US007171440B2
12 United States Patent (10) Patent No.: US 7,171,440 B2
Hanner 45) Date of Patent: Jan. 30, 2007
(54) SYSTEM AND METHOD FOR VIRTUAL (358) Field of Classification Search 709/201;
PACKET REASSEMBLY 705/55; 726/25
See application file for complete search history.
56 Ref Cited
(75) Inventor: Brian D. Hanner, Campbell, CA (US) (56) CIETERees LT
U.S. PATENT DOCUMENTS
(73) Assignee: The Boeing Company, Seattle, WA 6,070,154 A * 52000 Tavor et al. 705/55
(US) 6,263,444 B1* 7/2001 FUjita .vovvovereereerereernn, 726/25
6,266,771 B1* 7/2001 Bellare et al. 713/176
(*) Notice: Subject to any disclaimer, the term of this 6,667,978 B1* 12/2003 Delp et al. 370/395.1
pa‘[en‘[iS ex‘[ended or adjus‘[ed under 35 2002/0073138 Al* 6/2002 Gilbert et al. 709/201
U.S.C. 154(b) by 731 days. * cited by examiner
(21) Appl. No.: 10/196,512 Prfmary Examiner—Viet D. Vu
Assistant Examiner—Iinsong Hu
(22) Filed: Jul. 15, 2002 (74) Attorney, Agent, or Firm—Alston & Bird LLP
(65) Prior Publication Data (57) ABSTRACT
US 2003/0028666 Al Feb. 6. 2003 A system and method for receiving data packets at a com-
7 puter system are presented. The method and system com-
Related U.S. Application Data prise receiving at a buller, at least two data packets. Once
. o received, an ending portion of the first data packet 1s stored
(60) Provisional application No. 60/306,155, filed on Jul. in a buller, wherein the ending portion comprises at least the
17, 2001, provisional application No. 60/306,188, last data bit in the first data packet. Next the method and
filed on Jul. 17, 2001, provisional application No. system concatenates the ending portion of the first data
60/306,193, filed on Jul. 17, 2001. packet with a beginning portion of the second data packet so
a string search engine can determine 11 the concatenated data
(51) Int. CL contains a known string of malicious data bits.
AO06F 15/13 (2006.01)
(52) US.CL ..., 709/201; 705/55; 726/25 30 Claims, 3 Drawing Sheets
PROCESSING INPUT/QUTPUT DATA STORAGE DISPLAY SYSTEM
UNIT UNIT UNIT DEVICE MEMORY
102 104 106 108 120
100 \
- NETWORK '
INTERFACE UNIT
130
PACKET
FILTERING UNIT
140 TO NETWORK 135
/ STRING VIRTUAL
100 SEARCH PACKET
REASSEMBLY
ENGINE | ISTS
160
o 150

US 7,171,440 B2

Sheet 1 of 3

Jan. 30, 2007

U.S. Patent

Gel YHOMIIN OL

L Ol
= s
ATENISSYIY 3NIONI
HOYYIS
1340Vd ONINLS
TYNLAIA
] OF1
LINA ONIYILTA
130V
P _
m 0clL
1INN IOVAYILNI
SMHOMLIN

001

801

40INA40
AV 1dSId

901 701
1INN LINA
JOVHOLS VY1vd 1NdLNO/LNdNI

T —

c0l
LINN |
ONISSIO0dd

¢ Ol

US 7,171,440 B2

091

| 122 | SINIWO3S

INION3 _—
HOYVYIS ONIYLS

| 0G¢C IJ

er,

S HO ATH3d a 4
gl

g ONIAN3 # O3S
e

P,

0Gl

w S1SIT ATgNISSYIY
Q 1IMOVC TIVNLHIA
~

=

o~

p—

U.S. Patent

| a3y3d L0C

8¥vl# 045

cle

................ d0 ATd4d

00¢

OYd OML
ONISSTO0¥d | p
0¢¢ | 4O I1dNvX3T |
NV SI SIH1

0LC
00L# O4S

ovl
1IN DONIFIL N4 1GINIV

US 7,171,440 B2

Sheet 3 of 3

Jan. 30, 2007

U.S. Patent

091

INION
HOHVdS ONIHELS

¢ Old

A%}

LINJNDIS 061

S SIHL

HO ATdad

ONILLS # 03S

051
S1SI AT9N3SSYIY
13HOV IVNLYIA

Odd OML
ONISS3I00Hd
40 F'1dINVX
NV Si SIHL

0St

00L# DIS
oLE

ovl
LINM DNId3L114 1. 3H0Vd

us 7,171,440 B2

1

SYSTEM AND METHOD FOR VIRTUAL
PACKET REASSEMBLY

CLAIM OF PRIORITY

This application claims priority from commonly owned
U.S. Provisional Patent Application 60/306,155, titled SY'S-

TEM AND METHOD FOR MULTIDIMENSIONAL DATA
COMPRESSION, 60/306,188, ftitled SYSTEM AND
METHOD FOR VIRTUAL PACKET REASSEMBLY and
60/306,193, titled SYSTEM AND METHOD FOR STRING
FILT_JRING all of which were filed on Jul. 17, 2001, are
presently pending, and are hereby incorporated by reference
in their entirety.

CROSS-RELATED APPLICATIONS

This application 1s related to utility patent applications

U.S. application Ser. No. 10/196,509 titled SYSTEM AND
METHOD FOR STRING FILTERING and U.S. application
Ser. No. 10/196,488 titled SYSTEM AND METHOD FOR
MULTIDIMENSIONAL DATA COMPRESSION, which
were filed on the same day as this application and which are
hereby incorporated by reference 1n their entirety.

TECHNICAL FIELD OF THE INVENTION

The present invention relates generally to a system and
method for string detection 1n data-packet reassembly. More
particularly, the present mnvention comprises a system and
method for performing real-time virtual data packet reas-
sembly operations in which portions of previously received
data packets may be prepended and/or appended to most-
recently received data packets to facilitate string filtering
across data packet boundaries.

BACKGROUND OF THE INVENTION

The rapid growth and widespread use of the Internet has
brought with 1t an increased threat of hacker attacks on
systems and/or networks coupled to the Internet, such as
Local Area Networks (LANs). Such attacks may compro-
mise sensitive information and/or destroy data. As a result,
a number of companies such as Axent (Rockville, Md.),
Internet Security Systems (Atlanta, Ga.), and Network
Flight Recorder (Rockville, Md.) have developed Intrusion
Detection Systems (IDS). An IDS 1s designed to analyze all
received data for all potential security threats.

A hacker may compromise a LAN by gaining access to
and controlling a host computer within the network. This
process may mmvolve the 1ssuance of specific mstructions to
the host computer, which instructions are characterized by
particular string of data bits, data sequences, or strings of
characters or values.

A typical IDS attempts to detect hacker intrusions by
monitoring or scanning all data strings contained 1n network
traflic. A key capability of the typical IDS mnvolves filtering
network data packets for the purpose of i1dentifying data
packets exhibiting characteristics of known hacker attacks.
Filtering typically comprises two tasks. First, identifying
specific values 1n various fields of a protocol header. This 1s
referred to as header filtering. Second, identifying character
strings within a payload portion of the data packet. This 1s
referred to as string filtering.

Hackers may communicate with host computers using
services such as FTP, SUN Remote Procedure Call, Finger,
and others. These services are typically transported over the

10

15

20

25

30

35

40

45

50

55

60

65

2

Internet using TCP/IP protocols. Hackers attempt to exploit
certain behaviors of the TCP and IP protocols to hide
malicious strings. In particular, a hacker may define TCP/IP
packet boundarnies such that they bisect malicious strings. As
a result, a simple IDS looking at individual data packets fails
to recognize a complete string and the attack goes undetec-
ted.

To avoid this problem, a typical IDS performs TCP
reassembly operations prior to scanning for strings. TCP
reassembly operations are directed toward reconstructing an
original service message as it appeared before 1t was divided
into data packets for transmission 1n a specific protocol. A
TCP reassembly process extracts service data from each
TCP/IP packet, and pieces together the data contained in the
payload of each TCP/IP packet to form a seamless data
stream.

Packets may, however, arrive out of order, making TCP
reassembly operations more diflicult. Pointers within a TCP
header may be used to re-order the data, but data must be
temporarily stored until all of the “holes” 1n the data are
filled. For example, the first of ten packets may arrive last
and nine packets must be stored until the first packet hole 1s
filled. This undesirably increases the time interval that an
IDS must wait before scanning for strings associated with
hacker attacks.

Furthermore, suflicient bufler space must be allocated to
the TCP reassembly process to allow for worst-case storage
needs. For example, storage of 10 packets with an average
length of 1,500 bytes requires a minimum builer size of
15,000 bytes. Similarly, the total bufler allocation required
to support 10,000 simultaneous TCP connections would be
150,000,000 by“[es Bufler allocation places a practical limit
on the number of simultaneous TCP connections that can be
processed. Consequently, a more eflicient method of TCP
reassembly 1s needed to facilitate IDS deployment at high
speed Internet access points, where 50,000 or more simul-

taneous connections are common.

SUMMARY OF THE

INVENTION

In one embodiment of the present invention, a system and
method for receiving data packets at a computer system
comprises recerving at a buller, at least two data packets.
Once received, an ending portion of the first data packet 1s
stored 1n a bufler, wherein the ending portion comprises at
least the last data bit 1n the first data packet but less than all
the data bits 1n the first data packet. Next the method and
system concatenates the ending portion of the first data
packet with a beginning portion of the second data packet.
A string search engine then determines 1f the concatenated
data contains a known string of malicious data bits.

Another embodiment of the present invention scans pack-
cts as they arrive, as well as stores a beginning and an ending
portion ol each packet. Storing only a small portion of the
packet advantageously reduces buller or storage require-
ments by a factor of 10 to 50, enabling an IDS to monitor
tens of thousands of TCP connections. Scanning packets in
such a manner as they arrive comprises a “virtual” reassem-
bly process that may be performed 1n real-time.

Yet another embodiment of the present invention may
attach beginning and ending portions of previously stored
data packets to an end or a beginning of an adjacent data
packet prior to performing a string search. This enables a
string search engine to recognize a complete string when a
string spans data packet boundaries, even when data packets
are recerved out of order.

us 7,171,440 B2

3
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of system for performing virtual
packet reassembly operations 1n accordance with an embodi-
ment of the invention.

FIG. 2 1s an illustration showing a manner in which
properly ordered data packets may be processed 1n accor-
dance with an embodiment of the invention.

FI1G. 3 1s an illustration showing a manner 1n which out of
order data packets may be processed 1n accordance with an
embodiment of the invention.

DETAILED DESCRIPTION OF TH.
INVENTION

(1]

The following discussion 1s presented to enable a person
skilled 1n the art to make and use the invention. The general
principles described herein may be applied to embodiments
and applications other than those detailed below without
departing from the spirit and scope of the present invention.
The present invention i1s not mtended to be limited to the
embodiments shown, but 1s to be accorded the widest scope
consistent with the principles and features disclosed or
suggested herein.

FIG. 1 1s a block diagram of a typical system 100 for
performing virtual packet reassembly operations 1 accor-
dance with an embodiment of the invention. The system 100
typically comprises a processing unit 102, an mput/output
unit 104, a data storage unit 106, a display device 108, a
system memory 120, and a network mterface unit 130, each
of which may be coupled to a common bus 190.

The network interface unit 130 may serve as an 1nterface
between the system 100 and a network 135 such as, for
example, a LAN or the Internet. The network interface unit
130 may comprise conventional network communication
and/or mterface elements (not shown), as well as a packet
filtering unmit 140, a set of virtual-packet reassembly lists
150, and a string search engine 160.

In one embodiment, the packet-filtering unit 140 com-
prises a state machine, and may be implemented using a
Field Programmable Gate Array (FPGA). The packet-filter-
ing unit 140 may also comprise hardware and/or software
for performing and/or managing virtual packet reassembly
operations 1n accordance with an embodiment of the inven-
tion. The string search engine 160 may also comprise a state
machine, which may be implemented in an analogous man-
ner. The virtual-packet reassembly lists 150 may reside
within a local memory (not shown) associated with the
network interface unit 130.

During a typical communication session, data packets that
are to be scanned for known malicious data strings are
transmitted from the network 135 1n a well known protocol,
such as, for example, TCP. The data packets are received at
the network interface unit 130 through the packet-filtering
unit 140. As the packet-filtering unit 140 receives data
packets, 1t stmultaneously performs two tasks. First, the data
filtering unit 140 stores portions of received data packets 1n
one or more virtual packet reassembly lists 150. The second
task performed by the data-filtering unit 140 is to send each
data packet as received to the string search engine 160.

In one embodiment, one virtual-packet reassembly list
150 comprises an ending portion of each data packet
received. The ending portion of a data packet comprises at
least the last data bit 1n the data packet but 1s typically less
than all the data bits in the data packet. Some data packets
are only a few bits 1n length, thus 1n some embodiments, the
ending portion happens to also be the entire data packet.

10

15

20

25

30

35

40

45

50

55

60

65

4

Additionally, a beginning portion ol each data packet
received 1s stored in another virtual packet reassembly list
150. Similarly, the beginning portion of a data packet
comprises at least the first data bit in the data packet but 1s
typically less than all the data bits 1n the data packet. Again,
in small packets, the beginning portion may be the entire
data packet.

Next, stored data, 1.e. ending portions and beginning
portions, are prepended and/or appended to subsequently
received data packets. For example, the ending portion of a
first data packet 1s concatenated with the next data packet 1n
a sequence of data packets. Similarly, the beginning portion
of a second data packet 1s concatenated with the previous
data packet 1n a sequence of data packets. Then, each
concatenated string of data 1s sent to the string search engine
160.

The string search engine 160 determines 11 a known string
of data bits 1s contained within the data packets. In one
embodiment, received data packets are sent to the string
search engine 160 as part of a concatenated string after being
appended and/or prepended with stored beginning and end-
ing portions ol previously received data packets. Thus,
known malicious strings that reside 1n a single received data
packet and known malicious strings that reside over the
boundary of two consecutive data packets are detected when
concatenated strings are sent to the string search engine 160
from the virtual-packet reassembly lists 150.

Another embodiment of the imvention performs virtual
reassembly of TCP sessions by performing string searches
on data packets as they arrive, and storing segment boundary
information. For example, an ending portion of a first data
packet may be stored until a second data packet arrives. The
ending portion may be concatenated with the second data
packet such that the string search engine sees a continuous
data stream at a data packet boundary. In this fashion, only
the ending portion of each data packet 1s required to be
stored and only a single stream of data 1s passed to the string
search engine 160.

FIG. 2 1s an 1illustration of a manner in which properly
ordered data packets may be processed 1n accordance with
an embodiment of the invention. In this example, the string
“ordered” 1s considered to be a known malicious data string,
thus 1ts detection would be flagged in the string search
engine 160. In FIG. 2, a first data packet 200 and a second
data packet 201 within a session may be processed by a
string search engine 160 that operates, for example, on
8-byte strings. A first sequence number 210 corresponding to
the first data packet 200 may comprise an 1nitial sequence
number 210 of 100 1n the example. The second data packet
201 has a corresponding second sequence number 211 of
148 1n this example because the TCP payload 220 of the first
data packet 200 includes 48 bytes of data. An ending portion
212 comprising the last 8 bytes of the first data packet 200
1s stored 1n the virtual-packet reassembly list 150 along with
a corresponding tagging indication and the computed
sequence number 250 (here 148) of a next expected data
packet. Here, the string “perly or” would be stored as the
ending portion corresponding to the first data packet 200 1n
the virtual packet reassembly list 150.

Next, the second data packet 201 arrives with sequence
number 211 of 148, for which there 1s an entry (computed
sequence number 250) in one of the virtual-packet reassem-
bly lists 150. The associated 8 bytes stored (1.e., “perly or”)
are concatenated with the TCP payload 221 of the second
data packet 201 and the resulting string, “perly ordered
segments.”, 1s sent to the string search engine 160. Thus, 1n
the example shown i FIG. 2, the known malicious string

us 7,171,440 B2

S

“ordered” may be detected by the string search engine 160,
even though it straddles two segments.

FIG. 3 1s an illustration showing a manner in which
temporally out of order data packets may be processed in
accordance with an embodiment of the invention. In this
example, a first data packet 301 and a second data packet
302 within the session contain the same TCP payloads 320
and 322 as m FIG. 2. However, a third data packet 303
arrives out of order; 1.e. it arrives before the second data
packet 302. The first data packet 301 may be processed as
above, and an ending portion 312 of the first data packet 301
1s stored 1n a virtual-packet reassembly list 150 along with
a corresponding tagging indication and a computed
sequence number 350 of a next expected segment (1.¢., 148).

The next data packet (which will later be determined to be
the third data packet 303) arrives with sequence number 313
of 164, for which an entry 1n a virtual packet reassembly list
does not yet exist. Thus, a beginning portion 323 of the third
data packet 303, a corresponding tagging indication, and the
third data packet’s sequence number 351 (here 164) are
stored 1n the virtual-packet reassembly list 150. Addition-
ally, an ending portion 327 of the third data packet 303, a
corresponding tagging indication, and a computed sequence
number 352 (190 1n this example) of a next-expected data
packet are stored 1n a virtual-packet reassembly list 150.

A next data packet (later determined to be the second data
packet 302) to arrive has sequence number 315 of 148, for
which there 1s an entry in one of the virtual-packet reas-
sembly lists 150. The characters “perly or,” forming the
ending portion 312 of the first data packet 301 that was
stored 1n a virtual-packet reassembly list 150 1n association
with a sequence number 350 of 148, are concatenated with
the beginning of the TCP payload 322 of this most-recently
received data packet, the second data packet 302. A com-
puted next sequence number 313 for the second data packet
302 1s 164, for which there 1s an entry in one of the virtual
packet reassembly lists 150. Theretfore, the data stored in the
virtual-packet reassembly lists 150 1n association with the
sequence number 351 164 1s concatenated with the end of
the TCP payload 322 of the most-recently received segment,
still the second data packet 302. The concatenated data,
which includes prepended data associated with the first data
packet 301 (i.e., the first data packet’s 301 ending portion
312), the TCP payload 322 of the second data packet 302,
and appended data associated with the third data packet 303
(1.e., the third data packet’s 303 beginning portion 325), are
then sent to the string search engine 160.

In one embodiment, the number of entries 1n the virtual-
packet reassembly lists 150 1s equal the number of “holes™
in the data-packet stream multiplied by two, plus one. For
example, three entries may be created when there 1s a single
hole 1n the sequence numbers, five entries when there are
two holes, and so on. Furthermore, each time a virtual packet
reassembly list 150 entry 1s used it 15 deleted.

The above embodiments of storing beginning and/or
ending portions of data-packet payloads comprise “virtual”
TCP reassembly operations because session flows are never
totally reconstructed. Rather, boundary conditions between
data packets are stored, requiring significantly less memory
than conventional TCP reassembly systems and methods.

I claim:
1. A method for detecting a string of data when receiving
data packets at a computer:
(a) receiving at least two different data packets;
(b) storing 1n a bufler, an ending portion of the first data
packet, the ending portion comprising at least the last

10

15

20

25

30

35

40

45

50

55

60

65

6

data bit 1n the first data packet but less than all the data
bits 1n the first data packet;

(¢) concatenating the ending portion of the first data

packet with the second data packet; and

(d) determining 11 the concatenated data includes a known

string of data bits.

2. The method of claim 1 further comprising flagging the
concatenated data that 1s determined to include the known
string of data bits.

3. The method of claim 1 further comprising searching
cach recerved data packet for a known string of data bits.

4. The method of claim 3 further comprising tlagging each
data packet that includes the known string of data bits.

5. The method of claim 1 wherein the two data packets

received are sequential.

6. The method of claim 1 wherein the two data packets

received are received out of order.

7. The method of claim 1 further comprising

(a) storing 1n the bufler, a beginning portion of the second
data packet, the beginning portion comprising at least
the first data bit 1n the second data packet;

(b) concatenating the ending portion of the first data
packet with the beginning portion of the second data
packet; and

(¢) determining 1f the concatenated data includes a known
string ol data baits.

8. The method of claim 1 further comprising:

(a) storing 1n the bufler, an ending portion of the concat-
enated data, the ending portion comprising at least the
last data bit in the concatenated data;

(b) concatenating the ending portion of the concatenated
data with a third data packet; and

(¢) determining if the new concatenated data contains a
known string of data bits.

9. The method of claim 8 wherein the third data packet

follows the second data packet 1n a consecutive sequence of
data packets.

10. The method of claim 8 wherein the third data packet
1s recerved at the bufler before the second data packet.

11. The method of claim 8 wherein at least one additional
data packet 1s received between the second data packet and
the third data packet.

12. A method according claim 1 further comprising stor-
ing a sequence number of the second data packet 1n asso-
ciation with the ending portion of the first data packet.

13. A method for detecting a string of data when receiving
data packets at a computer:

(a) recerving at least two different data packets;

(b) storing 1n a bufler, a beginning portion of the second
data packet, the beginning,
portion comprising at least the first data bit in the second

data packet but less than all the data bits 1n the second
data packet;

(¢) concatenating the beginning portion of the second data
packet with the first data packet; and

(d) determining 11 the concatenated data includes a known
string of data bits.

14. The method of claim 13 wherein the second data
packet follows the first data packet i a consecutive
sequence ol data packets.

15. The method of claim 13 wherein the second data
packet 1s received at the bufler before the first data packet.

16. The method of claim 13 wherein at least one addi-
tional data packet 1s received between the first data packet
and the second data packet.

us 7,171,440 B2

7

17. The method of claim 13 further comprising:

(a) determining that the known string of data bits 1s not
found 1n the concatenated data;

(b) storing in the builer, a beginning portion of the
concatenated data, the beginning portion comprising at
least the last data bit 1n the concatenated data;

(c) concatenating the beginning portion of the concat-
cnated data with a third data packet; and

(d) determiming 11 the new concatenated data contains a
known string of data bits.

18. The method of claim 17 wherein the third data packet
tollows the second data packet 1n a consecutive sequence of
data packets.

19. The method of claim 17 wherein the third data packet
1s received at the buller before the second data packet.

20. The method of claim 17 wherein at least one addi-
tional data packet 1s received between the second data
packet and the third data packet.

21. A method according claim 13 further comprising
storing a sequence number of the second data packet 1n
association with the beginning portion of the second data
packet.

22. A method for detecting a string of data when receiving,
data packets at a computer:

(a) recerving at least three different data packets;

(b) storing 1n a bufler, an ending portion of the first data
packet, the ending portion comprising at least the last
data bit 1n the first data packet;

(c) storing 1n the bufler, a beginning portion of the third
data packet, the beginning portion comprising at least
the first data bit 1n the third data packet, wherein at least
one of the ending portion of the first data packet and the
beginning portion of the third data packet comprises
less than all the data bits of the respective data packet;

(d) concatenating the ending portion of the first data
packet and the beginning portion of the third data
packet with a second data packet; and

() determining 11 the concatenated data includes a known
string of data bits.

23. A method according claim 22 further comprising:

storing a sequence number of the third data packet 1n
association with the ending portion of the first data
packet; and

storing a sequence number of the third data packet 1n
association with the beginning portion of the third data
packet.

24. A system for detecting a string of data when receiving

data packets at a computer, the system comprising:

(a) a memory, coupled to a packet filtering unit, operable
to store data included the data packets and to store
virtual-packet reassembly lists;

(b) a string search engine coupled to the packet filtering
unit operable to detect a string of data; and

(c) a packet filtering unit coupled to the memory and
operably scanning data packets for known strings of
data bits, the packet filtering operable to:
receive at least two different data packets;

(d) (11) store, 1n a buller, an ending portion of the first data
packet, the ending portion comprising at least the last
data bit 1n the first data packet and a beginning portion

10

15

20

25

30

35

40

45

50

55

8

of the second data packet, the beginning portion com-
prising at least the first data bit 1n the second data
packet, wherein at least one of the ending portion of the
first data packet and the beginning portion of the third
data packet comprises less than all the data bits of the
respective data packet;

(¢) (111) concatenate the ending portion of the first data

packet with the beginning portion of the second data
packet; and

(1) (1v) determine i1f the concatenated data includes a
known string of data bits.

25. The system of claim 24 wherein the packet filtering
umt 1s further operable to determine if each data packet
includes a known string of data bits.

26. A system according claim 24 wherein the packet
filtering unit 1s further operable:

to store a sequence number of the second data packet 1n
association with the ending portion of the first data
packet; and

to store a sequence number of the second data packet 1n
association with the beginning portion of the second
data packet.

27. A system for detecting a string of data when receiving,

data packets at a computer, the system comprising:

(a) a memory, coupled to a packet filtering unit, operable
to store data included the data packets and to store
virtual-packet reassembly lists;

(b) a string search engine coupled to the packet filtering
unit operable to detect a string of data; and

(c) a packet filtering unit coupled to the memory and
operably scanning data packets for known strings of
data bits, the packet filtering operable to:
receive at least two different data packets;

(d) (11) store 1n a buller an ending portion of the first data
packet, the ending portion comprising at least the last
data bit 1n the first data packet but less than all the data
bits 1n the first data packet;

(¢) (111) concatenate the ending portion of the first data
packet with the second data packet; and

(1) (1v) determine i1f the concatenated data includes a
known string of data bits.

28. The system of claim 27 wherein the packet filtering

unit 1s further operable to:

(a) store in the bufler an ending portion of the concat-
enated data, the ending portion comprising at least the
last data bit 1n the concatenated data;

(b) concatenate the ending portion of the concatenated
data with the beginning of a third data packet; and

(¢) determine i1f the new concatenated data includes a
known string of data bits.

29. The system of claim 28 wherein the packet filtering
umt 1s further operable to determine 1f each data packet
includes a known string of data bits.

30. A system according claim 27 wherein the packet
filtering unit 1s further operable to store a sequence number

of the second data packet in association with the ending
portion of the first data packet.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

