US007177940B1

a2 United States Patent (10) Patent No.: US 7,177,940 B1

Holan et al. 45) Date of Patent: Feb. 13, 2007
(54) REPRESENTING A SERVICE DISCOVERY 6,011.871 A 172000 XU ceeviereeeeeeeeaeaans 382/240
STREAM AS AN N-ARY TREE 6,029,170 A 2/2000 Garger et al. 707/100
6,031,977 A * 2/2000 PettuS ..ooevevvevveeverennn, 709/230
(75) Inventors: Doron J. Holan, Seattle, WA (US); 6,101,556 A) 8/2000 Piskiel et al.
Kenneth D- Ray, Redmond, WA (US)j 6,243,389 B 6/2001 Khanna et al. 370/408
. " 6,282,576 Bl 82001 Lane

Louis J. Giliberto, Redmond, WA 6.430.500 B 22000 Baker of al
(US); Husni Roukbi, Seattle, WA (US) 6.493.762 B1* 12/2002 Chen et al. weervoveoen.. 709/231

| | | 6,532,368 Bl 3/2003 Hild et al.
(73) Assignee: (B{Illé‘;‘osoft Corporation, Redmond, WA 6,532,476 B1* 3/2003 KiNg woveorvererererereenn, 707/101

OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this

. ded i 4 und Tomasz Imielinski et al., Energy Efficient Indexing on Air, Pro-
patent 1s extended or adjusted under 35 ceedings of the 1994 ACM SIGMOD International Conference on

U.S.C. 154(b) by 1160 days. Management, 1994, pp. 25-36.*

Ming-Syan Chen et al., Indexed Sequential Data Broadcasting, The

(21) Appl. No.: 09/669,424 17th International Conference on Distributed Computing Systems,
May 1997.%

(22) Filed: Sep. 25, 2000 Anonymous, “Definition: Tree Structure,” Webopedia, retrieved
from http://www.webopedia.com May 29, 2003,

Related U.S. Application Data Specification of the Bluetooth System, v1.0B, Dec. 1, 1999.
(63) Continuation-in-part of application No. 09/557,947, (Continued)

filed on Apr. 24, 2000 bandoned.
cd Ol ApL. 23, », HOW dbalCone Primary Examiner—Patrice Winder

(51) Int. CL (74) Attorney, Agent, or Firm—Woll, Greenfield & Sacks,
GO6F 15/167 (2006.01) P.C.
GO6F 15/16 (2006.01)
(52) U8 Cle oo 709/231: 709213 ©7) ABSTRACT
(58) Field of Classification Search 70°7/7, A service discovery stream is represented as an N-ary tree
707/100, 1015 710/65; 370/408; 378029/ /2;301; that provides the capability to change, add, or remove an

clement with only one modification to the entire tree. The

See application file for complete search history. number of elements in a stream are counted and each

(56) References Cited clement and the element’s ch.ildren are converted into a node
of the N-ary tree. Fach node 1n the tree can have any number
U.S5. PATENT DOCUMENTS of siblings, which are linked to each other using a doubly
5,121,493 A * 6/1992 Fergusonocoon..... 7077 lnked list.
5,339421 A * 8/1994 Housel, III 710/65
5,758,360 A * 5/1998 Zbikowski et al. 707/101 23 Claims, 5 Drawing Sheets
104 — Get next SO_NODE Create an array of
ﬁf*ﬁa from list, initialize |— SD_NODEs (number
106 —. s as list head of required nodes + 1)
Set the list head to the frs - 102 100
SD_NODE's sillzrhng list pointer I g C Start)
N Retrieve data type, data size |
from sltream 110
Initialize current SD_NODE with

data type, size, stream data

is
size of NO

current node's y — 124
content Increment stream to
=to / beginning of next

YES YES element

— Add curremt node to the L— 114 t
tail of the: tatil of the list Push current node,

Adjust stream beyond |— 116 126 | stream size, and

gurrent node

data element current list head into
! stack
'Decrerment stream size by|— 118
size of siement 128 | Add current node to
Get next SD_NODE from |.— 120 Y the tait of the of the
list list
136 Set list head to

8 stream
size 07

130 — current node's
ceontainer list head

NO

YES 138
oS ~— 140 132 | Setthe stream size
sr: e Done] tothe container's
amply: stream size
NO
142 “1Pop list head, node, stream size 134 —| Get naxt SD_NODE
from stack from list

1
144~ popped node's children
pointer to current list head
146 — !
set stream size to popped
stream size - popped node'’s size
|

set list head to popped list head

148 —,

US 7,177,940 B1

Page 2
OTHER PUBLICATIONS IEEE Standard, 802.11, Part 11: Wireless LAN Medium Access
| | Control (MAC) and Physical Layer (PHY) Specifications, 17 Ed.
Riku Mettala et al., Bluetooth Protocol Architecture (White Paper), 1999, and Supplements 802.11a-1999 and 802.11b-1999.
v1.0, Nokia Mobile Phones, Sep. 29, 1999. Bob O’Hara and Al Petrick, IEEE 802. 11 Handbook A Designer’s

Brent Miller, et al., Mapping Salutation Architecture APls fo Companion, Dec. 1999.
Bluetooth Service Discovery Layer (White Paper), v1.0, IBM Cor-

poration, Jul. 1, 1999, * cited by examiner

US 7,177,940 B1

Sheet 1 of 5

Feb. 13, 2007

U.S. Patent

\.@m

SNYJO0dd
NOILVOIl'1ddV

-

J31NdINOD
410Ny

/88 \S 9 €
S31NAOWN | 1 Dl
viva |~ | SWvHo0ud | WalsAs
NVHOO N NOLLYDITddY |ONILYEIdO
. H3IHLO
Q L
................. IANG "
sy LA IR R
0€ \ 8¢ 12 | NYHOOHd _
I9V4HILNI| IOV4HTLNI | JOVAHTLINI BOV4H3IINI|| [S39naon *
180d |[3aigasial 3ANa AN | AYNOON .
WIN3S | TYOILJO | SIdOVIN MSIA QYvH NETITe m
| | . 9g
/@v o e fmm NYHO08d | | |
NOILYOITddV|
: Ge
NILSAS “
2 CONLLYM3dO | [¢ S
As_év\u\\@
JOV4ILNI| | ¥31dvav LINN _
AHOMLIN O3dIA ONISS300dd _ _ 3019 _\ﬁ
N _ _ o[
©3 4 & Adowan! |z
431LNdWOD 1
TYNOSYHId NILSAS

L)

|]

— .
- & EEEs - 5 s 4 B By 4 4 a5 4 EEme v v umiae ¥ 4+ TRE = a s & 4 EEEy O 0 A ¥ F TS 5 F T + 4 wmae o ¢ EE - A e v v W W F s 4 f S * B+ TS = + Jr = = g m W IS W T TS T " v T E——"

U.S. Patent Feb. 13, 2007 Sheet 2 of 5 US 7,177,940 B1

104 — Create 3 Get next SD _NODE Create an array of

from list, initialize SD NODEs (number
stack

106 — — [as listhead | |of required nodes + 1)]
Set the list head to the first ~- 102 ~~ 100

SD NODE's sibling list pointer (Start)
— T ——108

N Retrieve data type, data size «
from stream
T : ~— 110
Initialize current SD_NODE with
data type, size, stream data
112 IS 122
NO size of | NO
current node current node's vy — 124
content Increment stream to
=to 07 beginning of next
YES element
| ~ Add current node to the — 114
tail of the_teilil of the list 126 Push currt_ant node,
~ Adjust stream beyond |— 116 T stream size, and
data element | current gf;:kead into
Decrement stream size by| — 118 —
— SIz€ gf_‘element — 128 Add curren'f_hode to
Get next SD NODE from | — 120 Y the tail of the of the
_ bst _ list
+ N— R — ,
Set list head to
s S trea;n 18 130 ~ current node's
NO Size 0 container list head
- 198 b 140 Set the st '
i, et the stream size | |
S stac: Done 132 ~ to the container's
emply: - stream size
142 AP N ' ‘
1 Pop list head, node, stream size 134 —| Get next SD_NODE
144 L - =
Y set popped node's children
| pointer to current list head
- r =
146 ~~ set stream size to popped F|G _ 2
stream size - popped node's size
- 0T
148 — set list head to popped list head - —'

U.S. Patent Feb. 13, 2007 Sheet 3 of 5 US 7,177,940 B1

. ——— e el el e— e A _ e

204 —[Store the current Create an array of
stream size SD _NODEs | Create a stack
206~ [— _anna —
Set the list head to the first 202 I 200
SD NODE's sibling list pointer (Start)
— | | 208
Retrieve data type, data size
_’. e — e ——raa— v——
from stream l
] —,— 210
Initialize current SD_NODE with
data type, size, stream data
212 IS 222
NO size of NO
current node current node's vy — 224
content Increment stream to | |
=10 07 beginning of next
- YE element
Add current node tothe | __ 214 | YES
ist head 226 — | Add current node to
Adjust stream beyond | - the list head
data element 216
|
Decrement stream size by| - . Push current list
size of element 218 28 ~ head, node, stream
_ — O
Get next SD_NODE from | 220 size Into stack
list

230 ~ Get next SD_NODE
from list

] l |

236

s stream
size 07

238 232 - Set list head to

YEs 240 current node's sibling
Done list pointer
empty -) —'l

NO 234 NSet the stream size to

242—Pop list head, node, stream size size of the parent —

from stack | __node's content size

I B
Set popped node's children

pointer to current list head
246 '
Set stream size to popped F | G _ 3

stream size - popped node's size !

T _
248 Set list head to popped list head ———

244—

U.S. Patent

FIG. 4

Feb. 13, 2007

Sheet 4 of 5

US 7,177,940 B1

W ' Set the list head Create an ar-ra}
Get next l to the first of SD_NODES
node from , .
204 NODE list . SD_NODE S (number required
| T sibling list pointer +1)
R R —
| 302 /
Call parsing function, passing 300
reference to list head, node list, |~ 306 C S';; ")
stream, and stream size
308 310
Is stream ™ YES | return“
size 07 L
— 312
Retrieve data type, data size |
~_from stream
314

Initialize current SD_NODE with
data type, size, stream data

316

s
current node
a leat?

YES

Add current node to
the list head

320 -5 [

Adjust strearr-1
beyond data element

322 - |

Decrement stream
| size by size of
element

324 —. |

Get next

318

$D_NO_DE_ from list|

e i

- 326

NO

Increment stream to
beginning of next element

328 —] Add current node to the list

head

|

330 —| Decrement stream size by
size of container's stream

332 Get next SD NODE from list

|

334 -

head of the container, node

Call parsing function,
passing reference to list

list, stream, and container
size

U.S. Patent Feb. 13, 2007 Sheet 5 of 5 US 7,177,940 B1

460
(Sequence;

UINT(4) Sequenc@

o 466 468

p
U|NT(16D<——>@NT(2@

FIG 5

Us 7,177,940 Bl

1

REPRESENTING A SERVICE DISCOVERY
STREAM AS AN N-ARY TREE

RELATED APPLICATIONS

This application 1s a continuation in part of U.S. patent
application Ser. No. 09/557,947 filed Apr. 24, 2000, now
abandoned.

TECHNICAL FIELD

This 1vention relates generally to communication
between electronic devices and, more particularly, relates to
methods to discover services provided by server applica-
tions.

BACKGROUND OF THE INVENTION

There are a significant number of wireless technologies in
the marketplace today. The emerging standard for short
range wireless technology 1s called Bluetooth. Bluetooth 1s
a Radio Frequency (RF) specification for short-range, point-
to-multipoint voice and data transfer. Bluetooth can transmit
through solid, non-metal objects and its nominal link range
1s from 10 ¢cm to 10 m, but can be extended to 100 m by
increasing the transmit power. It 1s based on a low-cost,
short-range radio link, and facilitates ad hoc connections for
stationary and mobile communication environments. The
Bluetooth wireless technology allows users to make con-
nections between communication devices such as mobile
phones and desktop and notebook computers. Finding and
making use of services in these environments 1s becoming,
increasingly important due to the continued growth in wire-
less technologies as seen by the proliferation of mobile
computing devices and also to the merging of wireless
technologies and computer technologies. These services can
include basic services such as printing, faxing, paging, etc.,
more complex services such as video conferencing and
teleconferencing, and any other type of service that a service
provider may provide. Bluetooth utilizes a Service Discov-
ery Protocol to allow communication devices to find and
make use of these services.

A service discovery stream consists of a linear stream of
data that has data structures encoded within 1t to represent an
available service on an enabled device. There are eight types
of data encoded within a service discovery stream. These
types are nil (null type), unsigned integer, signed twos-
complement integer, universally unique identifier (UUID),
text string, Boolean, data element sequence, data element
alternative, and uniform resource locater (URL). A data
clement sequence 1s a data element whose data field 1s a
sequence of data elements. A data element alternative 1s a
data element whose data field 1s a sequence of data elements
from which one data element 1s to be selected.

Each element in the service discovery stream has a size
attribute which describes the byte size of its content. A
sequence or alternative element may have children elements
within 1t. Since the terminating elements are embedded in
the outer elements, the service discovery stream must be
constructed from the bottom up.

There are several 1ssues that arise with service discovery
streams. Creating a well formed service discovery stream 1s
not straightforward. Traversing a service discovery stream in
a simple manner 1s not easy because a large amount of
descriptive data must be maintained due to the embedded
data structures contained in the service discovery stream.
These embedded data structures may also have structures

10

15

20

25

30

35

40

45

50

55

60

65

2

embedded 1n them ad infinitum. Additionally, modifying a
service discovery stream can be complex and introduce
errors. The modification, whether i1t be adding, changing, or
removing a data structure, may alter bytes betfore, after, and
at the point of modification, thereby increasing the likel:-
hood of error. What 1s needed 1s a way to represent a service
discovery stream that reduces the complexity of traversing
the stream and that makes modifications to the stream easier
to 1mplement.

SUMMARY OF THE

INVENTION

In view of the above problems, the service discovery
stream 1s represented as an N-ary tree. By representing the
service discovery stream as an N-ary tree, each element does
not need to know the size of all of its children elements until
the N-ary tree 1s converted 1nto a service discovery stream.
This allows for the quick construction of a well formed
service discovery stream. The process 1s centered on group-
ing the data together and not how the data 1s actually
represented 1n the service discovery stream. Traversing an
N-ary tree 1s also a much simpler task. Very little informa-
tion needs to be maintained during the traversal. Modifying
a node 1n an N-ary tree 1s a trivial task. Since the tree 1s a
non linear structure, any of the three types of modifications
(changing, adding, or removing) requires only one modifi-
cation to the entire tree.

The content of the service discovery stream 1s traversed
linearly to ensure 1t 1s well formed and the number of data
clements contained in the service discovery stream 1s
counted. The number of nodes 1n the N-ary tree 1s deter-
mined based upon the number of data elements. A list head
1s mitialized. An element from the service discovery stream
1s obtained and a node 1s 1mitialized with the element and
information about the element. I the node 1s a leal node, the
node 1s added to the list head and the next element from the
service discovery stream 1s obtained. If the node 1s a parent
node, the node 1s added to the list and the element 1s checked
to see 1 there are any children. If there are children, the
chuldren are listed in the list head of the parent node. The
next element 1s obtained from the service discovery stream
and a node 1s mitialized with the next element. The process
1s repeated until all elements 1n the service discovery stream
have been converted.

Additional features and advantages of the invention will
be made apparent from the following detailed description of
illustrative embodiments which proceeds with reference to
the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

While the appended claims set forth the features of the
present invention with particularnty, the imnvention, together
with 1ts objects and advantages, may be best understood
from the following detailed description taken 1n conjunction
with the accompanying drawings of which:

FIG. 1 1s a block diagram generally illustrating an exem-
plary computer system on which the present invention
resides;

FIG. 2 1s a flowchart 1llustrating how a service discovery
stream 1s converted 1into an N-ary tree using a sentinel head;

FIG. 3 1s a flowchart illustrating how a service discovery
stream 1s converted using a node;

FIG. 4 1s a flowchart illustrating how a service discovery
stream 1s recursively converted into an N-ary tree; and

FIG. 5§ shows an illustrative example of an N-ary tree.

Us 7,177,940 Bl

3

DETAILED DESCRIPTION OF TH.
INVENTION

(L]

Turning to the drawings, wherein like reference numerals
refer to like elements, the imvention 1s 1llustrated as being
implemented 1 a suitable computing environment.
Although not required, the invention will be described 1n the
general context of computer-executable mstructions, such as
program modules, being executed by a personal computer.
Generally, program modules include routines, programs,
objects, components, data structures, etc. that perform par-
ticular tasks or implement particular abstract data types.
Moreover, those skilled in the art will appreciate that the
invention may be practiced with other computer system
configurations, including hand-held devices, multi-proces-
sor systems, microprocessor based or programmable con-
sumer electronics, network PCs, minicomputers, mainframe
computers, and the like. The invention may also be practiced
in distributed computing environments where tasks are
performed by remote processing devices that are linked
through a communications network. In a distributed com-
puting environment, program modules may be located in
both local and remote memory storage devices.

With reference to FIG. 1, an exemplary system for imple-
menting the invention includes a general purpose computing,
device 1n the form of a conventional personal computer 20,
including a processing unit 21, a system memory 22, and a
system bus 23 that couples various system components
including the system memory to the processing unit 21. The
system bus 23 may be any of several types of bus structures
including a memory bus or memory controller, a peripheral
bus, and a local bus using any of a variety of bus architec-
tures. The system memory includes read only memory
(ROM) 24 and random access memory (RAM) 25. A basic
input/output system (BIOS) 26, containing the basic routines
that help to transfer mformation between elements within
the personal computer 20, such as during start-up, 1s stored
in ROM 24. The personal computer 20 further includes a
hard disk drive 27 for reading from and writing to a hard
disk, not shown, a magnetic disk drive 28 for reading from
or writing to a removable magnetic disk 29, and an optical
disk drive 30 for reading from or writing to a removable
optical disk 31 such as a CD ROM or other optical media.

The hard disk drive 27, magnetic disk drive 28, and
optical disk drive 30 are connected to the system bus 23 by
a hard disk drive interface 32, a magnetic disk drive inter-
tace 33, and an optical disk drive interface 34, respectively.
The drives and their associated computer-readable media
provide nonvolatile storage ol computer readable nstruc-
tions, data structures, program modules and other data for
the personal computer 20. Although the exemplary environ-
ment described herein employs a hard disk, a removable
magnetic disk 29, and a removable optical disk 31, 1t will be
appreciated by those skilled in the art that other types of
computer readable media which can store data that 1is
accessible by a computer, such as magnetic cassettes, flash
memory cards, digital video disks, Bernoulli cartridges,
random access memories, read only memories, and the like
may also be used 1n the exemplary operating environment.

A number of program modules may be stored on the hard
disk, magnetic disk 29, optical disk 31, ROM 24 or RAM 25,
including an operating system 33, one or more applications
programs 36, other program modules 37, and program data
38. A user may enter commands and imnformation into the
personal computer 20 through input devices such as a
keyboard 40 and a pointing device 42. Other 1mput devices
(not shown) may include a microphone, joystick, game pad,

10

15

20

25

30

35

40

45

50

55

60

65

4

satellite dish, scanner, or the like. These and other input
devices are often connected to the processing umt 21
through a serial port interface 46 that is coupled to the
system bus, but may be connected by other interfaces, such
as a parallel port, game port or a umiversal serial bus (USB).
A monitor 47 or other type of display device i1s also
connected to the system bus 23 via an interface, such as a
video adapter 48. In addition to the monitor, personal
computers typically include other peripheral output devices,
not shown, such as speakers and printers.

The personal computer 20 may operate 1mn a networked
environment using logical connections to one or more
remote computers, such as a remote computer 49. The
remote computer 49 may be another personal computer, a
server, a router, a network PC, a peer device or other
common network node, and typically includes many or all of
the elements described above relative to the personal com-
puter 20, although only a memory storage device 30 has
been 1llustrated in FIG. 1. The logical connections depicted
in FIG. 1 include a local area network (LAN) 51 and a wide
area network (WAN) 52. Such networking environments are
commonplace in oflices, enterprise-wide computer net-
works, intranets and the Internet.

When used 1n a LAN networking environment, the per-
sonal computer 20 1s connected to the local network 51
through a network interface or adapter 53. When used 1n a
WAN networking environment, the person computer 20
typically includes a modem 54 or other means for establish-
ing communications over the WAN 52. The modem 54,
which may be internal or external, 1s connected to the system
bus 23 wvia the senial port interface 46. In a networked
environment, program modules depicted relative to the
personal computer 20, or portions thereof, may be stored in
the remote memory storage device. It will be appreciated
that the network connections shown are exemplary and other
means of establishing a communications link between the
computers may be used.

In the description that follows, the invention will be
described with reference to acts and symbolic representa-
tions of operations that are performed by one or more
computer, unless indicated otherwise. As such, it will be
understood that such acts and operations, which are at times
referred to as being computer-executed, include the manipu-
lation by the processing unit of the computer of electrical
signals representing data 1n a structured form. This manipu-
lation transforms the data or maintains 1t at locations in the
memory system ol the computer, which reconfigures or
otherwise alters the operation of the computer 1n a manner
well understood by those skilled 1n the art. The data struc-
tures where data 1s maintained are physical locations of the
memory that have particular properties defined by the format
of the data. However, while the invention 1s being described
in the foregoing context, 1t 1s not meant to be limiting as
those of skill in the art will appreciate that various of the acts
and operation described heremaiter may also be imple-
mented 1n hardware.

When converting a service discovery stream into an N-ary
tree, each data type 1s classified as either a leal node or a
parent node. A leal node 1s defined as a node which can
contain no children and a parent node 1s defined as a node
that can potentially have chuldren. The types of data that are
leal node types are Nil, Unsigned integer, Signed integer,
UUID (universally unique identifier), Text string, Boolean,
and URL (uniform resource locator). The types of data that
are parent node types are Data element sequence and Data
clement alternative. By definition, each node in the tree,
including the root node, can have N siblings, where N 1s any

Us 7,177,940 Bl

S

number. The siblings are connected to each other using a
doubly linked list. A doubly linked list 1s a series of nodes
in which each node refers to both the next node and the
preceding node, thereby forming two-way references. A
doubly linked list can be traversed both forward and back-
ward. Conversely, a singly linked list can only be traversed
forward.

Once a service discovery stream has been acquired, two
steps are performed before 1t 1s converted 1nto an N-ary tree.
In the first step, the content of the service discovery stream
1s validated by traversing the stream linearly to make sure 1t
1s well formed. If the service discovery stream is not well
formed, an error 1s returned and the service discovery stream
1s not converted into an N-ary tree. In the second step, the
number of elements contained in the service discovery
stream 1s counted.

Turning now to FIG. 2, the steps taken to convert a service
discovery stream will be described when the service discov-
ery stream has a sentinel node. A sentinel node 1s a node that
contains no data and 1ts purpose 1s to demarcate the terminal
node. In the description that follows, the term “container”
refers to either an alternative element or a sequence element.

An array of SD_NODEs 1s created (step 100). The number

of nodes 1n the array 1s set to the number of required nodes
plus one. The number of required nodes 1s based upon the
number of elements 1n the stream. A node 1s defined as:

Struct SD__NODE__ HEADER({
UCHAR Type; // contains the element type
UCHAR SpecificType; // contains specific element type (1.e, a 4
byte integer)
LIST__HEAD Link;

h

struct SD__NODE <
SD__NODE_HEADER hdr;
union {

// all of the different data types defined
f.. . ete. ..

// sequence

SD__NODE_HEADER sequenceHdr:;

// alternative
SD__NODE_HEADER alternativeHdr;

where sequenceHdr and alternativehdr are list heads. A list
head 1n its simplest form 1s the beginning of the list. An
SD_NODE from the stream 1s acquired and imitialized as the
list head (step 102). A stack 1s created (step 104) and the list
head 1s set to the first SD_NODE’s sibling list pointer (step
106). The data type and data si1ze 1s retrieved from the stream
(step 108) and the current node 1s 1mitialized with the data
type, the data size, and the stream data (step 110). The
current node 1s checked to see 11 1t 1s a leal node or a parent
node (step 112).

If the current node 1s a parent node, the size of the node’s
content 1s determined and checked to see 111t 1s equal to zero
(step 122). If the content 1s non-zero, the service discovery
stream 1s incremented to the beginning of the next element
of the service discovery stream (step 124). The current list
head, current node, and service discovery stream size 1s
pushed into the stack (step 126) and the current node 1s
added to the tail of the list head (step 128). The list head 1s
set to the current node’s container list head (step 130) and
the service discovery stream size 1s set to the size of the
container’s stream size (step 132). The next node 1s obtained
from the list (step 134) and steps 108—112 are repeated for

10

15

20

25

30

35

40

45

50

55

60

65

6

the service discovery stream. If the content i1s zero, the
stream size 1s checked to determine 11 1t 1s zero (step 136).

I the current node 1s a leaf node, the current node 1s added
to the tail of the tail of the list head (step 114) and the service
discovery stream 1s adjusted beyond the data element (step
116). The stream size 1s decremented by the size of the
clement (step 118) and the next node 1s obtained from the list
(step 120). The stream size 1s then checked to determine 1f
it 1s zero (step 136).

If the stream si1ze 1s not zero, the process for the next node
1s started by repeating steps 108 to 136. It the stream size 1s
zero, the stack 1s checked to see 11 1t 1s empty (step 138). If
the stack 1s empty, the conversion 1s completed (step 140).
If the stack 1s not empty, a list head, node, and stream size
1s popped from the stack (step 142) and the popped node’s
chuldren pointer 1s set to the current list head (step 144). The
stream si1ze 1s set to the popped stream si1ze minus the popped
node’s size (step 146) and the list head 1s set to the popped
list head (step 148). The stream size 1s checked to determine
if 1t 1s zero (step 136) and the process of steps 108—148 1s
repeated until the stack 1s empty.

Turning now to FIG. 3, the steps taken to convert a service
discovery stream will be described when the service discov-
ery does not have a sentinel node. Note that these steps can
also be used if the service discovery stream has a sentinel
node. A stack 1s created (step 200) and an array of SD_N-
ODEs 1s created (step 202). The number of nodes 1s based

upon the number of elements 1n the stream The node 1s

defined as:

struct SD_ NODE {
UCHAR Type; // contains the element type
UCHAR SpecificType; // contains specific element type (1.e, a 4
byte integer)

ULONG DataSize; // size of the element’s data

union {

// all of the different data types defined
}u;

LIST__ENTRY Link; // link to next and previous siblings

The current service discovery stream size 1s stored (step
204) and the list head 1s set to the service discovery stream’s
first SD_NODFE’s sibling list pointer (step 206). The data
type and data size 1s retrieved from the service discovery
stream (step 208) and the current node 1s mnitialized with the
data type, the data size, and the service discovery stream
data (step 210). The current node 1s checked to see 1T 1t 1s a
leal node or a parent node (step 212).

If the current node 1s a parent node, the size of the node’s
content 1s determined and checked to see 1f 1t 1s equal to zero
(step 222). If the content 1s non-zero, the service discovery
stream 1s incremented to the beginning of the next element
of the service discovery stream (step 224). The current node
1s added to the list head (step 226), and the current list head,
node, and stream size 1s pushed into the stack (step 228). The
next node from the service discovery stream 1s obtained
(step 230) and the list head 1s set to the next node’s sibling
list pointer (step 232). The stream size 1s set to the size of the
parent node content size (step 234) and steps 208-212 are
repeated for the next node. If the content 1s zero, the stream
s1ze 15 checked to determine 1t 1t 1s zero (step 236).

It the current node 1s a leat node, the current node 1s added
to the list head (step 214) and the service discovery stream
1s adjusted beyond the data element (step 216). The stream

s1ze 1s decremented by the size of the element (step 218) and

Us 7,177,940 Bl

7

the next node 1s obtained (step 220). The stream size 1s then
checked to determine if 1t 1s zero (step 236).

If the stream size 1s not zero, the process for the next node
1s started by repeating steps 208 to 236. It the stream size 1s
zero, the stack 1s checked to see 11 1t 1s empty (step 238). If
the stack 1s empty, the conversion 1s completed (step 240).
If the stack 1s not empty, a list head, node, and stream size
1s popped from the stack (step 242) and the popped node’s
chuldren pointer 1s set to the current list head (step 244). The
stream s1ze 1s set to the popped stream si1ze minus the popped
node’s size (step 246) and the list head 1s set to the popped
list head (step 248). The stream size 1s checked to determine

if 1t 1s zero (step 236) and the process of steps 208248 are
repeated until the stack 1s empty.

Turning now to FIG. 4, the steps taken to convert a service
discovery stream to an N-ary tree will be described using a
recursive method. These steps can be used for any valid
service discovery stream. An array of SD_NODEs 1s created
(step 300). The number of nodes 1n the array 1s set to one
more than the number of required nodes. The number of
required nodes 1s based upon the number of elements in the
stream. A node 1s defined as:

Struct SD__NODE_HEADER{
UCHAR Type; // contains the element type
UCHAR SpecificType; // contains specific element type (1.e, a 4
byte integer)
LIST _HEAD Link;

h

struct SD__NODE {
SD__NODE__HEADER hdr;
union {
// all of the different data types defined
fh.o. . ete. ..
// sequence

SD__NODE_HEADER sequenceHdr:;
// alternative

SD__NODE_ HEADER alternativeHdr;

where sequenceHdr and alternativehdr are list heads. The list
head 1s set to the first SD_NODE’s sibling list pointer (step
302) and the next node 1s obtained (step 304). A parsing
function 1s called passing a reference to the list head, the
node list, the service discovery stream, and the stream size
(step 306). The stream size 1s checked to determine if 1t 1s
zero (step 308). If the stream size 1s zero, the process ends
(step 310).

If the stream size 1s not zero, the data type and data size
1s retrieved from the service discovery stream (step 312) and
the current SD_NODE 1s mnitialized with the data type, data
size, and the stream data (step 314). The current node 1s
checked to see 11 1t 15 a leal node or a parent node (step 316).

If the current node is a parent node, the service discovery
stream 1s incremented to the beginning of the next element
of the service discovery stream (step 326). The current node
1s added to the list head (step 328) and the stream size 1s set
to the size of the container’s stream size (step 330). The next
node 1s obtained from the list (step 332) and steps 308-316
are repeated for the next node.

If the current node 1s a leaf node, the current node 1s added
to the list head (step 318) and the service discovery stream
1s adjusted to beyond the element (step 320). The stream size
1s decremented by the size of the element (step 322) and the
next node 1s obtained from the list (step 324). The process

5

10

15

20

25

30

35

40

45

50

55

60

65

8

outlined in steps 308 to 334 is then repeated until a stream
s1ze of zero 1s detected, at which time the process ends.
FIG. 5 1llustrates an exemplary N-ary tree for a service
discovery stream obtained from following the steps outlined
in any of the embodiments described above. For purposes of
illustration, the service discovery stream contains a
sequence which contains an 8 bit unsigned integer of 4 and
another sequence which contains two 8 bit unsigned integers
of 10 and 20. The service discovery stream would look like
0x350808043504080a0814 (hex). In FIG. 5, a line with a
single arrow 1ndicates a single link between elements and a
line with two arrows indicates a double link between ele-

ments. The first sequence 460 of the N-ary tree 1s linked to
the unsigned 1nteger of 4 (UINT (4)) 462. The UINT 462 1s

doubly linked to sequence 464 which 1s linked to UINT(10)
466, the unsigned integer of 10 and UINT(20) 468, the
unsigned integer of 20. It should be noted that the data size
1s not required for the N-ary tree.

An addition of a sequence to the N-ary tree or the addition
of a data structure to a sequence of the N-ary tree would
simply require the sequence or data structure to be added to
be mserted into the tree at the appropriate location and
linked to the adjacent data structure/sequence of the tree.
Removing a data structure or sequence merely requires the
data structure or sequence to be removed to be taken out of
the tree and linking the data structures/sequences that were
linked to the removed data structure or sequence to each
other. Stmilarly, all that 1s needed to change a sequence or
data structure 1s to combine the steps of adding and remov-
ing a sequence or data structure. Note that adding, removing,
or changing a sequence or data structure only requires one
modification to the tree. Conversely, modification of a
service discovery stream may alter bytes before, after, and at
the point ol modification.

Constructing a service discovery stream from an N-ary
tree 1s straightforward. The service discovery stream must be
constructed from the bottom up. Beginning at the bottom of
the N-ary tree, the sequences and their elements are con-
verted one sequence at a time. The conversion requires that
the data element size and the data element type be included
with the element in a linear stream of data. After the first
sequence and 1ts elements have been converted, the next
sequence 1s converted and placed 1n front of the linear
stream of data representing the first sequence. The conver-
sion 1s repeated until all sequences are converted, which
results 1n the service discovery stream.

Representing a service discovery stream as an N-ary tree
has been described. The ease of which the N-ary tree can be
modified has been described. This likelthood of error i1s
reduced since only one modification to the tree 1s required
when a change, addition, or removal of a data structure or
sequence 1s made. The data size of a data structure does not
need to be known until the tree 1s converted into a service
discovery stream.

All of the references cited herein, including patent appli-
cations are hereby incorporated 1n their entireties by refer-
ence. In view of the many possible embodiments to which
the principles of this invention may be applied, 1t should be
recognized that the embodiment described herein with
respect to the drawing figures 1s meant to be illustrative only
and should not be taken as limiting the scope of invention.
For example, those of skill in the art will recognize that the
clements of the illustrated embodiment shown 1n software
may be implemented 1n hardware and vice versa or that the
illustrated embodiment can be modified 1n arrangement and
detail without departing from the spirit of the invention.
Theretfore, the invention as described herein contemplates

Us 7,177,940 Bl

9

all such embodiments as may come within the scope of the
following claims and equivalents thereof.

We claim:

1. A computer-readable medium having computer-execut-
able 1nstructions for performing steps to convert a service
discovery stream into an N-ary tree, the service discovery
stream having a list of nodes, each node having a data
clement, a data type and a data size, the service discovery
stream having a stream size, the steps comprising:

a) determining the data type and the data size of one of the
nodes from the service discovery stream, wherein
determining the data type of the node comprises 1den-
tifying the data type from a collection of data types
comprising nil, unsigned integer, signed integer, uni-
versally unique 1dentifier, text string, Boolean, uniform
resource locator, data element sequence and data ele-
ment alternative data types;

b) adding the node to a list head;

¢) performing one ol decrementing the stream size by the
data size and incrementing the service discovery stream
to the beginning of a next data element;

d) obtaining a next node from the list of nodes; and

¢) repeating a), b) and c¢) until the N-ary tree 1s formed.

2. The computer-readable medium of claim 1 having
turther computer-executable instructions for performing the
steps of:

ensuring the service discovery stream 1s well-formed;

determining the number of nodes 1n the list of nodes;

creating a stack; and

setting the list head to a sibling list pointer of the node.

3. The computer-readable medium of claim 1 having
turther computer-executable instructions for performing the
step of repeating steps a), b) and c¢) for the next node.

4. The computer-readable medium of claim 3 having
turther computer-executable instructions for performing the
step of repeating steps a), b), ¢) and d) for each node 1n the
list of nodes.

5. The computer-readable medium of claim 1 having
turther computer-executable instructions for performing the
step of determiming if the node 1s a leaf node.

6. The computer-readable medium of claim 5 having
turther computer-executable instructions for performing the
steps of:

if the node 1s a leafl node:

adjusting the service discovery stream beyond the data
element;

determining 1f the stream size of the next node 1s zero;
and

wherein the step of performing one of decrementing the
stream size by the element size and incrementing the
service discovery stream to the beginning of the next
node comprises the step of decrementing the stream

s1ze by the data size.
7. The computer-readable medium of claim 5 having
turther computer-executable instructions for performing the

steps of:

if the node 1s not a leaf node:
determining 1 the data size i1s zero;

if the data size 1s not zero, the step of performing one of
decrementing the stream size by the data size and
incrementing the service discovery stream to the begin-
ning of a next node comprises the step of incrementing
the service discovery stream to the beginming of the
next node; and

repeating steps a), b), ¢), and d).

10

15

20

25

30

35

40

45

50

55

60

65

10

8. The computer-readable medium of claim 7 having
turther computer-executable instructions for performing the
steps of:

11 the node 1s not a leaf node:

pushing the list head, the node, and the stream size nto
a stack; and

setting the list head to one of a sibling list pointer of the
node and a container list head;

setting the stream size to one of a size of a parent node
content size and a container stream size.

9. The computer-readable medium of claim 1 having
turther computer-executable instructions for performing the
steps of:

1f the stream size 1s zero;

determining 1f the stack 1s empty;

i1 the stack 1s not empty:

obtaining a popped list head, the next node, and a popped

stream si1ze from the stack;

setting a children pointer of the next node to the list head;

setting the stream size to a revised stream size, the revised

stream si1ze formed by subtracting the data size of the
next node from the popped stream size; and

setting the list head to the popped list head.

10. A method to convert a service discovery stream to an
N-ary tree, the service discovery stream having a first
number of elements, each element having an element type
and an element size, the service discovery stream having a
stream size, the steps comprising:

setting a list head to a sibling list pointer of a first node;

determiming the element type and the element size of a

first element from the service discovery stream,
wherein determining the element type of the first ele-
ment comprises 1dentifying the element type from a
collection of element types comprising nil, unsigned
integer, signed integer, universally unique identifier,
text string, Boolean, uniform resource locator, data
clement sequence and data element alternative element
types:;

imitializing the first node with the first element and the

clement type and the element size of the first element;
determiming if the first node 1s a leafl node; and

11 the first node 1s a leaf node:

adding the first node to a tail of a list;

adjusting the service discovery stream beyond the first
element; and

decrementing the stream size by the element si1ze of the
first element; and

obtaining a new node from a node listing.

11. The method of claim 10 further comprising the steps
of

creating an array of nodes having a number of nodes, the

number of nodes equal to the first number of elements
plus one; and

creating a stack.

12. The method of claim 11 further comprising the steps
of:

it the first node 1s a not a leat node:

determiming 11 the element size of the first node 1s equal
{0 zero;

11 the element size of the first node 1s not equal to zero:

incrementing the service discovery stream to the begin-
ning of a next element;

pushing the first node, the stream size, and the list head
into a stack;

adding the first node to the tail of the list;

Us 7,177,940 Bl

11

setting the list head to a container list head of the first
node; setting the stream size to a container stream
size; and

obtaining the new node from the node listing.

13. The method of claim 12 further comprising the steps
of:

determining 11 the stream size equals zero; and

if the stream size equals zero:

determining 11 the stack 1s empty;
if the stack i1s not empty:
popping a new list head, the new node, and a new
stream size from the stack;
setting a children pointer of the new node to the list
head;
setting the stream size to the new stream size minus
a size of the new node; and
setting the list head to the new list head.

14. The method of claim 13 further comprising the steps
of: for each node:

a) retrieving a new element type and a new element size

of a new element from the service discovery stream;

b) mmitializing the node with the new element and the new

clement type and the new eclement size of the new
element;

¢) determining i1f the node 1s a leal node; and

d) 1f the node 1s a leaf node:

adding the node to a tail of the list head;
adjusting the service discovery stream beyond the new
element;
decrementing the stream size by the new element size
of the new element;
obtaining the new node from the node listing;
¢) 11 the node 1s a not a leal node:
determining if the new element size of the node 1s equal
{0 zero;
if the new element size of the node 1s not equal to zero:
incrementing the service discovery stream to the begin-
ning of the next element;
pushing the node, the stream size, and the list head nto
the stack; adding the node to the tail of the list;
setting the list head to the container list head of the
node; setting the stream size to the container stream
S1Z€;
obtaining the new node from the list;
) determining 1f the stream size equals zero; and
o) 1f the stream size equals zero:
determining 11 the stack 1s empty;
if the stack 1s not empty:
popping the new list head, the new node, and the new
stream size from the stack:
setting a children pointer of the new node to the list
head:
setting the stream size to the new stream size minus
a size of the new node;
setting the list head to the new list head; and
if the stream si1ze does not equal zero, repeating steps
a) to g) for the new node.

15. A method to convert a service discovery stream to an
N-ary tree, the service discovery stream having a first
number of elements, each element having an element type
and an element size, the service discovery stream having a
stream size, the steps comprising:

setting a list head to a sibling list pointer of a first node of

the N-ary tree;

determining the element type and the element size of a

first element from the service discovery stream,
wherein determining the element type of the first ele-

10

15

20

25

30

35

40

45

50

55

60

65

12

ment comprises identifying the element type from a
collection of element types comprising nil, unsigned
integer, signed integer, universally unique i1dentifier,
text string, Boolean, uniform resource locator, data
clement sequence and data element alternative element
types;
imitializing the first node of the N-ary tree with the first
clement and the element type and the element size of
the first element;
determining 1f the first node 1s a leal node; and
11 the first node 1s a leaf node:
adding the first node to the list head;
adjusting the service discovery stream beyond the first
element;
decrementing the stream size by the element size of the
first element;
obtaining a new node from a node listing; and
repeating the acts of setting, retrieving, initializing, and
determining until the N-ary tree 1s formed.
16. The method of claim 15 further comprising the steps
of:
creating an array of nodes having a number of nodes, the
number of nodes equal to the first number of elements
plus one; and
creating a stack.
17. The method of claim 16 further comprising the steps
of:
11 the first node 1s a not a leal node:
determiming 11 the element size of the first node 1s equal
to zero; 1f the
clement size of the first node 1s not equal to zero:
incrementing the service discovery stream to the begin-
ning of a next element;
pushing the first node, the stream size, and the list head
into the stack;
adding the first node to the list head;
setting the stream size to a content size of a parent
node;
obtaining the new node from the node listing; and
setting the list head to a sibling list pointer of the new
node.
18. The method of claim 17 further comprising the steps
of:
determiming if the stream size equals zero; and
11 the stream size equals zero:
determining 11 the stack 1s empty;
if the stack 1s not empty:
popping a new list head, the new node, and a new
stream size from the stack:
setting a children pointer of the new node to the list
head;
setting the stream size to the new stream size minus
a size of the new node; and
setting the list head to the new list head.
19. The method of claim 18 further comprising the steps
of:
for each node:
a) retrieving a new element type and a new element size
of a new element from the service discovery stream;
b) mitializing the node with the new element and the new
clement type and the new eclement size of the new
element:;
¢) determining 11 the node 1s a leafl node; and
d) 1f the node 1s a leaf node:
adding the node to the list head,;
adjusting the service discovery stream beyond the new
clement; decrementing the stream size by the new

Us 7,177,940 Bl

13 14
clement size of the new element; obtaiming the new d) obtaining a next node from the node list; and
node from the node listing; e) repeating a), b) and ¢) until the N-ary tree 1s formed.

¢) 1f the node 1s a not a leaf node:

determining if the new element size of the node is 21. The method of claim 20 further comprising the steps

equal to zero; 5 of:
i1 the new element size of the node 1s not equal to determining 1f the node 1s a leaf node:

Zero: 11 the node 1s a leal node, repeating steps a) to ¢) for the
incrementing the service discovery stream to the next node; and

beginning of the next element;
pushing the node, the stream size, and the list head 10
into the stack; adding the node to the list head;
obtaining the new node from the node listing;
setting the list head to the sibling list pointer of the
new node;
setting the stream size to the container stream size; 15
determiming if the stream size equals zero; and
11 the stream size equals zero:
) determiming if the stack 1s empty;
i1 the stack 1s not empty: 22. The method of claim 20 further comprising the steps
popping the new list head, the new node, and the 20 of
new stream size from the stack;
setting a chuldren pointer of the new node to the

wherein the step of performing one of adjusting the
stream beyond the data element and 1incrementing the
stream to the beginning of the next data element
comprises the step of adjusting the stream beyond the
data element and the step of performing one of decre-
menting the stream size by the data size and decre-
menting the stream size by the container size of the
stream of the container comprises the step of decre-
menting the stream size by the data size.

determining 1f the node 1s a leal node;

list head: 1f the node 1s not a leaf node:
setting the stream size to the new stream size calling a parsing function to receive a reference to the
minus a size of the new node: 25 list head of the container, the node list, the stream,
setting the list head to the new list head; and and the container size;,
if the stream size does not equal zero, repeating repeating steps a) to ¢) for the next node; and

steps a) to g) for the new node.

20. A method to convert a service discovery stream to an
N-ary tree comprising: 30
a) rece1ving a reference to a list head, a node list, a stream,

and a stream size;
b) determining ii the stream size 1s equal to zero;
¢) 1f the stream size 1s not equal to zero:
determining a data type and a data size of a data 35

wherein the step of performing one of adjusting the
stream beyond the data element and incrementing the
stream to the beginning of the next data element
comprises the step of incrementing the stream to the
beginning of the next data element and the step of
performing one of decrementing the stream size by
the data size and decrementing the stream size by the

element from the stream, wherein determining the container size of the stream of the container com-
data type of the data element comprises identifying prises the step of decrementing the stream size by the
the data type from a collection of data types com- container size of the stream of the container.
prising nil, unsigned integer, signed integer, univer- 23. The method of claim 20 further comprising the steps
sally umique identifier, text string, Boolean, uniform 40 of:
resource locator, data element sequence and data creating an array of nodes having a number of nodes, the
element alternative element types: number of nodes equal to a number of data elements in
initializing a node with the data type, the data size, and the stream:
ad;l;ﬁgdflﬁi ifg;eg ;the list head: 45 setting the list head to a sibling list pointer of a first node;
performing one of adjusting the stream beyond the data obtaining the next node; and
element and incrementing the stream to the begin- calling a parsing function to receive a reterence to the list
ning of a next data element; head of the container, the node list, the stream, and the
performing one of decrementing the stream size by the container size.

data size and decrementing the stream size by a 50
container size ol a stream of a container; ¥ % % % %

	Front Page
	Drawings
	Specification
	Claims

