United States Patent

US007190788B2

(12) (10) Patent No.: US 7,190,788 B2
Yang et al. 45) Date of Patent: Mar. 13, 2007
(54) METHODS AND APPARATUS FOR 5,351,299 A * 9/1994 Matsuzaki et al. 380/37
ENCRYPTING A BINARY STRING 2001/0038347 Al* 11/2001 Avery et al. 341/51
2002/0094080 Al* 7/2002 Duan et al. 380/28
(75) Inventors: Rongzhen Yang, Shanghai (CN); 2003/0093446 A1~ 5/2003 Yang
Zheng-Hua Zhou, Shanghai (CN);
Michael Zhang, Shanghai (CN) OTHER PURI ICATIONS
(73) Assignee: Intel Corporation, Santa Clara, CA R. Yang, Y. Su, X. Fan. “The Varying-Radix Numeration System
(US) and Its Application.” Acoustics, Speech, and Signal Processing
2001. Proceedings, 2001 IEEE International Conference on, V. 6,
(*) Notice: Subject to any disclaimer, the term of this 2001. pp. 3953-3956.
patent 1s extended or adjusted under 35 . _
U.S.C. 154(b) by 809 days. cited by examiner
Primary Examiner—Kim Vu
(21) Appl. No.: 10/243,275 Assistant Examiner—Nirav Patel
_—— (74) Attorney, Agent, or Firm—Hanley, Flight &
(22) Filed: Sep. 13, 2002 75 arman T 1.C
(65) Prior Publication Data (57) ARSTRACT
US 2004/0052367 Al Mar. 18, 2004
(51) Int. CI The methods and apparatus described herein encrypt an
H0:¢L 9 00 (2006.01) unencrypted binary string using an encryption key and a
04K 1/06 (2006.()?) varying-radix conversion method. The encryption key 1s
04K 1/00 (200 6.035) used to parse the unencrypted binary string into unencrypted
o _ _ sub-strings. The varying-radix conversion method 1s used to
(2;) ;‘J..Sl.d Cli.' Cl | ﬁ o S 180/42,, 380/37,33880(;/2288 transform the unencrypted sub-strings into encrypted sub-
(58) Field o 32581 O/?ztlzl; ;‘731'20 p 3708/408 512 54 2" strings. The encrypted sub-strings may then be concatenated
S n "7 0% /6’7 2 204 ; 11/ 8" 5 g 3" together to produce an encrypted binary string. In addition,
Q Leation file f | ’ hjh' ’ the reverse process 1s employed to recover the unencrypted
¢e application lile lor complete search history. binary string from the encrypted binary string. For example,
(56) References Cited the decryption process may occur after the encrypted binary

U.S. PATENT DOCUMENTS
5,077,793 A * 12/1991 Falketal. 380/28

. R
f\& Stgrt)

.;f
l

v

string 1s transmitted over a network communications system.

17 Claims, 9 Drawing Sheets

\

h 4

| y - . - — 502
Receive unencrypted string K

varying-radix number

Determine number of positions
needed to represent string as a

l

| Determine P(i)

l

l " Determine V(i)

l

1'_ Calcﬂlate radix

: r 510

v
C =nd)

| Ol

US 7,190,788 B2

U JOAISSG WELSE]S

0D00C21

I

&N

=

-

Z TRVl
~ e
S (3IOMIBU JOU}0 JO) _l_H_
B.,. Joulalu| 20l —

2 “

=

001 \ u_“:

¢0l

U.S. Patent

US 7,190,788 B2

Sheet 2 of 9

Mar. 13, 2007

U.S. Patent

yiomisu Jainduwiod
J9UJ0 Jo/puk J8ulalu]

801

(S)9o1A8p
1Ndino 1aylo
lo/pue ‘Jeyeads
‘191uid ‘Aedsiq

prz - !

¢ Ol

» (S)J0SS8001d

202 —/

> (s)eoeuayyl oz —
,ﬁ » (s)Auowsy
oz~ !
13[|0Nu0n) a0z
(S)a2IAap

1ndul 1ayjo Jo/pue
‘asnowl ‘pirogAsy

AT

v/INo_‘

JUalio

U.S. Patent Mar. 13, 2007 Sheet 3 of 9 US 7,190,788 B2

108

¥iom}au Jajnduwlod

! 194})0 JO/puUk }auid)u|

N
-
)
LB o <
O & Y o
C z
s L 5 :
O § E
T Q
5 =
= O
= \
S i
— e |
Q)
= S W
N
O Y _
NEONEN % T
S 7
SRR
= | |8
S oo

US 7,190,788 B2

cly

v Ol4
lojelausn) | w lojelauss)

w Aoy JdAiou3 “ ﬂ Aoy 1dAiou3
= 9Lt / “ “ A 0¥
<t - _ “ |
3 “ ﬂ _“
= N'EN‘ZN LN “ _ N'SN‘ZN'EN

Aay 1dAupus _ " Aoy 1diu3
) | | Q07 S
DS L0OLLLOLLOL “ // LOOLLLOLLOL
M Bulng Aeuig psjeasiiay .®UOO®D me _ Bullg Aseulg pajdAious _ ._m_UOOCm me Buiys Aleurg feuibuQ
= / N “ AN

viv g0} leuueyy | 0V
m uoIEdILNWILLON W
Ol / ﬂ ﬁ N 0%

U.S. Patent

U.S. Patent Mar. 13, 2007 Sheet 5 of 9 US 7,190,788 B2

[Stat) a 500

h 4

— T T — 502
Receive unencrypted string J/

Determine number of positions P 504
needed to represent string as a
varying-radix number]

l

o vy 506
Determine P(i) /

R l — —_ v 508
Determine V(i)

Calculate radix

U.S. Patent

Mar. 13, 2007 Sheet 6 of 9

-—

< BinaryString_Anlysis

D

|

I=N

V(K)++

US 7,190,788 B2

620

FIG. 6

U.S. Patent

Mar. 13, 2007 Sheet 7 of 9

e

(\ GSBT Envalue >

‘_\—

.Init:
Value=0, |=1

US 7,190,788 B2

700
y - 702 '/—

112 Y

| Value=Value+V(1)

V{1)=0

i —

\lﬁo

VGi=V(ir1 [

— 714

X 718 — 718

-~ e
~

'\'-'_'._-.-

. Yes
- >

" j=k and V(j)=0? 25 k=k-1

-

o
o

124

V(1)=0(1) -

— N - K+ 2 —i 1 {m) \H‘"HHH‘ P g,ff";

v 126

FIG. 7 V(j)=0(j)-1 «
=N-K+1- ZV(m) |
=1

m=j+1

U.S. Patent Mar. 13, 2007 Sheet 8 of 9 US 7,190,788 B2

(GeneratiuanR__)

oy 20 800
Init; —

V{)=0, K=1 f‘”/ ¥

O(1)=N+1

—p

fla\\(f—' — 804
1 Y
< Value=07 0

e

=

T -~
S
No

— 806 - 830

/'ﬁliﬂ‘a/
. -
{’\’}alue:rzﬂ(*l)'?\}Niy V({1)=Value L 4 >< Done w

S

828 — Yes

O(l)zN—K+2—iV(m) v

j=2
f_”=2. | Value=Value-O{1) |
i V(2)=V(2)+1

/l\(810

—— 808

No rd v

O(j)=N-K+2- iV(m)

i

m=j+|

- ™~ N
< V(=07 ' -
xhﬂ"“x e >

T —

S

Yes }%:-‘H — 824
I s 820 ﬁ\lﬂu 899 T

. —_— '/"/'
V{j)=C -
V(j+1)++ ~

Yes

U.S. Patent Mar. 13, 2007 Sheet 9 of 9 US 7,190,788 B2

C BinaryString_Reconstructive)

. / 900

902

oo | e /'\<
- - \

FIG. 9 -+

US 7,190,788 B2

1

METHODS AND APPARATUS FOR
ENCRYPTING A BINARY STRING

TECHNICAL FIELD

The present mvention relates in general to computing
systems and, in particular, to methods and apparatus for

encrypting a binary string.
BACKGROUND

Typically, mathematical and engineering systems use a
decimal system and/or a binary system to represent numbers
and to perform calculations. Over time, alternative numera-
tion systems have been developed for different applications.
Such numeration systems include fixed-radix, mixed-radix
and mixed-base. A fixed-radix numeration system has a
constant radix for all positions of a sequence of digits. In
fixed-radix numeration systems, the weights of successive
positions are successive integral powers of a single radix,
multiplied by the same factor. A mixed-radix numeration
system 1s a radix numeration system in which all radices of
cach position of a sequence of digits are constant, but not
necessarily the same. The mixed-radix numeration system 1s
a more general numeration system 1n which there may not be
integral ratios between the radices of all digits. In a mixed-
based numeration system, numbers are represented as the
sum of a sequence of position values. Each position consists
of a mantissa and a base. The base of a given position 1s
constant for a given application, but the bases across posi-
tions are not necessarily integral ratios between the radices
of all the positions.

Although the above numeration systems may be used to
encrypt data (e.g., prior to transmission over a communica-
tion channel), each numeration system has certain disadvan-
tages with respect to transmission efliciency. In addition,
encryption systems based on each of the above numeration
systems has certain disadvantages with respect to suscepti-
bility to unauthorized deciphering.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of an example communications
system.

FIG. 2 1s a block diagram showing an example client
device.

FIG. 3 1s a block diagram showing an example server.

FIG. 4 1s a block diagram showing the example commu-
nications system of FIG. 1 in greater detail.

FIG. 5 1s a flowchart of a process for generating a
varying-radix sequence.

FIG. 6 1s a flowchart of a binary string analysis process.

FIG. 7 1s a flowchart of a binary string encoding process.

FIG. 8 1s a flowchart of a varying radix generation
process.

FIG. 9 1s a flowchart of a binary string reconstruction
process.

DETAILED DESCRIPTION OF EXAMPLES

In general, the methods and apparatus described herein
encrypt an unencrypted binary string using an encryption
key and a varying-radix conversion method. The encryption
key 1s used to parse the unencrypted binary string into
unencrypted sub-strings. The varying-radix conversion
method 1s used to transform the unencrypted sub-strings 1nto
encrypted sub-strings. The encrypted sub-strings may then

10

15

20

25

30

35

40

45

50

55

60

65

2

be concatenated together to produce an encrypted binary
string. In addition, the reverse process 1s employed to
recover the unencrypted binary string from the encrypted
binary string. For example, the decryption process may
occur after the encrypted binary string 1s transmitted over a
network communications system.

A high level block diagram of an example network
communications system 100 1s illustrated 1n FIG. 1. The
illustrated system 100 includes one or more client devices
102 and/or one or more servers 104. Each of these devices
may communicate with each other via a connection to one
or more communications channels 108 such as the Internet
or some other network.

Typically, each server 104 stores a plurality of files,
programs, and/or web pages for use by the client devices 102
and/or other servers 104. One server 104 may interact with
a large number of clients 102 and/or other servers 104.
Accordingly, each server 104 1s typically a high end com-
puter with a large storage capacity, one or more fast micro-
processors, and one or more high speed network connec-
tions. Conversely, relative to a typical server 104, each client
device 102 typically includes less storage capacity, a single
microprocessor, and a single network connection.

A more detailed block diagram of a client device 102 1s
illustrated 1n FIG. 2. The client device may be a personal
computer (PC), a personal digital assistant (PDA), an Inter-
net appliance, a cellular telephone, or any other communi-
cation device. The client 102 includes a controller 202 which
preferably includes a processor 204 electrically coupled by
an address/data bus 206 to a memory device 208 and an
interface circuit 210. The processor 204 may be any type of
well known processor, such as a microprocessor from the
Intel Pentium™ family of microprocessors, the Intel Ita-
nium™ family of microprocessors, and/or the Intel
XScale™ family of processors. The memory device 208
preferably 1includes volatile memory and non-volatile
memory. Preferably, the memory device 208 stores a soft-
ware program that interacts with the server 104 and/or
another client device 102 as described below. This program
may be executed by the processor 204 1n a well known
manner. The memory device 208 may also store digital data
indicative of documents, files, programs, web pages, etc.
retrieved from a server 104, another client device 102,
and/or loaded via an 1nput device 212.

The terface circuit 210 may be implemented using any
type of well known interface standard, such as an Ethernet
interface and/or a Universal Serial Bus (USB) interface. One
or more mput devices 212 are connected to the interface
circuit 210 for entering data and commands into the con-
troller 202. For example, the mput device 212 may be a
keyboard, mouse, touch screen, track pad, track ball, 1sopo-
int, and/or a voice recognition system.

One or more displays, printers, speakers, and/or other
output devices 214 are also connected to the controller 202
via the mterface circuit 210. The display 214 may be a
cathode ray tube (CRT), a liquid crystal display (LCD), or
any other type of display. The display 214 generates visual
displays of data generated or received during operation of
the client 102. For example, the display 214 may be used to
display web pages received from a server 104 and/or e-mail
received from another client device 102. The visual displays
may also include prompts for human operator input, run time
statistics, calculated values, detected data, etc.

A client 102 may also exchange data with other devices
via a connection to the network 108. The network connec-
tion may be any type of network connection, such as an
Ethernet connection, digital subscriber line (DSL), tele-

US 7,190,788 B2

3

phone line, coaxial cable, etc. Users of the system 100 may
be required to register with a server 104. In such an 1nstance,
cach user may choose a user 1dentifier and a password which
may be required for the activation of services. The user
identifier and password may be passed across the Internet
108 using encryption built into the user’s browser, e-mail
client, and/or other application(s). Alternatively, the user
identifier and/or password may be assigned by a server 104
and/or another client device 102.

A more detailed block diagram of a server 104 1s 1llus-
trated 1n FIG. 3. Like the client device 102, the controller
302 1n the server 104 preferably includes a processor 304
clectrically coupled by an address/data bus 306 to a memory
device 308 and a network 1nterface circuit 310. However, the
server controller 302 1s typically more powertul than the
client controller 202. Again, the processor 304 may be any
type of well known processor, such as a microprocessor
from the Intel Pentium™ family of microprocessors, the
Intel Itantum™ family of microprocessors, and/or the Intel
XScale™ family of processors. The memory device 308
preferably 1ncludes volatile memory and non-volatile
memory. Preferably, the memory device 308 stores a soft-
ware program that implements all or part of the method
described below. This program may be executed by the
processor 304 1n a well known manner. However, some of
the steps described 1n the method below may be performed
manually or without the use of the server 104. The memory
device 308 and/or a separate database 314 also store files,
programs, web pages, etc. for use by other servers 104
and/or the client devices 102.

The server 104 exchanges data with other devices via a
connection to the network 108. The network interface circuit
310 may be implemented using any data transceiver, such as
an Ethernet transceiver. The network 108 may be any type
of network, such as a local area network (LAN) and/or the
Internet. In one example, a server 104 and/or a client device
102 encrypt data using a varying-radix sequence prior to
transmission over the network 108. In another example, a
server 104 and/or a client device 102 decrypt data using a
varying-radix sequence after transmission over the network
108. The encrypted data may represent anything, such as
text, pictures, video, money, blueprints, inventory, personal
records, etc.

The example communications system 100 1s shown in
greater detail 1n FIG. 4. A binary string transform (BST)
encoder 402 includes an mput port 404 and an output port
406. The mput port 404 supplies the BST encoder 402 with
an unencrypted binary string. The output port 406 transmits
an encrypted version of the binary string over the network
108 or any communication channel.

The BST encoder 402 1s also connected to an encryption
key generator 408. The encryption key generator 408 sup-
plies the BST encoder 402 with an encryption key used in
conjunction with the process described 1n detail below to
convert the unencrypted binary string into the encrypted
binary string. The BST encoder 402 and/or the encryption
key generator 408 may be implemented 1n hardware and/or
software. In one example, the BST encoder 402 and/or the
encryption key generator 408 are implemented by a client

102 and/or a server 104.

On the receiving end, a binary string transform (BST)
decoder 410 includes an mput port 412 and an output port
414. The mput port 412 supplies the BST decoder 410 with
an encrypted binary string. The output port 414 transmits an
unencrypted version of the binary string to any receiving
device.

10

15

20

25

30

35

40

45

50

55

60

65

4

The BST decoder 410 1s also connected to an encryption
key generator 416. The encryption key generator 416 sup-
plies the BST decoder 410 with the same encryption key
used by the transmitting encryption key generator 408. The
encryption key 1s used in conjunction with the process
described 1n detail below to convert the encrypted binary
string 1nto the unencrypted binary string. The BST decoder
410 and/or the encryption key generator 416 may be imple-
mented 1n hardware and/or software. In an example, the BST
decoder 410 and/or the encryption key generator 416 are
implemented by a client 102 and/or a server 104.

A flowchart of a process 500 for generating a varying-
radix sequence 1s 1llustrated in FIG. 5. Preferably, the
process 500 1s embodied 1n a software program which 1s
stored 1n a memory device and executed by a processor 1n a
well known manner. However, some or all of the steps of the
process 500 may be performed manually. Although the
process 500 1s described with reference to the flowchart
illustrated 1n FIG. 5, a person of ordinary skill in the art will
readily appreciate that many other methods of performing
the acts associated with process 500 may be used. For
example, the order of many of the steps may be changed. In
addition, many of the steps described are optional.

At block 502, a controller 202, 302 receives a {first
sequence. At block 504, the controller 202, 302 determines
the number of positions of a second sequence for represent-
ing the first sequence. It the controller 202, 302 determines
that k+1 positions are necessary to represent the first
sequence, then the second sequence can be described as the
following: v(k) v(k-1) v(k=2) ... v(i) . . . v(1). For the i”
position of the sequence, v(1) 1s the value. The v(0) value 1s
not shown 1n the sequence because it can be calculated from
equation 1 as follows:

k (1)
v(0) = p(0) - > v(i)
=1

i

At block 506, the controller 202, 302 optionally deter-
mines an application value from the function p(1). The
function p(1) 1s based on a set of rules dertved for an
application or set of applications. In an example, the func-
tion p(1) 1s a constant value dependent on the application. In
another example, the function p(1) defines the maximum
radix of the second sequence.

At block 508, the controller 202, 302 determines v(1) for
cach position of the second sequence. At block 510, the
controller 202, 302 calculates the radix for each position,
designated by o(1), of the second sequence 1n accordance
with equation 2 as follows:

k (2)
o(i) = p(i) + 1 — Z () i=1...k

j=it+l

The second sequence 1s a varying-radix sequence in
which the radix of each position of the second sequence
varies according to the value expressed by the second
sequence.

In order to use the above principles to encrypt a binary
string, the binary string may be parsed into sub-strings
according to an encryption key, analyzed for encoding, and
then the binary string may be encoded. Parsing the unen-
crypted binary string into sub-strings according to the

US 7,190,788 B2

S

encryption key breaks the binary string into variable length
segments for encoding. For example, 1f the unencrypted
binary string 1s “10101011001010” and the decimal encryp-
tion key 1s “3425.” then the first sub-string 1s “101,” the
second sub-string 1s “0101,” the third sub-string 1s “10,” and
the fourth sub-string 1s “01010.” If the encryption key
remains unknown to unauthorized users, the length of the
sub-strings remains unknown to unauthorized users.

One example of a binary string analysis process 600 1s
illustrated 1n FIG. 6. The binary string analysis process 600
takes two inputs and generates two outputs. The two mputs
are a binary string “S(1)” to be analyzed (e.g., “101”") and the
length of that binary string “N”” (e.g., 3). The two outputs are
a “number of zeros” array “V(1)” (1.e., a varying radix
number) and a “highest location” variable “K”.

The binary string analysis process 600 begins by causing,
the transmitting controller 202, 302 to mitialize several
variables (block 602). In the example 1llustrated 1n FIG. 6,
an 1ndex variable “1” 1s set equal to the current sub-string
length “N” (e.g., 3). In addition, the “number of zeros™ array
“V(1)” 1s mtialized to all zeros (e.g., V(1)=0; V(2)=0; and
V(3)=0). The “highest location” variable “K” 1s initialized to
“17.

Each time through a first loop in the string analysis
process 600, the index variable “1” 1s tested to see 11 “1” 1s
less than “1” (block 604). If “1” 1s not less than “17, the
transmitting controller 202, 302 tests the binary string “S()”
being analyzed (e.g., “101”") to see i the bit of the binary

string pointed to by the index variable “1” 1s equal to zero

(block 606). If the bit of the binary string “S(1)” pointed to
by the index variable 17 1s not equal to zero, the transmitting
controller increments the “highest location” variable “K” by
one (block 608). However, 1f the bit of the binary string
“S(1)” pointed to by the index variable *“1” 1s equal to zero,
the transmitting controller increments the element “V(K)” of
the “number of zeros™ array “V()” pointed to by the “highest
location” varniable “K” by one (block 610). In either event,
the transmitting controller 202, 302 decrements the index

variable “i” by one (block 612) and loops back to block 604.
This first loop 1s repeated until “17 1

1s decremented to zero.
When “1” 1s decremented to zero, block 604 determines
that “1” 1s less than “1”, and the transmitting controller 202,
302 advances to a second loop in the binary string analysis
process 600. In the second loop, the binary string analysis
process 600 causes the transmitting controller 202, 302 to
reimitialize some variables (block 614). In the example
illustrated 1n FIG. 6, the index variable “1” and the “highest
location™ variable “K” are both reinitialized to “17.

Each time through the second loop 1n the string analysis
process 600 as illustrated 1n FIG. 6, the index vaniable “1” 1s

tested to see 1f “1” 1s still less than or equal to the current

sub-string length “N” (e.g., 3) (block 616). If “1” 1s less than
or equal to the current sub-string length “N”, the transmiuit-
ting controller 202, 302 tests the element of the “number of
zeros” array “V()’ pomted to by “1” to see if that element
“V(1)” 1s equal to zero (block 618). If the “number of zeros™
clement “V(1)” 1s equal to zero, the index variable “1” 1s
incremented by one (block 620). However, 1f the “number of
zeros” element “V(1)” 1s not equal to zero, the “highest
location” variable “K” 1s set equal to the index variable “1”
(block 622) and the index variable “1” 1s incremented by one
(block 620). IT at block 616 “1” 1s not less than or equal to
the current sub-string length “N”, the transmitting controller
202, 302 exiats the binary string analysis process 600.
Once the transmitting controller 202, 302 completes the
binary string analysis process 600, the transmitting control-
ler 202, 302 preferably begins a binary string encoding

10

15

20

25

30

35

40

45

50

55

60

65

6

process 700. The example binary string encoding process
700 1llustrated 1n FIG. 7 takes three mputs and generates one
output. The three inputs are the “number of zeros™ array
“V(1)” generated by the binary string analysis process 600,
the “highest location” variable “K” generated by the binary
string analysis process 600, and the length of the binary
string “N” (e.g., 3). The output 1s an encrypted version of the
binary string “S(1)” used by the binary string analysis
process 600.

The binary string encoding process 700 of FIG. 7 begins
by causing the transmitting controller 202, 302 to imtialize
two variables (block 702). In the example illustrated 1n FIG.
7, an index variable *4” 1s set equal to one, and a “encoded
value” variable “Value” 1s 1nitialized to zero. Next, the
transmitting controller 202, 302 tests the element of the
“number of zeros™ array “V()” pointed to by *1” to see 11 that
clement “V(1)” 1s equal to zero (block 704). If the “number
of zeros” element “V(3)” 1s equal to zero, the index variable

4 - b B

1" 1s incremented by one (block 706), and the index variable

L4 - b B

1" 1s tested to determine 1f the index variable 17 1s greater
than the “highest location™ varniable “K” (block 708), which
was generated by the binary string analysis process 600. IT
the index variable “1” 1s greater than the “highest location”™
variable “K”, the binary string encoding process 700 termi-
nates, and the current value of the varniable “Value” (e.g.,
“1007) 1s the encoded version of the binary string “S(1)”.

However, 1f the index vanable “1” 1s not greater than the
“highest location” variable “K”, the transmitting controller
202, 302 tests the next element of the “number of zeros”
array “V()” pointed to by *¢” (now that j has been incre-
mented by block 706) to see if that element “V(3)” 1s equal
to zero (block 704). If the “number of zeros™ element “V(3)”
1s not equal to zero, the index vanable ¢ 1s tested to
determine 1f the index variable *7” 1s equal to one (block
710). If the index variable *¢” 1s equal to one, the first
clement V(1) of the “number of zeros” array 1s added to the
current value of the variable “Value™, and the first element
V(1) of the “number of zeros™” array 1s set equal to zero
(block 712). However, 11 the index variable *1” 1s not equal
to one, the element “V(3)” of the “number of zeros” array
“V()’ which 1s pointed to by “;” 1s decremented by one
(block 714).

Subsequently, the index vaniable *4” and the element
“V(1)” of the “number of zeros” array “V()’ are tested
(block 716). If the index variable 17 1s equal to the “highest
location” variable “K” (which was generated by the binary
string analysis process 600) and the element “V(3)” of the
“number of zeros™ array “V()” 1s equal to zero, then the
“highest location” variable “K” 1s decremented by one
(block 718) and the index variable 17 1s decremented by one
(block 720). However, 11 the index vaniable 1™ 1s not equal
to the “highest location™ variable “K” or the element “V(3)”
of the “number of zeros™ array “V()” 1s not equal to zero,
then the index variable *“1” 1s decremented by one (block
720), but the “highest location™” variable “K” 1s not decre-
mented by one.

Again, the index variable *“1” 1s tested to determine 1f the
index variable 9 1s equal to one (block 722). If the index
variable “9” 1s equal to one, the first element V(1) of the
“number of zeros™ array 1s set equal to a new value based on
the predetermined formula shown i FIG. 7 (block 724).
Subsequently, the transmitting controller 202, 302 tests the
clement “V(1)” of the “number of zeros” array to see 1f that
clement 1s equal to zero (block 704), and the binary string
encoding process 700 continues as described above. How-
ever, 1 the index variable *4” 1s not equal to one, the element

V(j) of the “number of zeros” array 1s set equal to a new

US 7,190,788 B2

7

value based on another predetermined formula (as shown in
FIG. 700) and the index variable 1 1s decremented by one
(block 726). In such an instance, control returns to block
722, and the binary string encoding process 700 continues as
described above.

Once the transmitting controller 202, 302 completes the
binary string encoding process 700, the encoded version of
the binary string “S(1)” (e.g., “Value”=*100") may be trans-
mitted via the network 108 to a receiving controller 202, 302
in a well known manner. Once the encoded version of the
binary string “S(1)” (1.e., “Value”) 1s received, the receiving,
controller 202, 302 preferably begins a varying radix gen-
cration process 800. The example varying radix generation
process 800 1illustrated in FIG. 8 takes two inputs and
generates one output. The two inputs are the encoded
version ol the binary string “S(1)” (referred to in the fol-
lowing as “Value™) and the length of the binary string “N”
(e.g., 3). The output 1s the “number of zeros” array “V(3)”
(1.e., the varying radix number).

The varying radix generation process 800 of FIG. 8 begins
by causing the receiving controller 202, 302 to imtialize
several variables (block 802). In the example illustrated 1n
FIG. 8, the “number of zeros™ array “V(1)” (1.e., the varying-
radix number) 1s iitialized to all zeros (e.g., V(1)=0;
V(2)=0; and V(3)=0). The “highest location” variable “K” 1s
mitialized to “1”. And, the first element “O(1)” of a radix
array “O()” (1.e., the value of each of the varying radixes)
1s mitialized to the length of the binary string “N” plus one
(c.g., 3+1=4).

Next, the receiving controller 202, 302 tests “Value” to
see 1 “Value™ 1s equal to zero (block 804). If “Value” 1s not
equal to zero, the recerving controller 202, 302 tests “Value”
to see 1 “Value” 1s greater than or equal to the first element
“O(1)” of the radix array “O()” (block 806). If “Value” 1s
greater than or equal to the first element “O(1)” of the radix
array “O()”, an index variable “4” 1s set equal to two,
“Value” 1s decremented by the value of the first element
“O(1)” of the radix array, and the second element “V(2)” of
the “number of zeros™ array “V()” 1s incremented by one
(block 808). Subsequently, the “highest location™ variable
“K” 1s tested to determine 11 “K” 1s equal to one (block 810).
I1 the “highest location” variable “K” 1s equal to one, “K” 1s
incremented by one (block 812).

Next, the receiving controller 202, 302 tests the index
variable “1” to determine 1f “4”” 1s less than the length of the
binary string “N” (block 814). I the index variable “1” 15 less
than the length of the binary string “N”, the jth element O(3)
of the radix array “O()” 1s set equal to a new value based
on the predetermined formula shown 1n FIG. 8 (block 816).
Subsequently, the recerving controller 202, 302 tests the
clement “V(3)” of the “number of zeros™. array to see if that
clement 1s equal the element “O(3)” of the radix array (block
818). IT “V(3)” 1s equal to “O(q)”, “V(1)” 1s set equal to zero
and “V(3+1)” 1s incremented by one (block 820). In addition,
the “highest location™ variable “K™ 1s tested to determine 11
“K” 1s less than the index variable “j+1” (block 822). If “K”
1s less then “9+17, “K™ 1s set equal to “4+1” (block 824).

Regardless of the outcome of the test at block 818, the
receiving controller 202, 302 increments index variable ™
by one (block 826), and retests 1 to determine 11 “4” 1s less
than the length of the binary string “N” (block 814). If *”
1s not less than “IN”, the first element O(1) of the radix array
“O()” 1s set equal to a new value based on the predetermined
formula shown 1n FIG. 8 (block 828).

Again, the receiving controller 202, 302 tests “Value™ to
see 1I “Value” 1s equal to zero (block 804). If “Value” 1s

equal to zero, the varying radix generation process 800

10

15

20

25

30

35

40

45

50

55

60

65

8

terminates, and the current value of the “number of zeros™
array “V(1)” 1s the recovered varying radix number. If
“Value™ 1s not equal to zero, the receiving controller 202,
302 tests “Value” to see if “Value” 1s greater than or equal
to the first element “O(1)” of the radix array “O()” (block
806). I “Value” 1s not greater than or equal to the first
clement “O(1)” of the radix array “O()”, the first element
“V(1)” of the “number of zeros™ array “V()” 1s set equal to
“Value™ (block 830), and the varying radix generation pro-
cess 800 terminates with the current value of the “number of
zeros” array “V(3)” being the recovered varying radix num-
ber.

Once the receiving controller 202, 302 completes the
varying radix generation process 800, the receiving control-
ler 202, 302 preferably begins a binary string reconstruction
process 900. The example binary string reconstruction pro-
cess 900 1llustrated 1n FIG. 9 takes two mnputs and generates
one output. The two mputs are the “number of zeros™ array
“V(1)” (1.e., the recovered varying radix number) and the
length of the binary string “N”°. The output 1s a decoded
version of the encoded binary string “S(1)” (1.e., the recov-
cred binary string “S(1)”).

The binary string reconstruction process 900 of FIG. 9
begins by causing the receiving controller 202, 302 to
initialize two variables (block 902). In the example 1llus-
trated 1n FIG. 9, an index variable “1” 1s set equal to the
length of the binary string “N”°, and an index variable “1” 1s
initialized to one.

After mitialization, the recerving controller 202, 302 tests
the index variable “1” to determine 11 the index variable “1”
1s less than one (block 904). If the index variable “1” 1s not
less than one, the jth element “V(3)” of the “number of
zeros” array “V()’ 1s tested to determine 11 “V(3)” 1s equal
to zero (block 906). If “V(3)” 1s equal to zero, the element of
the binary string “S()” pointed to by the index variable “1”
1s set equal to one, the index variable “1” 1s decremented by

one, and the index variable 17 1s incremented by one (block

908). Subsequently, the index variable *4” 1s tested to
determine if 4" 1s greater than the “highest location™ vari-
able “K” (block 910). If 47 1s greater than the “highest
location” variable “K”, all of the elements of the binary
string “S()” from the element pointed to by “1” to the first
clement “S(1)” are set equal to one (block 912), and the
binary string reconstruction process 900 terminates with the
current value of “S()” being the decoded binary string.
However, 11 the *¢” 1s not greater than the “highest
location” varniable “K”, the receiving controller retests the
index variable “1” to determune if the index variable “1” 1s
less than one (block 904). 11 the index variable “1” 1s not less
than one, the jth element “V(3)” of the “number of zeros”
array “V()” 1s tested to determine 1f “V(3)” 1s equal to zero
(block 906). If “V()’ 1s not equal to zero (block 906), the
clement of the “number of zeros™ array “V(3)” 1s decre-
mented by one, the element of the binary string “S(3)” 1s set
equal to zero, and the index variable “1” 1s decremented by
one (block 914). Again, the index variable “1” 1s tested to

determine 1f the index variable “1” 1s less than one (block

904). If the index variable “1” 1s less than one (block 904),
the binary string reconstruction process 900 terminates with
the current value of “S()” being the decoded binary string.

In summary, persons of ordinary skill in the art waill
readily appreciate that a method and apparatus for encrypt-
ing a binary string has been provided. The foregoing
description has been presented for the purposes of 1llustra-
tion and description. It 1s not intended to be exhaustive or to
limait this patent to the examples disclosed. Many modifica-
tions and variations are possible 1 light of the above

US 7,190,788 B2

9

teachings. It 1s mtended that the scope of the mvention be
limited not by this detailed description of examples, but
rather by the claims appended hereto.
What 1s claimed 1s:
1. A method of encrypting a binary string, the method
comprising;
receiving the binary string;
receiving an encryption key, the encryption key including
a first mteger and a second integer;

parsing the binary string into a first sub-string and a
second sub-string, the first sub-string having a first
number of binary bits, the second sub-string having a
second number of binary bits, the first number of binary
bits being equal to the first integer of the encryption
key, the second number of binary bits being equal to the
second 1nteger of the encryption key;

determining a first varying-radix number based on the first

sub-string; and

determining a first encrypted value for the first sub-string

based on the first varying-radix number.

2. A method as defined in claim 1, further comprising:

determining a second varying-radix number based on the

second sub-string;

determining a second encrypted value for the second

sub-string based on the second varying-radix number;
and

concatenating the first encrypted value with the second

encrypted value to create an encrypted string.

3. A method as defined 1n claim 2, further comprising
transmitting the encrypted string to a computing device
storing a copy of the encryption key, wherein determining
the first encrypted value 1s further based on a highest
location value.

4. A method as defined 1n claim 1, further comprising
determining a highest location value associated with the first
varying-radix number, wherein determining the first
encrypted value 1s further based on the highest location
value.

5. A method of decrypting an encrypted binary string, the
method comprising:

using an encryption key, the encryption key including a

first integer and a second integer;

receiving the encrypted binary string;

parsing the encrypted binary string into a first sub-string

and a second sub-string, the first sub-string having a
first number of binary bits, the second sub-string hav-
ing a second number of binary bits, the first number of
binary bits being equal to the first integer of the
encryption key, the second number of binary bits being
equal to the second integer of the encryption key, the
first sub-string representing a first varying-radix num-
ber, the second sub-string representing a second vary-
ing-radix number; and

converting the first varying-radix number into a first

unencrypted binary string.

6. A method as defined 1n claim 3, further comprising;:

converting the second varying-radix number 1nto a second

unencrypted binary string; and

concatenating the first unencrypted binary string with the

second unencrypted binary string.

7. An encryption device comprising:

an 1put port;

an output port;

an encryption key generator; and

a binary string transform (BST) encoder operatively

coupled to the mput port, the output port, and the
encryption key generator, the BST encoder being struc-

10

15

20

25

30

35

40

45

50

55

60

65

10

tured to receive a binary string from the mput port, the
BST encoder being structured to receive an encryption
key 1from the encryption key generator, the BST
encoder being structured to determine a varying-radix
number based on the binary string and the encryption
key, the BST encoder being structured to transmit the
varying-radix number to the output port.

8. An encryption device as defined 1n claim 7, wherein the
BST encoder 1s further structured to determine a highest
location value associated with the varying-radix number.

9. A decryption device comprising:
an input port;

an output port;

an encryption key generator; and

a binary string transform (BST) decoder operatively
coupled to the mput port, the output port, and the
encryption key generator, the BST decoder being struc-
tured to receive an encrypted binary string from the
input port, the BST decoder being structured to receive
an encryption key from the encryption key generator,
the BST decoder being structured to determine a vary-
ing-radix number based on the encrypted binary string
and the encryption key.

10. A decryption device as defined in claim 9, wherein the
BST decoder 1s further structured to determine an unen-
crypted binary string from the varying-radix number.

11. A decryption device as defined in claim 10, wherein
the BST decoder 1s further structured to transmit the unen-
crypted binary string to the output port.

12. A machine readable medium storing digital informa-
tion, the digital information being structured to cause a
hardware device to:

parse a binary string into a first sub-string and a second
sub-string, the first sub-string having a first number of
binary bits, the second sub-string having a second
number of binary bits, the first number of binary bits
being equal to a first integer of an encryption key, the
second number of binary bits being equal to a second
integer of the encryption key;

determine a first varying-radix number based on the first
sub-string; and

determine a first encrypted value for the first sub-string
based on the first varying-radix number.

13. A machine readable medium as defined in claim 12,
wherein the digital information 1s further structured to cause
the hardware device to:

determine a second varying-radix number based on the
second sub-string;

determine a second encrypted value for the second sub-
string based on the second varying-radix number; and

concatenate the first encrypted value with the second
encrypted value to create an encrypted string.

14. A machine readable medium as defined in claim 13,
wherein the digital information 1s further structured to cause
the hardware device to transmit the encrypted string to a
computing device which 1s storing a copy of the encryption
key.

15. A machine readable medium as defined in claim 12,
wherein the digital information 1s further structured to cause
the hardware device to determine a highest location value
associated with the first varying-radix number, wherein
determining the first encrypted value 1s also based on the
highest location value.

US 7,190,788 B2

11 12
16. A machine readable medium storing digital informa- convert the first varying-radix number into a first unen-
tion, the digital information being structured to cause a crypted binary string.

hardware device to:
parse an encrypted binary string into a first sub-string and
a second sub-string, the first sub-string having a first 5
number of binary bits, the second sub-string having a
second number of binary bits, the first number of binary

bits being equal to a first integer of an encryption key,
the second number of binary bits being equal to a concatenate the first unencrypted binary string with the

second integer of the encryption key, the first sub-string 10 second unencrypted binary string.
representing a first varying-radix number, the second

sub-string representing a second varying-radix number;

and % % k% %

17. A machine readable medium as defined in claim 16,
wherein the digital information 1s further structured to cause
the hardware device to:

convert the second varying-radix number into a second
unencrypted binary string; and

	Front Page
	Drawings
	Specification
	Claims

