12 United States Patent

Byrne et al.

US007167918B2

(10) Patent No.: US 7,167,918 B2

(54)

(75)

(73)

(%)

(21)
(22)

(65)

(51)

(52)

(58)

(56)

MACRO-BASED ACCESS CONTROL

Inventors: Robert Byrne, Voiron (FR); Pransanta
Behara, Cupertino, CA (US)

Assignee: Sun Microsystems, Inc., Santa Clara,
CA (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 134(b) by 995 days.

Appl. No.: 10/045,682

Filed: Oct. 29, 2001

Prior Publication Data

US 2003/0110246 Al Jun. 12, 2003

Int. CIL.

GO6F 15/173 (2006.01)

US.CL .., 709/229; 709/203; 709/216;

709/219; 709/225; 707/8; 707/9; 707/10;
726/2;726/27,711/100

Field of Classification Search 709/216,
709/219, 225, 229, 203, 228; 726/2,27;
707/8,9,10; 711/100

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS
5,784,560 A * 7/1998 Kingdon et al. 709/201
5,812,776 A * 9/1998 Giffordcccevvvenennnnn.n. 709/217
6,195,792 B1* 2/2001 Turnbull et al. 717/110
6,490,619 B1* 12/2002 Byme et al. 709/223
6,505,238 B1* 1/2003 Trancccccoevvvivennnnnnn. 709/208
6,535,879 B1* 3/2003 Beherac.coooeviniiinnin, 707/9
6,539,379 B1* 3/2003 Voraetal. 707/6
6,785,713 B1* 8/2004 Freeman et al. 709/208
6,792,605 B1* 9/2004 Roberts et al. 719/313

45) Date of Patent: Jan. 23, 2007
6,980,985 B1* 12/2005 Amer-Yahia et al. 707/4
7,069.437 Bl* 6/2006 Williamsc.oen...... 713/166

2003/0105978 Al 6/2003 Byrne

OTHER PUBLICATTONS

Butler W. Lampson, “Designing a Global Name Service,” Digital
Equipment Corporation, 1986 Conference on Principles of Distrib-

uted Computing, 1985, (19 Pages).

Michael Donnelly, “Designing and LDAP Directory Tree,” http://
ldapman.org/articles/tree_ design.html, May 9, 2000, (6 Pages).
“Introduction to LDAP—Introduction to LDAP,” http://www.cica.
es/comu/php3Doc/ref.ldap, Apr. 20, 2001, (4 Pages).

Damiani et al., “Fine Grained Access Control for SOAP E-Ser-
vices,” WWW10, May 1-5, 2001, (pp. 504-513).

Hays et al., “The Object Filter and Access Control Framework,”
PLoP 2000 Conference, 2000, (15 Pages).

Netscape Directory Server Administrator’s Guide Version 4.0,
1998, Netscape Communications Corporation, Chapters 5 & 8.

* cited by examiner

Primary Examiner—Saleh Najjar

Assistant Examiner—Michael Y. Won

(74) Attorney, Agent, or Firm—Robert C. Kowert;
Meyertons, Hood, Kivlin, Kowert & Goetzel, P.c.

(57) ABSTRACT

Various embodiments of systems and methods for using
condition defining data (e.g., access control instructions)
attached to nodes 1 a tree to mmplement node-related
conditions 1n a directory server having a tree structure are
disclosed. In one embodiment, a method includes attaching
condition defining data that includes a variable portion and
a reference portion to a given node 1n the tree structure, and
upon access to a subnode of said given node in the tree,
using the reference portion and a property of the subnode to
tentatively denive a value for the variable portion, changing

the vanable portion into the value, and evaluating the
condition 1n said condition defining data.

45 Claims, 10 Drawing Sheets

(Sattr.<attrName>)
700

LOOK AT <ATTRNAME*>
IN TARGETED ENTRY

702

.

EXPAND MACRO ACE WITH
ATTRIBUTE VALUE

708

l

A BIND DN MATCHING THE

NO DOES THE REQUESTOR HAVE
EXPANDED EUB?}JL-JE?CT CONDITION?

L

YES

OTHER MATCHING
ATTRIBUTE VALUE
YES 711

b

o

EVALUATE THE ACI
708

NO

Y

ANSWER REQUEST FOR THE ACCESS
AS GRANTED

718

l

C

END

720

)

U.S. Patent Jan. 23,2007 Sheet 1 of 10 US 7,167,918 B2

10

CPU
11

EPROM

NET. HARD.
INTERFACE

21

FIG. 1

U.S. Patent Jan. 23,2007 Sheet 2 of 10 US 7,167,918 B2

RESOURCE PROVIDER
(SERVER)

SOLARIS WINDOWS 98

FIG. 2

U.S. Patent Jan. 23,2007 Sheet 3 of 10 US 7,167,918 B2

Open Digital Marketplaces/Appliances
40

Portal Services
42
Knowledge . _ . .
o0 o2 54 56 58

Communication Services l
44

: - Instant Unified
. Service

60 62 64 66 68
Deployment
Web, Application, and Integration Services Platform

46
Application B2B EA Business Process
70 72 74 76

/3

Unified User Management Services
= |

Directo Meta Delegated _ |
Server Administration PK]
|

80 82 84 86 88 y

Operating System
30

Network & Systems Infrastructure

l

| o
N

FIG. 3

U.S. Patent Jan. 23,2007 Sheet 4 of 10 US 7,167,918 B2

a0
. dc=company

() ou=Peaple () ou=Servers
92 94
. ou=Engineering . ou=Sales . cn=Engineering Web server
06
. uid=bjensen
FIG. 4

——ST104 Search Operation—»
<€4+—51106 Returned Entry

4+——3T108 Result Code

FIG. 5

U.S. Patent Jan. 23, 2007 Sheet 5 of 10

——ST411 Open connection & bind —»
-4—ST112 Result of bind operation —
————8T113 Search operation —»
«——ST114 Returned entry #1——

«——ST115 Returned entry #2

-‘5
-<«-ST116 Result of search operation —

ST117 Unbind operation—» LDAP server

L DAP client
4——ST118 Closes connection
FIG. 6
Entry 124
. _ _ A
‘/

Attribute Type 120 Attribute Values 122

cn: |
Babs Jensen

el
telephonenumber: | +1 408 535 1212
I

FIG. 7

Barbara Jensen

~

US 7,167,918 B2

U.S. Patent Jan. 23,2007 Sheet 6 of 10 US 7,167,918 B2

~ NXO
de=hostedcompany1, dc=siroe, dc=com
|
— _l. _ | R __I_ I
OLU=groups ou=people
- NX10 - NX11
cn=domainAdmins cn=deptAdmins cn=helpdesk cn=all
- NX101 - NX102 \- NX103 /
NX104
dc=subdomain
| - NX2
OU=groups ou=people
| \- NX20 “NX21
cn=domainAdmins cn=deptAdmins cn=helpdesk ch=all
| - NX201 - NX202 \- NX203 ’
NX204 -
de=subdomaini.1
- NX3
__________ e — e
| |
ou=groups ou=people
"\ NX30 \- NX31 FIG. 8

M ACI Keyword "in" ACIl Keyword "out”
targeffilter, userdn, roledn, groupdn, userattr

m— targetfilter, userdn, roledn, groupdn, userattr

(ddn)
($attr.attrName) targetfilter, userdn, roledn, groupdn, userattr

FIG. 9

U.S. Patent Jan. 23,2007 Sheet 7 of 10 US 7,167,918 B2

(5DN)
| 500

FIND TARGET (DN) IN LDAP REQUEST
502

REDUCE TARGET (DN) TO ITS PORTION |
MATCHING THE ACI TARGET

004

EXPAND ACI SUBJECT BY SUBSTITUTING

($DN) WITH REDUCED TARGET {DN)
006

EVALUATE THE ACI
508

ANSWER LDAP REQUEST,
IF ACI GRANTS ACCESS

518

END
520

FIG. 10

U.S. Patent Jan. 23,2007 Sheet 8 of 10 US 7,167,918 B2

($DN)
600

FIND TARGET (DN) IN LDAP REQUEST
602

: DOES LDAP TARGET (DN) MATCH
| THE ACI TARGET?
604

. YES

SUBSTITUTE ($DN) WITH REDUCED LDAP
| TARGET (DN) MATCHING THE ACI TARGET
' 606

DOES THE REQUESTOR HAVE
A BIND DN MATCHING THE
EXPANDED SUBJECT CONDITION?
608

NO

DROP THE LOWER LEVEL
RDN COMPONENT (IF ANY) | | EYALUATS THEAS
612

ANSWER LDAP REQUEST FOR THE
ACCESSES AS GRANTED

616

END
620

FIG. 11

U.S. Patent Jan. 23,2007 Sheet 9 of 10 US 7,167,918 B2

($attr.<attrName>)
700

LOCK AT <ATTRNAME>
IN TARGETED ENTRY
702

EXPAND MACRO ACHI WITH
ATTRIBUTE VALUE
706

DOES THE REQUESTOR HAVE
A BIND DN MATCHING THE
EXPANDED SUBJEIJECT CONDITION?
707

| YES

OTHER MATCHING
ATTRIBUTE VALUE
711

EVALUATE THE ACI
708

YES

ANSWER REQUEST FOR THE ACCESS
AS GRANTED

718

US 7,167,918 B2

£ Old

A%
cHIASVY
AR @

Sheet 10 of 10

0L8
L#J1SVd
viv(d

Jan. 23, 2007

U.S. Patent

608
o 00dd

1ONdLS

dd4d1

008
ddAGES
Jdd1SVIN

0v8

0G8
H3IAYAS
HIWNSNOD

S1S3N0dy
dvdl

Uus 7,167,918 B2

1
MACRO-BASED ACCESS CONTROL

BACKGROUND OF THE INVENTION

1. Field of the Invention

This mvention relates to distributed computer systems
and, more particularly, to condition defiming data such as that
used to control access to entries i a directory.

2. Description of the Related Art

In certain fields of technology, computer systems such as
web networks include equipment and software of diverse
types and having different manufacturers. This 1s true at both
the hardware and the software level.

It 1s desirable that network users (“‘client components™)
can access, upon query, to a large amount of data (*appli-
cation soltware components”) making 1t possible for the
network users to create their own dynamic web site or to
consult a dynamic web site such as an e-commerce site on
an multi-platform computer system (e.g., Solaris, Windows
NT, AIX, HPUX). These queries are directed to a directory
(e.g., an LDAP (Lightweight Data Access Protocol direc-
tory) and managed by a directory server. It i1s further
desirable that this access be made possible rapidly for each
query arriving aiter a first query.

Directories often have access control mechanisms to
restrict access to certain portions of the directory. For
example, some access control mechanisms may be designed
so that regular users only have access to the information they
need to know while other users (e.g., administrators) have
access to larger segments (or all) of the directory. However,
the access control mechanisms may have to be duplicated a
large number of times (e.g., for each node 1n the directory),
within a given directory structure. This may induce a supple-
mentary load 1n many respects, including storage capability
and the usual compromise 1n memory between data storage
and program execution, 1n connection with the time needed
for execution.

SUMMARY

Various embodiments of systems and methods for using
condition defining data (e.g., ACIs (Access Control Instruc-
tions)) attached to nodes 1n a tree to implement node-related
conditions 1n a directory server having a tree structure are
disclosed. In one embodiment, a method includes attaching
condition defining data that includes a vanable portion and
a reference portion to a given node 1n the tree structure, and
upon access to a subnode of said given node in the tree,
using the reference portion and a property of the subnode to
tentatively derive a value for the variable portion, changing
the varniable portion into the value, and evaluating the
condition 1n said condition defining data.

In another embodiment, a directory server system may
include a tree structure that includes a plurality of nodes and
a tree structure processor configured to use condition defin-
ing data (e.g., ACIs) attached to nodes. The condition
defining data may include a variable portion and a reference
portion. The tree structure processor may be configured
tentatively derive a value for the variable portion using the
reference portion and a property of the subnode upon access
to a subnode of the given node 1n the tree. The tree structure
may then use the condition in said condition defining data
with 1ts variable portion changed into the derived value.

In one embodiment, a computer readable medium may
include program instructions computer executable to attach
condition defining data that includes a variable portion and
a reference portion to a given node in the tree structure, and

10

15

20

25

30

35

40

45

50

55

60

65

2

upon access to a subnode of said given node 1n the tree, use
the reference portion and a property of the subnode to
tentatively derive a value for the variable portion, change the
variable portion into the value, and evaluate the condition 1n
said condition defining data.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present mvention can be
obtained when the following detailed description 1s consid-
ered 1n conjunction with the following drawings, in which:

FIG. 1 15 a block diagram of a computer system 1n which
an embodiment of a macro-based access control system may
be implemented;

FIG. 2 illustrates a block diagram of one embodiment of
a multiple platform environment;

FIG. 3 1llustrates a block diagram of an embodiment of an
Internet Service Development Platform;

FIG. 4 illustrates part of one embodiment of a directory;

FIG. 35 illustrates the LDAP protocol used for a simple
request 1n one embodiment of a network system;

FIG. 6 illustrates an LDAP exchange between the IDAP
client and LDAP server according to one embodiment;

FIG. 7 illustrates one embodiment of a directory entry
showing attribute types and values;

FIG. 8 shows an exemplary portion of one embodiment of
a LDAP tree;

FIG. 9 1s a table showing syntax alternatives for a macro
according to one embodiment;

FIG. 10 1s a flow-chart for a first form of macro in
accordance with one embodiment;

FIG. 11 1s a flow-chart for a second form of macro in
accordance with one embodiment:

FIG. 12 1s a flow-chart for a third form of macro in
accordance with one embodiment; and

FIG. 13 shows a system that may employ an embodiment
ol macro-based access control.

While the invention 1s susceptible to various modifica-
tions and alternative forms, specific embodiments thereof
are shown by way of example in the drawings and will
herein be described i1n detail. It should be understood,
however, that the drawings and detailed description thereto
are not mtended to limit the mvention to the particular form
disclosed, but on the contrary, the intention 1s to cover all
modifications, equivalents and alternatives falling within the
spirit and scope of the present invention as defined by the
appended claims.

DETAILED DESCRIPTION OF EMBODIMENTS

Computer System

This mvention may be implemented in a computer sys-
tem, or 1n a network comprising computer systems. One
example of the hardware used in such a computer system 1s
shown 1n FIG. 1. In FIG. 1, computer system 1 includes
processor 11, non-volatile memory 12, memory 13, mass
memory 14, display 15, user mput device 16, network
interface device 21, communication medium 20, and bus
system 10.

Processor 11 may include one or more Ultra-Sparc pro-
cessors or other suitable processors, as desired. Non-volatile
memory 12 may include an EPROM (as shown), Flash
memory, or other suitable type of memory on which to store
BIOS (Basic Input Output System) 1nstructions. Memory 13
may 1nclude a suitable type of RAM (Random Access
Memory) such as DRAM, SDRAM, DDR DRAM,

Uus 7,167,918 B2

3

RDRAM, etc. Mass memory 14 may include one or more
hard disk drives or other mass storage media (e.g., optical or
magneto-optical drives). Display 15 may include a suitable
monitor. User mput device 16 may include one or more
devices such as a keyboard, mouse, joystick, etc.

Instructions 1mplementing an embodiment ol macro-
based access control, as described below, may be executed
by processor 11 and stored in memory 13. Embodiments of
software instructions may include, separately or together,
the instructions used when writing the condition-defiming,
data and/or macros (or equivalent), as well as precursors
and/or generators ol such instructions, and the resulting
instructions, as applicable (e.g., in a directory server). In
some embodiments, the mstructions may be combined with
language dependent and/or hardware dependent instructions
and/or data. In some embodiments, the instructions may be
stored on another computer readable medium (e.g., a CD,
DVD, hard disk, optical disk, tape device, tloppy disk, etc.).
In order to execute the mstructions, the istructions may be
loaded into memory 13. In addition, the computer readable
medium may be located in either a first computer, in which
the software program 1s stored or executed, or 1n a second
different computer, which connects to the first computer
over a network such as the Internet. In the latter instance, the
second computer may provide the program instructions to
the first computer for execution. The nstructions and/or data
may also be transferred upon a carrier medium. In some
embodiments, a computer readable medium may include a
carrier medium such as networks and/or a wireless link upon
which signals such as electrical, electromagnetic, or digital
signals may be conveyed.

Network interface 21 may be connected to communica-
tion medium 20. In some embodiments, network interface
device 21 may be an Ethernet device, a senal line device,
and/or an AITM device. Communication medium 20 may be
in communication with other computers (not shown).
Medium 20 may include wire cables, fiber optics, and/or
radio-communications, etc.

The components shown 1n FIG. 1 may exchange data
through one or more bus systems 10, schematically shown
as a single bus for ease of description. Bus system 10 may
include a processor bus (e.g., a PCI (Peripheral Component
Interconnect) bus) connected via appropriate bus bridges to
one or more peripheral buses (e.g., an ISA (Industry Stan-
dard Architecture) bus and/or an SCSI (Small Computer
System Interface) bus).

Multi-Platform System

FIG. 2 illustrates a conceptual arrangement in which a
first computer 2 running the Solaris platform and a second
computer 4 running the Windows 98™ platiform are con-
nected to a server 8 via the Internet 6. A resource provider
using the server 8 may be any type of business, government,
or educational 1nstitution. The resource provider 8 may need
to be able to provide its resources to both the user of the
Solaris platform and the user of the Windows 98™ platiorm,
but may not have the luxury of being able to custom design
its content for the individual platforms. Thus, eflective
programming at the application level may require the plat-
form concept to be extended all the way up the stack,
including all the new elements introduced by the Internet.
Such an extension may allow application programmers to
design for a stable, consistent environment.

Internet Service Deployment Platform

FIG. 3 shows one embodiment of an ISDP (Internet
Service Deployment Platform) 28. In one embodiment,
ISDP 28 may be an ISDP developed by 1Planet E-commerce

5

10

15

20

25

30

35

40

45

50

55

60

65

4

Solutions, a Sun MicrosystemsINetscape Alliance. ISDP 28
may be a “net-enabling” platform that provides business
with a very broad, evolving, and standards-based foundation
upon which to enable network service. ISDP 28 may incor-
porate the elements of the Internet portion of the stack and
join the elements with traditional platforms at the lower
levels. ISDP 28 may sit on top of traditional operating
systems 30 and infrastructures 32. This arrangement may
allow enterprises and service providers to deploy next
generation platforms while preserving “legacy-system”
investments, such as a mainframe computer or any other
computer equipment that 1s selected to remain 1n use after
new systems are installed.

ISDP 28 may include multiple mtegrated layers of soft-
ware that provide services supporting application develop-
ment, e.g., business-to-business exchanges, communications
and entertainment vehicles, and retail Web sites. In addition,
ISDP 28 may employ open standards at each level of
integration, enabling customers to mix and match compo-
nents. ISDP 28 components may be designed to be inte-
grated and optimized to reflect a specific business need.
However, there 1s no requirement that all solutions within
the ISDP 28 be employed, or any one or more be exclusively
employed.

As shown 1n FIG. 3, ISDP 28 may include several layers.
Graphically, the uppermost layer of ISDP 28 starts below the
Open Digital Marketplace/Application strata 40. The upper-
most layer of ISDP 28 may be a Portal Services Layer 42
that may provide a basic user point of contact and may be
supported by integration solution modules such as knowl-
edge management 30, personalization 52, presentation 54,
security 36, and/or aggregation 58.

Next, a layer of specialized Communication Services (44)
may handle functions such as unified messaging 68, instant
messaging 66, web mail 60, calendar scheduling 62, and/or
wireless access interfacing 64.

A layer called Web, Application, and Integration Services
46 may follow. This layer may have diflerent server types to
handle the mechanics of user interactions and may include
application and Web servers. For example, 1Planet™ oflers
the 1Planet™ Application Server 72, Web Server 70, Process
Manager 78, Enterprise Application and Integration (EAI)

76, and Integrated Development Environment (IDE) tools
74.

Below the server strata, an additional layer called Unified
User Management Services 48 may be included to handle
1ssues surrounding management of user populations, includ-
ing Directory Server 80, Meta-directory 82, delegated
administration 84, Public Key Infrastructure (PKI) 86, and/
or other administrative/access policies 88. The Unified User
Management Services layer 48 may provide a single solu-
tion to centrally manage user account information in extra-
net and e-commerce applications. In one embodiment, the
core of this layer may be the 1Planet™ Directory Server 80
or another Lightweight Directory Access Protocol (LDAP)-
based directory server.

A LDAP-based directory server such as the 1Planet Direc-
tory Server (1DS) may provide a centralized directory ser-
vice lfor an 1intranet or extranet while integrating with
existing systems. The term directory service refers to a
collection of software, hardware, and processes that store
information and make the information available to users.
The directory service generally includes at least one 1nstance
of the directory server and one or more directory client
programs. Client programs can access names, phone num-
bers, addresses, and/or other data stored 1n the directory.

Uus 7,167,918 B2

S

One common directory service 1s a Domain Name System
(DNS) server. A DNS server maps computer host names to
IP addresses. Thus, all of the computing resources (hosts)
become clients of the DNS server. The mapping of host
names may allow users of the computing resources to easily
locate computers on a network by remembering host names
rather than numerical Internet Protocol (IP) addresses. Note
that while some directory services such as a DNS server may
only store a few types of information, a typical directory
service may store virtually unlimited types of information.

A directory server such as 1DS may be a general-purpose
directory that stores information imn a network-accessible
repository. Such a directory server may provide a standard
protocol and application programming interface (API) to
access the information contained by the directory server.

The directory server may provide global directory ser-
vices, meamng that information may be provided to a wide
variety of applications. Until recently, many applications
came bundled with a proprietary database. While a propri-
ctary database may be convenient 11 only one application 1s
used, multiple databases may become an administrative
burden 11 the databases manage the same information. For
example, 1n a network that supports three different propri-
ctary e-mail systems where each system has a proprietary
directory service, 1f a user changes passwords 1n one direc-
tory, the changes may not automatically be replicated in the
other directories. Accordingly, managing multiple instances
of the same information may result in increased hardware
and personnel costs.

A global directory service may provide a single, central-
1zed repository of directory information that any application
can access. However, giving a wide variety of applications
access to a directory may create a need for a network-based
means of communicating between the numerous applica-
tions and the single directory. A directory lookup tool such
as LDAP may be used to give applications access to the
global directory service.

LDAP 1s the Internet standard for directory lookups, just
as the Simple Mail Transfer Protocol (SMTP) 1s the Internet
standard for delivering e-mail and the Hypertext Transfer
Protocol (HTTP) 1s the Internet standard for delivering
documents. Techmcally, LDAP is defined as an on-the-wire
bit protocol (similar to HT'TP) that runs over Transmission
Control Protocol/Internet Protocol (TCP/IP). LDAP creates
a standard way for applications to request and manage
directory mformation. X.500 and X.400 are the correspond-
ing Open Systems Interconnect (OSI) standards. LDAP
currently supports X.500 Directory Access Protocol (DAP)
capabilities and may easily be embedded i lightweight
applications (both client and server) such as email, web
browsers, and groupware.

An LDAP-compliant directory, such as the 1DS, may
provide a master directory that owns all user, group, and
access control information. In some embodiments, the direc-
tory may be hierarchical (as opposed to relational) and may
be optimized for reading, reliability, and scalability. This
directory may become a specialized central repository that
contains mnformation about objects and provides user, group,
and/or access control information to all applications on a
network. For example, the directory may be used to provide
information technology managers with a list of all the
hardware and software assets 1n a widely spanning enter-
prise. A directory server may also provide resources that all
applications can use and aid in the integration of applica-
tions that have previously functioned as stand-alone sys-
tems. For example, 1nstead of creating an account for each

10

15

20

25

30

35

40

45

50

55

60

65

6

user 1n each system the user needs to access, a single
directory entry may be created for the user in the LDAP
directory.

FIG. 4 shows a portion of a typical directory with different
entries corresponding to real-world objects. The directory
depicts an organization entry 90 with the attribute type of
domain component (dc), an organizational unit entry 92 with
the attribute type of organizational unit (ou), a server appli-
cation entry 94 with the attribute type of common name (cn),
and a person entry 96 with the attribute type of user ID (uid).
All entries may be connected by the directory.

In one embodiment, the directory protocol (e.g., a LDAP
protocol) may be a message-oriented protocol. For example,
a client may construct an LDAP message containing a
request and send the message to the server. The server may
process the request and send one or more results back to the
client as a series of one or more LDAP messages.

FIG. 5 shows an example of how an LDAP client 100 may
search the directory for a specific entry. The client 100 may
construct an LDAP search request message and send the
message to the LDAP server 102, (operation ST1104). The
LDAP server 102 may retrieve the requested entry from the
database and send the entry to the client 100 1n an LDAP
message (operation ST106). A result code may also be
returned to the client 100 (e.g., 1n a separate LDAP mes-
sage), (operation ST108).

LDAP-compliant directory servers (e.g., 1IDS) may have
nine basic protocol operations. The basic protocol opera-
tions may be divided into three categories. The first category
1s 1nterrogation operations, which include search and com-
pare operators. These interrogation operations allow ques-
tions to be asked of the directory. The search operation 1s
used to search the directory for entries and retrieve indi-
vidual directory entries. In some embodiments, a separate
LDAP read operation may not be implemented. The second
category ol interrogation operations 1s update operations,
which include add, delete, modity, and modity distinguished
name (DN) (1.e., rename) operators. A DN 1s a unique,
unambiguous name of an entry in LDAP. Update operations
allow information 1n the directory to be updated.

The third category of protocol operations 1s authentication
and control operations, which include bind, unbind, and
abandon operators. The bind operator allows a client to
identify itself to the directory by providing an identity and
authentication credentials. For example, the client may
provide a DN and a set of credentials t to the directory. The
server may check whether the credentials are correct for the
grven DN and, if the credentials are correct, note that the
client 1s authenticated as long as the client’s connection
remains open or until the client re-authenticates. The unbind
operation allows a client to terminate a session. When the
client 1ssues an unbind operation, the server may discard any
authentication information associated with the client con-
nection, terminate any outstanding LDAP operations, and
disconnect from the client, thus closing the TCP connection.
The abandon operation allows a client to indicate that the
result of an operation (e.g., identified by a message ID 1n
which the request for that operation was submitted) previ-
ously submitted i1s no longer of interest. Upon receiving an
abandon request, the server may terminate processing of the
operation that corresponds to the message ID.

In addition to the three main groups of operations, the
LDAP protocol defines a framework for adding new opera-
tions to the protocol via LDAP extended operations.
Extended operations allow the protocol to be extended 1n an
orderly manner to meet new marketplace needs as they
emerge.

Uus 7,167,918 B2

7

A typical LDAP client/server exchange may proceed as
depicted 1n FIG. 6. First, the LDAP client 100 opens a TCP

connection to the LDAP server 102 and submits the bind
operation (operation ST111). This bind operation may
include the name of the directory entry that the client wants
to authenticate as, along with the credentials to be used when
authenticating. Credentials are often simple passwords, but
they may also be digital certificates used to authenticate the
client 100. After the directory has verified the bind creden-
tials, the directory may return a success result to the client
100 (operation ST 112). Then, the client 100 may issue a
search request (operation ST 113). The LDAP server 102
processes this request, which results in two matching entries
(operation STs 114 and 115). Next, the LDAP server 102
may send a result message (operation ST 116). The client
100 may then 1ssue the unbind request (operation ST 117),
which indicates to the LDAP server 102 that the client 100
wants to disconnect. The LDAP server 102 may oblige by
closing the connection (operation ST 118).

Directory-enabled clients may perform useful, complex
tasks by combining the basic LDAP operations. For
example, an electronic mail client may look up mail recipi-

ents 1 a directory in order to help a user address an e-mail
message.

The basic unit of information in the LDAP directory 1s an
entry. An entry 1s a collection of information about an object.
Entries may include a set of attributes, each of which
describes one particular trait of an object. Attributes may
include an attribute type (e.g., common name (cn), surname
(sn), etc.) and one or more values. FIG. 7 shows an exem-
plary entry 124 showing attribute types 120 and values 122.
Attributes may have constraints that limit the type and
length of data placed in attribute values 122. A directory
scheme may place restrictions on the attribute types 120 that
must be, or are allowed to be, contained 1n the entry 124.

Access Control

An LDAP directory may be provided with access control
mechanisms so that regular users only have access to the
information they need to know, while other users such as
administrators may access large segments of (or all of) the
tree.

In some embodiments (e.g., those employing 1DS as the
directory server), the access control mechanism may be
called “Access Control Instructions” (ACls). An exemplary
implementation of a set ol AClIs 1s described below, by way
of example only, and for helping to understand this speci-
fication.

It has been observed that the access control mechanisms
may have to be duplicated a large number of times within a
given directory server tree structure. This induces a supple-
mentary load 1n many respects, including storage capability
and the usual compromise 1n memory between data storage
and program execution, 1n connection with the time needed
for execution.

FIG. 8 shows an exemplary directory tree named Siroe.
The exemplary tree of FIG. 8 has a repeating pattern of
subdomains with the same tree structure (e.g., as illustrated
in E.1.1). The pattern of nodes NX0, NX10, NX11 and
NXI 01 through NX104 for hostedcompanyl may repeat for
other companies, e.g., hostedcompany2, etc., as visible from
the suthixes shown 1n E.1.2. The pattern may also repeat at
different levels 1n the tree, e.g. for hostedcompanyl, it
repeats from node NX2 of subdomain subdomainl, with

nodes NX20, NX21 and NX201 through NX204 and from

10

15

20

25

30

35

40

45

50

55

60

65

8

node NX3, for subdomain subdomainl.l of subdomain
subdomainl, with nodes NX30, NX31 and NX301 through

NX304.
E.1.1. (ou=groups, ou=people)

E.1.2. dc=hostedCompany2, dc=siroe, dc=com
dc=hostedCompany3, dc=siroe, dc=com.
The ACIs that apply 1n the directory tree may also have a

repeating pattern. For example, the ACI shown 1n E.1.3 may
be located on the node NX0 of FIG. 8, which 1s defined by

E.1.4. This ACI grants read and search rights to the Domai-

nAdmins group to any managed entry in the subtree starting
from node NXO0.

E.1.3. aci: (targetattr="*") (targetiilter=
(objectClass=nsManagedDomain)) (version 3.0; acl
“Domain access’’; allow (read,search)
groupdn="“ldap:///cn=DomainAdmins, ou=Groups,
dc=hostedCompanyl, dc=siroe, dc=com™;)

E.1.4. dc=hostedCompanyl , dc=siroe, dc=com

Four ACIs are shown 1n E.2.1 through E.2.4. In each case

the node on which the ACI 1s attached 1s shown first, after
the label “NX’; then, the ACI expression 1s given. In these
tour ACIs, the only differentiator 1s the DN specified 1n the
groupdn keyword.

E.2.1. NX: dc=hostedCompanyl, dc=siroe, dc=com aci:
(targetattr=""*"")(targetfilter=
(objectClass=nsManagedDomain)) (version 3.0; acl
“Domain access’”’; allow (read,search)
groupdn="“ldap:///cn=DomainAdmins, ou=Groups,
dc=hostedComp anyl, dc=siroe, dc=com™;)

E.2.2. NX: dc=subdomainl, dc=hostedCompanyl,
dc=siroe, dc=com aci: (targetattr="*")(targetlilter=
(objectClass=nsManagedDomain)) (version 3.0; acl

“Domain access’’; allow (read,search)
groupdn="“ldap:///cn=DomainAdmins, ou=Groups,
dc=subdomainl, dc=hostedCompanyl, dc=siroe,

dc=com™;)

E.2.3. NX: dc=hostedCompany2, dc=siroe, dc=com aci:
(targetattr=""*"")(targetlilter=
(objectClass=nsManagedDomain)) (version 3.0; acl
“Domain access’’; allow (read,search)
groupdn="1dap:///cn=DomainAdmuins, ou=QGroups,
dc=hostedComp any2, dc=siroe, dc=com™;)

E.2.4 NX: dc=subdomainl, dc=hostedCompany?2,
dc=siroe, dc=com aci: (targetattr="*")(targetlilter=
(objectClass=nsManagedDomain)) (version 3.0; acl

“Domain access’’; allow (read,search)
groupdn="1dap:///cn=DomainAdmuins, ou=QGroups,
dc=subdomainl, dc=hostedCompany2, dc=siroe,

dc=com™;)

These four ACIs are clearly repetitive. Typically, they
would have to be repeated as many times as there are
repeating patterns down and across the whole directory tree,
keeping 1n mind that an actual directory tree may have many
times the tree structure shown i FIG. 8.

Macro-based Access Control

In one embodiment, an ACI, together with a macro, may
be attached to the leading node of the repetitive tree struc-
ture, which may be the root node (e.g., dc=siroe, dc=com in
the example). By using a macro for the DN, repetitive AClIs
may be replaced by an ACI closer to the root of the tree.

To simplify the discussion 1n this part of the specification,
the ACI keywords used to provide bind credentials such as
userdn, roledn, groupdn, and userattr, are collectively called
the subject (as opposed to the target) of the ACI. Macro AClIs
may be used in the subject part or 1n the target part of an

ACI.

Uus 7,167,918 B2

9

For example, an ACI may be as shown 1n E.3. A macro
attached to an ACI may include the following types of
expressions to replace a DN or part of a DN: ($dn), which
matches a substring of the DN of the targeted resource
(“exact” match); [$dn], which may be used in connection
with a (§dn) to represent the matched substring (and sub-
strings thereof, 1.e., “near” match) 1n the subject of the ACI;
($attr.attrName), which 1s used to represent any of the values
of the attribute <at trName>, as they exist in the targeted
resource 1n the subject of the ACI.

E.3 aci: (target="ldap:///ou=Groups, ($dn), dc=siroe,
dc=com”) (targetattr=""*"")(targetfilter=
(objectClass=nsManagedDomain)) (version 3.0; acl
“Domain access’”’; allow (read,search)
groupdn="1dap:///cn=DomainAdmins, ou=Groups,
[$dn], dc=siroe, dc=com™;)

The table of FIG. 9 shows 1n what parts of the ACI the DN
macros may be used in one embodiment. Combining the
($dn) macro and the ($attr. at trName) macro may be
allowed 1n some embodiments.

The macro matching for ($dn) will now be described.
Generally, the ($dn) macro is replaced by the matching part
of the resource targeted 1n an LDAP request.

Consider for example an LDAP request targeted at the
entry shown in E.4.1, and an ACI that defines the target as
shown in E.4.2. In this case, the ($dn) macro matches with
the string expression shown 1n E.4.3.

E.4.1. cn=all, ou=groups, dc=subdomainl,
dc=hostedCompanyl, dc=siroe, dc=com
E.4.2. (target="Idap:///ou=Groups, ($dn),

dc=com”)

E.4.3. “dc=subdomainl, dc=hostedCompany1”

When the subject of the ACI also uses ($dn), the substring
that matches the target 1s used to expand the subject.

Reference 1s now made to FIG. 10, and to the example
E.5, which involves macro ACI E.5.1. Operation 502 deter-
mines the target DN 1n the current LDAP request, (e.g.,
E.4.1). Operation 504 determines whether the target DN of
E.4.1 matches the target 1n the ACI (e.g., E.5.1). If so, the
target expression 1s reduced to 1ts portion matching the ACI.
At 506, the ACI 1s expanded by substituting ($dn) with that
reduced portion (1.e., E.5.2) in the example.

E.5.1. aci: (target="ldap:///ou=*, ($dn), dc=siroe,
dc=com”) (version 3.0; acl “Domain access™; allow
(read,search) groupdn="ldap:///cn=DomainAdmins,
ou=Groups, ($dn), dc=siroe, dc=com™;)

E.53.2. dc=subdomainl, dc=hostedCompany1l

E.5.3. ac1: (target="ldap:///ou=Groups, dc=subdomainl,
dc=hostedCompanyl, dc=siroe, dc=com”) (version

dc=siroe,

3.0; acl “Domain access”; allow (read,search)
groupdn="ldap:///cn=DomainAdmnins, ou=Groups,
dc=subdomainl, dc=hostedCompanyl, dc=siroe,

dc=com™;)

In the example, the “($dn)” is also present in the subject
portion of the ACI. If so, again assuming that the string
matching ($dn) in the target 1s E.5.2, then the same string 1s
used 1n the subject. Then, at 506, the ACI of E.5.1. 1s
expanded as shown in E.5.3. Once the macro has been
expanded, the Directory Server evaluates the ACI following
the normal process to determine whether access 1s granted or
not, at 508. The LDAP request 1s answered at 518, i1 it 1s
granted access (1.e., unless access 1s denied by the ACI).

The macro matching for [$dn] will now be described. In
fact, the matching mechanism for [$dn] 1s slightly different
than for ($dn). The DN of the targeted resource is examined
several times, each time dropping the left-most RDN com-
ponent, until a match 1s found.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

Reference 1s now made to FIG. 11, 1n which operations
600, 602, 604 and 606 arc similar to operations 500, 502,

504 and 506 of FIG. 10.

Consider for example an LDAP request targeted at the
subtree shown 1n E.6.1, and the ACI shown at E.6.2. The
steps for expanding this ACI are as follows. At 604, ($dn) in
target matches dc=subdomainl, dc=hostedCompanyl. At
606, [$dn] is replaced in subject with dc=subdomainl,
dc=hostedCompanyl. The result of this replacement 1is
groupdn="1dap:///cn=DomainAdmins, ou=QGroups,
dc=subdomainl, dc=hostedCompanyl, dc=siroe, dc=com”.

E.6.1. cn=all, ou=groups, dc=subdomainl,

dc=hostedCompanyl, dc=siroe, dc=com

E.6.2. aci: (target="Idap:///ou=Groups, ($dn), dc=siroe,

dc=com”) (version 3.0; acl “Domain access™; allow
(read,search) groupdn="ldap:///cn=DomainAdmins,
ou=Groups, [$dn], dc=siroe, dc=com™;)

At 608, 1f the bind DN 1s a member of that group, the
matching process stops, and the ACI 1s evaluated, as shown
at 610. If the bind DN 1s not a member of that group, the
process continues. At 612, the left-most (lower level) RDN
component 1s dropped from the group and 604 through 608
repeat with the new RDN. Thus, at 606, [$dn] in subject is
replaced with dc=hostedcompanyl. The result 1s
groupdn="1dap:///cn=DomainAdmins, ou=QGroups,
dc=hostedCompanyl, dc=siroe, dc=com”.

If the bind DN 1s not a member of that group, the ACI 1s
not evaluated at 610. If 1t 1s a member, the ACI 1s evaluated
at 610. The LDAP request 1s answered at 618, 11 1t 1s granted
access (e.g., unless access 1s denied by the ACI).

In some embodiments, the [$dn] macro may provide a
flexible way of granting access to domain-level administra-
tors to all the subdomains 1n the directory tree. Therefore, 1t
1s usetul for expressing a hierarchical relationship between
domains. For example, the ACI of E.7.1 grants access to the
members of E.7.2 (1.e. a group) to all of the subdomains
under E.7.3, so an administrator belonging to that group
could access, for example, the subtree E.7.4. However, at the
same time, members of E.8.1, would be denied access to the
E.8.2 and E.8.3 nodes.

E.7.1. aci: (target="ldap:///ou=*, ($dn), dc=siroe,

dc=com”) (targetattr=""*"")(targetlilter=
(objectClass=nsManagedDomain)) (version 3.0; acl

“Domain access’’; allow (read,search)
groupdn="1dap:///cn=DomainAdmuins, ou=QGroups,
[$dn], dc=siroe, dc=com”;)

E.7.2. cn=DomainAdmins, ou=QGroups,

dc=hostedCompanyl, dc=siroe, dc=com

E.7.3. dc=hostedCompanyl, dc=siroe, dc=com E.7.4.
ou=people, dc=subdomainl.1, dc=subdomainl,
dc=hostedCompanyl, dc=siroe, dc=com

E.8.1. cn=DomainAdmins, ou=QGroups,
dc=subdomainl.1, dc=subdomainl,
dc=hostedCompanyl, dc=siroe, dc=com

E.8.2. ou=people, dc=hostedCompanyl, dc=siroe,
dc=com

E.8.3. ou=groups, dc=hostedCompanyl, dc=siroe,
dc=com

One embodiment of a method of performing macro
matching for ($attr.<attrName>) will now be described with
respect to FIG. 12. The exemplary ($attr.attrname) macro is

normally used 1n the subject part of a DN.
In FIG. 12, operations 700, 702, 706 and 708 are similar

to operations 3500, 502, 506 and 508 of FIG. 10. For
example, one may define the roledn of E.9.1. Now, assume
the server recerves an LDAP operation targeted at the
following entry of E.9.2. In order to evaluate the roledn part

Uus 7,167,918 B2

11

of the ACI, the server looks at the ou attribute stored 1n the
targeted entry (at 702), and uses the value of this attribute to
expand the macro (at 706). Therefore, 1n the example, the
roledn 1s expanded as shown 1n E.9.3. The Directory Server
then evaluates the ACI according to the normal ACI evalu-

ation algorithm, as shown at 708.
E.9.1. roledn="1dap:///cn=DomainAdmins, ($attr.ou)”

E.0.2. dn: cn—=Heather Blue, ou=People,
dc=HostedCompany1, dc=siroe, dc=com cn: Heather
Bluesn: Blue ou: Engineering, dc=HostedCompanyl,
dc=siroe, dc=com . . .

E.9.3. roledn="1dap:///cn=DomainAdmmnins,
ou=Engineering, dc=HostedCompanyl, dc=siroe,
dc=com”

When an attribute 1s multi-valued (test 711), each value 1s
used to expand the macro, and the first one that provides a
successiul match 1s used. Considering the exemplary request
of E.10.1, 1n this case, when the Directory Server evaluates
the ACI 1t performs a logical OR on the expanded expres-
sions E.10.2 and E.10.3.

E.10.1. dn: cn—=Heather Blue, ou=People,
dc=HostedCompany1, dc=siroe, dc=com cn: Heather
Bluesn: Blue ou: Engineering, dc=HostedCompanyl,
dc=siroe, dc=com ou: People, dc=HostedCompanyl,
dc=siroe, dc=com . . .

E.10.2. roledn="1dap:///cn=DomainAdmins,
ou=Engineering, dc=HostedCompanyl, dc=siroe,
dc=com”

E.10.3. roledn="ldap:///cn=DomainAdmins, ou=People,

dc=HostedCompany1, dc=siroe, dc=com”

The LDAP request 1s answered at 718, 1f 1t 1s granted
access (1.e., unless access 1s denied by the ACI).

Generally, the macros may have an “mnput” portion, for
defining the “input location,” (1.e., where they take the
information they use). In the directory example, the mput
information 1s target related, so a target location 1s needed,
explicitly or implicitly, as a “reference portion” in the ACI.

Macros may also have an “output” portion that 1s related
to the location(s) where they will apply. In the example, the
output location 1s where the macro expression stands. This
1s a “variable portion™ of the ACI (ACIs are examples of
condition defining data). In the example, as shown 1n the
table of FIG. 9, the target location 1s defined by the fact the
ACI has a target definition that contains the ($dn) macro. A
separate macro expression may be used for that purpose as
well, to define the target, explicitly or implicitly.

Defining an mput location may mvolve defimng the type
(or name) of the information (in the tree) that will serve as
input. For example, a ($dn) macro aims at a distinguished
name 1n the directory. Defining an input location may also
involve defimng an operation on that information. For
example, the operation 1s comparing that information with
the target portion of the ACI (or, more generally, with a
reference portion in condition defining data).

The right column of the table also shows a second group
of data 1n the condition defiming data, 1.¢., the sections where
the macro expression will simply be changed into its value,
as calculated from the “reference portion” of the macro, e.g.,
the target definition that contains the ($dn) macro.

In the example, the second group of data comprises the
following sections of the ACI: targetiilter, userdn, roledn,
groupdn, userattr (“output section”). This output section
comprises the subject section of the ACI, plus targetfilter,
which 1s related to the target definition.

Thus, 1n the specific embodiment being described, a target
that contains ($dn) should be defined in the ACI if ($dn) 1s

also used 1n the subject section of the ACI, or in targetfilter,

10

15

20

25

30

35

40

45

50

55

60

65

12

if [$dn] is used in the subject section of the ACI, or in
targetfilter, and/or if ($attr.attrname) is used in the subject
section of the ACI.

More generally, it will be appreciated that with ($dn), the
“mput location” for the macro 1s implicit (i.e., the target
portion of the condition defining data). It may be explicitly
defined as well (e.g., 1f 1t 1s desired to find input 1n other
locations of the condition defining data). Similarly, with
[$dn], the “input location” for the macro is also implicit,
since it is the one defined by an accompanying ($dn) macro.
Again, 1t may be explicitly defined as well, independently
upon whether ($dn) is implicit or explicit. With ($attr.attr-
Name), the “input location™ for the macro 1s at least partially
explicit, since 1t 1s the one defined by attrName. It may be
implicit (e.g., by using several different macros associated to
different attributes, especially 1f a small number of attributes
1s considered).

The above are three examples of using macros in com-
bination with one or more access control mechanisms
attached to one or more high level nodes 1n an LDAP ftree
instead of a large number of individual access control
mechanisms for a large number of nodes at lower levels 1n
the tree. The form and syntax of the above described macros
1s purely exemplary, and other forms and syntaxes may be
used 1n other embodiments.

AClIs may be stored as attributes (or other properties) of
entries (or nodes 1n a tree). Therefore, 1f an entry containing
AClIs 1s part of a replicated database, the ACIs may be
replicated like any other attribute.

Now turning to FIG. 13, a Directory server system may be
based on a master directory server 800, accessing databases
(e.g., 810 and 812) as required. Although the master server
800 may itself receive LDAP requests, these are often
processed at the level of consumer servers, e.g., 850, which
interact with main server 800, e.g., via appropriate network
links 840 or through intermediate relaying computer sys-
tems.

In such a system, ACIs are preferably evaluated on the
Directory Server that services the incoming LD AP requests.
This means that when a consumer server 850 receives an
update request, 1t will return a referral to the master server
800 before evaluating whether the request can be serviced or
not on the master server 800.

The directory tree related functions may be viewed as
implemented 1n a “tree structure processor”, which 1s in fact
a set of functions 1nstalled 1n a computer system. The novel
functions of this invention may be implemented 1n such a
tree structure processor, nstalled as 809 1n main server 800,
and/or at 839 1n one or more consumer servers 850. In the
field of directory servers, the tree structure processor 1s part
of the directory server. Also, the corresponding set of
functions may be made remotely available to computer
stations, €.g., to consumer servers like 830.

In some embodiments, using macro condition defining
data such as macro ACIs may allow the overall number of
condition defining data to be reduced 1n some embodiments.
Macro condition defimng data may allow a considerable
amount of simplification 1n the ACIs or other management
oriented attributes attached to a directory server or to other
similar tree structures. The benefit may be a factor of how
many repeating patterns exist down and across the directory
tree. It 1s observed that a directory tree may not necessarily
include directory information as such. Other types of infor-
mation may be targeted 1n a directory-like tree structure.

The above macros generally use a substitution based on
the contents of targeted results 1n an LDAP request. The
various modes of substitution which have been described are

Uus 7,167,918 B2

13

advantageous with LDAP trees in directory servers such as
iPlanet directory servers. Other modes of substitution may
be used to perform equivalent functions and/or to meet the
particular needs of other types of directory servers. Others

modes of substitution may also be used to meet the needs of >

other types of targeted information and/or for other purposes
than access control.

Also, three main types of macros have been described.
Only one or two of them may be used. More may be also
used, 1f desired. Furthermore, macros may process condition
defining data other than the above mentioned access control
instructions.

A feature of AClIs 1s that they apply to subnodes 1n a tree
structure. Other types of instructions having that property
may be used in accordance with this mvention. Alterna-
tively, the ability to propagate to subnodes may be added to
existing 1nstructions, at least when using one or more of the
types of macro expressions, as described.

As described in the example, the ($dn) macro just matches
a simple substring of the target DN. Other matching schemes
may be use instead, or in addition, e.g., a generic pattern
matching a regular expression, which could then be re-used
in the expression of the ACI subject.

Access Control Example

The following discussing describes an example of the
tools that may be used for access control in one embodiment
of a directory server, as available at the time the server i1s
built. Note that this access control tool 1s merely exemplary
and that alternative access control tools may be used 1n other
embodiments.

Access Control Principles

The mechanism by which one defines access 1s called
access control. When a server receives a request, it uses the
authentication information provided by the user in the bind
operation and the access control instructions (ACIs) defined
in the server to allow or deny access to directory informa-
tion. The server may be configured to allow or deny per-
missions such as read, write, search, and compare. The
permission level granted to a user may be dependent on the
authentication information provided.

Using access control, access to the entire directory, a
subtree of the directory, specific entries in the directory
(including entries defining configuration tasks), or a specific
set of entry attributes may be controlled. Permissions may be
set for a specific user, all users belonging to a specific group
or role, or all users of the directory. Access may be defined
for a specific location such as an IP address or a DNS name.

AC] Structure

Access control mstructions may be stored in the directory
as attributes of entries. The aci attribute may be an opera-
tional attribute. It may be available for use on every entry in
the directory, regardless of whether i1t 1s defined for the
object class of the entry. It may be used by the directory
server to evaluate what rights are granted or denied when 1t
receives an LDAP request from a client. The aci attribute
may be returned 1n an ldapsearch operation 1t specifically
requested.

The three main parts of an ACI statement are Target,
Permission, and Bind Rule. In some embodiments, the
permission and bind rule portions of the ACI are set as a pair
and are called an Access Control Rule (ACR). The specified
permission may be granted or denied depending on whether
the accompanying rule 1s evaluated to be true.

10

15

20

25

30

35

40

45

50

55

60

65

14
ACI Placement

If an entry containing an ACI does not have any child
entries, the ACI applies to that entry only. If the entry has
child entries, the ACI applies to the entry 1tself and all entries
below 1t. As a result, when the server evaluates access
permissions to any given entry, it verifies the AClIs for every
entry between the one requested and the directory suthix, as
well as the ACIs on the entry 1tself.

-

The aci attribute 1s multi-valued, which means that you
can define several AClIs for the same entry or subtree.

An ACI may be created so that 1t does not apply directly
to the entry containing the ACI. Instead, the ACI may apply
to some or all of the entries in the subtree below 1t. This may
allow a general ACI that effectively applies to entries more
likely to be located lower 1n the tree to be placed at a high
level 1n the directory tree. For example, at the level of an
organizationalUnit entry or a locality entry, one could create
an ACI that targets entries that include the inetorgperson
object class. Exceptions may exist. For example, ACIs
placed 1n the root DSE entry may only apply to that entry.

This feature may allow the number of ACIs 1n the
directory tree to be reduced by placing general rules at high
level branch points. To limit the scope of more specific rules,
they may be placed as close as possible to leafl entries.

ACI Evaluation

To evaluate the access rights to a particular entry, the
server may compile a list of the ACIs present on the entry
itsell and on the parent entries back up to the top level entry
stored on the directory server. In one embodiment, AClIs
may be evaluated across all of the databases for a particular
directory server, but not across directory servers.

The evaluation of this list of ACIs may be done based on
the semantics ol the AClIs, not on their placement in the
directory tree. This means that ACIs that are close to the root
of the directory tree may not take precedence over AClIs that
are closer to the leaves of the directory tree.

The precedence rule that applies 1s as follows: AClIs that
deny access take precedence over ACls that allow access.
Between ACIs that allow access, union semantics apply, so
there 1s no precedence. For example, 11 an ACI demies write
permission at the directory’s root level, then none of the
users can write to the directory regardless of the specific
permissions you grant them. To grant a specific user write
permissions to the directory, you have to restrict the scope
of the original denial for write permission so that it does not
include the user.

ACI Limitations

When creating an access control policy for a directory
service, several restrictions may be considered. For
example, 1n the case of a directory tree being distributed
over several servers using the chaiming feature, some restric-
tions may apply to the keywords which may be used in
access control statements. Thus, AClIs that depend on group
entries (groupdn keyword) may be required to be located on
the same server as the group entry. If the group 1s dynamic,
then all members of the group may be required to have an
entry on the server too. If the group 1s static, however, the
members’s entries may be located on remote servers. AClIs
that depend on role definitions (roledn keyword) may be
required to be located on the same server as the role
definition entry. Every entry that 1s intended to have the role
may also be required to be located on the same server.

Values stored 1n the target entry may be value matched
with values stored 1n the entry of the bind user ({or example,

Uus 7,167,918 B2

15

using the userattr keyword). Access may be evaluated nor-
mally even 11 the bind user does not have an entry on server
that holds the ACI.

Attributes generated by a CoS cannot be used in all ACI
keywords 1 some embodiments. Specifically, one should
not use attributes generated by CoS with the following
keywords: targetfilter, targattrfilters, and userattr. I one
creates target filters or bind rules that depend on the value of
attributes generated by CoS, the access control rule may not
work.

Access control rules may be evaluated on the local server.
Therefore, 1t may not be necessary to specily the hostname
or port number of the server in IDAP URLs used in ACI
keywords. If one does, the LDAP URL may not be taken into

account.

Default AClIs

In some embodiments, default ACIs may apply to some of
the directory information. For example, in one embodiment,
the following default ACIs mapply to the directory infor-
mation stored in the userRoot database: users can modily
theirr own entry in the directory, but not delete 1t or modify
the ac1 and nsroledn attributes; users have anonymous access
to the directory for search, compare, and read operations; the
administrator (by default wid=admin, ou=Administrators,
ou=TopologyManagement, o=NetscapeRoot) has all rights
except proxy rights; all members of the Configuration
Admuinistrators group have all rights except proxy rights; all
members of the Directory Admuinistrators group have all
rights except proxy rights; SIE group; and/or whenever a
new database 1s created 1n the directory, the top entry may
have the default ACIs listed above. As used 1n one embodi-
ment, the NetscapeRoot subtree has 1ts own set of default
AClIs: all members of the Configuration Administrators
group have all rights on the NetscapeRoot subtree except
proxy rights; users have anonymous access to the Netscap-
cRoot subtree for search and read operations; group expan-
sion; all authenticated users have search, compare, and read
rights to configuration attributes that identify the adminis-
tration server.

Default settings may be modified as needed to suit the
needs of a given organization. For example, access control
instructions may be created manually using LDIF ACI
statements and added to a directory tree using the ldapmodi
ty utility.

In embodiments using 1DS as the directory, iI access
control 1s being set for a large number of directory entries,
LDIF ACI statements may be used (as opposed to Console).
Using LDIF ACI statements may take less time that using
Console. Alternatively, to familiarize oneself with LDIF ACI
statements, one may want to use the Directory Server
Console to set the ACI and then click the Edit Manually
button on the Access Control Editor. This shows the correct
LDIF syntax. If the operating system allows 1t, one can even

copy the LDIF from the Access Control Editor and paste 1t
into a LDIF file.

ACI Syntax

The ac1 attribute may use the following syntax: aci:
(target)(version 3.0;acl “name”; permission bind_rules;),
where target specifies the entry, attributes, or set of entries
and attributes for which you want to control access. The
target can be a distinguished name, one or more attributes,
or a single LDAP filter. The target may be an optional part
of an ACI. Version 3.0 1s a string that identifies the ACI
version 1n this embodiment. “Name” 1s a name for the ACI.
The name may be any string that identifies the ACI. The ACI
name may be required in some embodiments. Permission

10

15

20

25

30

35

40

45

50

55

60

65

16

specifically outlines what rights you are either allowing or
denying (for example, read or search rights). Bind_rules
specily the credentials and bind parameters that a user has to
provide to be granted access. Bind rules may also specifi-
cally deny access to certain users or groups of users.

One may have multiple permission-bind rule pairs for
cach target. This may allow multiple access controls for a
glven target to be efliciently set. For example: target(per-
mission bind_rule)(permission bind_rule). . . If one has
several ACRs 1n one ACI statement, the syntax may be of the
form: aci: (target)(version 3.0;acl “name”;permission bind_
rule; permission bind_rule; . . . permission bind_rule;).

Example ACI

The following 1s an example of a complete LDIF ACI: aci:
(target="ldap:///uid=bjensen, dc=siroe, dc=com”)(tar-
getattr="*) (verston 3.0; acl *ac1”; allow (write)
userdn="1dap:///self’’;). In thus example, the ACI states that
the user bjensen has rights to modify all attributes 1n his/her
own directory entry.

The following sections describe the syntax of each portion
of an ACI that may be used 1n one embodiment 1n more
detail.

Defining Targets

The target 1dentifies what the ACI applies to. If the target
1s not specified, the ACI may apply to the entry containing
the aci attribute and to the entries below it. A target may be
a directory entry or all of the entries 1n a subtree, attributes
of an entry, a set of entries or attributes that match a specified
LDAP filter, and/or an attribute value or combination of
values that match a specified LDAP filter.

The general syntax for a target may be
(keyword="expression”) (keyword!="expression”), where
keyword indicates the type of target, equal (=) indicates that
the target 1s the object specified 1n the expression, and not
equal (!=) indicates the target 1s not the object specified 1n
the expression, and expression identifies the target.

The quotation marks (*) around expression may be
required 1n one embodiment. What you use for expression
may be dependent upon the keyword that you supply. The
following table lists exemplary keywords and associated
CXPressions:

TABLE

6-1

_ LDIF Target Keyvwords

Wildcard
Keyword Valid Expressions Allowed?
target ldap:///distinguished _name yes
targetattr attribute yes_
targetfilter LDAP_ filter yes_
targattriilters_ LDAP_operation:LDAP_ filter yes_

When placing an ACI on an entry, 1f 1t 1s not a leaf entry,
the ACI also applies to all entries below it. For example, 1
one targets the entry ou=accounting, dc=siroe, dc=com, the
permissions as set will apply to all entries 1n the accounting
branch of the Siroe tree. As a counter example, when placing
an ACI on the ou=accounting, dc=siroe, dc=com entry, one
cannot target the md=sarette, ou=people, dc=siroe, dc=com
entry because 1t 1s not located under the accounting tree.

Targeting a Directory Entry

To target a directory entry (and the entries below 1t), one
may use the target keyword. The target keyword may accept
a value of the following format: target="ldap:///distin-
guished _name”. This identifies the distinguished name of

Uus 7,167,918 B2

17

the entry to which the access control rule applies. For
example: (target="ldap:///uid=bjensen, dc=siroe, dc=com”).
If the DN of the entry to which the access control rule
applies contains special characters such as commas, the
special characters may be escaped with a single backslash
(\). For example: (target="ldap:///uid=11uentes, dc=Siroe
Bolivia\, S.A.”).

One may also use a wildcard when targeting a distin-
guished name using the target keyword. The wildcard indi-
cates that any character or string or substring 1s a match for
the wildcard. Pattern matching may be based on any other
strings that have been specified with the wildcard. The
following are legal examples of wildcard usage:
(target="1dap:///mid="*, dc=siroe, dc=com™) (matches every
entry in the entire Siroe tree that has the wid attribute 1n the
entry’s RDN); (target="ldap:///uid=*Anderson, dc=siroe,
dc=com”) (matches every entry directly under the Siroe
node with a uid ending 1n Anderson); and (target="ldap:///
u1d=C*A, dc=s1roe, dc=com”) (matches every entry directly
under the Siroe node with a uid beginning with C and ending
with A).

Depending on the position of the wildcard, 1t may apply
to the full DN, not only to attribute values. Theretfore, the
wildcard may be used as a substitute for portions of the DN.
For example, unid=andy*, dc::siroe, dc=com targets all the
directory entries in the entire Siroe tree with a matching wd
attribute, and not just the entries that are immediately below
the dc=siroe, dc=com node. In other words, this target
matches with longer expressions such as uid=andy, ou=eng,
dc=siroe, dc=com, or uid=andy, ou=miarketing, dc=siroe,
dc=com. Some other valid examples follow:
(target="ldap:///uid=*, dc=siroe, dc=com”) (matches every
entry in the entire Siroe tree that has the uid attribute 1n the
entry’s RDN); (target="ldap:///uid=*, ou=*, dc=siroe,
dc=com”) (matches every entry in the Siroe tree whose
distinguished name contains the uid and ou attributes). Thus,
uid=ichen, ou=Engineering, dc=siroe, dc=com or
uid=claire, ou=Engineering, ou=people, dc=siroe, dc=com
would match, but the following would not: wmd=bjensen,
dc=siroe, dc=comou=Engineering, dc=siroe, dc=com.

As they may be cited i this specification, Sun, Sun
Microsystems, Solaris, Java, EmbeddedJava, Personallava,
JavaBeans, Java Naming and Directory Interface, JDBC,
Enterprise JavaBeans (EJB), Jini, Sun Spontancous Man-
agement, Java 2 Enterprise Edition (J2EE), JavaServer
Pages (JSP) and I-planet are trademarks of Sun Microsys-
tems, Inc. SPARC 1s a trademark of SPARC International,
Inc.

Numerous vanations and modifications will become
apparent to those skilled 1n the art once the above disclosure
1s Tully appreciated. It 1s intended that the following claims
be interpreted to embrace all such variations and modifica-
tions.

What 1s claimed 1s:

1. A method of implementing uode related conditions 1n
a directory server having a tree structure using condition-
defining data attached to nodes, the method comprising:

attaching condition-defining data to a given node in the

tree structure, said condition defining data having a
variable portion and a reference portion, wherein said
condition-defining data comprises access control infor-
mation;

attaching a macro to the given node or to a higher level

node;

upon access to a subnode of said given node in the tree:

generating an expanding version of the access control
information using the macro, wherein the expanded

10

15

20

25

30

35

40

45

50

55

60

65

18

version comprises additional information derived
from one or more attributes stored at the directory
Server;

evaluating the expanding version of the access control

information; and

controlling access to the subuode from the result of said

evaluating.

2. A computer-implemented method, comprising:

storing access control information for a particular node of

a tree of nodes representing entities managed by a
directory server, wherein the access control iforma-
tion comprises at least one macro entry;

in response to a request from a requester for a directory

server operation targeted at a node of the tree,

generating an expanded version of the access control
information using the at least one macro entry,
wherein the expanded version comprises additional
information derived from one or more attributes
stored at the directory server;

determining whether the requester has permission for the

directory server operation, wherein said determining

comprises comparing at least a portion of the expanded

version ol the access control information with one or

more attribute values of the requester;

in response to determining that the requester has per-
mission, performing the directory server operation;
and

in response to determining that the requester does not
have permission, providing a failure indication to the
requester.

3. The method as recited 1n claim 2, wherein the expanded
version 1s derived at least 1n part by replacing the at least one
macro entry with at least one substitute string derived from
the one or more attributes stored at the directory server.

4. The method as recited 1n claim 2, wherein the request
1s targeted at the particular node, and wherein the additional
information 1s derived from one or more attributes of the
particular node.

5. The method as recited 1n claim 2, wherein the particular
node 1s a root node of a subtree of other nodes of the tree,
wherein the request 1s targeted at an other node of the
subtree, and wherein the additional information 1s derived
from one or more attributes of the other node.

6. The method as recited 1n claim 2, wherein said deter-
mining whether the requester has permission for the direc-
tory server operation comprises determining whether an
attribute value of the requester matches an attribute value
specified 1n the expanded version of the access control
information.

7. The method as recited 1n claim 3, wherein said gener-
ating the expanded version comprises adding a plurality of
fields to the access control information, wherein said deter-
mining whether the requester has permission for the direc-
tory server operation comprises:

in response to determining that the attribute value of the

requester does not match the expanded version, modi-
tying the expanded version by removing at least one
field of the plurality of fields from the expanded
version; and

determining whether an attribute value of the requester

matches an attribute value specified in the modified
expanded version of the access control information.

8. The method as recited in claim 2, wherein the access
control information comprises two or more macro entries,
including a target macto entry 1 a portion of the access
control information identifying a target object to which
access 1s to be controlled, and a subject macro entry 1n a

Uus 7,167,918 B2

19

portion of the access control mformation speciiying
attributes of requesters to whom access 1s to be provided.

9. The metbod as recited in claim 8, wherein said gener-
ating the expanded version comprises replacing the target
macro entry with a first substitute string, and replacing the
subject macro entry with a second substitute string derived
from the {first substitute string.

10. The method as recited 1n claim 2, wherein the at least
one macro entity identifies an attribute name, wherein the
additional information comprises at least one string derived
from a value of an attribute identified by the attribute name.

11. The method as recited in claim 10, wherein the
attribute 1dentified by the attribute name 1s a multi-valued
attribute, wherein the directory server stores at least a first
value and a second value for the multi-valued attribute for
the node targeted by the request, wherein the additional
information comprises the first value of the multi-valued
attribute, wherein said determining whether the requester
has permission comprises:

comparing a portion of the expanded version including
the first value with the requester’s value of the multi-
valued attribute;:

in response to determining that the portion of the
expanded version does not match the requester’s value,
generating a second expanded version of the access
control information by replacing the first value of the

multi-valued attribute in the expanded version with the
second value of the multi-valued attribute; and

comparing a portion of the second expanded version
including the second value with the requester’s value of
the multi-valued attribute.

12. The method as recited in claim 2, wherein the addi-
tional information i1s derived from a distinguished name of
a node of the tree.

13. The method as recited 1n claim 2, wherein the at least
one macro entry 1s mcluded within a portion of the access
control information that identifies a distinguished name of a
group ol entities defined at the directory server.

14. The method as recited 1n claim 2, wherein the at least
one macro entity 1s included within a portion of the access
control information that identifies a distinguished name of a
role defined at the directory server.

15. The method as recited 1n claim 2. wherein the at least
one macro entity 1s icluded within a portion of the access
control information that identifies at least one of: a distin-
guished name of a user 1dentified at the directory server, and
a user attribute defined at the directory server.

16. The method as recited 1n claim 2, wherein the at least
one macro entity 1s included within a portion of the access
control information that specifies a target filter used by the
directory server to select nodes to which the access control
information applies.

17. A system, comprising;
a Processor;

a memory coupled to the processor, wherein the memory
stores program instructions executable by the processor
to:

store access control information for a particular node of
a tree of nodes representing entities managed by a
directory server, wherein the access control informa-
tion comprises at least one macro entry;

1n response to a request from a requester for a directory
sever operation targeted at anode of the tree,

generate an expanded version of the access control
information using the macro entry, wherein the

10

15

20

25

30

35

40

45

50

55

60

65

20

expanded version includes additional information
derived from one or more attributes stored at the
directory server;

determining whether the requester has permission
for the directory sewer operation, wherein said
determining comprises comparing at least a por-
tion of the expanded version of the access control
information with one or more attribute values of
the requester;

in response to determining that the requester has
permission, perform the directory server opera-
tion; and

in response to determining that the requester does not
have permission, provide a failure indication to
the requester.

18. The system as recited in claim 17, wherein the
expanded version 1s derived at least 1n part by replacing the
at least one macro entry with at least one substitute string
derived from the one or more attributes stored at the direc-
tory server.

19. The system as recited in claim 18, wherein the request
1s targeted at the particular node, and wherein the additional
information 1s derived from one or more attributes of the
particular node.

20. The system as recited in claim 17, wherein the
particular node 1s a root node of a subtree of other nodes of
the tree, wherein the request 1s targeted at an other node of
the subtree, and wherein the additional information 1s
derived from one or more attributes of the other node.

21. The system as recited in claim 17, wherein said
determining whether the requester has permission for the
directory server operation comprises determining whether
an attribute value of the requester matches an attribute value
specified 1n the expanded version of the access control
information.

22. The system as recited in claim 21, wherein the
additional information comprises a plurality of fields,
wherein said determining whether the requester has permis-
sion for the directory server operation comprises:

in response to determining that the attribute value of the

requester does not match the expanded version, modi-
tying the expanded version by removing at least one
field of the plurality of fields from the expanded
version; and

determining whether an attribute value of the requester

matches an attribute value specified in the modified
expanded version of the access control information.

23. The system as recited in claim 17, wherein the access
control information comprises two or more macro entries,
including a target macro entry in a portion of the access
control information identifying a target object to which
access 1s to be controlled, and a subject macro entry 1n a
portion of the access control information specifying
attributes of requesters to whom access 1s to be provided.

24. The system as recited in claim 23, wherein said
generating the expanded version comprises replacing the
target macro entry with a first substitute string, and replacing
the subject macro entry with a second substitute string
derived from the first substitute string.

25. The system as recited 1n claim 17, wherein the at least
one macro entity identifies an attribute name, wherein the
additional information 1s derived from a value of an attribute
identified by the attribute name.

26. The system as recited in claim 25, wherein the
attribute identified by the attribute name 1s a multi-valued
attribute, wherein the directory server stores at least a first
value and a second value for the multi-valued attribute for

Uus 7,167,918 B2

21

the node targeted by the request, wherein the additional
information comprises the first value of the multi-valued
attribute, wherein said determining whether the requester
has permission comprises:

comparing a portion of the expanded version including

the first value with the requester’s value of the multi-
valued attribute;
in response to determining that the portion of the
expanded version does not match the requester’s value,
generating a second expanded version of the access
control information by replacing the first value of the
multi-valued attribute in the expanded version with the
second value of the multi-valued attribute; and

comparing a portion of the second expanded version
including the second value with the requester’s value of
the multi-valued attribute.

27. The system as recited in claim 17, wherein the
additional information 1s dertved from a distinguished name
ol a node of the tree.

28. The system as recited 1n claim 17, wherein the at least
one macro entry 1s included within a portion of the access
control information that identifies a distinguished name of a
group of entities defined at the directory server.

29. The system as recited 1n claim 17, wherein the at least
one macro entity 1s included within a portion of the access
control information that identifies a distinguished name of a
role defined at the directory server.

30. The system as recited 1n claim 17, wherein the at least
one macro entity 1s included within a portion of the access
control information that identifies at least one of: a distin-
guished name of a user 1dentified at the directory server, and
a user attribute defined at the directory server.

31. The system as recited 1n claim 17, wherein the at least
one macro entity 1s included within a portion of the access
control information that specifies a target filter used by the
directory server to select nodes to which the access control
information applies.

32. A tangible, computer-readable storage medium, com-
prising program instructions, wherein the instructions are
computer-executable to:

store access control information for a particular node of a

tree ol nodes representing entities managed by a direc-
tory server, wheremn the access control information
comprises at least one macro entry;
in response to a request from a requester for a directory
server operation targeted at a node of the tree,

generate an expanded version of the access control infor-
mation using the at least one macro entry, wherein the
expanded version includes additional information
derived from one or more attributes stored at the
directory server;

determining whether the requester has permission for the
directory server operation, wherein said determining
comprises comparing at least a portion of the expanded
version ol the access control information with one or
more attribute values of the requester;

in response to determining that the requester has permis-
sion, perform the directory server operation; and

in response to determining that the requester does not
have permission, provide a failure indication to the
requester.

33. The computer-readable storage medium as recited in
claim 32, wherein the expanded version 1s derived at least 1n
part by replacing the at least one macro entry with at least
one substitute string derived from the one or more attributes
stored at the directory server.

10

15

20

25

30

35

40

45

50

55

60

65

22

34. The computer-readable storage medium as recited 1n
claiam 32, wherein the request 1s targeted at the particular
node, and wherein the additional information 1s derived
from one or more attributes of the particular node.

35. The computer-readable storage medium as recited in
claim 32, wherein the particular node i1s a-root node of a
subtree of other nodes of the tree, wherein the request 1s
targeted at an other node of the subtree, and wherein the
additional information 1s derived from one or more attributes
of the other node.

36. The computer-readable storage medium as recited in
claim 32, wherein said determining whether the requester
has permission for the directory server operation comprises
determining whether an attribute value of the requester
matches an attribute value specified 1n the expanded version
of the access control information.

37. The computer-readable storage medium as recited 1n
claim 36, wherein the at additional information comprises a
plurality of fields, wherein said determiming whether the
requester has permission for the directory server operation
COmprises:

in response to determining that the attribute value of the

requester does not match the expanded version, modi-
tying the expanded version by removing at least one
field of the plurality of fields from the expanded
version; and

determiming whether an attribute value of the requester

matches an attribute value specified in the modified
expanded version of the access control information.

38. The computer-readable storage medium as recited 1n
claim 32, wherein the access control information comprises
two or more macro entries, including a target macro entry in
a portion of the access control mnformation identifying a
target object to which access 1s to be controlled and a subject
macro entry in a portion of the access control information
specilying attributes of requesters to whom access 1s to be
provided.

39. The computer-readable storage medium as recited 1n
claiam 38, wherein said generating the expanded version
comprises replacing the target macro entry with a first
substitute string, and replacing the subject macro entry with
a second substitute string derived from the first substitute
string.

40. The computer-readable storage medium as recited 1n
claim 32, wherein the at least one macro entity 1dentifies an
attribute name, wherein the additional information 1s derived
from a value of an attribute identified by the attribute name.

41. The computer-readable storage medium as recited 1n
claim 40, wherein the attribute identified by the attribute
name 1s a multi-valued attribute, wherein the directory
server stores at least a first value and a second value for the
multi-valued attribute for the node targeted by the request,
wherein the additional information comprises the first value
of the multi-valued attribute, wherein said determining
whether the requester has permission comprises:

comparing a portion of the expanded version including

the first value with the requester’s value of the multi-
valued attribute;
in response to determining that the portion of the
expanded version does not match the requester’s value,
generating a second expanded version of the access
control information by replacing the first value of the
multi-valued attribute in the expanded version with the
second value of the multi-valued attribute; and

comparing a portion ol the second expanded version
including the second value with the requester’s value of
the multi-valued attribute.

Uus 7,167,918 B2

23

42. The computer-readable storage medium as recited in
claim 32, wherein the additional information 1s derived from
a distinguished name of a node of the tree.

43. The computer-readable storage medium as recited in
claim 32, wherein the at least one macro entry 1s included
within a portion of the access control information that
identifies a distinguished name of a group of entities defined
at he directory server.

44. The computer-readable storage medium as recited in
claim 32, wherein the at least one macro entity 1s included
within a portion of the access control information that

24

identifies a distinguished name of a role defined at the
directory server.

45. The computer-readable storage medium as recited 1n
claim 32, wherein the at least one macro entity 1s included
within a portion of the access control information that
identifies at least one of: a distinguished name of a user
identified at the directory server, a user attribute defined at
the directory server, and a target filter used by the directory
server to select nodes to which access control information

10 applies.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,167,918 B2 Page 1 of 1
APPLICATION NO. : 10/045682

DATED : January 23, 2007

INVENTOR(S) . Robert Byrne and Prasanta Behera

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

On the Title Page:
Item [75]

Delete inventor “Pransanta Behara” and insert --Prasanta Behera-- m place
thereof.

Claim 8, col. 18, line 65, please delete “macto™ and insert --macro--1n place
thereof.

Claim 17, col. 20, line 5, please delete “sewer” and insert--server--1n place
thereof.

Signed and Sealed this

Tenth Day of April, 2007

JON W. DUDAS
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

