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A method for checking a model includes specifying a path
to be traversed through the states of a system under study,
such that a specified sequence of events 1s to occur on the
specified path between an mmitial state and a target set of
states on the path. Beginming from the 1nitial state, succes-
sive reachable sets of states along the specified path are
computed, such that in the successive reachable sets the
events occur 1n the specified sequence. When an intersection
1s not found to exist between one of the reachable sets on the
speciflied path and the target set, a partial trace 1s produced
along the specified path between the imitial state and a
termination state in which at least one of the specified events
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GENERATION OF PARTIAL TRACES IN
MODEL CHECKING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional

Patent Application No. 60/261,550, filed Jan. 12, 2001. It 1s
related to U.S. patent application Ser. No. 09/367,720, filed
Jul. 29, 1999, as well as to another U.S. patent application,
filed on even date, entitled “Time-Memory Tradeoil Control
in Counterexample Production.” All of these related appli-
cations are assigned to the assignee of the present patent
application and are incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates generally to design automa-
tion and verification, and specifically to design exploration
and verification based on symbolic model checking.

BACKGROUND OF THE INVENTION

Model checking 1s a method of formal verification that 1s
gaining 1n popularity as a tool for use 1n designing complex
systems, such as integrated circuits. The method 1s described
generally by Clarke et al. in Model Checking (MIT Press,

1999), which 1s incorporated herein by reference.

To perform model checking of the design of a device, a
user reads the defimition and functional specifications of the
device and then, based on this information, writes a set of
properties {¢} (also known as a specification) that the design
1s expected to fulfill. The properties are written 1n a suitable
specification language for expressing temporal logic rela-
tionships between the mputs and outputs of the device. Such
languages are commonly based on Computation Tree Logic
(CTL). A hardware model M (also known as an implemen-
tation) of the design, which 1s typically written 1in a hardware
description language, such as VHDL or Verilog, 1s then
tested to ascertain that the model satisfies all of the proper-
ties 1 the set, 1.e., that M |=¢, under all relevant input
sequences. Such testing 1s a form of reachability analysis.

One of the most usetul features of model checking 1s its
ability, when a property ¢ 1s found to be false on M, to
construct a sequence of states and transitions (a path) that
leads to the problematic state of the design. This path 1s
called a counterexample. It can be used by the engineer 1n
understanding and remedying the design defect that led to
the failure of the model.

Model checking i1s typically carried out automatically
using a symbolic model checking program, such as SMYV, as
described, for example, by McMillan 1n Syvmbolic Model
Checking (Kluwer Academic Publishers, 1993), which 1s
incorporated herein by reference. A number of practical
model checking tools are available, among them RuleBase,
developed by IBM Corporation. This tool 1s described by
Beer et al. in “RuleBase: an Industry-Oriented Formal
Verification Tool,” 1n Proceedings of the Design Automation
Conference DAC’96 (Las Vegas, Nev., 1996), which 1s
incorporated herein by reference.

Symbolic CTL model checking as described by McMillan
involves computing the transition-relation (TR) of the
model, and then applying the model checking algorithm to
verily a specified formula. In many cases, the full TR 1s too
big to be computed. This problem 1s addressed by Beer et al.,
in “On-the-fly Model Checking of RCTL Formulas,” Pro-
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Aided Verification (CAV 1998), which 1s incorporated here
in by reference. In this paper, the authors describe a tech-
nique for solving CTL formulas of the form AG(p), wherein
p 1s a Boolean expression. An AG(p) formula states that p 1s
true 1n every reachable state of the model. Therefore, to
disprove this formula, it 1s suflicient to find one reachable
state 1n which p 1s false. In the context of the present patent
application and 1n the claims, such a state 1s referred to as a
target state. It may also be called a “bad” state, as it violates
the specified formula.

If S 1s the set of states 1n which p 1s false, then in order
to find a “bad” state, 1t 1s necessary only to intersect S with
the set of reachable states R of the model, and check that the
intersection 1s not empty. Finding this intersection 1s com-
putationally easy, and therefore can be performed on the fly,
1.e., alter each iteration of the reachability analysis. If the
intersection of S and R 1s found at any point to be non-
empty, the process 1s stopped, and AG(p) 1s false. Otherwise,
the process continues and terminates when the entire reach-
able state space has been computed, so that AG(p) 1s shown
to be true. Thus, this method eliminates the large expendi-
ture of computation resources needed to compute the full
transition relation. Furthermore, since counterexamples are
produced as soon as the target state 1s found, only a portion
of the reachable state space must be computed when the
formula fails, saving even more time and memory space.

The on-the-fly model checking procedure 1s shown for-
mally in Table I below:

TABLE 1

ON-THE-FLY MODEL CHECKING

1 reachable = new = 1nitialStates;

2 1 =0;

3 while ((new = @)&&(new  p = 9)) {
4 S. = new;

5 1 =1+1;

6 next = nextStateImage (new)

7 new = next \ reachable;

8 reachable = reachable ‘_/ next;

9 h

10 if (new = ) {

11 print “formula 1s true i the model”;
12 return;

13 }

Here the “&&” operator represents logical conjunction, and
the function “nextStatelmage(new)” returns the states that
are reached 1 one cycle of the system transition relation
beginning from the states in {new}.

If 1t 1s found at any cycle of the above process that new
Nep=0), the model checker informs the user that the formula
AG(p) 1s false for the model in question. Typically, the
model checker goes on to compute a counterexample, by
finding a trace back through the state space from one of the
states in the intersection region {new N¢p} to one of the
initial states. A similar procedure can be used to find a
“witness,” or positive example, demonstrating fulfillment of
a formula EF(p). This latter formula states that there exists
some path through the state space of the model to some state
on which p 1s true. It 1s the dual of AG(¢p). In this case, the
target states are those in which p 1s true.

In the above-mentioned article, Beer et al. describe a
technique for translating many CTL formulas conveniently
into state machines having an error state. Such formulas can
then be verified by on-the-tly model checking of the formula
AG(¢error). The authors also define a specification language
RCTL, as an extension to the conventional CTL language
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using regular expressions. More recently, Beer et al. have
extended RCTL to include further expressions and syntax
that are useful in creating formulas for on-the-fly model
checking, as described 1n “The Temporal Logic Sugar,”

Proceedings of the Thirteenth International Conference on

Computer Aided Verification (CAV 2001), which 1s incor-
porated here 1n by reference.

SUMMARY OF THE INVENTION

As described above, model checkers known in the art
trace and return a counterexample (or witness) only 11 their
state space exploration finds a reachable target state. In
preferred embodiments of the present invention, however, a
novel model checker generates a partial trace even when it
has found no reachable target states. The partial trace retlects
a path through the state space that approaches the target
states, even 11 1t does not succeed 1n reaching them. Prefer-
ably, the model checker generates a maximal partial trace,
1.¢., a trace that most closely approaches the target states
among the traces that can be produced 1n the reachable state
space ol the model. Such partial traces provide the user with
helptul 1nsight 1nto the behavior of the system under study.

Model checkers 1n accordance with preferred embodi-
ments of the present invention are particularly useful in the
context of design exploration, as described, for example, 1n
the above-mentioned U.S. patent application Ser. No.
09/367,720. In the exploration paradigm, instead of seeking
errors 1n finished designs, the model checker assists the user
in understanding the operation of his or her design during the
development phase. The exploration tool 1s given a model M
and a path specification P. It then applies model checking to
find a path that conforms to the path specification. In
preferred embodiments of the present invention, the tool
finds a witness—a full trace that conforms to the full path
specification, 1f such a path exists in the reachable state
space, or a partial trace if not. The user can then analyze the
trace to decide whether the model behaves as 1t should.

Preferably, the path specification 1s input to the model
checker as a sequence of events (which do not necessarily
occur on consecutive cycles of the system under study).
Typically, each event corresponds to a Boolean expression
over the set of state varniables. The event 1s considered to
have occurred when the corresponding expression 1s true.
The model checker uses techniques of on-the-fly model
checking to find a path through the reachable state space on
which all the events occur 1n the order given by the speci-
fication, as 1t proceeds to explore the state space of the
system. Most preferably, the model checker returns a
progress indication to the user each time 1t finds that there 1s
a path that reaches the next event in the sequence. If and
when the model checker succeeds in finding a complete
path, on which all the events occur in the proper sequence,
it returns that trace. Even when no complete path 1s found,
however, the model checker returns a partial trace, on which
the largest possible number of the specified events occur 1n
the proper sequence.

There 1s therefore provided, 1in accordance with a pre-
terred embodiment of the present invention, a method for
checking a model, which defines states of a system under
study and a transition relation among the states, the method
including:

speciiying a path to be traversed through the states of the
system under study from an initial set that includes at least
one 1nitial state among the states of the system to a target set
that includes at least one target state among the states of the
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system, such that a specified sequence of events 1s to occur
on the specified path between the at least one 1nitial state and
the at least one target state;

beginning from the initial set, computing successive
reachable sets including the states of the system that are
reachable from the 1mitial set along the specified path, such
that 1n the successive reachable sets the events occur in the
specified sequence;

determining whether an intersection exists between one of
the reachable sets on the specified path and the target set; and

when the ntersection 1s not found to exist, producing a
partial trace along the specified path between the at least one
initial state and a termination state 1n which at least one of
the specified events occurs.

Preferably, specifying the path includes defimng the
events 1in terms of transitions among the states of the system
under study. Typically, defining the events includes defiming
the transitions such that in the sequence of events, at least
two consecutive transitions are separated by more than one
cycle of the transition relation. Additionally or alternatively,
computing the successive reachable sets includes building a
non-deterministic automaton based on the transitions, and
computing the reachable sets using the automaton. Prefer-
ably, building the non-determimistic automaton includes
defining Boolean conditions corresponding respectively to
the transitions, and detecting the occurrence of the events
includes testing the Boolean conditions.

Preferably, computing the successive reachable sets
includes detecting occurrence of the events 1n the sequence
and mmforming a user upon detecting occurrence of the
events. Additionally or alternatively, producing the partial
trace includes choosing the termination state to be one of the
states 1n which a final event occurs 1n the sequence of the
events whose occurrence has been detected.

Preferably, computing the successive reachable sets
includes determining a first set among the reachable sets,
disjoint from the initial set, such that all of the states 1n the
first set are reached from the initial states 1n a first cycle of
the transition relation, and determining the successive reach-
able sets, following the first set, such that all the states 1n
cach of the sets are reached from the states in the preceding
set 1n a successive cycle of the transition relation, and so that
cach of the sets 1s disjoint from the 1nitial set and from the
other sets determined belfore 1t. Further preferably, produc-
ing the partial trace includes selecting one of the states from
cach of at least some of the successive reachable sets. Most
preferably, selecting the one of the states includes, for each
of the selected states, choosing a predecessor state among
the states in the preceding set until the state on the trace in
the first set 1s found, and choosing, 1n the initial set, the
predecessor state to the state 1n the first set.

Preferably, when 1t 1s determined that the intersection
exists between the target set and one of the reachable sets,
the method includes producing a complete trace from the at
least one target state through the states in the reachable sets
to the at least one 1nitial state. Most preferably, producing
the complete trace 1includes computing the trace so that all
the events occur along the trace in the specified sequence.

Typically, specitying the path includes specifying a prop-
erty to be fulfilled by the at last one target state. Preferably,
speciiying the property includes specilying a condition that
1s expected to be true over all of the reachable states of the
system under study, wherein the condition 1s false 1n the at
least one target state. Alternatively, specilying the property
includes specilying a condition representing a desired
behavior of the system under study, such that the condition
1s fulfilled 1n the at least one target state. Most preferably,
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computing the successive reachable sets includes testing the
property while computing the sets, and ceasing to compute
the sets when the intersection 1s found to exist.

There 1s also provided, in accordance with a preferred
embodiment of the present invention, model checking appa-
ratus, including a model processor, which 1s arranged to
receive a model that defines states of a system under study
and a transition relation among the states, and to receive a
specification of a path to be traversed through the states of
the system under study from an 1initial set that includes at
least one 1mitial state among the states of the system to a
target set that includes at least one target state among the
states of the system, such that a specified sequence of events
1s to occur on the path between the at least one 1nitial state
and the at least one target state, the processor being further
arranged to compute, beginming from the 1nitial set, succes-
s1ve reachable sets including the states of the system that are
reachable from the 1nitial set along the path, such that in the
successive reachable sets the events occur 1n the specified
sequence, and to determine whether an intersection exists
between one of the reachable sets on the path and the target
set, and when the intersection 1s not found to exist, to
produce a partial trace along the specified path between the
at least one 1mitial state and a termination state 1n which at
least one of the specified events occurs.

There 1s additionally provided, in accordance with a
preferred embodiment of the present invention, a computer
software product, including a computer-readable medium 1n
which program instructions are stored, which instructions,
when read by a computer, cause the computer to receive a
model that defines states of a system under study and a
transition relation among the states, and to receive a speci-
fication of a path to be traversed through the states of the
system under study from an initial set that includes at least
one 1nitial state among the states of the system to a target set
that includes at least one target state among the states of the
system, such that a specified sequence of events 1s to occur
on the path between the at least one 1nitial state and the at
least one target state, and which cause the computer to
compute, beginning from the 1nitial set, successive reachable
sets 1mcluding the states of the system that are reachable
from the 1nitial set along the path, such that 1n the successive
reachable sets the events occur 1n the specified sequence,
and to determine whether an intersection exists between one
ol the reachable sets on the path and the target set, and when
the intersection 1s not found to exist, to produce a partial
trace along the specified path between the at least one 1nitial
state and a termination state 1n which at least one of the
specified events occurs.

The present invention will be more fully understood from
the following detailed description of the preferred embodi-
ments thereof, taken together with the drawings 1n which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a schematic, pictonial illustration showing a
system for design exploration, in accordance with a pre-
ferred embodiment of the present mvention;

FIG. 2 1s a block diagram that schematically illustrates a
path specification of a system under study;

FIG. 3 1s a schematic representation of a system state
space, illustrating generation of a partial trace, 1n accordance
with a preferred embodiment of the present invention; and

FIG. 4 1s a flow chart that schematically illustrates a
method for design exploration, 1n accordance with a pre-
ferred embodiment of the present invention.
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DETAILED DESCRIPTION OF PR
EMBODIMENTS
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FIG. 1 1s a schematic pictorial illustration of a system 20
for symbolic model checking, in accordance with a preferred
embodiment of the present invention. System 20 typically
comprises a model processor 22, typically a general-purpose
computer workstation running suitable model checking sofit-
ware. The system 1s operated by a user 24, typically a design
or verification engineer. The model checking software may
be downloaded to processor 22 1n electronic form, over a
network, for example, or 1t may be supplied on tangible
media, such as CD-ROM or non-volatile memory. Processor
22 receives a hardware implementation model 26 of a target
system or device 30 in development, which may refer to the
entire system or device or to a sub-unit, such as a circuit or
functional block. User 24 prepares a path specification 28,
comprising properties for use 1 model checking of model
26, and selects initial states of the model. System 20
analyzes the model, using methods described 1n detail here-
inbelow, to find full or partial traces between the initial states
and target states, which are inferred by processor 22 based
on the path specification.

FIG. 2 1s a block diagram that schematically illustrates a

path specification with respect to a state machine 40,
“machine(0:3),” having sixteen possible values of a state
variable ma (shown in the figure as “MA”) . This state
machine and path specification will be used hereinbelow to
illustrate methods of design exploration and partial path
generation 1in accordance with preferred embodiments of the
present invention. Three states (or sets of states) of the
machine are shown: an intermediate set 42 1n which ma=4,
another intermediate set 44 1n which ma=6, and a target set
46 1 which ma=1. The corresponding path specification
requires that machine 40 pass through a state in set 42 and
then a state 1n set 44 before reaching target set 46. As noted
above, the machine need not necessarily reach these states
on consecutive cycles.

FIG. 3 1s a schematic representation of a state space 48 of
machine 40, providing a conceptual view of a method for
model checking with generation of partial traces, in accor-
dance with a preferred embodiment of the present invention.
The method 1s described in greater details below, with
reference to FIG. 4, and a pseudocode implementation 1s
listed 1n Table III. Design exploration begins from a set 50
of mitial states, labeled S,, which are typically specified by
user 24. At the first iteration of the transition relation,
processor 22 applies an 1image operation (using the next-
StateImage() function at line 6 1n Table I) to map S, into a
set of states S,. Subsequent iterations map each set S; into a
successive set S, . Referring back to Table I, at line 7, it 1s
seen that states reached previously are removed from each
succeeding set. These sets can thus be seen as a succession
ol concentric rings 1n state space, and are therefore referred
to as “donuts” 52. The Ith donut 1s the set of states that can
be reached in I cycles of the transition relation, but no less.

For simplicity, 1t 1s assumed here that all of the donuts are
saved as the iterations through state space 48 proceed. When
large numbers of states are mmvolved, however, saving all
these donuts can be excessively costly 1n terms of memory
requirements. Therefore, 1n many cases 1t 1s preferable to
save the donuts only intermaittently (say one donut in every
N successive donuts), and then to recompute the donuts
subsequently when they are needed for finding counterex-
ample traces. This method of memory conservation 1is
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described further 1n the above-mentioned patent application
entitled “Time-Memory Tradeofl Control in Counterex-
ample Production.”

As each new donut 352 1s computed, it 1s checked against
the path specification to determine whether the next speci-
fied event along the path has been reached, 1.e., 1n the case
of the example shown 1n FIG. 2, whether the state variable
ma for machine 40 has the next specified value 1n any of the
states 1n the new donut. For this purpose, an automaton 1s
created from the path specification, as described below, and
1s used to track the progress of the original model along the
path. A Boolean condition corresponding to the expected
state transition 1s evaluated against the state of the automa-
ton to determine when the event has occurred. When the
event occurs, the processor returns a message to user 24 at
this point stating, for example, that “Event ma=4 was
reached on cycle 3.

Generation of donuts 52 continues until processor 22 finds
that there 1s a reachable path through state space 48 that
satisiies the path specification and reaches a set 34 of target
states (1n which ma=1), or until 1t determines that no such
path exists. For example, a path 38 in FIG. 3 1s seen to reach
an intersection region 36 between donut S, and set 54. Along
the way, the path encounters a first event 60 when ma=4, a
second event 62 when ma=6, and a final event 64 when
ma=1 and the target state 1s reached. When the entire path
specification 1s satisfied, processor 22 informs the user that
a full trace exists. It generates a full counterexample (or
witness) trace by working back through donuts 352, begin-
ning from a selected state 1n 1ntersection region 36. For each
state 1n each donut along the way, the processor finds a
predecessor state in the preceding donut, until 1t reaches one
of the 1nitial states 1n set 50.

It may sometimes occur, however, that the state space
exploration terminates, with no new reachable states to {ind,
betfore reaching target set 54. For example, a path 66 in FIG.
3 1s seen to reach only events 60 and 62, and not final event
64. The processor accordingly informs user 24 that no full
trace exists for the user’s path specification.

In this case, processor 22 generates a partial trace showing,
a path up to the last event that 1t succeeded 1n reaching—in
this case, event 62 (ma=6). The processor then works
backward through donuts 52, beginming from a state that
satisfied the last event, and finding predecessor states back
through the preceding donuts to an 1mitial state 1n set 50, as
described above. It returns this partial trace to user 24, who
will typically use the partial trace to understand how the
model behaved and why 1t did not reach a state in target set
54. optionally, processor 22 generates and returns to the user
multiple partial traces. Preferably, these traces are chosen to
be as far as possible from one another in state space 48, as
described 1n a U.S. patent application entitled, “Eflicient
Production of Disjoint Multiple Traces,” filed on even date,
which 1s assigned to the assignee of the present patent
application, and whose disclosure 1s incorporated herein by
reference.

FIG. 4 1s a flow chart that schematically illustrates a
method for on-the-fly model checking with partial trace
generation, 1 accordance with a preferred embodiment of
the present invention. The method 1s described here with
reference to machine 40 shown in FIG. 2 and state space 48
illustrated 1n FIG. 3. The method begins with input by user
24 of model 26 and path specification 28, at an input step 70.
Preferably, the path specification 1s translated into a tempo-
ral logic satety formula, as 1s known 1n the art.

Most preferably, a “sugar” formula 1s used, as described
by Beer et al. in the above-mentioned article entitled “The
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Temporal Logic Sugar.” For example, the path specification
shown pictorially in FIG. 2 would be translated into the

following sugar expression:

{ma=4[*], ma=4, ma=6[*], ma=6, ma=1[*], ma=1}

(false) (1)

This expression indicates that the machine must pass 1n
sequence through states in which ma=4, 6, and 1, not
necessarily in consecutive cycles. The machine may assume
other states for an indeterminate number of cycles (as
indicated by the notation “[*]”) in between the states 1n the
specified sequence. The sullix “false” indicates to the model
checker that 1t must attempt to find a counterexample on
which the path specification 1s true.

The sugar formula corresponding to the specification ¢ 1s
used to build a non-determimistic automaton A, and an EF
(p) type formula for model checking, at an automaton
building step 72. The automaton 1s preferably created auto-
matically, as described by Beer et al. in the above-mentioned
article entitled “On-the-fly Model Checking of RCTL For-
mulas.” Formally, the automaton A 1s built so as to satisty
the condition that

Mi=ppMxA,|=EF(p,) (2)

wherein M 1s the model under test, and p, 1s the formula that
defines the target states of the automaton.

For machine 40, as described by formula (1), the automa-
ton generated at step 72 1s listed below 1n Table II, written
in the well-known SMV model checking language:

TABLE 11

L1l

NON-DETERMINISTIC AUTOMATON

VAR aut:{0,1,2,3,4,5,6};

ASSIGN
init(aut) :={1,2}
next(aut) :=
case
aut=1 ma=4:{2,1};

aut=2 ~ ma=4:{4,3);
aut=3 ma=6:{4,3);
aut=4 ~ma=6:{6,5);
aut=5  ma=1:{6,5);
1:0;

esac

The states of the above automaton (aut=1, 2, . .., 6)
correspond to the expected states and transitions of machine
40 along the path shown 1n FIG. 2, as expressed by formula
(1). The automaton 1s built so that each move from one of 1ts
states to another 1s determined by a Boolean condition C,
which 1s derived from the path specification of machine 40.
The automaton begins in state aut=1 or aut=2 and advances
to the next state at each cycle based on the current value of
the variable ma. For example, in the second case 1n Table 11,
it aut=2 and ma=1, the automaton will be 1n either state 3 or
state 4 1n the next cycle. Automaton states 1, 3 and 5 have
self-loops, indicating that the automaton may remain 1n each
of these states until the next transition on the path of
machine 40 1s encountered. The EF(p,) tormula that must be
satisfied by the automaton 1s EF((aut=6)¢(ma=1)). When
aut=6 and ma=1, this final Boolean condition 1s satisfied,
indicating that the automaton has reached a state 1n target set
54 (in the conceptual view of FIG. 3). The last case
expression 1n Table I1, *“1:07, 1s invoked 11 none of the other
conditions are satisfied. In this case, the automaton advances
to state aut=0, which 1s used to trap all paths that do not
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conform to the path specification and can therefore be
disregarded 1n the state space computation.

In the subsequent steps of the method of FIG. 4, the
reachable state space of machine 40 1s computed while at the
same time 1mposing the logical conditions specified by the
automaton of Table II. The use of the automaton automati-
cally enforces the path specification that requires the
machine to pass through intermediate states 1n sets 42 and 44
before reaching target set 46. The EF(p,) tormula 1s verified
on the tly, as described below, while computing the reach-
able state space of machine 40, subject to the automaton
generated at step 72.

In addition to the full path formula EF(p,), additional
event formulas are also generated at step 72. The event
tormulas are used 1n tracking the progress of the reachability
analysis and 1n producing a partial trace in the event that no
target state can be reached, as described below. For every
state s of the automaton that does not have a self-loop, the
event formula has the form EF(s¢C). Thus, the following
event formulas are generated for states aut=2 and aut=4,
respectively:

Event 1: EF((aut=2)p(ma=4))

Event 2: EF((aut=4)p(ma=06))

“Event 3 in this case 1s the path formula EF((aut=6)¢
(ma=1)) for the target state. The event formulas are verified
on the fly, and eflectively represent preconditions to satis-
tying the path formula.

Having generated the required automaton and event for-
mulas, processor 22 initializes its reachability analysis of
state space 48, at an 1nitialization step 74. Here the index I
tracks donuts 52 shown 1n FIG. 3, while J tracks the events
that have been generated along the specified path. Each
successive donut S, 1s found by the image operation
described above, at a donut finding step 76. After computing
the new reachable states 1n each iteration, the states found 1n
the preceding iteration are subtracted out (line 7 1n Table I
above) to determine the new donut.

If the state space of the model 1s exhausted at some
iteration without reaching a target state, the new donut will
be found to be empty, at a search termination step 78. In this
case, processor 22 checks to determine whether any of the
specified event formulas have so far been satisfied, at an
event index checking step 80. If none of the events has yet
occurred, 1t means that the model did not reach even the first
event on the specified path before the reachability analysis
terminated. (In terms of the present example, this equiva-
lently means that machine 40 has not reached a state in set
42, and therefore Event 1 has not been triggered.) In this
case, processor 22 mforms user 24 that no trace can be
generated, at a non-tracing step 82.

On the other hand, 11 some or all of the events have been
triggered (so that J>0), processor 22 computes a trace from
the farthest point reached on the path back to one of the
states 1n 1nitial set 50, at a trace production step 84. The
method for generating traces 1n this case was described
above brietly with reference to FIG. 3 and 1s shown 1n
pseudocode form 1n Table III below. It 1s described in greater
detail 1n the related patent applications cited above, includ-
ing “Time-Memory Tradeofl Control i Counterexample
Production” and “Efhlicient Production of Disjoint Multiple
lraces.”

As long as the latest donut S; 1s not found to be empty at
step 78, processor 22 checks whether the current donut
intersects target set 54, at an intersection checking step 86.
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In terms of the automaton A, this step 1s carried out on the
fly by determining whether the path formula EF(p,) has been
satisfied. (This step will not be reached, however, until all
the preceding events EF(J) have occurred.) At this point, the
reachability analysis of state space 48 1s complete. The
processor indicates to user 24 that a full trace will be
produced, at a full trace step 88. It then produces such a
trace, at step 84, from a state in target set 46 back to 1nitial
set 50, corresponding to path 38 in FIG. 3.

If processor 22 determines that i1t has not reached the
target set, it checks whether the next expected event on the
specified path has been triggered, at an event checking step
90. This step 1s equivalent to determining whether the
current donut S, intersects the space defined by the event
formula EF(J+1). Until this event occurs, processor 22
continues to increment the donut index I, at a donut incre-
mentation step 91, and returns to step 76 to construct the
next donut.

When event J+1 1s triggered, processor 22 informs the
user that Event J+1 was encountered on cycle 1 of the
reachability analysis, at a reporting step 92. Both the event
index J and the donut index I are incremented 1n this case,
at an event incrementation step 94, and the process continues
to 1terate at step 76.

The report provided at step 92 enables the user to keep
track of the progress of the model checker and, possibly, to
interrupt the search 1f a long time passes without completing
the specified path. Upon interrupting the search, the user
may ask processor 22 to provide a partial trace, showing
how far along the specified path 1t has reached. In this case,
a partial trace 1s generated, depending on the last event
triggered, as illustrated by path 66, shown i FIG. 3. The
user can then either abort or resume the search, as appro-
priate. The same sort of partial trace 1s generated at step 84
if the reachability analysis terminates aiter one or more of
the events EF(J) have been triggered but before target set 54
has been reached.

Table III 1s a pseudocode listing corresponding to the
method of FIG. 4, based on the automaton A, and the event
formulas described above. The method in the listing assumes
that donuts S, are represented 1n the form of binary decision
diagrams (BDDs), as are known 1n the art. The theory of
BDDs 1s described, for example, by Bryant, in “Graph-based
Algorithms for Boolean Function Manipulation,” [EEE
Transactions on Computers C-35:8 (1986), which 1s 1ncor-
porated herein by reference. The use of BDDs 1n on-the-fly
model checking 1s described 1n the above-mentioned U.S.
patent application entitled, “Eflicient Production of Disjoint
Multiple Traces.” The term found i1s used imtially 1n the
listing below to indicate the BDD representing p,. (Subse-
quently, found 1s used to indicate the BDD from which the
trace termination state 1s chosen in order to produce the
trace, whether the trace 1s complete or partial.) The terms ef,
represent the BDDs of the event formulas, wherein the path
specification comprises n such events.

-

TABLE 111

MODEL CHECKING WITH PARTIAL TRACE GENERATION

reachable = new = mitialStates:
1 =0; maxe = 0
while ((new = @)&&(new — found = @) {
S, = New;
1= 1+1;
next = nextStateImage(new);
new = next \ reachable;
reachable = reachable \_/ next;

0 =] O o e ) b
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TABLE IlI-continued

MODEL CHECKING WITH PARITIAL TRACE GENERAITION

9 for (j = n downto maxe+1) do {

10 if (new M ef; = @) {

11 maxe = |; donut = 1;

12 print “Event “maxe” encountered on cycle

“donut™”

13 break; (from ‘for’ loop)

14 }

15 }

16 if (new = @ && maxe = 0) {

17 print “No trace exists for this path”;

1% return;

19 |}

20 else if (new = @ && maxe > 0) {

21 print “No full trace exists, producing trace
until event “maxe’’;

22 found = ef ___; k = donut;

23}

24 else {

25 k=1-1;

26 print “Trace found on cycle k™;

27}

28 good = 8§, ~ found;

29  while (k 2 0) {

30 X, = choose one state from good;

31 if (k » 0) good = pred (X;) ™ Si_y;

32 k = k-1;

33}

34 print “Trace 187 X, . . . X

As noted above, the process described 1n Table III above
includes two main components: reachability analysis (lines
1-13) and trace production (lines 16—34). In the reachability
analysis, donuts {S,, S,, ..., S, } are constructed using the
function “nextStatelmage(new)” to return the states that are
reached 1n one cycle of the system transition relation begin-
ning from the states in {new}. The trace of states {X,,. .. X, }
1s constructed using the function “pred(X,)” to find, for each
state along the trace, a predecessor state in the preceding
donut S, ; that would be mapped to the state by the
nextStatelmage function. The set of the predecessor states
X,. . . X, from one of the initial states to one of the target
states constitutes a counterexample trace.

Although the sample computations described above are
based on a particular type of path specification, the prin-
ciples behind these computations may similarly be applied
in model checking using logical formulas of other types. For
example, any specification written 1n C'1L, as well as a large
subset of linear temporal logic (LTL) specifications, may be
translated into a state machine with a formula of type AG(p)
and then checked in this manner. As another example, the
techniques of the present invention may be applied to
specification formalisms 1n which the specification 1tself 1s
a state machine. In all these cases, 1t 1s possible to define a
path specification with respect to the states of the system
under study, and to express the general logical formula in
terms of specified conditions on the states through which the
system must pass 1n order to fulfill or contradict the formula.
An automaton 1s built embodying the path specification, as
described by Beer et al. 1n “On-the-Fly Model Checking of
RCTL Formulas,” and 1s then used 1n the model checking
process as described above.

It will thus be appreciated that the preferred embodiments
described above are cited by way of example, and that the
present mnvention 1s not limited to what has been particularly
shown and described hereinabove. Rather, the scope of the
present invention includes both combinations and subcom-
binations of the various features described hereinabove, as
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well as variations and modifications thereof which would
occur to persons skilled in the art upon reading the foregoing
description and which are not disclosed 1n the prior art.

The mvention claimed 1s:
1. A method for checking a model, which defines states of
a hardware system under study and a transition relation
among the states, the method comprising:
providing a specification of a path to be found through the
states of the hardware system under study from an
initial set that comprises at least one 1nitial state among
the states of the hardware system to a target set that
comprises at least one target state among the states of
the hardware system, such that a specified sequence of
events 1s to occur on the path between the at least one
initial state and the at least one target state;

beginning from the nitial set, computing successive
reachable sets comprising the states of the hardware
system that are reachable from the 1nitial set along the
path, such that in the successive reachable sets the
events occur 1n the specified sequence;

determiming whether an intersection exists between one of

the reachable sets on the path and the target set; and

when the intersection 1s not found to exist, producing a

partial trace along the path between the at least one
initial state and a termination state 1n which at least one
of the specified events occurs.

2. A method according to claim 1, wherein providing the
specification of the path comprises defining the events 1n
terms of transitions among the states of the hardware system
under study.

3. A method according to claim 2, wherein defining the
events comprises defining the transitions such that in the
speciflied sequence of events, at least two consecutive tran-
sitions are separated by more than one cycle of the transition
relation.

4. A method according to claim 2, wherein computing the
successive reachable sets comprises building a non-deter-
ministic automaton based on the transitions, and computing
the reachable sets using the automaton.

5. A method according to claim 4, wherein building the
non-deterministic automaton comprises defimng Boolean

conditions corresponding respectively to the transitions, and
wherein occurrence of the events 1s detected by testing the
Boolean conditions.

6. A method according to claim 1, wherein computing the
successive reachable sets comprises detecting occurrence of
the events 1n the specified sequence.

7. A method according to claim 6, and comprising inform-
ing a user upon detecting occurrence of the events.

8. A method according to claim 6, wherein producing the
partial trace comprises choosing the termination state to be
one of the states 1n which a final event occurs 1n the specified
sequence of the events whose occurrence has been detected.

9. A method according to claim 1, wherein computing the
successive reachable sets comprises:

determiming a first set among the reachable sets, disjoint
from the 1nitial set, such that all of the states in the first
set are reached from the at least one 1nitial state 1n a first
cycle of the transition relation; and

determining the successive reachable sets, following the
first set, such that all the states in each of the sets are
reached from the states 1n a preceding set 1n a succes-
sive cycle of the transition relation, and so that each of
the sets 1s disjoint from the i1mitial set and from other
sets determined before 1t.
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10. A method according to claim 9, wherein producing the
partial trace comprises selecting one of the states from each
of at least some of the successive reachable sets.

11. A method according to claim 10, wherein selecting the
one of the states comprises, for each of the states that is
selected, choosing a predecessor state among the states 1n
the preceding set until the state on the trace 1n the first set 1s
found, and choosing, 1n the 1nitial set, the predecessor state
to the state 1n the first set.

12. A method according to claim 1, and comprising, when
it 1s determined that the intersection exists between the target
set and one of the reachable sets, producing a complete trace
from the at least one target state through the states in the
reachable sets to the at least one 1nitial state.

13. A method according to claim 12, wherein producing
the complete trace comprises computing the trace so that all
the events occur along the trace in the specified sequence.

14. A method according to claim 1, wherein providing the
specification of the path comprises specilying a property to
be fulfilled by the at least one target state.

15. A method according to claim 14, wherein specitying
the property comprises specilying a condition that 1s
expected to be true over all of the reachable states of the
hardware system under study, and wherein the condition 1s
talse 1n the at least one target state.

16. A method according to claim 14, wherein specifying
the property comprises specifying a condition representing a
desired behavior of the hardware system under study, such
that the condition 1s fulfilled in the at least one target state.

17. A method according to claim 14, wherein computing
the successive reachable sets comprises testing the property
while computing the sets, and ceasing to compute the sets
when the intersection 1s found to exist.

18. Model checking apparatus, comprising a model pro-
cessor, which 1s arranged to receive a model that defines
states of a hardware system under study and a transition
relation among the states, and to receive a specification of a
path to be found through the states of the hardware system
under study from an initial set that comprises at least one
initial state among the states of the hardware system to a
target set that comprises at least one target state among the
states of the hardware system, such that a specified sequence
of events 1s to occur on the path between the at least one
initial state and the at least one target state, the processor
being further arranged to compute, beginning from the
initial set, successive reachable sets comprising the states of
the hardware system that are reachable from the initial set
along the path, such that 1n the successive reachable sets the
events occur 1n the specified sequence, and to determine
whether an intersection exists between one of the reachable
sets on the path and the target set, and when the intersection
1s not found to exist, to produce a partial trace along the path
between the at least one 1nitial state and a termination state
in which at least one of the specified events occurs.

19. Apparatus according to claim 18, wherein the speci-
fication of the path comprises a definition of the events 1n
terms of transitions among the states of the hardware system
under study.

20. Apparatus according to claim 19, wherein the events
are deflned 1n terms of the transitions such that in the
specified sequence of events, at least two consecutive tran-
sitions are separated by more than one cycle of the transition
relation.

21. Apparatus according to claim 19, wherein the proces-
sor 1s arranged to build a non-deterministic automaton based
on the transitions, and to compute the reachable sets using
the automaton.
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22. Apparatus according to claim 21, wherein the proces-
sor 1s arranged to determine Boolean conditions correspond-
ing respectively to the transitions, and to detect occurrence
of the events by testing the Boolean conditions.

23. Apparatus according to claim 18, wherein the proces-
sor 1s arranged to detect occurrence of the events 1n the
specified sequence while computing the successive reach-
able sets.

24. Apparatus according to claim 23, wherein the proces-
sor 1s arranged to inform a user upon detecting occurrence
of the events.

25. Apparatus according to claim 23, wherein to produce
the partial trace, the processor 1s arranged to choose the
termination state to be one of the states 1n which a final event
occurs 1n the specified sequence of the events whose occur-
rence has been detected.

26. Apparatus according to claim 18, wherein the proces-
sor 1s arranged to compute the successive reachable sets by
determining a first set among the reachable sets, disjoint
from the 1nitial set, such that all of the states 1n the first set
are reached from the at least one 1nitial state 1n a first cycle
of the transition relation, followed by determining the suc-
cessive reachable sets, following the first set, such that all
the states 1n each of the sets are reached from the states in
a preceding set in a successive cycle of the transition
relation, and so that each of the sets i1s disjoint from the
initial set and from other sets determined before 1t.

277. Apparatus according to claim 26, wherein the proces-
sor 1s arranged to produce the partial trace by selecting one
of the states from each of at least some of the successive
reachable sets.

28. Apparatus according to claim 27, wherein the proces-
sor 1s arranged to select the states from each of the at least
some of the successive sets by choosing, for each of the
states, a predecessor state among the states 1n the preceding
set until the state on the trace in the first set 1s found, and
choosing, 1n the mitial set, the predecessor state to the state
in the first set.

29. Apparatus according to claim 18, and wherein the
processor 1s further arranged, upon determining that the
intersection exists between the target set and one of the
reachable sets, to produce a complete trace from the at least
one target state through the states 1n the reachable sets to the
at least one 1nitial state.

30. Apparatus according to claim 29, wherein the proces-
sor 1s arranged to produce the complete trace so that all the
events occur along the trace 1n the specified sequence.

31. Apparatus according to claim 18, wherein the speci-
fication of the path comprises a property to be fulfilled by the
at least one target state.

32. Apparatus according to claim 31, wherein the property
comprises a condition that 1s expected to be true over all of
the reachable states of the hardware system under study, and
wherein the condition 1s false in the at least one target state.

33. Apparatus according to claim 31, wherein the property
comprises a condition representing a desired behavior of the
hardware system under study, such that the condition 1s
tulfilled 1n the at least one target state.

34. Apparatus according to claim 31, wherein the proces-
sor 1s arranged to test the property while computing the
successive reachable sets, and to cease to compute the sets
when the intersection 1s found to exist.

35. A computer software product, comprising a computer-
readable medium in which program instructions are stored,
which instructions, when read by a computer, cause the
computer to recerve a model that defines states of a hardware
system under study and a transition relation among the
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states, and to receive a specification of a path to be found
through the states of the hardware system under study from
an 1itial set that comprises at least one 1nitial state among
the states of the hardware system to a target set that
comprises at least one target state among the states of the
hardware system, such that a specified sequence of events 1s
to occur on the path between the at least one 1nitial state and
the at least one target state, and which cause the computer to
compute, beginning from the 1nitial set, successive reachable
sets comprising the states of the hardware system that are
reachable from the 1nitial set along the path, such that 1n the
successive reachable sets the events occur 1n the specified
sequence, and to determine whether an intersection exists
between one of the reachable sets on the path and the target
set, and when the intersection 1s not found to exist, to
produce a partial trace along the path between the at least
one nitial state and a termination state 1n which at least one
of the specified events occurs.

36. A product according to claim 335, wherein the speci-
fication of the path comprises a definition of the events 1n
terms of transitions among the states of the hardware system
under study.

37. A product according to claim 36, wherein the events
are defined in terms of the transitions such that in the
specified sequence of events, at least two consecutive tran-
sitions are separated by more than one cycle of the transition
relation.

38. A product according to claim 36, wherein the instruc-
tions cause the computer to build a non-deterministic
automaton based on the transitions, and to compute the
reachable sets using the automaton.

39. A product according to claim 38, wherein the nstruc-
tions cause the computer to determine Boolean conditions
corresponding respectively to the transitions, and to detect
occurrence of the events by testing the Boolean conditions.

40. A product according to claim 35, wherein the nstruc-
tions cause the computer to detect occurrence of the events
in the specified sequence while computing the successive
reachable sets.

41. A product according to claim 40, wherein the instruc-
tions cause the computer to inform a user upon detecting
occurrence of the events.

42. A product according to claim 40, wherein the instruc-
tions cause the computer to produce the partial trace by
choosing the termination state to be one of the states in
which a final event occurs 1n the specified sequence of the
events whose occurrence has been detected.

43. A product according to claim 35, wherein the nstruc-
tions cause the computer to compute the successive reach-
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able sets by determiming a first set among the reachable sets,
disjoint from the initial set, such that all of the states 1n the
first set are reached from the at least one 1nitial state 1n a first
cycle of the transition relation, followed by determining the
successive reachable sets, following the first set, such that all
the states 1n each of the sets are reached from the states in
a preceding set 1 a successive cycle of the transition
relation, and so that each of the sets 1s disjoint from the
initial set and from other sets determined before 1t.

44. A product according to claim 43, wherein the instruc-
tions cause the computer to produce the partial trace by
selecting one of the states from each of at least some of the
successive reachable sets.

45. A product according to claim 44, wherein the nstruc-
tions cause the computer to select the states from each of the
at least some of the successive sets by choosing, for each of
the states, a predecessor state among the states in the
preceding set until the state on the trace 1n the first set 1s
found, and choosing, 1n the nitial set, the predecessor state
to the state 1n the first set.

46. A product according to claim 35, and wherein the
instructions further cause the computer, upon determining
that the intersection exists between the target set and one of
the reachable sets, to produce a complete trace from the at
least one target state through the states 1n the reachable sets
to the at least one 1nitial state.

4'7. A product according to claim 46, wherein the nstruc-
tions cause the computer to produce the complete trace so
that all the events occur along the trace in the specified
sequence.

48. A product according to claim 35, wherein the speci-
fication of the path comprises a property to be fulfilled by the
at least one target state.

49. A product according to claim 48, wherein the property
comprises a condition that 1s expected to be true over all of
the reachable states of the hardware system under study, and
wherein the condition 1s false in the at least one target state.

50. A product according to claim 48, wherein the property
comprises a condition representing a desired behavior of the
hardware system under study, such that the condition 1s
tulfilled 1n the at least one target state.

51. A product according to claim 48, wherein the instruc-
tions cause the computer to test the property while comput-
ing the successive reachable sets, and to cease to compute
the sets when the intersection 1s found to exist.
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