoresce 1t a
certain biological event occurs) and yeast two-hybrids
(which determine whether two proteins of interest bind to
cach other or not).

“Chemical data” include the chemical structure of com-
pounds, chemical and physical properties of compounds
(such as solubility, pH value, viscosity, etc.), and properties
of compounds that are of interest 1n pharmacology, e.g.,
toxicity for particular tissues 1n particular species, etc.

“Process control” includes all methods such as feed-
forward, feed-backward, and model-based control loops and
policies used to stabilize, reduce noise, and/or control any
process (e.g., production lines in factories), based on inher-
ent correlations between systematic components and noise
components of the process.

“Statistical process control” refers to statistical evaluation
of process parameters and/or process-product parameters to
verily process stability and/or product quality based on
non-correlated noise.

“Genomics databases” contain nucleotide sequences.
Nucleotide sequences include DNA (the information in the
nucleus of eukaryotes that 1s propagated 1n cell division and
1s the basis for transcription), messenger RNA (the tran-
scripts that are then translated 1nto proteins), and ribosomal
and transfer RNA (part of the translation machinery).

“Proteomics databases” contain amino acid sequences,
both sequences 1nferred from genomic data and sequences
found through various bioassays and experiments that reveal
the sequences of proteins and peptides.

“Publications” include medline (the collection of bio-
medical abstracts distributed by the national library of
medicine), biomedical journals, journal articles from related
fields, such as chemistry and ecology, or articles, books or
any other published material in the field being examined,
whether 1t be geology, economics, etc.

“Patent” includes U.S. patents and patents throughout the
world, as well as pending patent applications that are pub-
lished.

“Proprietary documents™ include those documents which
have not been published, or are not intended to be published.
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“Medical data” include all data that are generated by
diagnostic devices, such as urinalysis, blood tests, and data
generated by devices that are currently under investigation
tor their diagnostic potential (e.g., microarrays, mass spec-
troscopy data, etc.).

“Patient records” are the records that physicians and
nurses maintain to record a patient’s medical history.
Increasingly, information 1s captured electronically as a
patient interacts with hospitals and practitioners. Any textual
data captured electronically in this context may be part of
patient records.

When one location 1s indicated as being “remote” form
another, this refers to the tow locations which are at least in
different buildings, and these locations may be at least one
mile, ten miles or at least one hundred miles apart.

“Transmitting” information refers to sending the data
representing that immformation as electrical signals over a
suitable communication channel (e.g., a private or public
network).

“Forwarding” a result refers to any means of getting that
result from one location to the next, whether by transmitting,
data representing the result or physically transporting a
medium carrying the data or communicating the data.

A “result” obtained from a method of the present inven-
tion includes one directly or indirectly obtained from use of
the present invention. For example, a directly obtained
“result” may include a predictor model generated using the
present mvention. An indirectly obtained “result” may
include a climical diagnosis, treatment recommendation, or a
prediction of patient response to a treatment which was
made using a predictor model which was generated by the
present mvention.

The present invention provides methods and systems for
extracting meamngiul information from the rapidly growing
amount of genomic and clinical data, using sophisticated
statistical algorithms and natural language processing. The
block diagram 1n FIG. 1 1llustrates an exemplary architecture
ol a predictor system 100 according to one embodiment of
the present invention. The predictor system 100 takes input
from various sources (such as microarrays 102, bioassays
104, chemical data 106, genomics/proteomics 108, publica-
tions/patents/proprietary documentation 110, medical data
112, and patient records 114, (as indicated i FIG. 1) and
preprocesses the input using one or more of the ETL
(Extraction/Transformation/Loading module, a standard
data mining module for getting the data into a format you
can work with) 120, text mining 122, Blast 124, and data
interpretation 126 modules.

The ETL module 120 extracts data relating to one or more
entities (e.g., compounds) from a data source. The extracted
data correspond to mnput and output variables to be used 1n
the GSMILES model for the particular compound.
Examples of data extraction and manipulation tasks sup-
ported by the ETL module include XML parsing; recogniz-
ing various columns and row delimiters 1n unstructured files;
and automatic recognition of the structure of a file (e.g.,
XML, unstructured, or some other data exchange format).

Once the ETL module extracts the data, it may transform
the data with simple preprocessing steps. For example, the
ETL module may normalize the data and filter out noise and
non-relevant data points. The ETL module then loads the
data mnto the RDBMS (i.e., relational database management
system) 1n a form that 1s usable 1n the GSMILES process,
c.g., the input and output variables according to the
GSMILES model. Specifically, the ETL module loads the
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RDBMS 1n fields corresponding to the input and output
variables for the entities to which the data relate.

The ETL module may be run 1n two modes. If a data
source 1s available permanently, data are processed 1n batch
mode and stored in the RDBMS. If a data source 1s inter-
actively supplied by the user, 1t will be processed interac-
tively by the ETL module.

The text mining module 122 processes textual iput from
sources such as publications 110 and patient records 114.
Text mining module 122 produces two types of outputs:
structured output stored in the database 130, and unstruc-

tured keyword vectors stored 1in an inverted index (Text
Index) 132. Unlike a conventional mmverted index, "

lext
Index 132 also preferably functions to retrieve pre-computed
keyword vectors. This 1s important for text types such as
patient records.

In one embodiment, text mining module 122 includes
three components: a term matching component (including
specialized dictionaries and regular expression parsers for
mapping text strings to entities 1n an underlying ontology);
a relationship mapping component (including patterns that
occur 1n general language as well as patterns that are specific
to the domain) for recognizing relationships between entities
in text (such as drug-protein interactions and gene-disease
causal relationships); and a learning component which
learns terms and relationships based on an 1nitial set of terms
and relationships supplied by a domain expert.

In one embodiment, text mining module 122 uses tech-
niques taught by the FASTUS (Finite State Automaton Text
Understanding System) System, developed by SRI Interna-
tional, Menlo Park, Calif. These techniques are described in
Hobbs et al., “FASTUS: A Cascaded Finite-State Transducer
for Extracting Information form Natural-Language Text”,
which can be found at the natural language projects web
page of SRI, and which 1s incorporated herein, 1n 1ts entirety,
by reference thereto. Text mining techniques are well-known
in the art, and a comprehensive discussion thereol can be
found in the textbook by Christopher D. Manning & Hinrich
Schutze, Foundations of Statistical Natural Language Pro-
cessing (MIT Press: 1st ed., 1999).

The Blast or Homology module 124 detects sequence data
in data sources (e.g., microarrays 102, patents 110, patient
records 114, etc.), and stores them 1n a unified format such
as FASTA The Homology module 124 uses BLAST or other
known sequence 1dentification methods. Homology module
124 1s called interactively for sequence similarity computa-
tion by GSMILES 140 (if sequence similarity 1s part of the
overall similarity between data points computed).

Data interpretation module 126 performs a number of
tasks that go beyond the more mechanical processing done
by ETL module 120. One of the tasks performed by data
interpretation module 126 1s that of imputation, where
missing data are filled 1n, where possible, using GSMILES
processing. Another function of data interpretation module
1s data linkage. If the same data type occurs in several
sources, but under different names, then data interpretation
module 126 reconciles the apparent disparity offered by the
different names, by linking these terms (e.g., such as when
different naming conventions are used for drugs or genes).

Client 150 allows a user to interact with the system 100.
In data source selection, the user selects which data sources
are most important for a particular prediction task. If a new
data source has become available, the user may add the new
data source to the system 100. Weighting may be employed
to determine the relative significance, or weight, of various
data sources. For example, 11 a user has prior knowledge
indicating that most of the predictive power comes from
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microarrays for a particular classification task, then the user
would indicate this with a large weighting factor applied to
the microarrays data source.

The client 150 performs output function selection when
the user selects one or more particular output categories of
interest (1.e., the response variables). When a response
variable 1s used for the first time, the user needs to make 1t
accessible to the system and configure 1t (e.g., the user

determines what kind of response variable 1t 1s, such as
continuous, dichotomous, polytomous, etc.).

By processing the preprocessed data recerved from ETL
120, text mining 122, Blast 124 and/or data interpretation
126 modules to arrive at predictive values according to the
selected output function or functions, GSMILES 140 may
provide valuable predictive imformation as to compound
similarities 152, toxicity 154, eflicacy 156, and diagnosis
158, but 1s not limited to such output functions, as has been
noted earlier.

Information may be exchanged with Text Index 132.

Module(s) 120,122,124 and/or 126 exchange(s) data with
RDBMS 130 and/or Text Index 132, as described above. The
preprocessed data from module(s) 120,122,124 and/or 126
are fed mto GSMILES (Generalized Similarity Least
Squares Modeling Method) predictor module 140, which
again exchanges data with Text Index 132 and RDBMS 130,
but also takes mput from client 150, for example, as to data
source selection, weighting of data points, and output func-
tion selection. The output from GSMILES 140 may include
predictions for various compounds of diagnosis, eflicacy,

toxicity, and compound similarity, among others.

One important aspect of the methods and systems dis-
closed concerns their use 1n the prediction of the suitability
of new compounds for drug development. GSMILES pre-
dictor 140 may predict various aspects of a compound, such
as toxicity, mode of action, indication and drug success, as
well as consideration of similar compounds, while accepting,
user iput to the various corresponding models. The sum of
all the prediction results can be used at the end to decide
which compound to pursue. By predicting a compound’s
mode of action, toxicology, and other attributes, the present
invention facilitates lead prioritization and helps design
experiments.

The present system may utilize the Generalized Similarity
Least Squares (GSMILES) modeling method to reveal asso-
clation patterns within genomic, proteomic, clinical, and
chemical information and predict related outcomes such as
disease state, response to therapy, survival time, toxic
events, genomic properties, 1mmune response/rejection
level, and measures of kinetics/eflicacy of single or multiple
therapeutics. The GSMILES methodology performed by
GSMILES module 140 1s further discussed in the next
section. Other possible applications of GSMILES include
economic predictions, early detection of critical earthquake-
related processes from appropriately filtered seismic signals
and other geophysical measurements, and process models
for process control of complex chemical processes to
improve efliciency and protect the environment.

The GSMILES Methodology

A useful method and system for extracting meaningful
information from the genomic and clinical data requires an
cllicient algorithm, an effective model, helptul diagnostic
measures and, most importantly, the capability to handle
multiple outcomes and outcomes of different types. The
ability to handle multiple outcomes and outcomes of difler-
ent types 1s necessary for many types of complex modeling.
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For example, genomic and clinical data are typically repre-
sented as related series of data values or profiles, requiring
a multi-variate analysis of outcomes.

The Slmllarlty Least Square Modeling Method (SMILES)
disclosed 1n U.S. Pat. No. 3,860,917 (of which the present
inventor 1s a co-inventor, and which was 1ncorporated by
reference above), 1s capable of predicting an outcome (Y) as
a Tunction of a profile (X) of related measurements and
observations based on a wviable definition of similarity
between such profiles. SMILES fails, however, to provide a
means to eflectively handle multiple outcome variables or
outcomes of different types. For multiple outcome variables,
or Y-variables, SMILES analyzes each Y-variable separately
as independent measurements or observations. Thus, one
obtains a separate model for each Y-variable. When the
Y-varniables measure the same phenomena, they likely have
induced interdependencies or communalities. It becomes
diflicult to perform analysis with separate independent mod-
cls. Nuisance and noise factors complicate this task even
turther.

GSMILES remedies this deficiency by analyzing the
Y-variables as an ensemble of related observations.
GSMILES produces a common model for all Y-variables as
a function of multiple X-variables to obtain a more eflicient
model with better leverage on common phenomena with less
noise. This aspect of GSMILES allows a user to find
strategic gene compound associations that involve multiple-
X/multiple-Y variables on noisy cell functions or responses
to stimuli.

GSMILES ftreats each profile of associated measurements
of variables as an object with three classes of information:
predictor/driver varnables (X-variables), predictee/conse-
quential variables (Y-varniables), and nuisance variables
(noise variables, known and unknown). Note that these
classes are not mutually exclusive; hence, a variable can
belong to one or more of such GSMILES classes as dictated
by each application.

GSMILES calculates similarity among all such objects
using a definition of similarity based on the X-variables.
Note that similarity may be compound, e.g., a combination
of similarity measures, where each similarity component 1s
specific to a subset of proflle X-vanables. GSMILES uses
such similarity values to predict the Y-variables. It selects a
critical subset of objects that can optimally predict the
Y-values of all objects within the precision limitations
imposed by nuisance eflects, assured by statistically valid
criteria. An 1terative algorithm as discussed below may
make the selection.

Alline prospective predictions of Y-profiles may be per-
formed to predict profiles (i.e., row vectors) in the Y-out-
come-variable matrix 340 using matched profiles 1n X-1nput-
variable matrix 240, see FIG. 2. For simplicity, assume use

of a null Model Zero. GSMILES 140 processes the function:
(1)

where 7 1s an NxM matrix of predicted Y values (where
N and M are positive integers);

S 1s an NxP matrix of similarity values between profiles
in matrix X (where N and P are positive integers, which may
further include one or more columns of Model Zero values,
as will be discussed below); and

R 1s an X-nonlinear transformation of P Y-profiles asso-
ciated with P strategic X profiles (also referred to as “a”
values, below).

The final prediction model according to this methodology
1s prospective, since each predicted row of Y 1n turn 1s used
to estimate a prospective error, the sum of squares of which

/=5R
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determine the optimal number of model terms by minimi-
zation. The transforms are optimized to minimize the least-
squares error between Z and Y. Thus, R 1s a PxM matrix of
P optimal transforms of Y-profiles and the similarity values
in each row of S are the strategic afline coetlicients for these
optimal profiles to predict the associated row 1n Y. In this
way, GSMILES not only represents Y efliciently, but reduces

noise by functional smoothing.

Equation (1) can be easily transformed into a mixture
representation by normalizing each row of S to sum to unity
as follows:

DZ=DSR (2)

where D 1s a diagonal matrix of the inverse of the sum or
cach row of matrix S.

The GSMILES methodology finds the strategic locations
in matrix X 240 and determines p to optimize the prospec-
tive representation of the Y-profiles 340, including optimi-
zation of relationships within the Y-profiles.

Referring to FIG. 3, GSMILES arranges the X-profile and
Y-profile, and also a noise profile 440 1 a matrix 300.
Noises are like hidden variables. Noises are ever present but
it 1s not known how to extract the values of these variables.
All inference models must accommodate noise. Each row of
matrix 300 represents a series of values for related variables,
¢.g., the X-values for row 1 of the matrix could be known,
measured, or inputted values (or may even be dummy
variables) which directly eflect the Y-values of row 1, which
can be thought of as output or outcome values, and wherein
the N,-values (noise) represent the noise values associated
with each row. The left-side 240 of the rows of matrix 300,
which are populated by the X variables 1n FIG. 3 define the
X-profile of the problem and the right-side (340, 440) of the
rows of matrix 300, which are populated by the Y and N,
variables 1 FIG. 3 doﬁno the Y-profile and noise assoc1atod
with the rows.

Each row of matrix 300 may be treated as a data object,
1.€., an encapsulation of related information. The GSMILES
methodology analyzes these objects and compares them
with some measure of similarity (or dissimilarity). A fun-
damental underlying assumption of the GSMILES method-
ology 1s that 11 the X values are close 1n similarity, then the
Y-values associated with those rows will also be close in
value. By processing the objects in the matrix 300, a
similarity transform matrix may be constructed using simi-
larity values between selected rows of the X-profile, as will
be described in more detail below. The X-profile objects
(rows) are used to determine similarity among one another
to produce similarity values used in the similarity transform
matrix. Similarity between rows may be calculated by many
different known similanty algorithms, including, but not
limited to Fuclidean distance, Hamming distance,
Minkowski weighted distance, or other known distance
measurement algorithms. The normalized Hamming func-
tion measures the number of bits that are dissimilar 1n two
binary sets. The Tammoto or Jaccard coellicient measures
the number of bits shared by two molecules relative to the
ones they could have 1n common. The Dice coetlicient may
also be used, as well as similarity metrics between images or
signal signatures when the input contains images or other
signal patterns, as known to those of ordinary skill 1n the art.

With any set of data being analyzed, such as the data in
matrix 300, for example, 1t has been found that certain,
select X-profiles among the objects are more critical 1n
defining the relationship of the function sought than are the

remainder of the X-profiles. GSMILES solves for these
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critical profiles that give critical information about the
relationship between the X values and the Y values.

Conceptually speaking, if a function 400 1s observed 1n a
three-dimensional space, as shown in FIG. 4, there are
certain domain locations of the function identifying features
that can be “supported” by nearby critical data values (or
profiles) 1n the X-Y space. For example, the points 410 and
420 1n FIG. 4 are such critical values 1n the X-Y space. When
these locations become the centroids of support for the range
of the function, as facilitated by similarity functions, they
tend to adequately support the total surface shape of the
range ol the function. Because of the appearance of this
conceptual model, where the function range appears some-
what like a circus tent, and the critical domain locations,
together with their extended 1impact, appear as tent poles, the
present inventors refer to the critical profiles as “tent poles™.
Of course these “tent poles™ can be positive or negative as
applied to a mathematical function. This same concept
applies to high dimensional problems and functions.
GSMILES calculates the critical profiles, which define the
locations of the *“‘tent poles”, as well as their optimized
coellicients (i.e., length or size of the tent poles).

To solve for the critical profiles, an mnitial model (called
Model Zero (Model 0) 1s inputted to the system, 1n matrix T
(See FIG. 5). Model Zero (designated as u, in FIG. 5), may
be a conventional model, conceptual model, theoretical
model, and X-profile with known Y-profile outcomes, or
some other reasonable model which characterizes a rough
approximation of the association between the X- and Y-pro-
files, but still cannot explain or account for a lot of system-
atic patterns eflecting the problem. Thus, Model Zero pre-
dicts Y (1.e., the Y wvalues in the Y-profile), but not
adequately. Alternatively, a null set could be used as Model
Zero, or a column of equal constants, such as a column with
cach row 1n the column being the value 1 (one).

A least squares regression algorithm 1s next performed to
solve for coellicients a,(see matrix o, FIG. §5) which will
provide a best fit for the use of Model zero to predict the
Y-profiles, based on the known quantities in matrix u, and
matrix 340. It should be noted here that this step of the
present ivention 1s not limited to solving by least squares
regression. Other linear regression procedures, such as
median regression, ordinal regression, distributional regres-
sion, survival regression, or other known linear regression
techniques may be utilized. Still further, non-linear regres-
sion procedures, maximum entropy procedures, mini-max
entropy procedures or other optimization procedures may be
employed. Solving for the ¢, matrix a optimizes Model
Zero to predict the Y-profile340. Then the prediction errors
(residuals) are calculated as follows:

Y-(I-a)=¢ (3)

where

Y=matrix 340;

a=ca. matrix (which 1s a 1xM vector 1n the example shown
in FIG. 5);

T=the T matnx (1.e., vector, 1n this example, although the
Model Zero profile may be a matrix having more than one
column); and

e=crror matrix, or residuals, 1n this example characteriz-
ing Model Zero with €, values.

The error matrix e rosulting from procossing,, using the
example shown m FIG. 5 1s shown i FIG. 6. Next,
GSMILES determines the row of the € matrix which has the
maximum absolute value of error. Note that for problems
where the Y-profile 1s a vector (1.e., an Nx1 matrix, 1.e.,
where M=1), the error matrix € will be a vector (1.e., an N><1
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matrix) and the maximum absolute error can be easily
determined by simply picking the largest absolute value 1n
the error vector. For the example shown 1n FIG. 5, however,
the error matrix € 1s an NxM matrix, as shown 1n FIG. 6. To
determine maximum values 1n a matrix of error values, such
as matrix e, different options are available. The simplest
approach, while not necessarily achieving the best results of
all the approaches, 1s to simply pick the maximum absolute
error value from the entire set of values displayed 1n matrix
€. Another approach 1s to construct an ensemble error for
cach row of error values i matrix €. One way of construct-
ing the ensemble errors 1s to calculate an average error for

each entire row. This results 1n an error vector, from which
the maximum absolute error can be chosen.

Whatever technique 1s used to determine the maximum
absolute error, the row from which the maximum absolute
error 1s noted and used to identify the row (X-profile) from
matrix 240, from which similarity values are calculated. The
calculated similarity values are used to populate the next
column of values 1n the matrix containing Model Zero. For
example, at this stage of the processing, the similarity values
will be used to populate the second column of the matrix,
adjacent the Model Zero values. However, this 1s an 1terative
process which can be used to populate as many columns as
necessary to produce a “good or adequate fit”, 1.¢., to refine
the model so that 1t predicts Y-profiles within acceptable
error ranges. An acceptable error range will vary depending
upon the particular problem that 1s being studied, and the
nature of the Y-profiles. For example, a model to predict
temperatures may require predictions within an error range
of £1° C. for one application, while another application for
predicting temperature may require predictions within an
error range of £0.01° C. GSMILES 1s readily adaptable to
customize a model to meet the required accuracy of the
predictions that 1t produces.

Assuming, for exemplary purposes, that the row from
which the maximum absolute error was found 1n matrix E
was the seventh, GSMILES then i1dentifies the seventh row
in matrix 240 to perform the similanty calculations from.
Similarity calculations are performed between the seventh
X-profile and each of the other X-profile rows, including the
seventh row X-profile with itself. For example, the first row
similarity value n column 2, FIG. 7 (i.e., S, ;) 1s populated
with the similarity value calculated between rows 7 and 1 of
the X-profile matrix 240. The second row similarity value in
column 2, FIG. 7 1s populated with the similarity value S, ,,
the similarity value calculated between rows 7 and 2, and so
forth. Note that row 7 1s populated with a similarity value
calculated between row 7 with itself. This will be the
maximum similarity value, as a row 1s most similar with
itsell and any replicate rows. The similarity values may be
normalized so that the maximum similarity value 1s assigned
a value of 1 (one) and the least similar value would 1n that
case be zero. As noted, row 7 was only chosen as an
example, but analogous calculations would be performed
with regard to any row 1in the matrix 240 which was
identified as corresponding to the highest maximum abso-
lute error value, as would be apparent to those of ordinary
skill 1n the art. It 1s further noted that selection does not have
to be based upon the maximum absolute error value, but may
be based on any predefined ensemble error scoring. For
example, an ensemble average absolute error, ensemble
median absolute error, ensemble mode absolute error,
ensemble weighted average absolute error, ensemble robust
average absolute error, geometric average, ensemble error
divided by standard deviation of errors of ensemble, or other
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predefined absolute error measure may be used 1n place of
the maximum absolute error or maximum ensemble absolute
CITOr.

The X-profile row selected for calculating the similarity
values marks the location of the first critical profile or “tent
pole” 1dentified by GSMILES for the model. A least squares
regression algorithm 1s again performed next, this time to
solve for coetlicients ¢, and ¢, 1n the matrix o shown 1n
FIG. 6). Note, that since the T matrix 1s now an Nx2 matrix,
that matrix o needs to be a 2xM matrix, where the first row
1s populated with the o, coethicients (1.e., 05 || Q15 . Qg
1,a), and the second row 1s populated with the o, coetlicients
(e, 0 1 A 15 O 4 The oy coeflicients that were
calculated 1n the first iteration using only Model Zero are
discarded, so that new ., coellicients are solved for, along
with o, coetlicients. These coetlicients will provide a best fit
for the use of Model Zero and the first tent pole 1n predicting
the Y-profiles. After solving for the coethicients 1n matrix o,
the prediction errors (residuals) are again calculated, using
equation (3), where o 1s a 2xM matrix in this iteration, and

T 1s an Nx2 matrnix. Fach row of a may be considered a

transform of the rows of Y. For linear regression, this
transformation 1s linear.

Again, GSMI

LES determines the row of the € matrix
which has the maximum absolute value of error, 1n a manner
as described above. Whatever technique 1s used to determine
the maximum absolute error, the row from which the maxi-
mum absolute error 1s noted and used to identily the row
(X-profile) from matrix 240, from which similarity values
are again calculated. The calculated similarity values are
used to populate the next column of values 1n the T matrix
(1n this 1teration, the third column), which 1dentifies the next
tent pole in the model. The X-profile row selected for
calculating the similarity values marks the location of the
next (second, 1n this 1teration) critical profile or “tent pole”™
identified by GSMILES for the model. A least squares
regression algorithm 1s again performed, to perform the next
iteration of the process, as described above. The GSMILES
method can 1iterate through the above-described steps until
the residuals come within the limits of the error range
desired for the particular problem that i1s being solved, 1.e.,
when the maximum error from matrix € 1n any iteration falls
below the error range. An example of an error threshold
could be 0.01 or 0.1, or whatever other error level 1s
reasonable for the problem being addressed. With each
iteration, an additional tent pole 1s added to the model,
thereby reducing the prediction error resulting in the overall
model.

Alternatively, GSMILES may continue iterations as long
as no two 1dentified tent poles have locations that are too
close to one another so as to be statistically indistinct from
one another, 1.e., significantly collinear. Put another way,
GSMILES will not use two tent poles which are highly
correlated and hence produce highly correlated similarity
columns, 1.e., which are collinear or nearly collinear (e.g.,
correlation squared (R*)>95%, of the two similarity columns
produced by the two X-profiles (tent pole locations). How-
ever, even 11 an X-profile 1s dissimilar (not near) all selected
profiles 1n the model, 1t may still sufler collinearity problems
with columns i the T-matrix as 1s. Hence, a tent-pole
location 1s added to the model only 1f 1t passes both
collinearity filters.

When a tent pole (row from matrix 240) 1s 1dentified from
the maximum absolute error in an € matrix that 1s determined
to be too close (nearly collinear) to a previously selected tent
pole, GSMILES rejects this choice and moves to the next
largest maximum absolute error value 1n that E matrix. The
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row in matrix 240 which corresponds to the next largest
maximum absolute error 1s then examined with regard to the
previously selected tent poles, by referring to the similarity
column created for each respective selected X-profile. If this
new row describes a tent pole which i1s not collinear or
nearly collinear with a previously selected tent pole, then the
calculated similarity values are inserted into a new column
in matrix T and GSMILES processes another iteration. On
the other hand, if 1t 1s determined that this row i1s nearly
collinear or collinear with a previously chosen tent pole,
GSMILES goes back to the e€ matrix to select the next
highest absolute error value. GSMILES iterates through the
error selection process until a tent pole 1s found which 1s not
collinear or nearly collinear with a previously selected tent
pole, or until GSMILES has exhausted all rows of the error
matrix €. When all rows of an error matrix € have been
exhausted, the model has its full set of tent poles and no
more 1terations of the above steps are processed for this
model.

The last calculated a matrix (o profile from the last
iteration performed by GSMILES) contains the values that
are used 1n the model for predicting the Y-profile with an
X-profile input. Thus, once GSMILES determines the criti-
cal support profiles and the a values associated with them,
the model can be used to predict the Y-profile for a new
X-profile.

Referring now to FIG. 8, an example 1s shown wherein a
new X-profile (referred to as X*) 1s inputted to GSMILES in
order to predict a Y-Profile for the same. For simplicity of
explanation, this example uses only two tent poles, together
with Model Zero, to characterize the GSMILES model. In
practice, there will generally be many more tent poles
employed. As a result, the a matrix 1n this example 1s a 3xM
matrix, as shown in FIG. 8, and we have assumed, for
example’s sake, that the second profile 1s defined by the third
row X-profile of the X-profile matrix 240. Therefore, the
similarity values 1 column 3 of matrix T are populated by
similarity values between row three of the X-profile matrix
240 and all rows 1n the S-profile matrix 240.

Again for sumplicity, the example uses only a single X*
profile, so that only a single row 1s added to the X-profile
240, making it an (N+1)xn matrix, with the N+1% row being
populated with the X* profile values, although GSMILES 1s
capable of handling multiple rows of X-profiles simulta-
neously, as would be readily apparent to those of ordinary
skill in the art 1n view of the description of FIGS. 3—7 above.

Because the X-profile matrix has been expanded to N+1
rows, Model Zero 1n this case will also contain N+1 com-
ponents (1.e., 1s an (N+1)x1 vector)) as shown in FIG. 8. The
tent pole similarity values for tent poles one and two (1.e.,
columns 2 and 3) of the T matrix are populated with the
previously calculated similarity values for rows 1-N. Row
N+1 of the second column i1s populated with a similarity
value found by calculating the similarnty between row 7 and
row N+1 (i.e., the X* profile) of the new X-profile matrix
240. Similarly, Row N+1 of the third column 1s populated
with a similarity value found by calculating the similarity
between row 7 and row N+1 (1.e., the X* profile) of the new
X-profile matrix 240.

GSMILES then utilizes the o matrix to solve for the Y .,
profile using the X,, , profile (1.e., X* profile) using the

following equation:

T-a=Y+e (4)

where, for this example,
T=the N+1*° row of the T matrix shown in FIG. 8,
a—the o matrix shown in FIG. 8,
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Y=the N+1% row of the matrix 340 shown in FIG. 8,

e=a vector of M error values associated with the Y-profile
outcome.

The error values will be within the acceptable range of
permitted error designed into the GSMILES predictor
according to the iterations performed 1n determining the tent
poles as described above.

Typically, GSMILES overfits the data, 1.e., noise are {it as
systematic eflects when in truth they tend to be random
ellects. The GSMILES model 1s timmed back to the mini-
mum of the sum of squared prospective ensemble errors to
optimize prospective predictions, 1.€., to remove tent poles
that contribute to over fitting of the model to the data used
to create the model, where even the noise associated with
this data will tend to be modeled with too many tent poles.

Once the model 1s determined, the Z-columns of distri-
bution-based U’s are treated as linear score functions where
the associated distribution, such as the binomial logistic
model, for example, assigns probability to each of the score
values.

The 1nitial such Y-score function 1s estimated by proper-
ties of the associated distribution, e.g., for a two-category
logistic, assign the value +1 for one class and the value -1
for the other class. Another method uses a high-order
polynomial in a conventional distribution analysis to pro-
vide the score vector. The high order polynomial 1s useless
for making any type of predictions however. The GSMILES
model according to the present invention predicts this score
vector, thereby producing a model with high quality and
ellective prediction properties. The GSMILES model can be
further optimized by using the critical S-columns of the
similarity matrix directly in the distributional optimization
that could also include conventional X-variables and/or
Model Zero. Hence, GSMILES provides a manageable set
ol high-leverage terms for distributional optimizations such
as provided by generalized linear, mixed, logistic, ordinal,
and survival model regression applications. In this fashion,
GSMILES 1s not restricted to univariate binomial logistic
distributions, because GSMILES can predict multiple col-
umns of Y (in the Y-profile 340). Thus, GSMILES can
simultaneously perform logistic regression, ordinal regres-
sion, survival regression, and other regression procedures
involving multiple vaniable outcomes (multiple responses)
as mediated by the score-function device. Some score func-
tions produced by GSMILES do not require distributional
models, but are useable as 1s. For example, for continuous
variables, such as temperature, these outcomes can be ana-
lyzed by directly using the score function, without the need
for logistic analysis. Other non-continuous variable out-
comes may also not need logistic analysis, but may be used
directly from a score function. For logistic regression,
GSMILES assumes a binomial distribution pattern for scor-
ing, while a multinomial distribution 1s assumed for ordinal
regression and a Gaussian distribution 1s assumed for many
other types of regression (continuous variables).

GSMILES can also fit disparate properties at the same
time and provide score functions for them. For example, the
Y columns may include distributional, text and continuous
variables, all within the same matrix, which can be predicted
by the model according to the present invention.

GSMILES can also perform predictions and similarity
calculations on textual values. When text variables are
included i1n the X-profile and/or the Y-profile, similarity
calculations are performed among the rows of text, so that
similarity values are also placed into the Y-profile, where the
regression 1s performed with both predictor similarity values
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and predictee similarity values (1.e., similarity values are
inserted on both sides of the equation, both 1n the X-profile,
as well as the Y-profile).

The GSMILES methodology can also be performed on a
basis of dissimilarity, by forming a dissimilarity matrix
according to the same techniques described above. Since
dissimilarity, or distance has an inverse relationship to
similarity, one of ordinary skill 1in the art would readily be
able to apply the techniques disclosed herein to form a
GSMILES model based upon dissimilarity between the rows
of the X-profile.

[ .eave-One-Out Cross-Validation

When modeling according to the GSMILES methodol-
ogy, as with any type of prediction model, both fit error
(training error) and validation error (test error) are encoun-
tered. In this case, fit error i1s the error that results 1n the €
matrix at the final iteration of determining the o matrix
according to the above-described methodology, as
GSMILES optimizes the training set (Nxn matrix 240) to
predict the training set Y-profile 340 (NxM matrix). Valida-
tion error 1s the error resulting from applying the model to
an independent data set. For example, the validation error
resulting 1n the example described above with regard to FIG.
8 1s the € vector containing the M values of error associated
with the N+1* row of the matrix 340 shown in FIG. 8.

In general, to determine test or validation error, the model
determined with the training set 1s applied to an independent
set ol data (the test or validation set) which has known
Y-outcome values. The model 1s applied to the X-profile of
the test set to determine the Y-profile. The calculated Y-pro-
file 1s then compared with the known Y-profile to calculate
the test or validation error, and the test or validation error 1s
then examined to determine whether 1t 1s within the preset,
acceptable range of error permitted by the model. IT the test
or validation error 1s within the predefined limits of the error
range, than the model passes the validation test. Otherwise,
it may be determined that the model needs further revision,
or other factors prevent the model from being used with the
test profile. For example, the test profile may contain some
X values that are outside the range of X-values that the
present model can effectively form predictions on. Some of
the X-varniables may have little association with the Y-pro-
files and hence they contribute non-productive variations
thereby reducing the efliciency of the GSMILES modeling,
process. Hence, more data would be required to randomize
out the useless variations of such non-productive X-vari-
ables. Optionally, one can identify and eliminate such noisy
X-variables, since they tend to have very low rank via the
Marquardt-Levenberg (ML) ranking method described 1n
this document. To identity a rank threshold between legiti-
mate and noisy X-variables, an intentional noisy variable
may be included in the X-profile and 1ts ML rank noted.
Repetition of this procedure with alternate versions of the
noisy X-column, e.g., by random number generations, pro-
duces a distribution of such noise ranks, whose statistical
properties may be used to set an X-noise threshold.

The leave-one-out cross-validation technique involves
estimating the validation error through use of the training
set. As an example, assuming that matrix 240,340 in FIG. 3
1s the mitial training set, the leave-one-out technique
involves extracting one of the rows of the training set prior
to carrying out the GSMILES methodology to solve for
similarity and the o matrix that are described above. So, 1n
this case, the “altered” training set will include an X-profile
which 1s an (N-1)xn matrix and a Y-profile which 1s an
(N-1)xM matrix. The extracted row (for a non-limiting
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example, we can assume that row 5 was extracted) becomes
the validation set that will be used after solving for the
GSMILES model.

Using the altered training data set, an ¢ matrix 1s solved
for using the techniques described above with regard to the
GSMILES least squares methodology. After determining the
o. matrix, this ¢ matrix 1s then used to predict the outcome
for the extracted row (1.e., the test set, row 3 1n the current
example). Because the Y-profile of the test set 1s known, the
known Y-values can be compared with the predicted Y-val-
ues to determine the validation error and to determine
whether this validation error 1s within the acceptable range
ol error.

The same procedure may be carried out for each row of
the original training data set 240,340, one row at a time. In
this way, each profile used 1n the training data set can be
used independently as a validation data set. By summing the
squares ol the errors dertved from each extracted row and
dividing by the number or rows, a variance can be deter-
mined for the validation error (i.e., validation variance).
However, to require validation error to be determined by
completely processing through the GSMILES methodology
to mdependently determine an o matrix for each extracted
row, 1s to require a great deal of processing time, particularly
for typical data sets which may contain thousands of rows.
This 1s both time consuming and expensive, and therefore
inethicient.

For simplicity and clarity, standard notation 1s used 1n the
following discussion wherein a single variable denoted y 1s
a Tunction of a vector of vaniables denoted by x. Note that
this x actually represents the T-rows in the GSMILES
formulism referred to above. Without loss of generality
consider a single y-variable as a function of multiple x-vari-
ables. A generalized solution for the Leave-One-Out (LOO)
cross-validation statistic for a model 1(x; &) trained on a data
set D={(x,, v,), . . . .X,.¥,)}. X,&ER", v, eR, where a single
data point (X, y,) 1s removed, results 1n a training set D, and
a predictor 1.(x, ). The diflerence between the observation
y. and what a model predicts 1n the absence of (x,, y,) 1s
€.=y—1.(x,, ). The Leave-One-Out (LLOO) cross-validation
statistic predicts the variance in this error:

(5)
C’lmo =

H
2
ﬂr’i:l

Rather than evaluating LOO by retraining the model n
times, a formulation which relates o, - to the quantities
already used 1n training 1(x; ) 1s needed 1n order to avoid
the inefliciencies and expense of completely processing
through the GSMILES methodology to independently deter-
mine an & vector for each extracted row, as alluded to above.
This is possible for linear models f(x; a)=a’x, aeR™. If the
data matrix and response vector are defined as:

rx{ﬁ Fy (6)
xg Y2

X =] y=1 .
k_xiﬂ) \ Yn /

then the linear least squares solution ¢. and corresponding
residual p are:

a=(X"X)"' X"y (7)
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p=y-Xa (3)

=p-X(X'X)" X'y (9)

=(I-X(X*X)"1XDy (10)

=Py (11)

where P=I-X(X"X)"1X" is the nxn projection matrix. If
the first data point 1s partitioned from the data matrix, the
abbreviated training set defines a matrix X and response
vector y related to the original as follows:

(12)

XIX=X"X4x,1x, (13)

XT}’:)?I;‘F}’FH (14)

The least squares solution of the truncated data set 1s:
XXXy (15)

The prediction error resulting from the removal of the first
row 1s therefore:

(16)

The relationships defined 1n equations (12), (13) and (14)

are next used to replace X, y and a. First, the Sherman-
Morrison-Woodbury formula establishes that:

=T
€= V,—a X

(17)

XTxX) e (xTx)!

XTx —xTxp) " =(xTx) + —
1—x{ (XTX) " x

For the sake of abbreviation, define F=X'X)",

d,=x,’Fx,, and u,=1-d,. Note that u, and d, are scalars.
Substituting these relationships gives:

) (18)

1 T T
Fra—Fxx FI(Xy—yx)
Uy

| 19
= —[w F + Fxyx{ F)(X"y = y1x)) -

Uy
1 (20)
= —[u F(XTy = yoxp) + Py F(XTy = yyx)]
1
1 21
= — [ FX"y—wy Fx; + Fx;x{ FX"y — y1d, Fx;] .
Uy

Returning to the prediction error of equation (16) and
substituting with the above developed relationship gives:

(16)

=T
€=V, —a X

I'_

V=X U (22)

= Hi(ulyl — x| (@) (2)
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-continued

1 24
:H—[ulyl—ulx{FXTy+ (24)
1

ulylx{Fxl — X{FXLXTFXT}’ + ydlx{Fxl]

1 (25)
) a[ﬂl}fl —wxi FX y+uyidi —dix{ FX"y + ydf ]
1 (26)
) a[ﬂl}fl(l +dp) = (u +d)x FX Ty + y,d7]
1 (27)
= —[(L=diyi(L+d)+ yidf = > FXTy)
i 28
— a[yl(l —di) + yidi —xIFXTy) =
1 (29)
— —[yl —X{FXT}J]
Uj
=Ty )
1 —xT(XTx)
By noting that y,=e,”y and x,”=e,”X, where
e,=[100...0]", gives:
Ty — e x(xTx) " xTy (31)
o =
LT T X(XTX) X e,
el (1= X(X"x)" xT)y (52)
el = X(XTX) 1 XT)e,
E'pr (33)
- E{Pel
_elp G
- el Pe,
_ M (35)
el Pe,
_ A 50
P

From this it can be observed that the prediction error
resulting from the removal of the first data point 1s the ratio
of the first element of the residual and the first diagonal
clement of the projection matrix. Since any data point (x.,y,)
can be permuted to the first row without changing the
solution, the conclusion 1s reached, without any loss of
generality, that:

(37)

(38)

In order to compute o, > in the context of sequential
least-squares processing such as used i the GSMILES
methodology (because later 1t 1s a usetul metric for trimming
to the optimal subset of basis vectors (i.e., tent poles)), in
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cach iteration k+1 of the algorithm, a column a,_ , 1s added
to the data matrix X, (e.g., such as data matrix 240). This
gives the general formula:

Xk+l:[Xkak+l] (39)

When n 1s large, forming the projection matrix P 1n order
to extract 1its diagonal elements 1s impractical, requiring nxn
memory, which could exceed the limits of current hardware.
It 1s also computationally expensive, making it infeasible to
recompute at every iteration k. Instead, the QR factorization
of X, 1s computed at every iteration, where:

R, (40)
Xy = Qi Ry :Qk[ . ]

Where X, eR™*, Q.eR™”, R.eR™*, R, eR"*. R, is upper
triangular and Q, 1s orthogonal. By design, it 1s also non-
singular. Q,” is a product of Householder matrices, as
follows:

Q. =HH; ... H,

Each Householder matrix 1s dependent only on v, eR”, the
Householder vector:

(41)

H,=I-T kvkka (42)

Where T,=2/v,'v,. An efficient implementation of the
algorithm will not store Q, or any of 1ts factors explicitly.
Only the product of Q, with some n vector g, Q,” g, or Qe
1s needed. For this purpose, storing the set of Householder
vectors {v,, v,, . .. v, } is sufficient. By design, v, has the
following special structure: v,.’=[0 ... 0 1 B ... B], where
the O elements extend over k-1 columns and the B elements
extend over n—-k columns. A recursive relationship for the
projection matrix P can now be shown at the k™ iteration, P, :

P=I-X, (X 'X) 'X," (43)
=1~ (ORD(R O OR) (RSO (44)
=L ~ORR Ry (RSO (45)
R Yo o+ R \Y! (40)
:I”_Q‘E‘[ ) ][[REO][ 0 ]] [REO]QE]
Re N r 1. (47)
:fﬂ—Qk( N ](RER;{) [REO]QE]
=1, - Qk[ Rk(R:Rk ) Re 0 ] E] -
0 0
— = 1 =T ~l=T (49)
. Qk[ Re(Ro) (R Ry 0 ]QE]
0 0
i, 0 (50)
=1H—Qk( . G]Q;{]
I, 0 (51)
=1, —H... Hk—lHk[ 3 O]Hka_l ... Hy
Furthermore,
(92)

Iy 0O . iy 0O .
Hk[ ]Hk=(fn—TkWU[0 D](fn—THm)=

0 0O
I 0O r I 0O fp 0O .
[U 0]—?}%%(@ OJ—TR[O O]Vk‘v’k
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-continued
I, 0 (33)
+TEy, v{( 0 0 }vk vi
As a result of the special structure of v,
[ I, 0O ] ; (54)
Vv, = e, an
g g )k T e
el v, =1 (33)
and thus,
I, 0 I, 0 (30)
HR(O O]Hk =[O U]_Tkka{_TRERVE‘FTEV&EEVRVE
I, 0 (57)
:( ‘ ]—Tkvkef—TkEkvf+vakvE
0 0
Ly 0O (58)
:( kOl 0}+€k€E—Tkvk€E—TkekvE+vakvf
Iier O . (59)
= + (e — Ty )leg — Ty vy)
0 0
( Iy 0O } T (60)
= R4
00 k Z
where z,=¢,-T,v,. Returning to P,, we now have:
I O . (61)
Po=1f,—Hy... H 4 0 0 + Zp 3y Hy_ ... Hy
] — (62)
Ik—l 0 T
Hl ---Hk—l 0 0 Hk—l Hl _Hl ---Hk—leZk Hk—l Hl
:Pk—l_Qk—lszkTQk—IT (63)
=F k—l—WkaT (64)

where w,=Q,_,z.. Finally, the i” diagonal element of the
projection matrix 1s

(Pri=e;" (Pr_1—wpwy e (65)
=(Py_1)—e; wywy'e; (66)
=(Py_ )= (W) (67)
where
2 68
I — (69)
e 11V (69)
Wi Qr—1Zx (70)
and
P=I (71)
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Hence, one has an LOO sum of squared residuals for
every y-column 1in matrix Y. Optionally, using an ensemble
error for each row produces an ensemble LOO sum of
squared residuals as 1s used by GSMILES.

Referring now to FIG. 9, a flow chart 900 1dentifies some
of the important process steps 1n one example of an 1terative
procedure employed by GSMILES 1n determining a predic-
tor model. At step 902, GSMILES module 140 receives
inputted data which has been preprocessed according to one
or more of the techniques described above. Each profile of
associated measurements of variables of the mputted data 1s
treated as an object by GSMILES at step 904, with poten-
tially three classes of information: predictor/driver variables
(X-variables), predictee/consequential varniables (Y-vari-
ables), and nuisance varnables (noise variables, known and
unknown). Note that these classes are not mutually exclu-
sive; hence, a varniable can belong to one or more of these
GSMILES classes as dictated by the particular analysis
being processed.

GSMILES calculates similarity among all objects at step
906, according to the techniques described above. Note that
similarity may be compound, e.g., a combination of simi-
larity measures, where each similarity component 1s specific
to a subset of X-profile variables. Note {further, that
GSMILES may just as well calculate dissimilarity among all
objects to arrive at the same results, but for sake of sim-
plicity, only the similarity calculation method 1s described
here, as an example. It would be readily apparent to those of
ordinary skill 1n the statistic arts, as to how to proceed on a
basis using dissimilarity. GSMILES uses the similarity val-
ues to predict the Y-variables, as described above. However,
GSMILES 1s not limited to predicting Y-variables, but may
also be used to predict the X-vanables themselves, via the
similarity matrix, an operation that functions as a noise filter,
or smoothing function, to arrive at a more stable set of X
variables. GSMILES may also be used to solve for X-vari-
ables and Y-variables simultancously. When text vaniables
are 1nvolved, these variables may appear 1n one or both of
X- and Y-profiles. GSMILES calculates similarity among,
the text varniables, and provides similarity values for these
text values with regard to the X-profile, as well as the
Y-profile when text 1s present 1n the Y-profile. Hence, the set
of text Y-variables are replaced by a similarity column to
form the new Y-matrix, Y2-matnx.

Using the similarity values, GSMILES selects a critical
subset of objects (1dentifying the locations of the tent poles)
at step 908, that can optimally predict the Y-values (or other
values being solved for) of all objects within the precision
limitations 1mposed by nuisance eflects, assured by statis-
tically valid criteria. The selection may be made by an
iterative algorithm as was discussed above, and which 1s
turther referred to below.

Upon 1dentification of the tent pole locations and simi-
larity values representing the tent poles, as well as an
estimation of the X-nonlinear transformation (“c values™) of
the Y-profiles associated with the strategic X-profiles (tent
poles) by least squares regression or other optimization
technique, GSMILES maximizes the number of tent poles at
step 910 to minimize the sum of squared prospective errors
between the X- and Y-profiles. At step 912, GSMILES then
trims back the number of tent poles (by “trimming”, as
described above), where the GSMILES model 1s trimmed
back to the minimum of the prospective sum of squares to
optimize prospective predictions, 1.¢., to remove tent poles
that contribute to over fitting of the model to the data used
to create the model, where even the noise associated with
this data will tend to be modeled with too many tent poles.
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Trimming may be carried out with the aid of Leave-One-Out
cross validation techniques, as described above, or by other
techniques designed to compare training error (fit error) with
validation error (test error) to optimize the model.

FIGS. 11 and 12 illustrate an example of such compari-
son. FIG. 11 plots 1100 the maximum absolute (ensemble)
error versus the number of tent poles used 1n developing the
model (traiming or fit error versus the number of tent poles).
It can be observed in FIG. 11, that the error asymptotically
approaches a perfect it as the number of poles 1s increased.
FIG. 12 graphs 1200 the square root of the sum of the
squared LOO errors divided by the number of terms squared
and plot this against the number of tent poles, as a measure
ol test or validation error (described above). It can be seen
from FIG. 12, that somewhere 1n the range of 6070 tent
poles, the error terms stop decreasing and begin to rapidly
increase. By comparing the two charts of FIGS. 11 and 12,
GSMILES makes the determination to trim the number of
poles to the number that correlates to the location of the
chart of FIG. 12 where the error starts to diverge (some-
where 1n the range of 6070 1n FIG. 12, although GSMILES
would be able to accurately 1dentity the number where the
minimum occurs, which 1s the point where divergence
begins). The poles beyond this number are those that con-
tribute to fitting the noise or nuisance variables 1n the chart
of FIG. 11.

After optimization of the model, the model 1s ready to be
used 1n calculating predictions at step 914. Upon calculating
prediction values, the present invention may optionally
employ a scoring method. Score functions are optimized for
every outcome in the modeling process. For example, mul-
tivariate probabilities of survival and/or categorical out-
comes can be optimally assigned to the GSMILES scores. If
approprate, the distributional property of each outcome 1s
then used to optimally assign a probability function to its
score function. The modeled score/probability functions
may be used to find regions of profiles that satisfy all
criteria/specifications placed upon the multiple outcomes.
The profile components can be ranked according to their
importance to the derived multi-functionality.

FIG. 10 1s a flow chart 1000 representing some of the
important process steps 1n one example ol an iterative
algorithm that GSMILES employs to select the columns of
a similarity matrix, such as similarity matrix T described
above. To solve for the critical profiles, an mitial model (i.e.,
Model Zero) 1s inputted to the system at step 1002, 1n matrix
T, as described above with regard to FIG. 5. A least squares
regression 1s next performed at step 1004 to solve for the o
coeflicients (1n this 1teration, 1t 1s the o, coetlicients) which
provide a best fit for the use of the model (which includes
only Model Zero 1n this iteration) to predict the Y-profiles
(or X-profiles or X- and Y-profiles, or whatever the output
variables have been defined as, as discussed above).

Next, the residuals (prediction errors €) are calculated at
step 1006, as described 1n detail above with regard to FIGS.
5—6. The residual values are then analyzed by GSMILES to
determine the absolute error value that meets a predefined
selection criteria. As described above, one example of a
predefined selection criterion 1s maximum absolute error,
which may be simply selected from the residuals when the
residual 1s a vector. However, when the residuals take the
form of a matrix, as 1n FIG. 6, an ensemble error 1s
calculated for each row of the matrix by GSMILES, where
the ensemble error 1s defined to leverage communalities. The
ensemble errors are then used 1n selecting according to the
selection criteria. Examples of ensemble error calculations
are described above. Although the above examples use
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maximum absolute error as the selection criterion, other
criteria may be alternatively used. Examples of alternative
criteria are mean (ensemble) absolute error, median (en-
semble) absolute error, mode (ensemble) absolute error,
weilghted average (ensemble) absolute error, robust average
(ensemble) absolute error, or other predefined error measure.
The residual error value (or ensemble residual error value)
meeting the selection criterion 1s i1dentified at step 1008.

GSMILES then selects the X-profile row from the input
matrix (e.g., matrix 240) that corresponds to the row of the
residual matrix from which the residual error (or ensemble
error) was selected. This 1dentifies a potential location of a
tent pole to be used 1n the model. At step 1012, GSMILES
then calculates similarity (or dissimilarity) values between
the selected X-profile row and each row of the input matrix
(including the selected row) and uses these similarity values
to populate the next column of the similarnty matrix T,
assuming that the selected X-profile row 1s not too close 1n
its values (e.g., collinear or nearly collinear) with another
X-profile row that has already been previously selected, as
determined 1n step 1014.

If 1t 1s determined that the values are not collinear or
nearly collinear with a previously selected tent pole profile,
then the similarity values calculated 1n step 1012 are input-
ted to the next column of similarity matrix T at step 1016.
The process then returns to step 1004 to perform another
least squares regression using the new similarity matrix. If
the column of the selected row selected 1s determined to be
collinear or nearly collinear with Model Zero and all other
columns of matrix T (from previously selected X-profile
rows), via step 1014, GSMILES rejects the currently
selected X-profile row and does not use it for a tent pole (of
course, 1t wouldn’t determine this in the first iteration if
Model Zero were selected as a null set, since there would be
no previously selected rows). Then GSMILES determines
whether there are any remaining rows of the X-profile which
have not already been selected and considered at step 1018.
It all rows have not yet been considered, then GSMILES
goes back to the residual error values, and selects the next
error (or ensemble) error value that 1s next closest to the
selection criterion at step 1020. For example, 1 the selection
criterion 1s maximum absolute value, GSMILES would
select the row of the residual values that has the second
highest absolute error at this stage of the cycle.

Processing then returns to step 1012 to calculate similarity
values for the newly selected row. This subroutine 1s
repeated until a new tent pole 1s selected which 1s not
collinear or nearly collinear with Model Zero and all pre-
vious T-columns, or until it 1s determined at step 1018 that
all rows have been considered. When all rows have been
considered, the similarity matrix has been completed, and no
more tent poles are added.

An optional stopping method 1s shown in step 1009,
where, after the step of determining the absolute error or
ensemble error value that meets the selection criteria in step
1008, GSMILES determined whether the selected absolute
error value 1s less than or equal to a predefined error
threshold for the current model. 11 the selected error value 1s
less than or equal to the predefined error threshold, then
GSMILES determines that the similarity matrix has been
completed, and no more tent poles are added. I the selected
error value 1s greater than the predefined error threshold,
then processing continues to step 1010. Note that step 1009
can be used 1n conjunction with steps 1014, 1018 and 1020,
or as an alternative to these steps.

As alluded to above, the GSMILES predictor model can

be used to fit a matrix to a matrnx, e.g. to it a matrix of
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X-profiles to itselt, inherently using eigenvalue analysis and
partial least squares processing. Thus, the X-profile values
may be used to it themselves through a one dimensional
linear transformation, 1.€., a bottleneck, based on the largest
singular-value eigenvalue of that matrix. Using the tech-
niques described above, the same procedure 1s used to
develop a similarity matrix, only the X-profile matrix
replaces the Y-profile matrix referred to above. This tech-
nique 1s useful for situations where some of the X values are
missing 1n the X-profile (missing data), for example. In these
situations, a row of X-profile data may contain known,
usetul values that the researcher doesn’t necessarily want to
throw out just because all values of that row are not present.
In such an instance, imputation data may be employed,
where GSMILES (or the user) puts 1n some estimates of
what the missing values are. Then GSMILES can use the
completed X-profile matrix to predict itself. This produces
predictions for the missing values which are different from
the estimates that were put in. The predictions are better,
because they are more consistent with all the values 1n the
matrix, because all of the other values in the matrix were
used to determine what the missing value predictions are.
Initial estimates of the missing values may be average X
values, or some other starting values which are reasonable
for the particular application being studied. When the pre-
dictions are outputted from GSMILES, they can then be
plugged 1nto the missing data locations, and the process may
be repeated to get more refined predictions. Iterations may
be performed until differences between the current replace-
ment modifications and the previous iteration of replacement
modifications are less than a pre-defined threshold value of
correction difference.

Another use for this type of processing 1s to use 1t as an
cllective noise filter for the X-profile, wherein cycling the
X-profile data through GSMILES as described above
(whether there 1s missing data or not) eflectively smoothes
the X-profile function, reduce noise levels and acting as a
filter. This results 1 a “cleaner” X-profile.

Still turther, GSMILES may be used to predict both X-
and Y-profiles simultaneously, using the X-profile also to
produce tent poles. This again 1s related to eigenvalue
analysis and partial least squares processing, and dimen-
sional reduction or bottlenecking transformations. Note that
GSMILES inherently produces a nonlinear analogy of par-
tial least squares. However, partial least squares processing
may possibly incorrectly match information (eigenvalues) of
the X- and Y-matrices. To prevent this possibility, GSMILES
may optionally use the X-profile matrix to simultaneously
predict both X- and Y-values 1n the form of a combined
matrix, either stacked vertically or concatenated horizon-
tally. If the relative weight of each matrix within the
combination 1s about equal, then one achieves correct
matching of the eigenvalues. The nonlinear version of this
method 1s accomplished by using the X-profile to predict
both the X- and Y-profiles using GSMILES.

Still further, 1t 1s possible to simultaneously remove noise,
impute missing X-values, and analyze causal relationships
between the rows (profiles) of the concatenated version X/Y
of the two matrices (X- and Y-profiles), by using GSMILES
to model X/Y as both mput and output. Optionally to
enhance causal leverage, GSMILES i1s not allowed to use
Y-profiles 1n the input X/Y for tent-pole selection. Hence,
strategic profiles may be found 1n the X-profile part of the
X/Y mput matrix to optimally predict all profiles 1n X
stacked on Y, symbolized by X/Y. GSMILES can then
cluster the resulting profiles in the prediction-enhanced X/Y

matrix. This 1s a form of synchronization that tends to put
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associated heterogeneous profiles such as phenotypic prop-
erties versus gene-expression properties, for example, nto
the same cluster. This method 1s useful to i1dentity gene
expression profiles and compound activity profiles that tend
to synchronize or anti-synchromize together, suggesting
some kind of interaction between the genes and compounds
in each cluster.

The importance of each X-variable 1s determined by the
Marquardt-Levenberg (ML) method applied to the
GSMILES model. Hence, this process 1s leveraged by all
Y-variables and their internal relationships, such as commu-
nalities induced by common phenomena, which common
phenomena are often unknown. GSMILES may multiply a
coellicient onto each variable to express the ellipticity of the
basis set as a function of the X space. Typically, these
coellicients are assumed to be constant with a value of unity,
1.€., signifying global radial symmetry over the X space. The
Marquardt-Levenberg algorithm can be used to test this
assumption. A byproduct of use of the Marquardt-Levenberg
algorithm 1n this manner 1s the model leverage associated
with each coellicient and hence, each varniable. This leverage
may be used to rank the X-variables.

The GSMILES nodes (tent poles) are localized basis
functions based on similarity between locations in the model
domain (X-space). The spans of influence of each basis
function are determined by each function’s particular decay
constants. The bigger a constant 1s, the faster the decay, and
hence the smaller the 1influence region of the node surround-
ing 1ts domain location. The best decay value depends both
on the density of data adjacent to the node location, clus-
tering properties of the data, and the functional complexity
of the Y-ensemble there. For example, 11 the Y-ensemble 1s
essentially constant 1n the domain region containing the
node location, then all adjacent data are essentially repli-
cates. Hence, the node function should essentially average
these adjacent Y-values. However, beyond such adjacent
data, the node influence should decay appropriately to
maintain 1ts localized status. If decay 1s too fast, then the
basis function begins to act like a delta function or dummy
spike variable and cannot represent the possible systematic
regional trends. If decay 1s too slow, the basis function
begins to act like a constant. The same concept applies to
data clusters 1n place of individual data points. In that
respect, note that individual data points may be considered
as clusters of size or membership of one element.

To determine appropriate decay constants for each
domain location 1n the data, GSMILES determines the
working dimension of the domain at each data location, and
then computes a domain simplex of data adjacent to each
such location. The decay constant for each location 1s set to
the inverse of the largest of the dissimilarity values between
cach location and the simplex of adjacent data. This nor-
malizes the dissimilarity function for each node according to
the data density at the node. In this case, the normalized
dissimilarity becomes unity at the most dissimilar location
within the stmplex of adjacent data for each location 1n the
domain (X-space) of the data. Optionally, GSMILES can
add a few points (degrees of freedom) of data to each
simplex to form a complex. However, too few points can
cause “data clumping” and too many points can compensate
the eflicacy of GSMILES. Data clumping occurs when the
decay constant 1s too high for a particular data location of a
data point or cluster of data points, so that 1t tends to be
isolated from the rest of the data and cannot link properly
due to insuflicient overlap with other nodes. This results 1n
a spike node at that location that cannot interpolate or predict
properly within its adjacent domain region. In summary,
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data clumping can be localized as with singular data points,
or 1t can be more global 1n terms of distribution of data
clusters.

While the present invention has been described with
reference to the specific embodiments thereof, 1t should be
understood by those skilled 1n the art that various changes
may be made and equivalents may be substituted without

departing from the true spirit and scope of the mnvention. In
addition, many modifications may be made to adapt a
particular situation, system, process, process step or steps,
algorithm, hardware or soitware, to the objective, spirit and
scope of the present invention. All such modifications are
intended to be within the scope of the claims appended
hereto.

That which 1s claimed 1s:

1. Amethod of generating a predictor model for predicting
multivariable outcomes based upon multivariable inputs
with consideration of nuisance variables, said method com-
prising the steps of:

a) defining an 1mitial model as Model Zero and inputting

Model Zero as column one of a similarity matrix T;

b) performing an optimization procedure to solve for
matrix values of an . matrix which 1s a transformation
of outcome profiles associated with input profiles,
wherein the outcome profiles are calculatable for con-
tinuous variables, logistic variables, and ordinal vari-
ables;

¢) calculating a residual matrix € based on the difference
between the actual outcome values and the predicted
outcome values determined through a product of matrix
T and matnx «a;

d) selecting a row of the residual matrix € which contains
an error value most closely matching a pre-defined
error criterion;

¢) 1dentitying a row from a matrix of the multivariable
inputs which corresponds to the selected row from the
residual matrix €;

1) calculating similarity values between the 1dentified row
and each of the rows 1n the matrix of the multivariable
inputs, including the identified row with 1tself;

g) populating the next column of similarity matrix T with
the calculated similarity values 11 it 1s determined that
the 1dentified row 1s not collinear or nearly collinear
with any previously 1dentified row the similarity values
for which were used to populate a previous column of
similarity matrix T;

h) repeating steps b) through g) until a predefined stop-
ping criterion has been reached; and

1) performing at least one of storing and outputting the
predictor model defined by the similarity matrix T
resulting from carrying out steps (a)—(h).

2. The method of claim 1, wherein the step of performing
an optimization procedure comprises performing a least
squares regression procedure.

3. Amethod comprising forwarding a result obtained from
the method of claim 1, to a remote location.

4. A method comprising transmitting data representing a
result obtained from the method of claim 1 to a remote
location.

5. A method comprising recerving a result obtained from
a method of claim 1 from a remote location.

6. The method of claim 1, wherein the predefined stopping
criterion comprises a determination that all error criteria of
the residual matrix are within bounds of a predefined error
threshold having been predefined as acceptable for an
intended application of the model.
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7. The method of claim 1, wherein the predefined stopping
criterion comprises determiming that all remaining rows of
the matrix ol multivariable inputs which have not been used
to calculate similarity values to populate a column of matrix
T are collinear or nearly collinecar with at least one of the
rows of the matrix of multivariable inputs which have been
used to calculate similarity values to populate a column of
matrix T.

8. The method of claim 1, further comprising trimming
the number of columns in the T matrix to an optimized
mimmum number to optimize prospective predictions.

9. The method of claim 1, wherein the pre-defined error
criterion comprises maximum absolute ensemble error.

10. The method of claim 1, wherein the pre-defined error
criterion 1s selected from the group consisting of: mean
absolute ensemble error, median absolute ensemble error,
mode absolute ensemble error, weighted average absolute
ensemble error, and robust average absolute ensemble error.

11. The method of claim 1, further comprising estimating
validation error of the model derived using the leave-one-out
(LOO) cross validation technique.

12. The method of claam 11, wherein the leave-one-out
(LOO) cross validation technique enables viable computa-
tion of the variance in the validation error according to the
formula:

where
O, o 15 the predicted variance in the validation error,

n 1s the number of profiles of multivariable mnputs and

multivariable outputs,

0, is a residual value corresponding to the i” profile of

multivariable inputs and outputs, and

P.. 1s the diagonal of the projection matrix corresponding

to the i’ profile.
13. A method of predicting multivaniable outcomes (row
vectors, called Y-profiles) in an outcome-variable matrix Y
using matched profiles of multivariable inputs (row vectors,
called X-profiles) 1n an mput-data matrix X, said method
comprising;
adding n row vectors of X-profiles and Y-profiles, respec-
tively, to the 1input and outcome profiles used to deter-
mine the predictor model of claim 1,

adding n rows of values to Model Zero;

calculating similarity values for each of the n rows of
X-profiles with each of the identified rows used to
calculate similarity values used 1n populating columns
of matrix T, and adding the calculated similarity values
in corresponding positions in an additional n rows 1n
similarity matnx T; and

multiplying the n rows of the similarity matrix T by the o

matrix to arrive at predictions of the Y-profiles, within
an acceptable predefined range of; and

performing at least one of outputting said Y-profiles to a

client and storing said Y-profiles, wherein said Y-pro-
files are calculatable for continuous variables, logistic
variables, and ordinal variables.

14. A method of self-predicting multi-vaniable profiles,
comprising the steps of:

generating the predictor model according to claim 1
through use of X-vanable profiles as both the multi-
variable 1nputs and the multivaniable outcomes;
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wherein the identified rows populating the similarity
matrix T are essential profiles of the prediction model,
and wherein the predicted multivariable outcomes
smooth the X-variable profiles input function, reduce
noise due to the nuisance variables, and restrict candi-
date profiles 1n the X-vanable profiles to enhance
causal leverage between profiles.

15. A method of imputation of missing values in multi-
variable X-profile mputs, comprising the steps of:

a) moditying the multi-vaniable X-profile mputs by
replacing the missing values with 1nitial starting values;

b) seli-predicting multi-variable X-profile outputs of the
modified multi-variable inputs according to the method
of claim 14;

¢) replacing the modifications to the missing variables
with the predicted variables obtained by self-predicting
multi-variable X-profile outputs 1n step b); and

repeating steps b) and c¢) until differences between the
current replacement modifications and the previous
iteration ol replacement modifications are less than a
pre-defined threshold value of correction difference.

16. A method of simultaneously predicting both multi-
variable X-mput profiles and multi variable Y-output profiles
based on the multi-variable X-nput profiles, said method
comprising the steps of:

generating the predictor model according to claim 1

through use of the X-variable profiles as the multivari-
able inputs and both the X-variable profiles and Y-vari-
able profiles as the multivariable outputs.

17. The method of claim 16, wherein the X-variable
profiles and Y-vaniable profiles are stacked vertically to form
a combined matrix of the multivariable outputs.

18. The method of claim 16, wherein the X-variable
profiles and Y-varniable profiles are concatenated horizon-
tally to form a combined matrix of the multivariable outputs.

19. The method of claim 16, wherein the 1dentified rows
used to calculate similarity values used in populating col-
umns of matrix T are strategic X-profile rows, and wherein
said method further comprises clustering the strategic
X-profile rows 1 a combined matrix defimng both the
X-varniable profiles and Y-vaniable profiles.

20. A method of simultaneously predicting both multi-
variable X-mput profiles and multi variable Y-output profiles
based on the multi-variable X-1nput profiles and the multi-
variable Y-output files, said method comprising the of:

generating the predictor model according to claim 1
through use of an X/Y matnx, resulting from the
catenation of the X-variable profiles and Y-variable
profiles, as the multivariable mputs and using the X/Y
matrix as the multivariable outputs.

21. The method of claim 20, wherein said step of i1den-
tifying a row 1s restricted to only the X-profile portion of the
X/Y 1put matrix, resulting in enhanced causal leverage
between the X- and Y-profiles.

22. The method of claim 1, further comprising assigning,
score functions to the multi-variable outcomes for use 1n any
multivariate distribution process; and

performing at least one of storing and outputting the score
functions to a client.

23. The method of claim 1, further comprising testing the
cllipticity of the i1dentified rows of X-profiles as a function
of the X-space, using the Marquardt-Levenberg algorithm,
and ranking the X-variable 1n the identified rows of X-pro-
files according to said testing.
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24. The method of claim 1, further comprising determin-
ing a decay constant for each of the identified rows of
X-profiles used to calculate similarity values to populate the
T matnx.

25. The method of claim 24, wherein the step of deter-
mimng a decay constant for each of the identified rows
comprises the steps of:

determining the working dimension of the domain for
each data location of the multi-variable data;

computing a domain simplex of data adjacent to each said
data location; and

setting each decay constant as the inverse of a largest of
dissimilarity values calculated between each data loca-
tion and the domain simplex of the data adjacent to that
data location.

26. The method of claim 25, further comprising adding,
data points to each domain simplex to form a domain
complex.

27. A computer-readable medium carrying one or more
sequences of 1structions from a user of a computer system
for predicting multivariable outcomes based upon multivari-
able imputs with consideration of nuisance variables,
wherein the execution of the one or more sequences of
instructions by one or more processors cause the one or more
processors to perform the steps of:

a) defining an 1mitial model as Model Zero and 1nputting,

Model Zero as column one of a similarity matrix T;

b) performing an optimization procedure to solve for
matrix values of an . matrix which 1s a transformation
ol outcome profiles associated with mput profiles;

¢) calculating a residual matrix € based on the difference
between the actual outcome values and the predicted
outcome values determined through product of matrix
T and matrix o.;

d) selecting a row of the a residual matrix € which
contains an error value most closely matching a pre-
defined error criterion;

¢) 1dentifying a row from a matrix of the multivariable
inputs which corresponds to the selected row from the
residual matrix €;
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1) calculating similarity values between the identified row
and each of the rows 1n the matrix of the multivariable
inputs, including the identified row with 1tself;

g) populating the next column of similarity matrix T with
the calculated similarity values 1f it 1s determined that
the 1dentified row 1s not collinear or nearly collinear
with any previously 1dentified row the similarity values
for which were used to populate a previous column of
similarity matrix T; and

h) repeating steps b) through g) until a predefined stop-
ping criterion has been reached; and

1) performing at least one of storing and outputting to a
client a predictor model defined by the similarity matrix
T, wheremn the predictor model 1s calculatable for
output variables comprising continuous variables,
logistic vanables, and ordinal varnables.

28. The computer readable medium of claim 27, wherein
the following further step 1s performed: trimming the num-
ber of columns 1n the T matrix to an optimized minimum
number to optimize prospective predictions.

29. The computer readable medium of claim 27, wherein
the following further step i1s performed: estimating valida-
tion error of the model derived using the leave-one-out
(LOO) cross validation technique, according to the formula:

where
O, o0 1s the predicted variance in the validation error,
n 1s the number of profiles of multivariable mputs and
multivariable outputs,
p, 1s a residual value corresponding to the i” profile of
multivariable iputs and outputs, and

P.. 1s the diagonal of the projection matrix corresponding,
to the 1’ profile.
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