United States Patent

US007185047B1

(12) (10) Patent No.: US 7,185,047 B1
Bate et al. 45) Date of Patent: Feb. 27, 2007
(54) CACHING AND ACCESSING RIGHTS IN A 6,047,377 A * 42000 GONg ..coeervvrnnriiinnnnnnnn 713/201
DISTRIBUTED COMPUTING SYSTEM 6,141,778 A * 10/2000 Kane et al.
6,148,404 A * 11/2000 Yatsukawa
(75) Inventors: Lyle Bate, American Fork, UT (US); gﬂigiﬂ;g i : i égggg fjildmant | 00775
- 157, ang et al.
?é%%??aﬁbsczrtgz’viﬁzfSgrggk’U[TjT 6,161,139 A * 12/2000 Win et al. ..ovvoveveven.. 709/225
’ | ’ " 6,182,142 B1* 1/2001 Win et al. 709/229
(US) 6,223,291 BL1* 4/2001 Puhl et al. cooovveee..... 713/201
_ 6,226,744 B1* 5/2001 Murphy et al.
(73) Assignee: Novell, Inc., Provo, UT (US) 6,249,868 B1* 6/2001 Sherman et al. 713/168
6,256,739 B1* 7/2001 Skopp et al. 713/201
(*) Notice: Subject to any disclaimer, the term of this 6,272,631 B1* 872001 Thomlinson et al. 713/155
patent 1s extended or adjusted under 35 6,304,907 B1* 10/2001 Keronen et al. 709/229
U.S.C. 1534(b) by 759 days. 6,336,186 B1* 1/2002 Dyksterhouse et al. 713/156
6,353,886 B1* 3/2002 Howard et al. 713/156
(21) Appl. No.: 09/450,867 6,421,669 B1* 7/2002 Gilmour et al.
6,453,353 B1* 9/2002 Winetal. 209/229
(22) Filed: Nov. 30, 1999 2002/0002688 Al* 1/2002 Gregg et al.
2002/0016790 Al* 2/2002 Arnold et al.
Related U.S. Application Data
_ o o * cited by examiner
(63) Continuation-in-part of application No. 09/252,433,
filed on Feb. 18, 1999, now Pat. No. 6,601,171. Primary Examiner—Andrew Caldwell
Assistant Examiner—Stephan Willett
(51) Int. CI. (74) Attorney, Agent, or Firm—Haynes and Boone, LLP
GO6F 15/16 (2006.01)
HO4N 7/16 (2006.01) (57) ABSTRACT
(52) US.CL ..., 709/202; 709/25; 726/17
(58) Field of Classification Search 709/203, A system and method for caching and accessing rights in a
709/219, 225, 229, 202: 710/36, 244: 713/155, distributed computing system 1s disclosed. An agent, that 1s
713/156, 161, 175, 182, 185, 201; 725/22, located on a Distributed Deputization Point (DPP) parses a
725/30; 340/5.2,5.5: 726/717 directory service. The agent then updates the rights to an
See applica‘[ion file for Comple‘[e search hls‘[ory Access Control List (ACL) cache. The ACL cache then
_ receives, from an authenticated user, a request for the rights.
(56) References Cited The ACL cache retrieves the rights and forwards them to the

U.S. PATENT DOCUMENTS

the ng

5483,596 A * 1/1996 Rosenow et al.
5,678,041 A * 10/1997 Baker et al. 707/9
5,708,780 A * 1/1998 Levergood et al.
5,848,231 A * 12/1998 Teitelbaum et al.
5,889,952 A 3/1999 Hunnicutt et al.
6,003,135 A * 12/1999 Bialick et al. 713/201
6,018,724 A * 1/2000 Arent

¥

user. 1]

1€ user may now access certain resources based on
ats 1t has obtained the first time 1t accesses these

resources. Additionally, if the user attempts to access certain
resources that are not contained 1n the ACL cache, a resource
manger 1s mvoked which provides the access control rights

for the missing resources to the ACL cache.

AUTHENTICATE REQUESTER TO
DISTRIBUTED DEPUTIZATION POINT 800

i _y

SEND REQUEST FOR RIGHTS DELEGATION 802

IDENTIFY REQUESTER 804

¥

SPECIFY RIGHTS 806

Y

l IDENTIFY DERPUTY 808

v

—

SPECIFY LIFE SPAN 810

1

k2

v

¥
RECEIVE REQUEST

FOR RIGHTS DELEGATION 812

Y

CREATE DEPUTY 814

¥

¥ :
l LOGIN ACROSS BOUNDARY B16

ORTAIN DEPUTY IDENTIFIER 818

y

¥

PROVIDE DEPUTY WITH KEYS 820

Yy

FORM DEPUTY CREDENTIAL/CERTIFICATE 822

v

DEPUTIZE FUNCTION(S) 824

-

¥

i AUTHENTICATE DEPUTY 826

\

32 Claims, 8 Drawing Sheets

U.S. Patent Feb. 27, 2007 Sheet 1 of 8 US 7,185,047 B1

102

STORAGE
MEDIA

U.S. Patent Feb. 27, 2007 Sheet 2 of 8 US 7,185,047 B1

USER 200

DIRECTORY
LOGIN 204 SERVICE 210

PRINCIPAL DISTRIBUTED
NODE(S) 206 AUTHENTICATION DEPUTIZATION
REQUEST 212 POINT(S) 202
USER TASK
208 (0
AUTHENTICATION
RESPONSE 214

DEPUTY
CREDENTIAL
REQUEST 220

DEPUTY
(SYSTEM

sz | [
DEPUTY
APPLICATION CREDENTIAL
(SYSTEM RESPONSE 222

TASK) 218

FI1G. 2

U.S. Patent Feb. 27, 2007 Sheet 3 of 8 US 7,185,047 B1

PRINCIPAL 300
eee 000
FIG. 3
PRINCIPAL 400 PRINCIPAL 400 PRINCIPAL 400
200 X N
DEPUTY_1 402 DEPUTY_1 402

e
FIG. 4

PRINCIPAL_A 500
DEPUTY_A_1 502

DEPUTY_A_1 502

‘ DEPUTY_A_1_1 504 |
DEPUTY_A_1_2 506

DEPUTY_A_1_3 508

DEPUTY_A_1_3_1 51

FIG. 5

U.S. Patent Feb. 27, 2007 Sheet 4 of 8 US 7,185,047 B1

DEPUTY CREDENTIAL 600

PRINCIPAL IDENTIFIER 602
RIGHTS IDENTIFIER 604

ENCRYPTED DEPUTY PRIVATE KEY 606

DEPUTY CERTIFICATE 608

DEPUTY PUBLIC KEY 612

o—— ikl

LIFE SPAN 614

RIGHTS IDENTIFIER 604
DEPUTIZER SIGNATURE 616

DEPUTIZER SIGNATURE 610

FIG. 6

DEPUTIZED FUNCTION 700

INSTRUCTIONS 702

RIGHTS IDENTIFIER 604

DEPUTY CERTIFICATE 608

DEPUTIZER SIGNATURE 704

FIG. 7

U.S. Patent Feb. 27, 2007 Sheet 5 of 8 US 7,185,047 B1

AUTHENTICATE REQUESTER TO
DISTRIBUTED DEPUTIZATION POINT 800

SEND REQUEST FOR RIGHTS DELEGATION 802

IDENTIFY REQUESTER 804

SPECIFY RIGHTS 806

. IDENTIFY DEPUTY 808
SPECIFY LIFE SPAN 810 I l

RECEIVE REQUEST FOR RIGHTS DELEGATION 812

CREATE DEPUTY 814

LOGIN ACROSS BOUNDARY 816

ORTAIN DEPUTY IDENTIFIER 818

PROVIDE DEPUTY WITH KEYS 820
FORM DEPUTY CREDENTIAL/CERTIFICATE 822

I DEPUTIZE FUNCTION(S)

AUTHENTICATE DEPUTY 826

el L

FIG. 8

US 7,185,047 Bl

Sheet 6 of 8

Feb. 27, 2007

U.S. Patent

20¢
(S)INIOd

NOILVZI1NddA
NOILNEIELSId

JIIALIS
0L~ | AdOLO4dIC

d4DVNVIA
{4 10dN0S3d

6 Sl

(MSVL
NJLSAS)
NOILVII1ddV

(MSVL
NILSAS)
AlNd3d

812

912

(S)AAON 1VdIDONIHd

ASVL {450

¢CC
N
. 3SNOdSIH | J6C
| TYILNIQIYD ALN4IQ |
JHOVI
10V
1S3ND3H
TYILNIQIHD ALNdAA
- —_—
p12 N
\ 022
T T T -
| 1SdN03Y |
| NOILLYOUNIHLNY | F—T =1
| dHOVO |
“ 10V _
" 1S4N04Y " Fluhufl_
| NOILYQILNIHLNY |
| — - 122
<
¢lLe

- 807

90¢

U.S. Patent Feb. 27, 2007 Sheet 7 of 8 US 7,185,047 B1

TABLE 1

RESOURCE | PRINCIPAL NAMES/ I.D.'s
NAME FOR THOSE ALLOWED ACCESS TO THE RESOURCE

A .D.1,1.D.2, [.D.3

B .D.2,1.D.4, ...

C

Fig. 10

TABLE 2

|.D. CACHED RIGHTS
.D.3 X, Y, 2

TABLE 3

|.D. CACHED RESOURCE OBJECT

U.S. Patent Feb. 27, 2007 Sheet 8 of 8 US 7,185,047 B1

ACCESSING, BY AN AGENT, A DIRECTORY SERVICE, WHEREIN
900 ~_ THE AGENT IS LOCATED ON A DEPUTIZATION POINT, WHEREIN
THE DEPUTIZATION POINT IS COUPLED TO THE DIRECTORY
SERVICE, AND WHEREIN THE DIRECTORY SERVICE COMPRISES
RIGHTS OF A PRINCIPAL TO A RESOURCE

9072 UPDATING, BY THE AGENT, THE RIGHTS TO AN ACCESS CONTROL
N LIST CACHE, WHEREIN THE ACCESS CONTROL LIST CACHE IS
COUPLED TO THE DEPUTIZATION POINT AND TO THE PRINCIPAL

RECEIVING, AT THE ACCESS CONTROL LIST CACHE, A
REQUEST FROM THE PRINCIPAL FOR THE RIGHTS

RETRIEVING, BY THE ACCESS CONTROL LIST CACHE, THE RIGHTS

906

FORWARDING, TO THE PRINCIPAL, THE RIGHTS

Fig. 11

908

START

INVOKING, BY THE DIRECTORY SERVICE, A
RESOURCE MANAGER, IF A FIRST TABLE DOES NOT
1000 CONTAIN THE PRINCIPAL THAT HAS ACCESS TO THE
RESOURCE, WHERE THE RESOURCE MANAGER
COMPRISES ACCESS INFORMATION AND RIGHTS OF
THE PRINCIPAL TO THE RESOURCE

MAPPING, BY THE RESOURCE MANAGER, AN
ACCESS CONTROL OF THE RIGHTS IN THE
RESOURCE MANAGER TO AN ACCESS CONTROL
OF THE RIGHTS IN THE DIRECTORY SERVICE

1002

UPDATING, BY THE RESOURCE MANAGER, THE
MAPPED ACCESS CONTROL OF THE RIGHTS

1004 TO THE ACCESS CONTROL LIST CACHE

Fig. 12

US 7,185,047 Bl

1

CACHING AND ACCESSING RIGHTS IN A
DISTRIBUTED COMPUTING SYSTEM

CROSS REFERENC.

L1

This application 1s a Continuation-In-Part of U.S. patent
application Ser. No. 09/252,435, filed on Feb. 18, 1999 now

U.S. Pat. No. 6,601,171, entitled DEPUTIZATION IN A
DISTRIBUTED COMPUTING SYSTEM, assigned to the
assignee ol the present application, and incorporated by
reference herein.

BACKGROUND

The present invention relates generally to the caching and
accessing of rights 1n a distributed computing system. More
particularly, the present invention relates to the caching and
accessing of rights (or permissions) to and from an access
control list in the distributed computing system.

Distributed computing systems are becoming increasingly
useiul and prevalent. Distributed computers are connected
by local area networks, wide area networks, and networks of
networks, such as the Internet. These distributed computing,
systems make available platform-neutral, mobile code envi-
ronments which contain a growing collection of computa-
tional objects, applications, data, and other information in
the form of files, databases, images, and/or other named
resources.

With the growth of such distributed computing systems
and their information content, there 1s an urgent need to
support the eflicient and effective caching and accessing of
rights across heterogeneous systems, services, and plat-
forms. Powertul and convenient caching services are needed
to control access by users to various resources (e.g. files)
available on the distributed systems. A user requesting a
resource on a distributed system may be local to the system
or may be remotely accessing the system. Access to the
system may be allowed via a user’s unique name and
password or, a user may anonymously access the system. In
an anonymous access, such as accessing the internet, the
user will typically have limited access to the various
resources found on the system. However, as the number of
unique and anonymous users accessing distributed systems
continues to grow, there will be an ever increasing number
ol resources being accessed.

Various approaches have been applied to the problem of
providing eflective and eflicient caching services 1 a dis-
tributed computing system to handle the increasing number
of resources being accessed. Some of these prior art
approaches, such as those described 1n U.S. Pat. No. 5,889,
952, have utilized an access control list (ACL) to define the
extent to which different users will be allowed to access
different resources on a distributed computer (or server). An
ACL contains mformation which allows the operating sys-
tem of a server to determine if a particular user has been
granted access rights for a particular resource requested by
the user. According to the prior art, each restricted resource
has associated with 1t an ACL which lists the users granted
access to the resource. Depending on the level of access
control implemented on a given server, ACLs might be
associated with disks, with files, or with other storage
volumes. In an operating system where ACLs are associated
with disks, an ACL for a given disk defines the access
restrictions for all the resources of files stored on that disk.
In an operating system where ACLs are associated with files,
access by users 1s separately controlled for each file.

10

15

20

25

30

35

40

45

50

55

60

65

2

The flexibility and system performance oflered by file
level access control 1s signmificant. However, the number of

access checks performed by such a system 1s increased
dramatically as compared to a system where access control
1s maintained only at the disk level. As with all operations
of an operating system, performing an access check 1n
response to a user request for a resource requires processing
time of the central processing unit (“CPU time”). When a
server 1s handling a large number of file requests, a signifi-
cant amount of CPU time can be consumed by performing
the necessary access checks. In a system employing file-
level access control lists, the access control list 1s part of
cach individual file-object. When a request for a given
file-object 1s recerved, the operating system identifies the
requesting user, opens the requested file-object, reads the
access control list to determine 1f the user has the necessary
access rights, and then delivers the file-object to the request-
ing user (1f the user has the necessary access rights).
Therefore, 1t 1s necessary to open a requested file-object to
perform the access check each time a file 1s requested.

The file-open operation consumes a great deal of CPU
time. In a server recerving frequent file requests, the need to
open every requested file-object to check the access control
list 1s very expensive 1n terms of CPU time. To overcome
this limitation, U.S. Pat. No. 5,889,952 describes an access
permission caching system that performs the necessary
access check, even at the file-level of access control, without
the relatively slow operation of opening the requested file-
object to check the associated ACL. This system stores the
most recently generated access-permissions. If a request
arrives at the server that 1s similar, in terms of the requesting
user and the requested resource, to a previously processed
request, then the system locates the previously generated
access-permission 1n the ACL. The requesting user’s access-
permission 1s therefore determined without opening the
requested resource to read the associated access control list.

This prior approach, however, contains a number of
limitations. For example, a request must have been previ-
ously processed and 1ts permissions stored in the ACL before
these permissions can be provided to a similar future
request. Thus, extra processing 1s needed to initially place
the permissions 1n the ACL. Additionally, access controls for
a set of permissions may not be located on the ACL. This
prior art approach does not provision for the scenario when
a set of access controls of a first resource located 1n the ACL
do not match a different set of access controls of a second
resource 1n the system. In such an instance, 1t will be difficult
for the access controls in the ACL to determine the equiva-
lent access controls 1n the system.

Therefore, an improved system for caching and accessing,
rights to and from an ACL 1n a distributed computing system
1s desired to reduce or eliminate the prior art limitations and
design complexities.

SUMMARY

In response to these and other limitations, provided herein
1s a unique system and method for caching and accessing
rights to and from an access control list (ACL) cache 1n a
distributed computing system. In one embodiment, an agent
that 1s located on a Distributed Deputization Point (DPP)
parses a directory service. The directory service includes the
rights, or permissions, ol various principals (such as users or
groups) to certain resources. When a principal becomes
deputized, certain rights are delegated to the principal which
expressly 1dentily the entities mvolved 1n the delegation.

US 7,185,047 Bl

3

For example, a user logs 1n and sends an authentication
request to one of the DDPs. The “user” may be a user task
for a human who 1s using the system, or 1t may be a system
task which 1s created by the system software or by some
application program. Login might be unnecessary for system
tasks. The authentication request 1dentifies the user by a user
name, a user ID number, or the like. Familiar or novel
authentication mechanisms may be used, including biomet-
ric readings, a smart card, and so on. The authentication
request may include a logon certificate, a password, or
another credential to prove that the user has the rnight to
operate under the specified user name or user ID.

Assuming the credential and/or other authentication infor-
mation 1s accepted by the DDP as legitimate, the user
receives an authentication response. The authentication
response 1cludes an indication that the user 1s now authen-
ticated, and may also include a credential i1dentitying the
rights (received from a user ACL cache discussed in FIG. 9)
granted to the user as a result of the authentication. Tasks
created by the distributed computing system may also
authenticate themselves to a DDP. In particular, deputized
agents previously created by or on behalf of a DDP can 1n
turn authenticate themselves to the same or another DDP in
order to create additional deputies.

After the agent accesses (which may include parsing) the
directory service, the agent updates the rnights to an ACL
cache. It 1s understood that the DDP, directory service, ACL
cache, and principal may all be located on one or more
computers and are connected (either directly or remotely)
via a plurality of communication links. The ACL cache then
receives, from the authenticated user, a request for the rights.
The ACL cache retrieves the rights and forwards them to the
user. The user may now access certain resources based on
the rights 1t has obtained. Thus, the first request from an
authorized user results 1n the rights for that user. As such,
processing time can be minimized thereby improving system
elliciency and quality.

In some embodiments, the ACL cache includes a plurality
of tables. A first table includes the principals that have access
to various resources. A second table includes the rights of the
principals to the resources. A third table includes the
resources that have access to the principals.

In some embodiments, the first table may not contain the
principal that has access to the resource. In such a scenario,
the directory service mmvokes a resource manager that 1s
coupled to the directory service, includes access information
of the principal to the resource, and further includes rights
of the principal to the resource. The resource manager,
which may be located on one or more of the computers and
1s connected to the other entities 1 the system wvia the
communication links, can then map access controls of the
rlghts in the resource manager to access controls of the rights
in the directory service. The resource manager can then
update the mapped access control of the rnights to the ACL
cache.

These advantages, as well as others which will become
apparent, are described 1n greater detail with respect to the
drawings and the following discussion.

BRIEF DESCRIPTION OF THE

DRAWINGS

FIG. 1 1s a diagram 1llustrating one of the many distrib-
uted computing systems suitable for use according to the
present invention.

FIG. 2 1s a data flow diagram illustrating selected com-
ponents of the mventive distributed computing system and
information communicated between those components.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 3 1s a diagram 1illustrating a principal, a deputy of the
principal according to the mnvention, and the relative persis-
tence of the principal and deputies over time.

FIG. 4 1s a diagram 1llustrating a principal, two deputies
of the principal according to the invention, the relative
persistence ol the principal and the deputies over time, and
a boundary such as a boundary between namespaces and/or
networks.

FIG. 5 1s a diagram 1illustrating a principal, a deputy
deputized directly by the principal according to the mnven-
tion, and several deputies 1n a tree of deputies which have
been directly or indirectly delegated rights from the princi-
pal according to the mvention.

FIG. 6 1s a diagram 1illustrating the structure of a deputy
credential signal according to the present invention.

FIG. 7 1s a diagram 1llustrating the structure of a deputized
function signal according to the present invention.

FIG. 8 1s a flow chart illustrating several methods of the
present invention for delegating rights through deputization
in a distributed computing system.

FIG. 9 15 a data tlow diagram illustrating the ACL cache
and resource manager of the inventive distributed computing
system and information communicated between those com-
ponents.

FIG. 10 1s a diagram 1llustrating the various tables 1n the
ACL cache of the inventive distributed computing system.

FIG. 11 1s a flowchart illustrating a method of the present
invention for caching and accessing rights 1 a distributed
computing system.

FIG. 12 1s a tlowchart 1llustrating a method of the present
invention for providing to an ACL cache a right 1t does not
contain 1n a distributed computing system.

DETAILED DESCRIPTION

The present mvention relates to methods, systems, sig-
nals, and devices for caching and accessing rights 1 a
computer network or other distributed computing system. In
particular, the invention provides and uses tools and tech-
niques for caching and accessing rights via an access control
list (ACL) cache. Various components of the invention and
its environment are discussed below.

Deputization

Deputization 1s a particular type of rights delegation.
Deputization provides secure delegation 1n distributed com-
puting environments having one or more computer net-
works, including environments which support a “network
login” instead of requiring a user to log in separately to each
network server.

Unlike some other approaches to delegation, deputization
1s not key-centric. Entity identifiers such as distinguished
names are used together with cryptographic keys to make
secure delegations. Through deputization, rights are del-
cgated from one 1dentified entity to another identified entity.
Deputization does not require that one entity impersonate
another entity.

Using deputies which have their own identities allows the
delegation of rights across boundaries such as the boundary
between two namespaces and/or two networks. A chain or
tree of deputies can also be created, since a deputy can
delegate rights to other deputies.

The deputies are trusted because they have certificates or
credentials which are digitally signed by a known and
trusted Distributed Deputization Point (“DDP”). A deputy
operating through deputy credentials can create other depu-
ties using the same or different DDPs. This allows one or a

US 7,185,047 Bl

S

tew 1mitial deputies to cover significant territory by creating
other deputies from a pool of known DDPs and sending
these deputies out to perform some distributed task such as
a computation or a database query. For example, suppose a
task can be performed only within certain hours of the day.
A pool of known DDPs 1s located using a directory service
such as Novell Directory Services or a Lightweight Direc-
tory Access Protocol service. The pool lists the DDPs and
their operating hours. The user deputizes an 1nitial agent,
which waits until the DDP pool i1s operational and then
deputizes other agents via the DDPs to perform the task.

Deputization according to the invention does not require
a global namespace, although 1t may use one. For instance,
deputies can log onto a system described by the Distributed
Authentication Security Service. A namespace that 1s man-
aged by a distributed directory using NDS, LDAP or other
means can use a DDP to create a deputy credential which 1s
acceptable to one or more other namespaces. Thus, it 1s not
necessary that the imitial principal be globally known in
every namespace that ultimately contains a deputy in that
principal’s deputization tree. Each deputy can create or
receive 1ts own 1dentity before recerving the rnights and
permissions stated in the deputy credential, 1f the DDP
knows about the node to be logged onto and the new deputy
ID 1s available on the target system.

Providing deputies with separate i1dentities also allows
deputies to live on after the user session 1s over. A deputy of
a deputy may likewise live on after the first deputy finishes.

Computers, and Networks Generally

Distributed computing systems which may be configured
according to the invention include computer networks, both
individually and 1n aggregations, as well as mobile comput-
ers which are connectable to such networks. By way of
example, suitable computer networks include local net-
works, wide area networks, and/or the Internet. “Internet” as
used herein includes vanations such as a private Internet, a
secure Internet, a value-added network, a virtual private
network, or an intranet. The computers connected by the
network may be workstations, laptop computers, discon-
nectable mobile computers, file servers, or a combination
thereol. The network may include one or more LANS,
wide-area networks, Internet servers and clients, intranet
servers and clients, or a combination thereof.

One of the many computer networks suited for use with
the present invention 1s indicated generally at 100 in FIG. 1.
In one embodiment, the system 100 includes Novell Net-
Ware network operating system software (NOVELL and
NETWARE are registered trademarks of Novell, Inc.). In
alternative embodiments, the system 100 includes NetWare
Connect Services, VINES, Windows NT, Windows 95,
Windows 2000, any embedded operating system, LAN
Manager, LANtastic network operating system soltware
and/or an 1mplementation of a distributed hierarchical par-
titioned object database according to the X.500 protocol
such as Novell Directory Services or Lightweight Directory
Access Protocol (“LDAP”) directory services (NOVELL
DIRECTORY SERVICES 1s a registered trademark of Nov-
ell, Inc.; VINES 1s a trademark of Banyan Systems; NT,
WINDOWS 95, WINDOWS 2000, and LAN MANAGER
are trademarks of Microsoit Corporation; LANTASTIC 1s a
trademark of Artisoit). The system 100 may include a local
area network 102 which 1s connectable to other networks
104, including other L ANSs or portions of the Internet or an
intranet, through a gateway or similar mechanism.

The system 100 includes several file or object servers 106
that are connected by network signal lines 108 to one or

10

15

20

25

30

35

40

45

50

55

60

65

6

more network clients 110. The servers 106 and clients 110
may be configured by those of skill in the art in a wide
variety ol ways to operate according to the present inven-
tion. The servers 106 may be configured as Internet servers,
as 1ntranet servers, as directory service providers or name
servers, as software component (e.g., COM or Java) or other
object servers, or as a combination thereof. The servers 106
may be umiprocessor or multiprocessor machines. The serv-
ers 106 and clients 110 each include an addressable storage
medium such as random access memory and/or a nonvolatile
storage medium such as a magnetic or optical disk.

Suitable network clients 110 include, without limitation,
personal computers 112, laptops 114, workstations 116,
dumb terminals, information appliances, personal digital
assistants, and other handheld and/or embedded processing
systems. The signal lines 108 may include twisted parr,
coaxial, or optical fiber cables, telephone lines, satellites,
microwave relays, modulated AC power lines, and other
data transmission “wires” known to those of skill in the art.
Signals according to the mvention may be embodied 1n such
“wires” and/or in the addressable storage media (volatile
and/or nonvolatile).

In addition to the network client computers 110, a printer
118 and an array of disks 120 are also attached to the
particular system 100 shown, as examples of other network
nodes or devices. A given computer may function both as a
client 110 and as a server 106; this may occur, for instance,
on computers running Microsoit Windows NT or Windows
2000 software. Although particular individual and network
computer systems and components are shown, those of skill
in the art will appreciate that the present immvention also
works with a variety of other networks and computers.

The servers 106 and the clients 110 are capable of using
floppy drnives, tape drives, optical drives or other means to
read a storage medium 122. A suitable storage medium 122
includes a magnetic, optical, or other computer-readable
storage device having a specific physical substrate configu-
ration. Suitable storage devices include tloppy disks, hard
disks, tape, CD-ROMs, PROMs, RAM and other computer
system storage devices. The substrate configuration repre-
sents data and 1nstructions which cause the computer system
to operate 1n a specific and predefined manner as described
herein. Thus, the medium 122 tangibly embodies a program,
functions, and/or instructions that are executable by the
servers 106 and/or network clients 110 to perform caching
and other steps of the present invention substantially as
described herein.

Data Flow Generally

FIG. 2 1llustrates generally the flow of data 1n a distributed
computing system, such as the system 100, during a depu-
tization according to the mvention. A user 200 wishes to be
authenticated to a distributed deputization point (DDP) 202
in order to delegate rights to one or more deputies. The user
200 first logs into the system 100 by exchanging login
information 204 with a server 106. The server 106 will act
as a principal node 206, that 1s, as a node 206 which
represents a principal (one who delegates rights). The login
information 204 exchange may be automatic 1f the user 200
1s already logged into a client 110 that communicates with
the principal node 206, or it may be done expressly at the
user’s request.

A user task 208 on the principal node 206 represents the
user 200 for delegation purposes. The user task 208 1s one
example ol a principal; other examples discussed below
include tasks created by other software running on the
system 100.

US 7,185,047 Bl

7

The user task 208 locates the distributed deputization
point 202 using a directory service 210 or other means, and
then sends the DDP 202 an authentication request 212. The
authentication request 212 identifies the user 200 by a
username, a user [number, or other identifier. The authen-
tication request 212 may include a logon certificate, a
password, or another credential to prove that the user 200
has the right to log onto the system 100 under the specified
user name or user 1D.

The distributed deputization point 202 checks the authen-
tication request 212 and either recognizes or refuses to
recognize the user task 208 as authentic. If recognition 1s
refused, error messages may be sent to a network or system
administrator, a log entry may be made, and other steps
tfamiliar to those of skill in the art may be taken to inform the
user 200 and/or system administrators as appropriate.

Assuming that the authentication request 212 1s accepted
by the distributed deputizing point 202 as legitimate, the
DDP 202 then sends the user an authentication response 214.
The authentication response 214 1ncludes an indication that
the user 200 1s now authenticated, and may also include a
credential i1dentitying the permissions granted to the user
200 as a result of the authentication. Such a credential 1s not

necessary, but merely provides one way to authenticate the
user task 208 to the DDP 202 and to maintain that authen-

tication. Authentication information may also be maintained
in the DDP 202 or 1n some system data structure accessible

to the DDP 202.

Principals may be user tasks 208, or they may be other
tasks. For instance, a task created by an operating system, by
an application program, or by other software may also act as
a principal by using the DDP 202 to delegate rights to
deputies. In particular, a deputy 216 which was previously
created according to the invention may be a principal that
creates 1ts own deputies. Likewise, an application program
218 may use the DDP 202 to create deputies. User tasks 208,
deputies 216, and applications 218 are collectively referred
to herein as “principals.” In some cases, deputies 216 and/or
applications 218 may already be authenticated to the DDP
202, making an authentication request 212 and correspond-
ing response 214 unnecessary.

In any case, the principal 208, 216, or 218 sends the DDP
202 a deputy credential request 220. The deputy credential
request 220 either contains the public key of the proposed
deputy, or identifies the deputy so the DDP 202 can request
the deputy’s public key from a repository, or presumes that
the DDP 202 will obtain the deputy i1dentity after creating
the deputy. The repository may be part of a familiar public
key infrastructure, and certification authorities of the type
tamiliar 1n the art may be used. If the deputy’s public key 1s
provided, then the deputy credential request 220 also con-
tains the private key of the proposed deputy encrypted with
the user’s public key. In addition, the request 220 identifies
the principal and proves that the principal 1s authorized to
create deputies.

The maximum life span of the deputization may also be
provided to the DDP 202 by the principal. Alternatively, the
DDP 202 may use a default value, or it may override the
value requested by the principal. In some embodiments, no
maximum life span 1s specified, and deputizations are good
until expressly revoked.

The permissions to be granted to the deputy by the
principal may also be specified to the DDP 202 by the
principal. These permissions must be the same as, or a
proper subset of, the permissions currently held by the
principal. Alternatively, the request 220 need not specity the

10

15

20

25

30

35

40

45

50

55

60

65

8

deputy permissions, in which case the DDP 202 can use a
default value or can simply make the permissions the same
as the principal’s.

In response to the deputy credential request 220, the DDP
202 creates a deputy credential and/or deputy certificate. In
general, a deputy credential contains the principal’s 1dentity,
the permissions being delegated to the deputy by the prin-
cipal, the deputy’s private key encrypted with the principal’s
public key, and the digital signature of the DDP 202. A
deputy certificate contains information such as the deputy’s
public key, the nghts granted, and the life span of the
certificate.

Once a principal has a deputy certificate, 1t can use that
certificate to deputize individual functions, agents, and/or
other entities as deputies. Any access point in any network
in the system 100 which can authenticate the deputy cer-
tificate can then authenticate the deputy to permit access to
network resources 1n accordance with the rights and per-
missions granted in the deputy certificate. Multiple deputy
certificates from one or more principals may be used to
provide aggregate access and permission lists, so long as
cach deputy certificate can be authenticated by the site 1n
question.

As a result, deputies of a principal can be given certain
access and permission to network resources without the
principal being present to authenticate all their requests.
Requests made using a deputy certificate are as good as
requests made by the principal itsell, so long as the depu-
tization has not expired or been revoked.

Deputization Chains and Trees

FIGS. 3 through 5 show a few of the many possible
configurations of principals and deputies which are possible
according to the present invention. FIG. 3 illustrates a
relatively simple configuration, 1n which one principal 300
uses a distributed deputization point to delegate rights to one
deputy 302. This 1s shown 1n the leftmost column of FIG. 3.
Since the deputy 302 has an 1dentity separate from that of the
principal 300, the deputy 302 can persist even after the
principal 300 1s no longer present on the system. This 1s
indicated 1n the center column of FIG. 3, with the passage of
time being indicated by the ellipsis between the columns. As
shown 1n a third, nghtmost column which contains neither
the principal 300 nor the deputy 302, the deputy 302 can
subsequently terminate itself once 1t has performed the task
assigned to 1it.

FIG. 4 illustrates a more complex configuration. A prin-
cipal 400 delegates rights to two different deputies 402, 404.
The two deputies 402, 404 may receive the same rights or
they may receive different rights, depending on the circum-
stances. Several deputies of a given principal may all operate
in a homogeneous region such as a given namespace and/or
network. However, as indicated by a boundary marker 406,
different deputies of a given principal may also operate 1n
different regions. FIG. 4 also 1llustrates the fact that deputies
do not necessarily outlive their principal. As shown, the
principal 400 and the first deputy 402 outlive the second
deputy 404, and the principal 400 continues operating on the
system even aiter the first deputy 402 expires, terminates
itself, 1s terminated, or otherwise stops executing.

FIG. 5 1llustrates a configuration 1 which a deputy also
serves as a principal. Thus, a principal 500 delegates rights
to a first deputy 502. After the principal 500 exits the system,
the first deputy acts as a principal by delegating rights to

three additional deputies 504, 506, 508. The last deputy 508
in turn delegates rights to another deputy 510. The collection

which includes the principal 500 and the deputies 502, 508,

US 7,185,047 Bl

9

and 510 1s an example of a deputization chain. The entire
illustrated configuration, containing the principal 500 and
the deputies 502 through 510, 1s an example of a deputiza-
tion tree.

Other configurations are also possible. In particular, more
or fewer principals, deputies, and/or boundaries may be
present 1 a given configuration under the imvention. Rela-
tive life spans of principals and deputies may also differ
from those shown, and differently sized and shaped depu-
tization chains and trees may occur.

Deputization Signals Generally

FIGS. 6 and 7 illustrate deputization signals according to
the present invention. A deputy credential 600 1s created by
a distributed deputization point 202 1n response to a request
by a principal, as noted above 1n connection with FIG. 2. The
deputy credential 600 includes a principal identifier 602
which 1dentifies the principal that will delegate rights
through the deputy credential 600. The principal 1dentifier
602 may include a distinguished name, tuned name, GUID
or UUID, uniform resource locator, network address, user
name, user ID number, account number, and/or other i1den-
tification. Unlike key-centric systems, a mere public key 1s
not suflicient identification of the entity which 1s delegating
rights. The rights which the principal has actually delegated
are 1dentified 1n a rights identifier 604. As noted earlier, the
distributed deputization point 202 may delegate all of the
rights specified by the principal’s request 220, or the dis-
tributed deputization point 202 may partially or entirely
override that request.

The rights identifier 604 may be implemented using bit
flags, groups, permissions, access control lists, security
labels, clearance levels, and/or other familiar 1dentifications
of resource access rights. The deputy credential 600 also
includes as a component 606 the private key of the deputy
encrypted with the public key of the principal. Any reliable
public key mechanism may be used, including without
limitation those described in Schneier, Applied Cryptogra-
phy, ISBN 0-471-59756-2 (1994), and other reference works
on public key cryptography.

The deputy certificate 608 1n the deputy credential 600
contains additional components, including a public key 612
of the deputy and a life span 614. The life span 614, which
1s optional, may be used to define the time period over which
the delegation of nghts memorialized 1n the deputy creden-
tial 600 1s valid. Tools and techniques for implementing
“total time to live” and other life span components 1n other
contexts (such as i1n connection with conventional certifi-
cates 1n a public key infrastructure) are familiar to those of
skill 1n the art.

The rights 1dentifier 604 may be repeated 1n the deputy
certificate 608. Repetition may be helpiul 1n an embodiment
in which the DDP 202 maintains authentication state in the
credential 600. In such cases, the credential 600 1s required
to authenticate an access request by the deputy and the
certificate may be used in one or more other deputizations,
for istance. It 1s also possible to have a credential 600
authenticate the deputy but have all rights and permissions
specified at the DDP 202 rather than in the credential 600.
As 1llustrated i FIG. 7, repetition of components may also
be approprniate to allow use of the deputy certificate 608
apart from the deputy credential 600.

The deputy certificate 608 and the deputy credential 600
are digitally signed by components 616, 610, respectively,

which are digital signatures based on the other contents of
the certificate 608 and the other contents of the credential

600, respectively. The digital signatures 616, 610 are created

10

15

20

25

30

35

40

45

50

55

60

65

10

by the distributed deputization point 202 when 1t creates the
certificate 608 and/or credential 600, respectively. Any of a
wide variety of familiar digital signature tools and tech-
niques may be used.

FIG. 7 1illustrates a deputized function signal 700. The
deputized function 700 includes mstructions 702 for per-
forming some task on behalf of the principal which del-
cgated rights to the function. The term “instructions” 1s used
broadly, to include computer controlling, informing, and/or
recording means such as executable code and data, portable
byte codes, scripts, dynamic link libraries, forms, graphics,
and/or other code and data needed to perform tasks. The
rights delegated are identified 1n a nights identifier 604
and/or a deputy certificate 608. The instructions 702 and the
other components are signed by the distributed deputization
poimnt 202 with a signature 704, which 1s generated 1n a
manner similar to the deputizer signatures 610, 616.

The signals 600, 700 may be implemented 1n data struc-
tures 1n various ways. For instance, signal components may
be placed 1n a different order from that shown 1n the figures,
may be omitted (unless called for 1n the appended claims),
and may be supplemented with other components such as
error detection and correction codes, timestamps, and/or
network addresses. A wide variety of data structure field
sizes and data encodings are possible. The deputization
signals may also be embodied 1n the system 100 in various
media. For instance, they may take the form of data struc-
tures stored on a disk or in RAM memory, and/or the form
ol signals on one or more network communication lines 108.

Deputization Methods Generally

FIG. 8 1llustrates methods according to the present mnven-
tion. The method steps may be implemented and performed
in various ways. For instance, steps may be performed
concurrently and/or 1in a different order from that shown,
except to the extent that one step requires the results of
another step. Steps may also be omitted (unless called for 1n
the claims), and may be supplemented with other steps such
as error detection and correction steps, noftification and
logging steps, and steps which are directed to performing
assigned tasks once the deputy or deputies are authenticated.
Further, steps may be repeated. In particular, a given prin-
cipal may delegate rights to several deputies and/or a deputy
may delegate rights, as shown 1n FIGS. 4 and 5, by appro-
priate repetition of selected steps.

During an authenticating step 800, a principal authenti-
cates itself to one or more distributed deputization points
202. This may be performed as discussed above 1n connec-
tion with the authentication request 212 and authentication
response 214. As noted 1n that discussion, some principals
may already be authenticated to the DDP 202 and/or may be
pre-authorized under the system so that no authentication
step 800 1s needed.

A request sending step 802 sends to one or more DDPs
202 one or more requests for rights delegation through
deputization. This may be done by transmitting deputy
credential requests 220. In particular, the sending step 802
includes a step 804 1dentifying the requester and a step 806
specifying the rights to be delegated. Suitable data for the
steps 804, 806 arc discussed above in connection with
deputization signal components 602, 604, respectively.

An optional deputy i1dentifying step 808 identifies the
deputy to the DDP 202. This step 1s suitable when the
principal wishes to delegate rights to an existing entity. The
step 808 may be omitted 1f the principal wishes to have the
DDP 202 spawn new tasks and give them the specified
rights. For instance, the principal may desire to deputize

US 7,185,047 Bl

11

entities which are created only after the principal logs ofl the
system, or the principal may wish to deputize entities which
are outside the namespace and/or network of the principal
but not outside the namespaces and networks available to the
DDP 202. In such cases, the deputy 1dentities are not known
to the principal, and thus the 1dentitying step 808 1s omuitted.

A limited life span for one or more of the specified rights,
or for the deputy credential 600 and/or deputy certificate 608
as a whole, may be specified by the principal during a step
810. Alternatively, the life span may be specified by the DDP
202, or no life span may be specified.

During a request receiving step 812, one or more DDPs
202 recerve the request sent during the step 802. The request
identifies the principal and the rights to be delegated. If the
principal does not already have a public key and a corre-
sponding private key, it may be prompted at this point to
obtain such a key pair, or the DDP 202 may proactively
register the principal with a certification authority to obtain
a key pair on behalf of the principal. The DDP 202 may 1tself
be a certification authority, that 1s, 1t may have certification
authority functionality and recognition in addition to the
deputization role discussed herein.

If the entity receiving the rights does not already exist,
then 1t 1s created during a step 814. As noted above, this may
involve logging in across a namespace and/or network
boundary during a step 816. Regardless, the DDP obtains
from the operating system the identifiers of one or more
deputy entities during a step 818. During a step 820, each
deputy 1s provided with a public key-private key pair. This
may be done by prompting each deputy to obtain such a key
pair from a public key inirastructure, or the DDP 202 may
obtain or provide the key pairs on behalf of the deputies.

During a forming step 822, the deputy credential and/or
deputy certificate 1s formed. As noted 1n connection with
FIG. 6, the deputy credential 1dentifies the principal, 1den-
tifies the rights delegated to the deputy by the principal,
contains the deputy private key encrypted with the principal
public key, contains the deputy public key, and 1s signed by
the distributed deputization point 202. The deputy certificate
608 may be created to group the deputy public key 612 and
possibly other components within the deputy credential 600,
as discussed in connection with FIGS. 6 and 7. During an
optional function deputizing step 824, deputized functions
such as those illustrated and discussed in connection with
FIG. 7 may be created.

The deputy certificate 608, deputized functions 700, and/
or deputy credentials 600 are then utilized during one or
more deputy authenticating steps 826. Any access point in
any network which can authenticate based on these various
deputization structures 600, 608, 700 can authenticate
deputy tasks and functions under the mvention. This pro-
vides a flexible yet secure mechanism for delegating rights
within the distributed computing system 100.

Caching and Accessing Rights

FI1G. 9 1llustrates generally the flow of data 1n a distributed
computing system, such as the system described in FIG. 2,
during the caching and accessing of rights to and from an
ACL cache 226 according to the invention. When the deputy
credential request 220 1s sent by the principal 208, 216, or
218, 1t 1s recerved at the ACL cache 226. The principal 208,
216, or 218 may be requesting its rights to various resources
in the system. The ACL cache 226 then retrieves the rights
and forwards them (via the deputy credential response 222)
to the principal. Prior to the ACL cache 226 receiving the
deputy credential request 220, however, an agent (not
shown) on the DDP 202, parses the directory service 210

10

15

20

25

30

35

40

45

50

55

60

65

12

which contains the rights of the principal 208, 216, or 218
to the various system resources. The agent then updates the
rights to the ACL cache 226. Thus, when ACL cache 226
first receives the deputy credential request 220, 1t already
contains the rights for the deputy thereby eliminating the
need to access the DDP 202.

In an alternate embodiment, a separate ACL cache 227
may contain the user’s 200 (or user task’s 208) rights to
various resources. The rights may already be contained in
the cache 227 or, 1f the cache 227 1s coupled to the cache
226, the cache 227 can, based on the user’s 200 (or user
task’s 208) identity received from the authentication request
212, retrieve the user’s rights from the cache 227. When the
authentication response message 214 1s sent from the DDP
202 to the user task 208, 1t will include the user’s 200 rights.
Thus, the user 200 will be aware of the rights he/she has to
various resource at the time of authentication.

In an alternate embodiment, the ACL cache 226 could be
extended to interface with the user task 208 and the DDP
202. In such a scenario, the separate ACL cache 227 would
not be needed as the ACL cache 226 could interface with
every principal 208, 216, and 218 1n the principal node 206.
The agent may synchronously and/or asynchronously
update the rights to the ACL cache 226, when the rights are
added to and/or removed from the directory service and/or
when the request from the principal 1s received. The agent
may also update the ACL cache 226 at a scheduled time
(such as a low prionty time, when, for example, the CPU
demand 1s low) or after a time to live has expired, thereby
causing the ACL cache 226 to re-obtain the rights from the
directory service 210 instead of using the existing cached
rights.

The ACL cache 226 contains a plurality of tables (1-3)
which are described 1n FIG. 10. Table 1 contains the names
or identifiers (“1.D.’s”) of the principals that have access to
the various system resources. For example, 1.D. 1 may
pertain to the principal 216 and resource A may pertain to a
printer 1n the system. As such, the principal 216 has access
to that particular printer. Table 2 contains the rights that a
principal has to a resource. The principal 216 has various
rights X, y, and z that pertain, for example, to adding the
printer, deleting the printer, and printing from the printer,
ctc. Continuing with the above example, the principal 216
has the right to print a document via the printer. Table 3
contains the cached access to the resource object which
allows certain methods 1n the object (such as, for example,
object authentication) to be accessed faster by the principal
216. Continuing with the above example, the printer’s
capabilities are cached to allow the principal 216 fast access
to those capabilities.

The naming convention utilized in the tables 1-3 can
benellt from the use of nametags which are distributed with
files, with objects, or with other items. Nametags are used to
correlate location-independent logical names with the loca-
tion of 1tem copies stored 1n the distributed system. Names
can be used by services that enable end-user application
programs and by system services to navigate, locate, access,
and mampulate mappings between names and specific
pieces of digital mnformation such as a file or an object, or
between names and specific pieces of equipment such as a
printer or a disk array.

If a request from a principal 208, 216 or 218 1s received
at the ACL cache 226 and the ACL cache does not contain
the name or 1.D. of the principal (and thus will not contain
the rights for that principal), a resource manager 224 1s
invoked by the directory service 210 (either directly or via
the DDP 202). The resource manager 224 1s an abstraction

US 7,185,047 Bl

13

that decouples access controls for various resources. The
access controls provide various actions that may be per-
formed on a resource. For example, the access controls for
a file resource may include a “read”, a “write”, or a “find.”
I1 the ACL cache 226 contains information primarily relating
to file rights and a principal request 1s received at the ACL
cache that relates to a newly installed resource, the ACL
cache may not have rights information relating to the newly
installed resource (such as, for example, an air conditioner).
In such a scenario, the resource manager 224 would be
invoked and would then map the access control rights of the
air conditioner to the access control rights of the file. For
example, the access controls for an air conditioner resource
may include a “set™, a “raise”, or a “find.” Thus, the resource
manager 224 would map a set access control bit to a write
access control bit. The resource manager 224 would then
update the ACL cache 226 with this mapped information. As
such, a principal accessing the ACL cache would be able to
control the air conditioner (if, of course, they were authen-
ticated to do so) utilizing the file access controls. The
resource manager 224 allows foreign notions of access
control in the ACL cache 226 by adopting the semantics of
various resources to the semantics of the resources inherent

in the ACL cache.

Caching and Accessing Rights Methods Generally

FIG. 11 describes a method for caching and accessing
rights 1n a distributed computing system (such as system
100), that may be implemented by the computer 112 of FIG.
1. The method begins at step 900 where an agent, that 1s
located on a deputization point, accesses a directory service.
The deputization point 1s coupled to the directory service
that includes rights of principals to various resources. At step
902, the agent updates the rights to an access control list
cache. The access control list cache i1s coupled to the
deputization point and to the principal. The method proceeds
to step 904 where the access control list cache receives a
request from the principal for the rights. At step 906 the
access control list cache retrieves the rights and, at step 908,
forwards the rights to the principal.

FIG. 12 describes a method for providing to the ACL
cache 226 certain rights 1t does not contain. The method
begins at step 1000 where a directory service mvokes a
resource manager if Table 1 does not contain the principal
that has access to the resource. The resource manager, which
1s coupled to the directory service, includes access informa-
tion and rights of the principal to the resource (rights that the
ACL cache 226 does not contain). At step 1002, the resource
manager maps an access control of 1ts right(s) to an access
control of the right(s) contained 1n the directory service. The
method proceeds to step 1004 where the resource manager
updates the mapped access control of the right(s) to the ACL
cache.

These components, in the distributed communication sys-
tem, do not have to be directly coupled to one another.
Rather, the information between these components may be
remotely accessed (or communicated) via a plurality of
communication links.

The present mmvention thus enjoys several advantages.
One advantage 1s the ability to delegate rights 1in a distrib-
uted computing system through deputization. Deputization
1s usetul 1 a variety of situations, including those which
require the use of resources that are remote from a user and
the user’s normal environment. For instance, deputization
could be used to perform tasks on a remote supercomputer
or to use restricted software which must be run 1n a specific
controlled environment.

10

15

20

25

30

35

40

45

50

55

60

65

14

Other advantages also exist. For example, the request for
rights from an authorized principal are provided the very
first time they are made. Additionally, certain rights can be
placed 1n the ACL cache that it does not contain. With these
improvements, processing time can be minimized thereby
improving system elliciency and quality. These improve-
ments are especially important as the “web-centric” world
continues to expand.

It 1s understood that variations may be made in the
foregoing without departing from the scope of the present
invention. For example, additional networks, components
(e.g. computers), and functions relating to deputization and
caching and accessing rights that may be performed on those
components, may be included 1n the distributed computing
system. Also, the ACL cache may include a greater or fewer
number of tables that contain additional information, exist-
ing tables may contain additional information, and/or the
information in the tables may be combined. For example, the
information from Table 1 and Table 2 1n FIG. 10 may be
combined to provide rights of a resource for a principal.
Further, the tables may be fully inverted. For example, Table
1 1s mnverted on the resource name but can easily be inverted
on the principal name. This could provide faster ACL access
by the principal to the resource. Any of the entities (the
agent, principal, ACL cache, etc.) may be contained on one
or all of the components described. For example, the ACL
cache may be located on the component (for example
computer 112) housing the principal, the DDP, and/or the
resource manager. Additionally, a separate ACL cache (such
as ACL cache 227) may contain a user’s (or user task’s)
rights to various resources so that the user 200 will be aware
of the rights he/she has to various resource at the time of
authentication. Further, the ACL cache 226 could be
extended to interface between every principal in the princi-
pal node 206 and the DDP 202 so as to omit the need for a
separate ACL cache.

It 1s further understood that other modifications, changes
and substitutions are mtended in the foregoing disclosure
and 1n some 1nstances some features of the disclosure will be
employed without corresponding use of other features. Fur-
thermore, singular discussion of items such as a right,
principal, and resource 1s also meant to apply to situations
where multiple rights, principals, and/or resources exist.
Accordingly, 1t 1s appropriate that the appended claims be
construed broadly and in a manner consistent with the scope
of the disclosure.

What 1s claimed 1s:

1. A method for caching and accessing access rights to at
least one resource 1n a distributed computing system, the
method comprising:
accessing, by a software agent, a directory service,
wherein the agent 1s located on a deputization point
coupled to the directory service, and wherein the direc-
tory service comprises the access rights of a software
principal to a resource;
updating, by the agent, the access rights 1 an access
control list cache, wherein the access control list cache
1s coupled to the deputization point and to the principal;

recerving, at the access control list cache, a request from
the principal or the access rights stored 1n the access
control list cache;

retrieving, from the access control list cache, the access

rights;

forwarding, to the principal, the access rights;

delegating one or more of the principal’s access rights to

at least one software entity; and

US 7,185,047 Bl

15

accessing the resource, by the software entity, using the
delegated access rights without requiring intervention
of the principal to authenticate access requests by the
soltware entity, wherein tasks can be accomplished by
the software entity without control by the principal.
2. The method of claim 1, wherein the access control list
cache 1s comprised of a first table comprising the principal
that has access to the resource.
3. The method of claim 1, wherein the access control list
cache 1s comprised of a second table comprising the access
rights of the principal to the resource.
4. The method of claim 1, wherein the access control list
cache 1s comprised of a third table comprising a cached
access to the resource object.
5. The method of claim 2 further comprising invoking, by
the directory service, a resource manager, if the first table
does not contain the principal that has access to the resource,
wherein the resource manager 1s coupled to the directory
service and comprises access mformation and access rights
of the principal to the resource.
6. The method of claim 5 further comprising mapping, by
the resource manager, an access control of the access rights
in the resource manager to an access control of the rights 1n
the directory service.
7. The method of claim 6 further comprising updating, by
the resource manager, the mapped access control of the
access rights to the access control list cache.
8. The method of claim 1, further comprising at least one
of the following actions from the group consisting of:
asynchronously updating, by the agent to the access
control list cache, the access rights, when the access
rights are added to the directory service;

asynchronously updating, by the agent to the access
control list cache, the access rights, when the access
rights are removed from the directory service;

asynchronously updating, by the agent to the access
control list cache, the access rights, when the request
from the principal 1s received;

synchronously updating, by the agent to the access control

list cache, the access rights, when the access rights are
added to the directory service;

synchronously updating, by the agent to the access control

list cache, the access rights, when the access rights are
removed from the directory service;

synchronously updating, by the agent to the access control

list cache, the access rights, when the request from the
principal 1s received;

updating, at a scheduled time, the access rights by the

agent to the access control list cache; and

updating, after a time to live has expired, the access rights

by the agent to the access control list cache.

9. A distributed computing system supporting access
control caching, the system comprises:

a plurality of computers, each having a memory and a

Processor;

a plurality of communication links connecting the plural-

ity ol computers;

a principal located on a first one of the computers;

an agent located on a second one of the computers;

a resource located on a third one of the computers;

a first set of access rights located on a fourth one of the
computers;

a second set of access rights located on a fifth one of the
computers;

means for accessing, by the agent, the first set of access
rights of the principal to the resource;

10

15

20

25

30

35

40

45

50

55

60

65

16

means for updating, by the agent, the first set of access
rights to an access control list cache, wherein the access
control list cache 1s located on a sixth one of the
computers;

means for receiving, at the access control list cache, a

request from the principal for the first set of access
rights;

means for retrieving, by the access control list cache, the

first set of access rights;

means for forwarding, to the principal, the first set of

access rights; and

means for providing, to the principal, a deputization

certificate adapted for enabling the principle to copy
one or more of the principal’s access rights to at least
one software enftity.
10. The system of claim 9 further comprises means for
invoking the second set of access rights, 11 the first set of
access rights 1s not located on the fourth one of the com-
puters.
11. The system of claim 10 further comprises means for
mapping an access control of the second set of access rights
to an access control of the first set of access rights.
12. The system of claim 11 further comprises, means for
updating the access control list cache with the mapped
access control of the first set of access rights.
13. A computer storage medium having a configuration
that represents data and istructions which will cause per-
formance of method steps for caching and accessing access
rights in a distributed computing system, the method com-
prising:
accessing, by a soltware agent, a directory service,
wherein the agent 1s located on a deputization point
coupled to the directory service having the access rights
of at least one principal to at least one resource;

updating, by the agent, the access rights to an access
control list cache, wherein the access control list cache
1s coupled to the deputization point, and wherein the
access control list cache 1s coupled to the principal;

receiving, at the access control list cache, a request from
the principal for the access rights;

retrieving, by the access control list cache, the access

rights;

forwarding, to the principal, the access rights;

forwarding, to the principal, a deputization credential

empowering the principal to deputize software entities;
and

deputizing, by the principal, at least one of the software

entities, wherein the software entity can exercise one or
more of the principal’s access rights due to the depu-
tization.

14. The configured storage medium of claim 13 further
comprising invoking, by the directory service, a resource
manager, 1f the access control list cache does not contain one
of the access rights, whereimn the resource manager 1s
coupled to the directory service, and wherein the resource
manager comprises the one right.

15. The configured storage medium of claim 14 further
comprising mapping, by the resource manager, an access
control of the one right to an access control of the access
rights.

16. The configured storage medium of claim 15 further
comprising updating, by the resource manager, the mapped

access control of the access rights to the access control list
cache.

17. A method for controlling access within a computer
system using deputization, the method comprising:

US 7,185,047 Bl

17

receiving an access authorization request at a deputization
point from a principal, wherein the access authorization
request requests validation of the principal’s identity;

determining whether to validate the principal based on the
access authorization request;

identifying one or more resource access permissions for

the principal 1f the principal 1s validated, wherein the
resource access permissions enable the principal to
access one or more resources; and

providing the principal with deputizing authority at the

identified access authorization level, wherein the depu-
t1izing authority comprises a deputization credential that
enables the principal to give at least one soitware entity
within the computer system a level of resource access
permission equal to or lesser than the principal’s
resource access permissions.

18. The method of claim 17 wherein determining whether
to validate the principal includes comparing information
present 1n the access authorization request to a plurality of
access rights contained 1n an access control list cache.

19. The method of claim 18 further comprising:

invoking a resource manager 1i the access control list

cache does not contain an access right associated with
the access authorization request;

locating the access right associated with the access autho-

rization request; and

mapping the access right ito the plurality of access

rights.

20. The method of claim 17 further comprising deputiz-
ing, by the principal, a first software entity, wherein the first
software entity has a level of resource access permission
equal to or lesser than the principal’s resource access per-
missions.

21. The method of claim 20 wherein deputizing includes
defining a lifespan of the deputization.

22. The method of claim 20 further comprising deputiz-
ing, by the first soltware entity, a second soitware entity,
wherein the second software entity has a level of resource
access permission equal to or lesser than the first software
entity’s level of resource access permission.

23. A computer-executable method for delegating permis-
s1on from a software principal to a software deputy within a
computer network to access at least one resource that is
accessible to the principal, the method comprising;:

receiving a request from the principal for a deputy cre-

dential, wherein the request includes the principal’s
identity and at least one permission to be assigned to
the deputy;

sending the deputy credential to the principal, wherein the

deputy credential enables the principal to assign the
permission to the resource to the deputy;

10

15

20

25

30

35

40

45

50

18

receiving a deputization request from the principal to
assign the permission to the deputy; and

assigning the permission to the deputy, wherein the
deputy can independently access the resource using the
assigned permission without being controlled by the

principal.
24. The method of claim 23 further comprising imposing,
a lifespan on the assignment of the permission, wherein the
assignment will expire at the end of the lifespan.

25. The method of claim 23 further comprising imposing,
a lifespan on the deputy, wherein the deputy will terminate
at the end of the lifespan.

26. The method of claim 23 further comprising:

determining if a deputy identified imn the deputization
exists; and

creating the deputy if the deputy does not exist.

277. The method of claim 26 further comprising identify-
ing a start time 1n the deputization request for assigning the
permission to the deputy, wherein the permission i1s not
assigned to the deputy until the start time.

28. The method of claim 27 wherein the principal 1s
terminated in the computer network prior to the start time.

29. The method of claim 23 further comprising veriiying
that the principal 1s permitted to access the resource prior to
sending the deputy credential to the principal.

30. The method of claim 23 wherein the deputy 1s in a
namespace that i1s not accessible to the principal, and
wherein the deputy can use the permission to access a
resource 1n the namespace that 1s not accessible to the
principal.

31. The method of claim 23 wherein the request from the

principal for a deputy credential includes a plurality of
permissions to be assigned to the deputy, and wherein the

deputy credential sent to the principal permits the principal
to assign only a portion of the plurality of permissions to the
deputy.

32. The method of claim 23 further comprising

receiving a second request from the principal for a second
deputy credential, wherein the request includes the
principal’s 1dentity and at least a second permission to
be assigned to the deputy;

sending the second deputy credential to the principal; and

assigning the second permission contained 1n the second
deputy credential to the deputy, wherein the deputy
includes permissions from both the deputy credential
and the second deputy credential.

	Front Page
	Drawings
	Specification
	Claims

