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STRING PREDICATE SELECTIVITY
ESTIMATION

FIELD OF THE INVENTION

The present disclosure concerns selectivity estimation of
predicates, and more particularly, the present disclosure
relates to a technique of estimating the selectivity of string
predicates.

BACKGROUND ART

Relational database queries often include equality or
LIKE selection predicates over string attributes. Existing
techniques for estimating selectivities of string predicates
are biased towards underestimating selectivities. String-
valued data has become commonplace 1n relational data-
bases as have complex queries with selection predicates over
string attributes. An example of a selection predicate over a
string attribute 1s Author.name like % ullman %. Query
optimizers rely heavily on estimates of the selectivity of
query predicates. As a result, selectivity estimation of string
predicates has been used to define query execution plans.

One common class of string predicates 1s called wildcard
predicates. Wildcard predicates are of the form R.A like %
s %, where A 1s a string-valued attribute of a relation R.
Techniques have been proposed for estimating the selectiv-
ity of wildcard predicates. Some prior techmques build
summary structures, such as pruned sutlix trees or Markov
tables. These summary structures record the frequency of
selected strings. The frequency of a string i a relation
attribute 1s the number of attribute values that include the
string. The set of string-frequency pairs retained varies with
the summary structure. At run time, one existing technique
for estimating the selectivity of a string predicate R. A like %
s % 1nvolves two parts:

(1) parsing the query string s nto possibly overlapping
substrings s,, . . . , s, whose frequencies can be looked
up 1n the summary structure, and

(11) combining the selectivities of the overlapping sub-
string predicates to estimate the selectivity of the
original query predicate.

To combine the selectivity of the substring predicates,
existing techniques mainly rely either on an independence
assumption or on a Markov assumption. The independence
assumption assumes that the selectivity of a string predicate
R.A like % s; % 1s independent of that associated with s,, for
all 1=1. The Markov assumption assumes that the selectivity
of a string predicate R.A like % s, % depends only on that

of R.A like % s,_,%.

The paper Krishnan et al., Estimating alphanumeric selec-
tivity in the presence of wildcards, Proc. 1996 ACM SIG-
MOD Intl. Cont. on Management of Data, pp 282-293, 1996
(herein “Krishnan paper”) discloses one approach to esti-
mating selectivity. The Krishnan paper discloses the use of
sullix trees for summarizing string values 1n a column. For
a given relational attribute, a suilix tree 1s built to maintain
frequencies of all suflixes of attribute values. The suihx tree
1s pruned so that it {its 1n the allocated amount of space. The
pruned suilix tree retains only the most frequent substrings
of attribute values. For estimating the frequency of a query
string s, the Krishnan paper discloses dividing a given
substring s 1nto disjoint strings s,, . . . , s, such that each
substring s, occurs in the sufhx tree. The Krishnan paper
assumes that an attribute value containing s, as a substring 1s
independent of the attribute value containing some other
substring s,. The estimated selectivity of the initial string is
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2

the product of the selectivities of the s, . . . , s, substrings.
The Krishnan paper considers weighted combinations of
estimates of suthxes, where the weight of an estimate 1s
proportional to a sullix’s length.

The paper Jagadish et al., Substring selectivity estimation,
Proc. of the 187 ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principals of Database Systems, pp. 249-260,
1999, (herein “Jagadish substring selectivity estimation
paper’) discloses relaxing the independence assumption
relied upon 1n the Krishnan paper. The Jagadish substring
selectivity estimation paper relies on the Markovian “short
memory”” assumption. According to Markovian assumption,
the probability of an attribute value v containing a substring
s.., only depends on attribute values v containing substring
s, and not on the earlier substrings. Furthermore, the Jaga-
dish substring selectivity estimation paper allows adjacent
substrings to overlap.

The paper Jagadish et al., Multi-dimensional substring
selectivity estimation, Proc. of the 25% Intl. Conf. on Very
Large Data Bases, pp. 387398, 1999 discloses adapting the
methods disclosed in the Krishnan paper and the substring
selectivity estimation paper to multi-attribute string predi-
cate estimation by constructing one suflix tree per attribute.
The paper Chen et al., Selectivity estimation for Boolean
queries, Proc. of the 19 ACM SIGMOD-SIGACT-SI-
GART Symposium on Principles of Database Systems, pp
216225, 2000 (herein “Chen paper”) discloses estimating
selectivities of Boolean queries involving string predicates
potentially over multiple attributes. The Chen paper also
enhances the pruned suilix trees by maintaining summary
vectors with each node. The summary vector of a node
represents a “signature” of all tuples with the node’s asso-
ciated string as a substring. These summary vectors can be
used to combine selectivity estimates of individual terms in
a Boolean query predicate.

The paper Aboulnaga et al., Estimating the Selectivity of
XML path expressions for internet scale applications, Proc.
of the 277 International Conference on Very Large Data
Bases, pp. 591-600, 2001 (herein “the Aboulnaga paper™)
discloses using Markov tables over XML tag sequences as
the summary structure for the problem of estimating the
selectivity of simple XML path expressions consisting of
XML tags. A Markov table of XML tags for an XML data
set records the selectivity of all possible sequences of tags of
length not exceeding a pre-specified constant q. The value of
the constant q determines the amount of space required to
store the Markov table. The Aboulnaga paper also proposes
techniques for pruning the Markov tables so that they do not
require more than some given amount of space. The paper
Lim et al., An on-line self tuning Markov histogram for XML
path selectivity estimation, Proc. of the 28” International
Conference on Very Large Data Bases, pp. 442-433, 2002
discloses improving the pruning of the Markov tables by
retaining the selectivity of substrings that are frequently
used 1n a representative workload.

There 1s a need for a selectivity estimation technique that
overcomes the underestimation problem associated with
existing selectivity estimation techniques.

SUMMARY

The present disclosure concerns a method of estimating
selectivity of a given string predicate 1n a database query. In
the method selectivities of substrings of various substring
lengths are estimated. For example, the selectivity of sub-
strings between length 1 (or some constant q) and the length
of the given string predicate may be estimated. The method
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then selects a candidate substring for each substring length
based on estimated selectivities of the substrings. The esti-
mated selectivities of the candidate substrings are combined.
The combined estimated selectivity of the candidate sub-
strings 1s returned as the estimated selectivity of the given
string predicate.

In one embodiment, selectivity information for the data-
base 1s stored 1n a summary structure. The selectivity
information stored in the summary structure i1s used to
estimate the selectivities of the substrings of various lengths.
One summary structure that may be used 1s referred to as a
g-gram table. A g-gram table 1s constructed for substrings of
a given maximum length. A g-gram table stores the sub-
strings 1n selected attribute fields a database up to the given
maximum length q and the selectivity of each stored sub-
string. In one embodiment, a markov estimator uses the
selectivity information of the summary structure to estimate
the selectivities of the substrings of various substring
lengths.

In one embodiment, a candidate substring 1s the substring
with a lowest actual or estimated selectivity at each length.
When a g-gram table 1s the summary structure, the actual
selectivity can be calculated for the substrings that have
lengths less than or equal to the maximum length q.

In one embodiment, characteristics of string values and/or
a workload of queries are used to combine the estimated
selectivities of the candidate substrings. The characteristics
and workload information 1s used to learn a function for
assigning weights to each length of candidate substring. In
one embodiment, actual selectivities of substrings of queries
from an expected workload are calculated as are estimated
selectivities of the substrings of the queries from the
expected workload. The actual selectivities and the esti-
mated selectivities of the substrings from the workload
queries are used to learn a function for assigning weights
used to combine the candidate substrings. In one embodi-
ment, regression trees are used to assign weights for each
substring length to combine the candidate substrings.

These and other objects, advantages, and features of an
exemplary embodiment are described 1in conjunction with
the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a schematic depiction of a computer system used
in practicing an exemplary embodiment of the disclosed
method;

FIG. 2 1s a flow chart that 1llustrates a method of esti-
mating selectivity of a string predicate when a length of a
shortest 1dentifying substring can be found;

FIG. 3 1s a flow chart that illustrates a method for
estimating the selectivity of a string predicate;

FIG. 4 1s a schematic illustration of a general framework
for estimating the selectivity of a string predicate;

FIG. 5 1s an 1llustration that shows selection of candidate
substrings of various lengths;

FIG. 6 1s an illustration of an example of a regression tree;

FIG. 7 1s a flow chart that illustrates combiming of
candidate substrings to estimate selectivity of a given string;
and

FI1G. 8 1s an illustration of an example of a regression tree.

DETAILED DESCRIPTION

Exemplary Operating Environment
FIG. 1 and the following discussion are intended to
provide a brief, general description of a suitable computing,
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environment in which the invention may be implemented.
Although not required, the invention will be described 1n the
general context of computer-executable mstructions, such as
program modules, being executed by a personal computer.
Generally, program modules include routines, programs,
objects, components, data structures, etc., that perform par-
ticular tasks or implement particular abstract data types.
Moreover, those skilled 1n the art will appreciate that the
invention may be practiced with other computer system
configurations, including hand-held devices, multiprocessor
systems, microprocessor-based or programmable consumer
clectronics, network PCs, minicomputers, mainirame com-
puters, and the like. The imnvention may also be practiced in
distributed computing environments where tasks are per-
formed by remote processing devices that are linked through
a communications network. In a distributed computing
environment, program modules may be located 1n both local
and remote memory storage devices.

With reference to FIG. 1, an exemplary system for imple-
menting the invention includes a general purpose computing
device 1n the form of a conventional personal computer 20,
including a processing unit 21, a system memory 22, and a
system bus 24 that couples various system components
including system memory 22 to processing unit 21. System
bus 23 may be any of several types ol bus structures
including a memory bus or memory controller, a peripheral
bus, and a local bus using any of a variety of bus architec-
tures. System memory 22 includes read only memory
(ROM) 24 and random access memory (RAM) 25. A basic
input/output system (BIOS) 26, contaiming the basic routines
that help to transfer mformation between elements within
personal computer 20, such as during start-up, 1s stored in
ROM 24. Personal computer 20 further includes a hard disk
drive 27 for reading from and writing to a hard disk, a
magnetic disk drive 28 for reading from or writing to a
removable magnetic disk 29 and an optical disk drive 30 for
reading from or writing to a removable optical disk 31 such
as a CD ROM or other optical media. Hard disk drive 27,
magnetic disk drive 28, and optical disk drive 30 are
connected to system bus 23 by a hard disk drive interface 32,
a magnetic disk drive mterface 33, and an optical drive
interface 34, respectively. The dnives and their associated
computer-readable media provide nonvolatile storage of
computer-readable instructions, data structures, program
modules and other data for personal computer 20. Although
the exemplary environment described herein employs a hard
disk 27, a removable magnetic disk 29 and a removable
optical disk 31, 1t should be appreciated by those skilled 1n
the art that other types of computer-readable media which
can store data that 1s accessible by computer, such as random
access memories (RAMSs), read only memories (ROMs), and
the like may also be used in the exemplary operating
environment.

A number of program modules may be stored on the hard
disk 27, magnetic disk 29, optical disk 31, ROM 24 or RAM
235, including an operating system 35, one or more applica-
tion programs 36, other program modules 37, and program
data 38. A database system 55 may also be stored on the hard
disk, magnetic disk 29, optical disk 31, ROM 24 or RAM 25.
A user may enter commands and information into personal
computer 20 through mput devices such as a keyboard 40
and pointing device 42. Other input devices may include a
microphone, joystick, game pad, satellite dish, scanner, or
the like. These and other mput devices are often connected
to processing unit 21 through a serial port interface 46 that
1s coupled to system bus 23, but may be connected by other
interfaces, such as a parallel port, game port or a universal



Us 7,149,735 B2

S

serial bus (USB). A monitor 47 or other type of display
device 1s also connected to system bus 23 via an interface,
such as a video adapter 48. In addition to the monitor,
personal computers typically include other peripheral output
devices such as speakers and printers.

Personal computer 20 may operate in a networked envi-
ronment using logical connections to one or more remote
computers, such as a remote computer 49. Remote computer
49 may be another personal computer, a server, a router, a
network PC, a peer device or other common network node,
and typically includes many or all of the elements described
above relative to personal computer 20, although only a
memory storage device 50 has been 1llustrated in FIG. 1. The
logical connections depicted in FIG. 1 include local area
network (LAN) 51 and a wide area network (WAN) 52. Such
networking environments are commonplace in offices, enter-
prise-wide computer networks, intranets, and the Internet.

When using a LAN networking environment, personal
computer 20 1s connected to local network 51 through a
network interface or adapter 53. When used in a WAN
networking environment, personal computer 20 typically
includes a modem 54 or other means for establishing com-
munication over wide area network 52, such as the Internet.
Modem 34, which may be internal or external, 1s connected
to system bus 23 via serial port interface 46. In a networked
environment, program modules depicted relative to personal
computer 20, or portions thereof, may be stored 1n remote
memory storage device 50. It will be appreciated that the
network connections shown are exemplary and other means
of establishing a communications link between the comput-
ers may be used.

Overview of Approach for Overcoming the Underestima-
tion Problem

The independence and Markov assumptions may not be
accurate 1n many real scenarios where the selectivity asso-
ciated with a string 1s close to that of some of 1ts substrings.
In other words, these assumptions lead to poor selectivity
estimates for a predicate R.A like % s % 11 the real selectivity
1s close to the selectivity of R.A like % s' % {for a strict
substring s' of s. For example, the selectivity of the substring
predicate R.A like % eatt % may be almost the same as the
selectivity of R.A like % seattle %. In this example, esti-
mators based on the independence or Markov assumptions
may severely underestimate the true selectivity of the seattle
predicate. The existing estimators based on the indepen-
dence or Markov assumptions over-compensate for the
additional characters not 1n “eatt” (1.¢. “s” and “le”) and thus
return a small fraction of the selectivity of R.A like % eatt
%. These existing techniques would typically multiply the
estimated selectivity of “eatt” by the selectivity of the
additional characters and therefore underestimate the selec-
tivity of “seattle.”

This disclosure develops a short i1dentifying substring
hypothesis that 1s used in the method to estimate selectivity.
In the short 1dentifying substring hypothesis a query string
s usually has a “short” substring s' such that i1t an attribute
value contains s'" then the attribute value almost always
contains s as well.

If a “minimal” identifying substring s' of a query string s
could be 1dentified, good quality selectivity estimates could
be produced for the query predicate involving s by instead
estimating the selectivity of a substring s'. For example,
existing estimators (e.g., a Markov estimator) could be used
to return the selectivity estimate for R.A like % eatt % as the
selectivity of the original predicate R.A like % seattle %.
This strategy would help overcome the underestimation
problem of conventional estimators by focusing on a shorter
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substring with close to the same frequency as the original,
longer query string. One step 1n this strategy 1s to accurately
identily the shortest identifying substring, which 1s a chal-
lenging task 11 only limited statistics are available. Referring
to FIG. 2, the method assumes that the length L. of the
shortest 1dentifying substring could be 1dentified 100 in one
embodiment. In this case, the method could simply estimate
102 the selectivity of all substrings of length L and return
104 the mimimum estimate as the selectivity estimate for the
original predicate, exploiting the fact that the selectivity of
a string cannot be larger than that of any of i1ts substrings.

However, length L of the shortest identifying substring 1s
not generally known when only limited frequency statistics
are available. Referring to FIG. 3, the selectivities of sub-
strings of varying predetermined lengths are estimated 106.
The method 1dentifies multiple candidate identifying sub-

strings of a given string s. One candidate substring of each
possible length between 1 (or constant q defined below) and
the length Isl of the given string 1s selected. The estimates of
the candidate substrings are then combined 110. The com-
bined estimates are returned 112 as the selectivity estimate
for the given string s.

In the exemplary embodiment, the disclosed method
adapts to characteristics of string values in the relation
and/or 1n a query to combine substring selectivity estimates.
I substrings of an attribute value 1n a given relation vary
drastically across tuples, then the selectivity of a string
predicate over this attribute 1s likely to closely correlate with
some of 1ts associated substrings. For example, queries that
involve key words of paper titles over the column consisting
of all paper titles 1n a database of technical papers are likely
to closely correlate with some substrings of the paper titles.
In contrast, if string values from different tuples share all but
the last few characters, then the selectivity correlation will
tend to be weaker. Queries over a column consisting of all
part identifiers within an enumerable range could be such an
example. To adapt to variability in correlations, which might
even be observed within a single data set, the disclosed
method exploits query workloads to learn an appropnate
combination model for the selectivity estimates of candidate
identifying substrings over a particular database. The model
1s then applied at run time to estimate the string predicate
selectivity.

FIG. 4 1llustrates the disclosed method’s general estima-
tion framework. The choice of summary structure 114 and
learned combination model 116 1s largely orthogonal to that
of the combination framework. The summary structure is
used to choose 108 candidate substrings. The learned com-
bination model 116 1s used to combine 110 the selectivities
of the candidate substrings. In the disclosed embodiments,
Markov tables and regression tree models are used as the
summary structure and learning model respectively. It
should be readily apparent that other summary structure and
learning models could be used without departing from the
spirit and scope of the present invention.

Notation Used 1n Disclosure

In this disclosure R.A 1s used to denote the attribute A 1n
a relation R. t[A] 1s used to denote the value 1n attribute R. A,
of a tuple t. X 1s a finite alphabet of size 12| such that values
in the attribute R.A are drawn from X. The symbol %’ not
in 2 denotes a wildcard character, which 1s used for speci-
tying predicates. s in X 1s a string of length Isl. In this
disclosure, s denotes a query string.

In this disclosure, the following notation 1s used for
extended strings. # and $ are two symbols not in the alphabet
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2. 1ven a string s, the extended string ext(s) 1s obtained by
prefixing s with # and suffixing it with $ For example,
ext(“seattle”)="#seattle$.

In this disclosure, the following notation 1s used for unit
predicates. A predicate of the form “R.A like [%]s[%]
where s does not contain the wildcard character % 1s called
a umt predicate. The presence of wildcard characters at the
beginning and at the end of the predicate 1s optional (sig-
nified by enclosure within square brackets). A unit predicate
whose first character i1s not the wildcard character 1s called
a prefix predicate. That 1s, the predicate requires the query
string to be at the beginning of an attribute value. A unit
predicate whose last character i1s not the wildcard character
1s called a suflix predicate. That 1s, the predicate requires the
query string to be at the end of an attribute value.

To simplily the handling of prefix and suilix predicates,
the disclosed method conceptually replaces each attribute
value v in R.A with its extended string ext(v)="#v$”. Then,
the disclosed method regards a prefix predicate “R.A like s

%’ as equivalent to predicate R.A like %f#s %™, and a suihix
predicate “R.A like % s as equivalent to “R.A like % s$ %”.

The remainder of this disclosure assumes that all attribute
values 1n R.A are replaced with their extensions, and that we
transform prefix and sullix predicates as disclosed above.
This disclosure may refer to a predicate “R.A like % s %”
simply as “% s % whenever the attribute R A 1s clear from
the context or unimportant for the discussion.

In this disclosure, the following notation 1s used for
predicate matching. A tuple t 1s said to satisiy or match a unit
predicate “R.A like % s % 1 s 1s a substring of t[A].

In this disclosure, the following notation 1s used for
frequency: The frequency 1{(p) of a unit predicate p 1s the
number of tuples 1n relation R that match p. The selectivity
of predicate p 1s equal to 1(p)/IRI. The frequency 1(s) of a
string s over an attribute R.A as equivalent to 1(*“R.A like %
s %”). The selectivity of a string s 1s defined as the
selectivity of “R.A like % s % and the selectivity of a string
s as the selectivity of % s %.

In this disclosure, the following notation 1s used for
(Q-gram tables. q 1s a positive integer. Any string of length
q in (ZU{S,#})* is called a g-gram. A g-gram table QT
(R.A) for attribute R.A 1s a lookup table with the frequency
f(s,) over R.A of each n-gram s, where 1=n=q. That 1s, the
g-gram table consists of the frequency of all n grams of
length g or less.

In this disclosure, the following notation 1s used for
Q-gram sequences: The g-gram sequence Q_(s) of a string s
with no wildcards 1s the ordered sequence of all (overlap-
ping) g-grams that are substrings of s. For example, Q,(*se-
attle”) 1s [sea, eat, att, ttl, tle].

Use of Existing Estimation Techniques

In the exemplary embodiment, the method employs an
existing estimation technique to estimate the selectivity of
strings or substrings of given lengths when the selectivity
cannot be determined directly from the summary structure.
These estimated selectivities are used to select candidate
substrings. In one embodiment, a Markov estimator 1s used.
A Markov estimator ME models the selectivity of a umit
predicate R.A like % s % as the probability of observing the
sequence of all g-grams 1n Q_(s) consecutively in R.A
values. For example, for g=3 the selectivity associated with
% novel % 1s the probability of observing the sequence
Q;(novel)=[nov, ove, vel]. The computation of this prob-
ability 1s simplified by making the Markovian “short
memory” assumption, which states that the probability of
observing a g-gram 1n the sequence depends only on the
g-gram immediately preceding 1t, and 1s independent of all
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other preceding g-grams. More formally, let % s % be a
query predicate. If the g-gram sequence of the string s 1s
Q.(8)=1q;, - - -, qil, the probability ot observing q;,, given
J;, . - - » g, under the Markovian assumption 1s equal to the
probability of observing q,., given q,. Consequently, if
P(q,.,lq;,, . . ., q,) denotes the probability of observing q,.
immediately after q,, . . . , q, then the selectivity of % s %
1s computed as:

Pl ) Pgslq,) - - - Plg;lqy, - - -, q;) - - - "Pg,lqy,
s )T ) PgRlgy) - Pglg)
.P(qn|qn—l)

P(q,lq,_,) 1s the fraction of tuples containing the common
substring cs(q,_,, q,_,) of q,_;, and q, as well as q. This
fraction 1s computed using 1(q,)/1(cs(q,_,,q,)), where 1(cs(q,_
1,q,) 1s the frequency of the common substring cs(q,_;.,q,).
For example, the selectivity of the predicate novel 1s com-
puted as follows. The 3-gram sequence of “novel” 1s [nov,
ove, vel]. The selectivity of % novel % 1s then estimated as:
P(nov)-P(ovelnov)-P(vellove)=I(nov)/N-1(ove)/f{ov)-1(vel /T
(ve), where N 1s the number of tuples. There 1s a multipli-
cative relationship between the selectivities of predicate %
s' % and % s %, where s' 1s a strict substring of s. In other
words, the selectivity of % s % 1s obtained by multiplying
the selectivity of % s' % with conditional probabilities of
observing the additional g-grams of s 1 sequence. Conse-
quently, 1f the selectivities of % s' % and % s % are close,
then the ME selectivity estimator of % s % 1s usually an
underestimate. In this disclosure, the selectivity estimated
using this Markov estimator 1s referred to as the ME-
Selectivity:

In one embodiment, a g-gram QG estimator 1s used. The
g-gram estimator relies on q-gram frequency tables to derive
an upper bound on the selectivity of a unit predicate. The
rationale behind this estimator 1s that the selectivity of a
predicate % s % can never exceed that of % s' % for any
substring s' of s. In particular, the selectivity of each g-gram
of s 1s an upper bound on the selectivity of % s %. The
g-gram estimator returns the minimum selectivity of g-gram
of string s as an upper bound on the selectivity of % s %. For
the example relation i Table 1, the QG-Selectivity of %
novel % is QG(% novel %)=min(f(nov). flove), f(vel)}/
5=0.2.

TABLE 1

Attribute values and their g-gram sequences

R.A Extended g-gram sequences (q = 3)
Novel #no, nov, ove, vel, el$]

Article #Har, art, rti, tic, icl, cle, le$]

Paper #pa, pap, ape, per, er$]

Journal #jo, jou, our, urn, rna, nal, al$]
magazine #ma, mag, aga, gaz, azi, Zin, ine, ne$|

Using Short Identitying Substring Would Reduce Under-
estimation

In one embodiment, the builds upon a hypothesis that
most query and attribute string values tend to have ““short™
substrings whose frequency in the underlying relation 1s
close to the enclosing string. This hypothesis 1s formalized
by defining the notion of a short 1dentitying substring.

A short 1dentitying substring may be i1dentified in the
following way. Consider a unit predicate R.A like % s %. A
substring s' of s 1s an (€, 3) 1dentifying substring, for 0= e<]
and O<[3<1, where [ denotes the relative selectivities of s and
s' and € denotes the relative lengths of s and s', 1f:



Us 7,149,735 B2

9

(1) the selectivity of R.A like % s' % 1s less than (I+€)
times that of R.A like % s % (1.e., the selectivity of s' 1s close
to the selectivity of s), and

(11) Is'I=p-s I (1.e., s 1s longer than s' by at least a factor of
1/3).

For example, 11 “ove” 1s a (0, 0.6) identifying substring of
the string “novel” for the attribute values 1n Table 1, the
selectivity of % novel % 1s exactly the same as that of %ove

% (hence €=0), and “ove” 1s a strict substring of “novel” of

length 3=0.6-5 (hence [=0.6).

Whenever query predicates have short identifying sub-
strings, then the Markov estimator tends to underestimate
the true selectivities. If 1t 1s likely that the Markov estimator
1s accurate for a short identifying substring s', then the
ME-Selectivity ME(s") of any super-string s" of s' 1s less
than ME(s'). ME(s") 1s obtained by multiplying ME(s') with
additional conditional probability factors. The margin of
underestimation grows as {3, the ratio of the lengths of the
substring and the query string decreases.

The example of Table 2 illustrates the i1dentifying sub-
string hypothesis using a variety of data sets and queries.
The following illustrative data sets are used in the example:

(1) organization names column (ON) from a relation
consisting of corporate customers,

(1) author names column (AN) of all papers in a database
of technical papers,

(111) paper titles column (PT) of all papers in the database
of technical papers.

The sizes and the average numbers of tokens (words
separated by white space characters) and characters per tuple
in all three 1llustrative data sets are given in the table below.
These statistics 1llustrate the variety 1n characteristics across
data sets. The strings i paper titles column P1T are much
longer than those 1n either organizational names column ON
or author names column AN.

TABLE 2
Example
Average per tuple
Data set Size #Tokens #Chars
Organization Names (ON) 13,495 3.16 25.74
Author Names (AN) 680,465 2.36 15.84
Paper Titles (PT) 313,974 8.05 63.72

For each of these data sets, the method generates query
predicates by randomly selecting a word that occurs 1n any
of the tuples. For example, 1f w 1s a word 1n attribute A of
a tuple, the method generates a query predicate “A like % w
%.” Further, the method restricts the choice of words to
“popular” words, with frequency of at least some threshold,
say 100. The method denotes the set of query predicates
obtained from the words in data set x with frequency Y or
higher as X_1Y. When the frequency threshold 1s 0 (1.e.,
when all words are eligible), the method drops the suilix
“ 10.” In the example, the following query data sets are
used:

ON (386 queries),
ANJ100 (1863 queries),
ANI500 (293 queries),
PTJ100 (2638 queries),
and PTI500 (667 queries).

In addition, 1n the example AN-First and AN-Last are also
considered, mnvolving queries over the first and last names of
authors, respectively.
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The following 1s a validation experiment for this example.
Table 3 shows the distribution of the shortest identifying
substrings ol query tokens when € 1s set to e=0.03, that 1s,
the selectivity of the 1dentifying substring has to be within
5% of the selectivity of the query string. Given this value,
the method determines the smallest p value for which the
query string has an 1dentifying substring.

The “average length” column 1n Table 2 1s the average
number of characters 1n each query. The next two columns
are the average and standard deviation of 3 values given the
e value. Fach of the subsequent columns 1s marked by a
number (3, 4, etc.). A value v in the column marked by a
number n indicates that v % of the query strings have a
substring of length less than or equal to n whose selectivity
1s within 5% of the selectivity of the query string.

The mean and standard deviation of 3 values 1n Table 2
show that 3 values may vary across data sets (around 0.6 for
ON, around 0.7 for AN, and around 0.6 for P7). Even within
the same data set and query workload, the standard deviation
of [ 1s high. Further, around 50% to 70% of the queries
considered have identifying substrings (when €=0.05) of
length less than or equal to 4, and around 70% to 90% of
queries have unique substrings of length less than or equal
to 5. Therefore, for high frequency query predicates, tradi-
tional estimators are likely to return severe underestimates.

TABLE 3

Values of B for € = 0.05

Query Avg. b

Set Length Mean S.D. 3 4 5 6 7
ON 7.82 0,59 0.17 21.9 640 91.9 985 99.4
AN-First 584 074 0.10 23,7 635 93.0 984 99.5
AN-Last 6.19 0,72 0.12 224 583 90.3 985 99.7
AN_ 100 6.11 0,72 0.11 223 601 91.2 984 99.5
AN__ 500 5.71 0.72 0.11 293 731 950 987 99.9
PT__f100 8.23 0.63 0.15 17.7 485 733 R86.6 92.6
PT__500 8.08 0.60 0.15 19.0 574 788 879 95.2

Exemplary Estimation Algorithms

Exemplary algorithms for estimating selectivities of
string predicates are set forth here. A supporting summary
structure like a g-gram table QT _(R.A) for an attribute R.A
are used 1n the exemplary embodiment. The construction of
these supporting structures 1s disclosed below. This section
of the disclosure discusses estimation algorithms for unit
predicates of the form R.A like % s %. Later in this
disclosure, the discussion extends the estimation algorithms
to cover general wildcard predicates, as well as range
predicates.

The rationale for the exemplary technique for estimating
selectivity of string predicates expands the short identifying
substring hypothesis. It would be desirable to correctly
guess a “minimal” 1dentifying substring of a query string s.
An example of a minimum 1dentifying substring might be
the substring “eatt” for the string “seattle.” An 1dentifying
substring of s 1s minimal 11 1t does not strictly contain
another 1dentitying substring of s. If such a minimal 1den-
tifying substring could be found, the method could use
existing estimating techniques (e.g., the Markov estimator)
to compute the selectivity associated with just this minimal
identifying substring and return 1ts selectivity estimate as the
selectivity of the oniginal predicate, thus alleviating the
selectivity underestimation problem. For example, the selec-
tivity estimate of R.A like % eatt % can be returned as that
of R.A like % seattle %. However, having only limited




Us 7,149,735 B2

11

statistics on frequencies of substrings available makes cor-
rectly guessing a minimal i1dentifying substring for a given
string predicate 1s very hard.

Referring to FIGS. 3 and 4, the present method selects 108
multiple candidate 1dentifying substrings, one for each value
of substring length between g (length constant of the g-gram
table) and the string length Isl 1n the exemplary embodiment.
Exact selectivities of all g-grams are available from the
q-gram table QT _(R.A). Using the q-gram table, the method
can precisely determine the best candidate i1dentifying
g-length substring, whose selectivity 1s guaranteed to be at
least as high as that of the query string. Therefore, shorter
identifving substrings that can only have even higher selec-
tivities cannot be better identifying substrings (1.e., have a
lower €) than the best identifying g-gram. Hence, the method
does not consider 1dentifying substrings shorter than length
q. For each length between q and Isl, the method finds the
substring of that length most likely to be an identifying
substring. Finally, the method combines 110 the selectivity
estimates of the chosen candidate 1dentiiying substrings for
cach length using a combination function. In one embodi-
ment, the combination function 1s a regression tree model;
This general approach requires that the method specity:

(1) how candidate identifying substrings are identified,
and

(11) how to define the combination function.

These two 1ssues are discussed below.

Identifying Candidate Substrings

To estimate the selectivity associated with a string s, the
method chooses one potential candidate i1dentifying sub-
string for each length “level” between length g and length Isl.
Level 1 consists of all substrings of s of length q+1. For
example, FIG. 5 shows the substrings for predicate % novel
% organized by level for length g=3. Level 0 includes all
substrings of length 3 (e.g., nov). Level 1 has all substrings
of length 4 (e.g., nove). Finally level 2 consists only of the
string of length 5 (1.e., novel).

At each level, the method focuses on the substring that 1s
most likely to be an identifying substring of the original
query string. The selectivity of any substring 1s no smaller
than that of the query string. In the exemplary embodiment,
the method chooses the substring at each level with the
smallest estimated (or actual at level 0) selectivity. The
selectivities of level 0 substrings (1.e., of substrings of length
q) can be dertved precisely from the g-gram table QT q(R.A)
for relation attribute R.A. In the exemplary embodiment,
higher levels rely on selectivity estimates when exact Ire-
quency statistics for strings longer than g characters are not
available. The method can exploit any selectivity estimation
technique, such as Markov or QG estimators, that 1s con-
sistent with the frequency statistics for this task. When the
Markov estimator 1s used the method chooses the substring
with the smallest ME Selectivity at each level. For the
example, FIG. § shows 1n bold the substring that 1s picked
at each level according to the Markov selectivity estimates
if “nove” and “ove” have the smallest selectivities at levels
1 and O respectively.

Combining the Candidate Substrings

If the length L. of a minimal identifying substring for a
query predicate % s % were known, the method could then
just estimate the selectivity of the predicate as the estimate
for the chosen substring of level L-q. Because this length L
1s not generally available, the method derives 1ts selectivity
estimate for string % s % by combining the selectivity
estimate from each length level candidate substring. In the
exemplary embodiment, rather than assigning each level
some constant or uniform weight in this combination, the

10

15

20

25

30

35

40

45

50

55

60

65

12

method 1nstead learns the level weights from the data sets
and expected query workload. The rationale behind this
decision 1s that different data set-query workload combina-
tions result 1 different average minimal identifying sub-
string lengths. In the exemplary embodiment, the combina-
tion function adapts to the data characteristics and the
correlations between the query string and substring selec-
tivities. In one embodiment, the method learns the level
welghts by calculating actual selectivities of substrings of
queries from an expected workload and determining esti-
mated selectivities of the substrings of queries from the
expected workload. The actual selectivities and estimated
selectivities from the workload are compared to learn a
function for assigning the level weights.

In one embodiment, a combination function for the level
selectivity estimates 1s learned from a representative training
query workload by using a variety of machine learning tools.
This disclosure discusses regression trees. However, other
combination methods can be employed without deviating
from the basic strategy. Referring to FIG. 4, the regression
tree 1s trained 1n the exemplary embodiment. After training,
the regression tree produces the selectivity estimate CRT(s)
for a query string % s % from the selectivity values of the
candidate substrings at each length level. The regression tree
computes CRT(s) as a non-linear combination of the mput
selectivity values, weighting each level as determined dur-
ing training.

In the disclosed embodiment, regression tree models are
used for modeling dependencies between selectivities of a
string and 1ts substrings. The papers Breiman et al., Clas-
sification and regression trees, Wadsworth, Belmont, Calif.,
1984 and Loh, Regression trees with unbiased variable
selection and interaction detection, Statistica Sinica,
12:361-386, 2002, which are incorporated by reference 1n
there entirety provide a detailed discussion of regression tree
models.

A relation R may have numerical attributes X, . .., X,
Y, of which attribute Y 1s designated as the dependent
attribute, while attributes X,, . . . , X are the predictor
attributes. A regression tree RT on relation R 1s a tree-
structured model for describing the dependent attribute Y 1n
terms of the predictor attributes X, . .., X . FEach leat node
n in the tree is associated with a function £ {X,, ..., X )
that predicts the value of Y given the valuesof X, ..., X .
The nature of the function I, may vary in complexity. For
example, possible functions include a constant function,
linear combinations of predictor attributes, or a quantile
regression function over predictor attributes. Each edge e
originating from a non-leaf node n has a predicate p asso-
ciated with it. For any relation tuple, exactly one of these
predicates evaluates to true.

Given a tuple [x,, . . ., X_, NULL] whose Y value 1s
unknown, the method traverses the regression tree RT start-
ing from 1ts root until a leat node n 1s reached by following
edges whose associated predicates evaluate to true for the
tuple. At the leat node n, in(X, ..., X ) 1s the RT predictor
of the Y value for the tuple.

FIG. 6 shows an example of a regression tree 130 con-
structed from a relation with three attributes, Age, Salary,
Expenditure, where Age and Salary are the predictor
attributes, and ':Xpenditure 1s the dependent attribute. The

illustrated regression tree 1s used to predict expenditure. The
iput tuple [21, 30K, NULL] 1s “routed” to leaf node 4, so

the predicted expenditure 1s O.5-30K+100-21-10=17,090.
For the selectivity estimation problem, the disclosed

method attempts to minimize the amount of space required

to store the g-gram tables and other auxiliary structures.
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Hence, smaller regression trees are preferred. The paper
Chaudhun et al., Nonparametric estimation of conditional
quantities using quantile regression trees, Bernoully,
8:561-576, 2002 discloses that quantile regression trees
(1.e., regression trees that employ quantile regression func-
tions at leal nodes) tend to be smaller in size and more
accurate than other types of regression trees. (Quantile
regression models the quantile distribution of the dependent
attribute with respect to the predictor attributes. In one
embodiment, quantile regression trees are used 1n the dis-
closed estimation framework. Other models can be used
without changing the general strategy.

A regression tree takes as input a fixed number of pre-
dictor attribute values and returns an estimate value for the
dependent attribute. In the exemplary embodiment, selec-
tivity estimates are mput to the regression tree. The number
of selectivity estimates that are passed as mput to the
regression tree depends on the length of the query string. To
handle this varnability in input size, the regression tree
estimation module 1s “wrapped” to accept a variable-sized
estimate sequence. During training, the number of predictor
values that the tree will expect as the average length of the
estimate sequences for the traiming queries 1s fixed. Then, the
regression tree “wrapper” pads shorter estimate sequences
with 0’s, while 1t “shrinks™ longer estimate sequences by
collapsing the selectivity estimates for the largest “levels.”
For example, the maximum selectivity estimate may be
taken for the largest levels.

FIG. 7 summarizes the selectivity estimation process.
Candidate selectivity estimates are provided to the regres-
sion tree wrapper 120. The regression tree wrapper provides
predictor values to the regression tree 122. Using the pre-
dictor values as mnput, the regression tree provides a selec-
tivity estimate for the string predicate.

As an example, consider the regression tree 140 combi-
nation in FIG. 8 and the query predicate % novel %. In the
example, the three chosen candidate 1dentifying substrings
for this query are ove, nove, and novel. The final selectivity
estimate for the query using the regression tree in FIG. 8 1s
0.4-SelectivityEstimate(% ove  %)+0.3-SelectivityEsti-
mate(% nove  %)+0.05-SelectivityEstimate(%  novel
%)—-0.01, because the length of the original query string (i.e.,
“novel”) 1s 5.

The regression trees mntroduce some overhead in the
selectivity estimation process. The method needs to learn the
combination model from a training set of representative
example queries. The cost of actually traversing the regres-
sion trees while estimating selectivities at run time 1s neg-
ligible, since the regression trees tend to be shallow.

Extending Estimation Algorithms to Other Predicate
lypes

To this point, this disclosure has focused on unit predi-
cates. Estimation of the selectivity of a more general class of
wildcard predicates, as well as of range queries 1s discussed
below. A predicate of the form “R.A between s,[%] and
s,[ %], where s, and s, do not contain the wildcard character
“%’, 1s called a range predicate. A range predicate “between
s,% and s,% can be expressed as the sum of several prefix
predicates, one for each string between s, and s, 1n lexico-
graphic order. These prefix predicates can be collapsed to a
relatively small number of prefix predicates. The selectivity
of many of these prefix predicates can be answered exactly
from the g-gram table. Consider as an example the range
predicate “between abcz % and daab %.” The method can
estimate the selectivity of this predicate as the sum of the
selectivities of the disjoint prefix predicates abcz %,

abd %, ..., abz %, ac %, ..., az %, b %, ¢ %, daaa %. In
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this example the method collapses all strings starting with
“abd” 1nto the predicate “abd %, whose selectivity can be
derived precisely from the frequency of the “abd” 3-gram.

As a variation, when the method processes a range
predicate “between s,% and s,%” the method can simply
ignore all longer prefix predicates between s, % and s,%
whose exact selectivity cannot be derived from the g-gram
table. By eliminating these predicates from consideration,
which correspond to the ends of the query range, the method
introduces less noise in the estimation process. In this

disclosure, the resulting estimator for range predicates is
referred to as RG-.. APPX.

A predicate of the form “R.A like [%]s,% . . . % s,[%]”,
where s, . .., s, do not contain the wildcard character *%’,
1s called a multi-unit predicate. The extension to multi-unit
predicates 1s similar to the g-gram estimator. The selectivity

ol each predicate % s,% 1s an upper bound on that of the
original query predicate. The method exploits this observa-
tion and returns the minimum of all the % s.% selectivity
estimates as the estimated selectivity for % s; % . . . % s, %.

Supporting Structures

In one embodiment, structure used to identily candidate
substrings and combine the candidate substrings are g-gram
tables and regression trees respectively. A g-gram table QT
q(R.A) for a relation attribute R.A stores the frequency 1n
relation attribute R.A of each string of at most q characters
from XU{$, #}. The disclosed method can construct a
g-gram table QTq(R.A) from a single scan of relation R. For
example, the g-gram table can be constructed by processing
the output of query “select R.A from R”. If C=lU{S$, #}, the
g-gram table conceptually approximately consists of
QL=C+C*+ . .. +C?=(C7'-1)/(C-1) (not necessarily non-
zero) entries. The number QL of entries 1s actually lower
than the approximate expression above, since the special
characters # and $ are restricted to only occur at the
beginning and at the end of the n-grams, respectively.
Theretore, QTq(R.A) stores at most QL frequencies. These
entries can be structured using hash tables to store the
non-zero Irequencies. Alternatively, the method can use a
dense representation in an array to avoid storing the actual
n-grams. In this case, the frequencies are ordered lexico-
graphically according to their corresponding n-grams, so
that the entry associated with a given n-gram can be readily
identified with a simple calculation.

To turther reduce the size of the g-gram table, the method
may maintain only the selectivity of “important” n-grams,
while assuming a default (average) frequency for the
remaining ones. Existing methods that may be adapted for
this are disclosed 1n the Aboulnaga paper and the Lim et al.
paper. The notion of “importance” of an n-gram may be tied
to 1ts selectivity. The higher the selectivity, the more impor-
tant the g-gram. This notion may be further adapted to
estimating selectivity of string predicates, so that n-grams
are weighted according to their usefulness for deriving
accurate selectivity estimates for a specific query workload.

To build a regression tree for a relation attribute, the
method uses a traiming set consisting ol a representative
query workload of string predicates. Such a training set 1s
typically easy to obtain. For example, such a traiming set
may be obtained from a trace collected by the profiler tool
available with most commercial database systems. Given a
training set, the method can then use standard regression tree
construction algorithms such as the GUIDE algorithm dis-
closed in the Loh paper or as disclosed 1in the Chaudhuri

paper.



Us 7,149,735 B2

15

To prepare the traiming set, the method computes the exact
selectivity of all query predicates 1n the traiming workload by
scanning the relation once. In one embodiment, this selec-
tivity computation 1s done at the same time as the g-gram
table computation. Then, for each query predicate the
method prepares an entry in the training set.

The following example 1llustrates how query string char-
acteristics are represented 1n a training set. FIG. 8 shows a
regression tree 140 for a hypothetical scenario in which he
dependence between the selectivity of substrings and the
query predicate 1s different for query strings of length less
than or equal to 5 than it 1s for query strings of length greater
than 5. The regression tree illustrated by FIG. 8 1s able to
model this by associating different combination functions to
different leal nodes, and splitting on the length of the query
string. One of the predictor values that 1s associated with
query predicates 1s then the length of the associated query
string.

The following discussion illustrates how query substring
selectivity estimates are represented 1n a training set. The
disclosed method chooses one substring per length “level,”
and computes the associated selectivity estimates, which are
ME-Selectivity estimates 1n one embodiment. The method
includes these estimates, one per level, as additional predic-
tor values associated with each query string. Rather than
using just the raw estimates, the exemplary method trans-
forms them by taking their logarithm. This way, the non-
linear dependence between these substring estimates can be
more eflectively captured by the linear combination func-
tions used at the leaf nodes of the regression tree. Recall that
the ME-Selectivity of a string s 1s obtained by multiplying
the ME-Selectivity of a smaller substring s' with the condi-
tional probability that a value contains s given that 1t
contains s'.

In the exemplary embodiment, the space overhead intro-
duced by using regression trees 1s negligible. Each non-leaf
node of the tree needs to encode the predicates associated
with its outgoing edges. In particular, quantile regression
trees as well as other typical classes of regression trees are
binary. That 1s, each internal node has only two outgoing
edges. Therefore, just two numbers, an integer for the
attribute 1dentifier and a real number for the attribute split
value, need to be maintained for the method’s setting. Each
leal node maintains a set of weights defining a linear
combination of the predictor values into the query selectivity
estimate. Regression trees on various combinations of data
sets and query workloads tend to be very shallow, and hence
require little space. Relative to the space required by the
g-gram tables, the additional space needed for the regression
trees 1s negligible.

While the present invention has been described with a
degree of particularity, 1t 1s the intent that the invention
include all modifications and alterations falling within the
spirit or scope of the appended claims.

The 1nvention claimed 1s:

1. A method of estimating selectivity of a given string
predicate of length n 1n a database query, comprising:

a) estimating selectivities of a plurality of string predicate
substrings, the plurality of string predicate substrings
including substrings of the given string predicate and
having each substring length between q to n, where
(<0,

b) categorizing each of the string predicate substrings
based on length;

¢) selecting one candidate substring for each category of
substring length based on estimated selectivities of the
substrings to obtain a plurality of candidate 1dentifying
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substrings, each candidate identifying substring in the
plurality of identifying substrings having a difierent
length between q and n;

d) combining the estimated selectivities of each of the
candidate substrings 1n the plurality of identifying
substrings; and

¢) generating the combined estimated selectivities of the
candidate substrings as the estimated selectivity of the
given string predicate.

2. The method of claim 1 further comprising storing
selectivity information for the database and using stored
selectivity information to estimate the selectivities of the
substrings of various lengths.

3. The method of claim 1 wheremn a substring with a
lowest estimated selectivity 1s selected as the candidate
substring at each length.

4. The method of claim 1 further comprising calculating,
exact selectivities of substrings of a given maximum length
and using the exact selectivities to estimate the selectivities
of the substrings of various substring lengths.

5. The method of claim 4 wherein a range of the various
substring lengths whose selectivities are estimated 1s
between the given maximum length of the substrings whose
selectivities are calculated exactly and the length of the
given string predicate.

6. The method of claim 4 wherein the candidate substring
for the length equal to the given maximum length of the
substrings whose selectivities are calculated exactly 1s
selected based on the exact selectivity of the substring.

7. The method of claim 1 whereimn a g-gram table 1s

constructed for substrings of a given maximum length and 1s
accessed to estimate selectivities of substrings of various

substring lengths.

8. The method of claim 4 wherein a markov estimator uses
the exact selectivities to estimate the selectivities of the
substrings ol various substring lengths.

9. The method of claim 1 wherein characteristics of string
values 1n a relation of the database are used to combine the
estimated selectivities of the candidate substrings.

10. The method of claim 1 wherein characteristics of a
workload of queries are used to combine the estimated
selectivities of the candidate substrings.

11. The method of claim 1 wherein a model for combining
the estimated selectivities of candidate substrings 1s learned
from query workloads.

12. The method of claim 1 wherein said model 1s applied
to the candidate substrings at run time to estimate the string
predicate selectivity.

13. The method of claim 1 wherein the given string
predicate 1s a umt predicate.

14. The method of claim 1 wherein the given string
predicate mcludes a wildcard character.

15. The method of claim 1 wherein the given string
predicate 1s a range predicates.

16. The method of claim 1 wherein weights are assigned
to each length of candidate substring to combine the selec-
tivities of the candidate substrings.

17. The method of claiam 16 wherein a function for
assigning said weights 1s learned from data sets of the
database.

18. The method of claiam 16 wherein a function for
assigning said weights 1s learned from an expected query
workload.

19. The method of claim 16 further comprising calculat-
ing actual selectivities of substrings of queries from an
expected workload and determining estimated selectivities
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of the substrings of a queries from the expected workload to
learn a function for assigning said weights.

20. The method of claim 16 further comprising calculat-
ing for a string predicate of a query from an expected
workload an actual selectivity of a candidate substring
having the given length, determining for the string predicate
of the query from the expected workload an estimated
selectivity of the candidate substring having the given
length, and assigning a weight to candidate substrings of a
given length by based on a relationship between the calcu-
lated actual selectivity and the determined estimated selec-
tivity.

21. The method of claim 1 wherein selectivities of the
candidate substrings are combined using regression trees.

22. The method of claim 20 wherein said regression trees
are learned from data sets of the database.

23. The method of claim 20 wherein said regression trees
are learned from an expected query workload.

24. A computer readable storage medium having com-
puter executable instructions stored thereon for performing
a method of estimating selectivity of a given string predicate
of length n 1n a database query, the method comprising:

a) estimating selectivities of a plurality of substrings, the
plurality of string predicate substrings including sub-
strings of the given string predicate and having each
substring length between q to n, where g<n;

b) categorizing each of the string predicate substrings
based on length;

¢) selecting one candidate substring for each category of
substring length based on estimated selectivities of the
substrings to obtain a plurality of candidate 1dentifying
substrings, each candidate identifying substring in the
plurality of i1dentifying substrings having a diflerent
length between q and n;

d) combining the estimated selectivities of each of the
candidate substrings in the plurality of identifying
substrings; and

¢) generating the combined estimated selectivities of the
candidate substrings as the estimated selectivity of the
given string predicate.

25. The computer readable storage medium of claim 24
wherein the method further comprises storing selectivity
information for the database and using stored selectivity
information to estimate the selectivities of the substrings of
various lengths.

26. The computer readable storage medium of claim 24
wherein a substring with a lowest estimated selectivity 1s
selected as the candidate substring at each length.

277. The computer readable storage medium of claim 24
wherein the method further comprises calculating exact
selectivities of substrings of a given maximum length and
using the exact selectivities to estimate the selectivities of
the substrings of various substring lengths.

28. The computer readable storage medium of claim 27
wherein a range of the various substring lengths whose
selectivities are estimated 1s between the given maximum
length of the substrings whose selectivites are calculated
exactly and the length of the given string predicate.

29. The computer readable storage medium of claim 27
wherein the candidate substring for the length equal to the
grven maximum length of the substrings whose selectivities
are calculated exactly 1s selected based on the exact selec-
tivity of the substring.

30. The computer readable storage medium of claim 24
wherein a g-gram table 1s constructed for substrings of a
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given maximum length and 1s accessed to estimate selec-
tivities of substrings of various substrings lengths.

31. The computer readable storage medium of claim 28
wherein a markov estimator uses the exact selectivities to
estimate the selectivities of the substrings of various sub-
string lengths.

32. The computer readable storage medium of claim 24
wherein characteristics of string values 1n a relation of the
database are used to combine the estimated selectivities of
the candidate substrings.

33. The computer readable storage medium of claim 24
wherein characteristics of a workload of queries are used to
combine the estimated selectivities of the candidate sub-
strings.

34. The computer readable storage medium of claim 24
wherein a model for combining the estimated selectivities of
candidate substrings 1s learned from query workloads.

35. The computer readable storage medium of claim 24
wherein said model 1s applied to the candidate substrings at
run time to estimate the string predicate selectivity.

36. The computer readable storage medium of claim 24
wherein the given string predicate 1s a unit predicate.

37. The computer readable storage medium of claim 24
wherein the given string predicate includes a wildcard
character.

38. The computer readable storage medium of claim 24
wherein the given string predicate 1s a range predicates.

39. The computer readable storage medium of claim 24
wherein weights are assigned to each length of candidate
substring to combine the selectivities of the candidate sub-
strings.

40. The computer readable storage medium of claim 39
wherein a function for assigning said weights 1s learned
from data sets of the database.

41. The computer readable storage medium of claim 39
wherein a function for assigning said weights i1s learned
from an expected query workload.

42. The computer readable storage medium of claim 39
wherein the method further comprises calculating actual
selectivities of substrings of queries from an expected work-
load and determining estimated selectivities of the sub-
strings of a queries from the expected workload to learn a
function for assigning said weights.

43. The computer readable storage medium of claim 39
wherein the method further comprises calculating for a
string predicate of a query from an expected workload an
actual selectivity of a candidate substring having the given
length, determining for the string predicate of the query from
the expected workload an estimated selectivity of the can-
didate substring having the given length, and assigning a
weight to candidate substrings of a given length by based on
a relationship between the calculated actual selectivity and
the determined estimated selectivity.

44. The computer readable storage medium of claim 24
wherein selectivities of the candidate substrings are com-
bined using regression trees.

45. The computer readable storage medium of claim 44

wherein said regression trees are learned from data sets of
the database.

46. The computer readable storage medium of claim 44
wherein said regression trees are learned from an expected
query workload.
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