12 United States Patent

Allen et al.

US007146365B2

US 7,146,365 B2
Dec. 5, 2006

(10) Patent No.:
45) Date of Patent:

(54) METHOD, SYSTEM, AND PROGRAM FOR
OPTIMIZING DATABASE QUERY

(75)

(73)

(%)

(21)

(22)

(65)

(1)

(52)
(58)

(56)

EXECUTION

Inventors: Terry Dennis Allen, San Jose, CA
(US); Paramesh S. Desai, San Jose,

CA (US); Akira Shibamiva, Los Altos,
CA (US); Hong Sang Tie, San Jose,
CA (US); Annie S. Tsang, Saratoga,

CA (US)

Assignee:

International Business Machines

Corporation, Armonk, NY (US)

Notice:

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 466 days.

Appl. No.: 10/353,138

Filed:

Jan. 27, 2003

Prior Publication Data

US 2004/0148273 Al

Int. CI.
GO6l 17/30

US.CL ...,
Field of Classification Search

Jul. 29, 2004

(2006.01)
.......................... 707/8; 707/2

.............. 70°7/1-10,
707/100-104.1

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,093911 A 3/1992
5,307,484 A 4/1994
5,515,531 A 5/1996
5,551,027 A 8/1996
5,692,174 A 11/1997

5,813,005 A 9/1998 Tsuchida et al. 707/10
5,918,224 A 6/1999 Bredenberg 707/102
5,960,194 A 9/1999 Choy et al. 707/102
0,101,495 A 8/2000 Tsuchida et al. 707/4
6,192,359 Bl 2/2001 Tsuchida et al. 707/4
0,206,060 Bl 7/2001 Lwnetal. ...ocooeenenennin.. 7077/3
0,353,820 Bl 3/2002 Edwards et al. 707/2
6,470,331 B1* 10/2002 Chenetal. 707/2
0,598,041 Bl 7/2003 Bernal et al.

6,609,131 Bl 8/2003 Zait et al. 707/102
6,772,163 B1* 82004 Sinclair et al. 707/100

OTHER PUBLICATTONS

Leslie, Harry, et al. Eficient Search of Multidimensional B-Trees.
Proceedings of the 21°" International Conference on Very Large Data

Bases, pp. 710-719. Zurich, Switzerland Sep. 11-15, 1995.
U.S. Appl. No. 10/440,333, filed on May 16, 2003, entitled Method,

System and Program for Managing Database Operations with
Respect to a Database 1able, by R.M. Croisettier et al.

(Continued)

[

Primary Examiner—lellrey Gatlin
Assistant Examiner—Yicun Wu
(74) Attorney, Agent, or Firm—IJanaki K. Davda; Konrad
Raynes & Victor LLP

(37) ABSTRACT

Disclosed 1s a method, system, and program for database
query execution. A range of data pages 1s assigned to each
of multiple parallel tasks. For each of the multiple parallel
tasks, the range of data pages 1s mapped to one or more
physical partitions, and a data partitioned secondary index
partition associated with each of the one or more physical

partitions 1s identified. Each of the multiple parallel tasks 1s
executed to process the database query against the assigned

Ezlfs ett ‘?21‘ """"""" 70770/ ;?14(5 é range of data pages using the one or more data partitioned
CT C ¢ eesesrssrrssrass . .«
y secondary index partitions.
Fujiwara et al. 707/3 Ay P
Choyetal. 707/201
Bireley et al. 707/3 21 Claims, 6 Drawing Sheets
Data Partitioned Secondary Index 180
Data R E?ta .
Fartitioned Partitioned arauonege
o | S
PE'TE;” A Partition B 186 g
= 5 Physical
FZTEE::L PPEE;.;“&L Pa mﬁé’?ﬂ
(Data pages 1- (Data pages | (Data pages
10) 11-20) 21-30}
164 S
_Eturage Device 160
Parallel Task Parallgl Task
190 192

US 7,146,365 B2
Page 2

OTHER PUBLICATIONS “Partitioned Tables and Indexes.” Oracle9i Database Concepts,
Release 1 (9.0.1), Part No. A88856-02, 1996-2001 J[online]
Miller, Roger L. “DB2® for z/OS Technology Highlights,” IBM [retrieved on Aug. 30, 2002]. Retrieved from http:download-west.

Silicon Valley Lab, DB2 for z/OS [online] [retrieved on Aug. 30, oracle.com.

2002]. * cited by examiner

U.S. Patent

Dec. 5, 2006 Sheet 1 of 6 US 7,146,365 B2

Client Computer' 100

Client
Application(s)
110

Network 190

Storage device
160

FIG. 1A

Storage device
170

Server Computer 120 _
Database Engine 130 '
Data
Partitioning Partitioned Task(s) Statistics
Index(es) Secondary 140 144
132 Index(es)
134
Query
Access Path Parallelism Task
Selection Optimization Structure(s)
Component Component 142
136 138
Device Device
Interface Interface

U.S. Patent

US 7,146,365 B2

Storage Device 160

166

Dec. 5, 2006 Sheet 2 of 6
Data Partitioned Secondary Index 180
Data Data Data
Partitioned .. Partitioned
Partitioned
Secondary Secondary
Secondary
Index index Index
Partition A Partition C
.. |
184 Partition B 186 188
1 | I
I ! I
\ 1 |
1 I !
| '| '.
'| I I
! ! I
I | |
! \ I
1 I I
| | I
| I I
| I l
I I I
i I I
\ | I
I I I
I I I
I | i
| l I
i I |
\ \ I
1 | I
I l I
I I I
! I I
I l |
| I |
'I I I
I | : ;
Physical Physical Physical
Partition A Partition B Partition C
(Data pages 1- (Data pages (Data pages
10) 11-20) 21-30)
164 168

Parallel Task
190

Parallel Task
192

FIG. 1B

U.S. Patent Dec. 5, 2006 Sheet 3 of 6 US 7,146,365 B2

Receive database

query with one or 200
more predicates that

are to be submitted
against one or more

tables
210
Select data
partitioned secondary No
index to be used In data >< Done >
retrieval by parallel .
tasks?

Yes .
' 220 .
Use the partitioning index
to identify physical | 230
L Yes partitions in which data
se a partitioning > pages for the one or ’\/\

index?
more tables referenced

in the database query
reside

NO

Y.

Identify all physical | 240

partitions in which data \/\

. pages for the one or
more tables reside

-l _ A —
_I

@ FIG. 2A

U.S. Patent Dec. 5, 2006 Sheet 4 of 6 US 7,146,365 B2

_ 250
. Select a number of
parallel tasks to invoke
Y
Assign a range of 260

contiguous data pages in
one or more entire
physical partitions to
each parallel task

FIG. 2B

U.S. Patent Dec. 5, 2006 Sheet 5 of 6 US 7,146,365 B2

For a parallel task, 300
map assigned data
pages to physical
partitions

Y

Ildentify data partitioned 310

secondary index
partitions associated with J\
the identified physical

partitions

h 4

Execute parallel task to
process database query 320
against the identified one j\‘
cr more data partitioned
secondary index
partitions and the
assigned data pages

FIG. 3

U.S. Patent Dec. 5, 2006 Sheet 6 of 6 US 7,146,365 B2

400

—

R TR -

Computer Architecture |

}04

402
t . Memory 405 l
_ i Operating J)
| Processor | System 406 !
i Computer)
programs
410 408
Storage) Network })
Card r
I
/ 412) 414
Input Device ' Output Device

FIG. 4

Us 7,146,365 B2

1

METHOD, SYSTEM, AND PROGRAM FOR
OPTIMIZING DATABASE QUERY
EXECUTION

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention 1s related generally to optimizing,
database query execution and, 1n particular, to optimizing
database query execution using query parallelism and a data
partitioned secondary index.

2. Description of the Related Art

In a relational data model, a table has rows made up of
columns of data, and the table 1s created within a tablespace.
I1 the tablespace 1s partitioned, the table 1s partitioned across
the partitions of the tablespace. A tablespace may be stored
in one or more physical partitions on one or more storage
devices, and a single table partition i1s stored on a single
physical partition. Aphysical partition 1s a {ixed size division
of storage. Statement (1) 1s an example of a SQL statement
that may be used to create a tablespace named “1'S1” with
three partitions (represented by “NUMPARTS 3™ 1n the SQL
statement), referred to as partition 1, partition 2, and parti-
tion 3 for this example.

CREATE TABLESPACE TS1 NUMPARITS 3; (1)

Statement (2) 1s an example of a SQL statement that may
be used to create a table named “Q1” with at least four
columns, DATE, CUSTOMER_NUMBER, STATE, AND
PURCHASE_AMOUNT. The ellipses 1n statement (2) indi-
cate that additional columns may be included. Table “Q1” 1s
created 1n tablespace “TS1”, with a partitioning key on the
DATE column. The partitioning key on the DATE column
indicates that dates up to and including 2002-01-31" are 1n
partition 1, dates greater than ‘2002-01-31" up to and 1nclud-
ing ‘2002-02-28” are 1n partition 2, and dates greater than
*2002-02-28" up to and including 2002-03-31" are 1n par-
tition 3. In other words, partition 1 1s for January 2002,
partition 2 1s for February 2002, and partition 3 1s for March
2002. In particular, 11 a DATE column value falls 1n January
2002 for a row, then that row 1s stored in partition 1 of the
tablespace. If a DATE column value falls in February 2002
for a row, then that row 1s stored in partition 2 of the
tablespace. If a DATE column value falls in March 2002 for
a row, then that row 1s stored in partition three of the
tablespace.

CREATE TABLE Q1 (DATE, ...,

CUSTOMER__ NUMBER, ...,

STATE, ...,

PURCHASE_ AMOUNT...,)

IN TS1

PARTITIONING KEY (DATE)
(PART 1 VALUES (*2002-01-31"),
PART 2 VALUES (*2002-02-28"),
PART 3 VALUES (*2002-03-31"));

(2)

A partitioning index 1s used to direct the placement of
records into physical partitions based on 1index key values.
An 1ndex key 1s a set of one or more columns 1n a table used
to determine the order of index entries. Typically, one
partitioning ndex 1s associated with one tablespace, which
may be stored across multiple physical partitions. Statement
(3) 1s an example of a SQL statement that may be used to
create a partitioning index on table “QQ1” with a key on the

DATE column.

10

15

20

25

30

35

40

45

50

55

60

65

CREATE INDEX DATE__IX ON Q1 (DATE)
PARTITIONED CLUSTER;

(3)

A database query may be submitted against one or more
tables. The database query includes one or more predicates
for selection of data. A predicate 1s an element of a search
condition that expresses or implies a comparison operation.
For example, for a table storing employee data and named
“emp”’, the predicate (emp.lastname="Smith”) 1s used to
determine whether a last name stored in an employee table
matches “Smith”. Additionally, an index may be used to
access data. An index 1s set of pointers that are logically
ordered by the values of a key. Indexes provide quick access
to data and can enforce uniqueness on the rows 1n the table.
An index has an index key. For example, for the “emp” table,
an index may have a key of last name. If a predicate 1n the
database query references a column of a table that 1s also a
key column of an 1index, the index may be used to access the
data associated with rows of data having the requested
column value.

One type of idex 1s a data partitioned secondary mndex
(DPSI), which 1s a physically partitioned secondary index.
That 1s, the data partitioned secondary index is itself parti-
tioned. Fach data partitioned secondary index partition 1s
associated with a physical partition of a partitioned table.
The data partitioned secondary index 1s created on one or
more columns of a table. Unlike a partitioning index, a given
key value may occur in multiple partitions of the data
partitioned secondary index. Statement (4) 1s an example of
a SQL statement that may be used to create a data partitioned
secondary mndex on table “Q1” with a key on the STATE
column.

CREATE INDEX STATE_IX ON Q1 (STATE) PAR-

TITIONED; (4)

Statement (5) 1s an example of a SQL query against table
“Q1” 1 which a predicate (WHERE DATE BETWEEN
‘2002-01-01" AND “2002-02-28" AND STATE="CA’) refer-
ences a key of the partitioning index (via reference to DATE)
and references a key of the data partitioning secondary index
(via reference to STATE).

SELECT CUSTOMER__NUMBER, PURCHASE_ AMOUNT

FROM Q1

WHERE DATE BETWEEN 2002-01-01° AND
STATE = ‘CA’

ORDER BY CUSTOMER_ NUMBER;

(3)

2002-02-28" AND

One relational data model 1s a Relational DataBase Man-
agement System (RDBMS) using a Structured Query Lan-
guage (SQL) mterface. In certain RDBMSs, query parallel-
iIsm may be enabled when the RDBMS 1s set up. Query
parallelism refers to the use of parallel tasks to execute a
database query. Query parallelism 1s accomplished by trig-
gering multiple concurrent execution requests within a
single database query. The term “execution requests” refers
to both input/output (“I/O”) requests and central processing
umt (“CPU”) processing requests.

Existing techniques for index access query parallelism
involve key range partitioning. That 1s, the index includes
one or more key columns whose values identily one or more
rows. For example, for a table storing employee data, there
may be a last name column. Then, the mndex for the table

Us 7,146,365 B2

3

may include a last name key column. The index may be
partitioned according to key ranges. For example, one key
range may include values for the last name key column that
start with A—M, while a second key range may include
values for the last name key column that start with N-Z.
Thus, “key range partitioning™ refers to assigning different
key ranges of an index to diflerent parallel tasks. Each of the
parallel tasks then executes the query for its assigned key
range of the mdex, and the results of the parallel tasks are
combined to form a single result from execution of the
database query.

The techniques for index access query parallelism 1volv-
ing key range partitioning have disadvantages when
extended to data partitioned secondary index access. With a
data partitioned secondary index with a key of last name, last
names beginning with any letter (1.e., A—7) may be found in
any or all physical partitions. Using the A—M and N-Z key
range partitioming, each parallel task may need to search all
of the data partitioned secondary index partitions, leading to
possible IO contention at the index level. That 1s, if multiple
parallel tasks try to access the same data partitioned sec-
ondary index partition, contention may arise in the event that
an I/0 subsystem that manages access to the data partitioned
secondary index partition cannot satisty all requests to
access the data partitioned secondary index partition con-
currently. Additionally, there may be I/O contention at the
data page level due to multiple parallel tasks attempting to
access the same data page concurrently. This leads to
increased elapsed time (1.e., the time from the start of
execution ol a database query to the time results of the
database query are returned).

Therefore, there 1s a need 1n the art for improved database
query execution.

SUMMARY OF THE INVENTION

Provided are a method, system, and program for database
query execution. A range of data pages 1s assigned to each
of multiple parallel tasks. For each of the multiple parallel
tasks, the range of data pages 1s mapped to one or more
physical partitions, and a data partitioned secondary index
partition associated with each of the one or more physical
partitions 1s 1dentified. Each of the multiple parallel tasks 1s
executed to process the database query against the assigned
range of data pages using the one or more data partitioned
secondary index partitions.

The described implementations of the invention provide a
method, system, and program for optimizing database que-
ries mvolving data partitioned secondary index access by
utilizing query parallelism.

BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings in which like reference
numbers represent corresponding parts throughout:

FIG. 1A 1illustrates, 1n a block diagram, a computing
environment in accordance with certain implementations of
the 1nvention.

FIG. 1B illustrates, in a block diagram, mapping of a data
partitioned secondary index to physical partitions on a
storage device against which parallel tasks execute 1n accor-
dance with certain implementations of the invention.

FIGS. 2A and 2B illustrate logic for initial processing of
a database query 1n accordance with certain implementations
of the mvention.

FI1G. 3 1llustrates logic for processing performed to enable
execution of parallel task 1n accordance with certain imple-
mentations of the mvention.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 4 illustrates one implementation of the architecture
of the computer systems of FIG. 1A 1n accordance with
certain implementations of the mvention.

DETAILED DESCRIPTION

In the following description, reference 1s made to the
accompanying drawings which form a part hereof and which
illustrate several implementations of the present invention. It
1s understood that other implementations may be utilized
and structural and operational changes may be made without
departing from the scope of the present invention.

FIG. 1A 1illustrates, in a block diagram, a computing
environment 1n accordance with certain implementations of
the invention. A client computer 100 executes one or more
client applications 110. A client application 110 may be any
type of application program. The client computer 100 1s
connected to a server computer 120 by a network 190, such
as a local area network (LAN), wide area network (WAN),
or the Internet. The Internet 1s a world-wide collection of
connected computer networks (1.e., a network of networks).

The server computer 120 includes a database engine 130.
The database engine maintains one or more partitioning
indexes 132 and one or more data partitioned secondary
indexes 134. Also, the database engine 130 includes an
access path selection component 136 for selecting an access
path. An access path specifies how data referenced 1n a
database query 1s to be accessed 1n a physical partition (e.g.,
whether an 1ndex 1s to be used to access the data). Moreover,
the database engine 130 includes a query parallelism opti-
mization component 138 that determines a number of par-
allel tasks 140 and a range of data pages to be assigned to
cach parallel task 140 for executing the database query 1n
parallel.

Furthermore, the server 120 i1s connected to storage
devices 160, 170, and each storage device 160, 170 has a
device iterface 162, 172, respectively. For example, each
storage device 160 and 170 may be a redundant array of
independent disks (RAID). A RAID device enables storage
of the same data on multiple hard disks, thus allowing
simultaneous accesses to copies of the data.

A client application 110 may submit database queries to
the database engine 130. In certain implementations, the
database engine 130 1s a Relational DataBase Management
System (RDBMS) using a Structured Query Language
(SQL) interface, and the client application 110 submits SQL
queries. The SQL interface has evolved into a standard
language for RDBMS software and has been adopted as
such by both the American National Standards Institute
(ANSI) and the International Standards Organization (ISO).
A DB2® for zOS product available from International
Business Machines, Corporation 1s an example of an
RDBMS. The database engine 130 processes the database
query against database objects (e.g., rows of tables). Each
database object may be accessed via the partitioning index
132 and one or more data partitioned secondary indexes 134.

In implementations of the invention, when the access path
selection component 136 of the database engine 130 has
chosen an access path utilizing index access through a data
partitioned secondary index 134, the query parallelism opti-
mization component 138 separates execution of the database
query into multiple parallel tasks 140, such that each parallel
task 140 processes a same key range, but a discrete data page
range associlated with a partitioned table qualified by the
database query.

Statistics 144 on the physical partitions may be used to
estimate the elapsed time for each parallel task 140 and to

Us 7,146,365 B2

S

determine the data page ranges to assign to each parallel task
140 so that elapsed time 1s equally distributed across the
parallel tasks 140. A task structure 142 (e.g., an array) 1s
associated with a query and includes an entry for each
parallel task 140. Each entry of the task structure 142 stores
a low data page 1dentifier (e.g., an address of a data page)
and a high data page identifier (e.g., an address of a data
page) 1dentifying a data page range assigned to a parallel
task 140. In certain implementations, each entry of the task
structure 142 also stores a low key and a high key 1denti-
tying a key range assigned to a parallel task 140. Addition-
ally, 1n certain implementations, the key range assigned to
cach parallel task 140 1s the same.

FIG. 1B illustrates, in a block diagram, mapping of a data
partitioned secondary index 180 to physical partitions on
storage device 160 against which parallel tasks 190, 192
execute 1n accordance with certain implementations of the
invention. In particular, the data partitioned secondary index
180 1s partitioned into three partitions: data partitioned
secondary index partition A 184, data partitioned secondary
index partition B 186, and data partitioned secondary index
partition C 188. Storage device 160 stores physical partition
A 164 with data pages 1-10, physical partition B 166 with
data pages 11-20, and physical partition C 168 with data
pages 21-30. Each data partitioned secondary index parti-
tion 1s associated with a physical partition. For example,
data partitioned secondary index partition A 184 1s associ-
ated with physical partition A 164. Data partitioned second-
ary mdex partition B 186 1s associated with physical parti-
tion B 166. Data partitioned secondary index partition C 188
1s associated with physical partition C 168. Additionally,
parallel task 190 1s assigned data pages 1-10 of physical
partition A 164 and data pages 11-20 of physical partition B
166. Parallel task 192 1s assigned data pages 21-30 of
physical partition C 168.

Thus, by assigning data pages to parallel tasks, imple-
mentations of the invention are able to map the data pages
to physical partitions, which are then mapped to associations
with data partitioned secondary index partitions. Since dif-
terent parallel tasks access diflerent data pages and different
data partitioned secondary index partitions, I/O contention
between parallel tasks 1s minimized and overall elapsed time
1s reduced. Thus, implementations of the invention achieve
an elapsed time improvement over sequential database query
execution by creating multiple parallel tasks to concurrently
access data through a data partitioned secondary index and
by using data page range partitioning (1.e., assigning difler-
ent data page ranges to diflerent parallel tasks having the
same key range).

FIGS. 2A and 2B illustrate logic for initial processing of
a database query 1n accordance with certain implementations
of the mvention. Control begins at block 200 with the
database engine 130 receiving a database query with one or
more predicates that are to be submitted against one or more
tables. In a database engine 130 in which query parallelism
1s enabled, the database query may be processed with
multiple tasks being executed 1n parallel.

In block 210, if the access path selection component 136
of the database engine 130 has selected an access path
utilizing index access through a data partitioned secondary
index 134 to be used in data retrieval by parallel tasks,
processing continues to block 220, otherwise the processing,
of 1mplementations of the invention i1s done and other
processing occurs to execute the database query.

In block 220, the database engine 130 determines whether
a partitioning index may be used to 1dentily physical parti-
tions. In particular, the database engine 130 determines

10

15

20

25

30

35

40

45

50

55

60

65

6

whether any predicates reference index keys 1n a partitioning
index associated with the tablespaces in which the one or
more tables referenced i1n the database query reside.
Improved performance 1s realized by predicates on a parti-
tioning index, as this serves to reduce the range of qualified
partitions. If a partitioning index may be used, processing
continues to block 230, otherwise, processing continues to
block 240. In block 230, the database engine 130 uses the
partitioning index to identily physical partitions 1n which
data pages for the one or more tables referenced in the
database query reside. In block 240, the database engine 130
identifies all physical partitions 1n which data pages for the
one or more tables referenced in the database query reside.

In certain implementations, the query parallelism optimi-
zation component 138 of the database engine 130 separates
execution of the database query into multiple parallel tasks.
In block 250, the query parallelism optimization component
138 selects a number of parallel tasks to invoke. In certain
implementations, the number of parallel tasks 1s selected by
a user or an application. In certain implementations, the
number of parallel tasks maybe limited by the server com-
puter 120 or database engine 130. In certain implementa-
tions, the number of parallel tasks depends on the number
and speed of available processors at the server computer 120
and/or the number of physical partitions to be accessed 1n
processing the database query. In certain implementations,
however, the number of parallel tasks does not exceed the
number of processors or the number of physical partitions.
Also, 11 execution of the database query 1s dominated by
processor cost, then the number of parallel tasks 1s more
closely related to the number of processors and the speed of
the processors. IT execution of the database query 1s domi-
nated by I/O cost, then the number of parallel tasks 1s more
closely related to the number of physical partitions.

In block 260, the query parallelism optimization compo-
nent 138 assigns a range of contiguous data pages 1n one or
more entire physical partitions to each parallel task. In
certain implementations, an entry of a task structure 142
stores a low data page identifier and a high data page
identifier identitying a data page range assigned to a parallel
task. In certain implementations, statistics 144 on the physi-
cal partitions may be used to estimate the elapsed time for
cach parallel task and to determine the data page ranges to
assign to each parallel task so that elapsed time 1s equally
distributed across the parallel tasks. For example, some
statistics that may be used include the size of a table and the
number of rows 1n each partition of that table. In certain
implementations, each parallel task 1s assigned a same
number of data pages. In certain implementations, one or
more of the parallel tasks may be assigned a diflerent
number of data pages than one or more other parallel tasks.
In certain implementations, the number of data pages
assigned to each parallel task depends on the number of
pages 1n each physical partition. Each parallel task has the
same key range determined by the predicates in the database
query, but accesses different data pages in the physical
partitions. Also, the data pages assigned to a parallel task are
within one or more entire physical partitions. That 1s,
multiple parallel tasks do not access data pages in the same
physical partition, thus avoiding contention at the data page
level.

FIG. 3 illustrates logic for processing performed to enable
execution ol a parallel task 1n accordance with certain
implementations of the mvention. Control begins at block
300 with the database engine 130 mapping the assigned data
pages to one or more physical partitions. In block 310, the
database engine 130 identifies one or more data partitioned

Us 7,146,365 B2

7

secondary index partitions associated with the one or more
physical partitions. In block 320, the database engine 130
executes the parallel task to process the database query
against the one or more data partitioned secondary index
partitions and the assigned data pages. Since the assigned
data pages fall into one or more entire physical partitions,
and each physical partition 1s associated with a data parti-
tioned secondary index, contention at the index level 1s
avoided. Additionally, although FIG. 3 1llustrates processing
for one parallel task, the processing of FIG. 3 1s performed
for each parallel task.

In summary, implementations of the invention reduce the
overall elapsed time associated with database query execu-
tion by utilizing parallel execution, while minimizing I/O
contention and I/O wait time. In certain implementations,
the partitioning strategy assigns disparate data page ranges
to different parallel task, each with the same key range,
thereby minimizing contention at the data page level and
reducing overall elapsed time beyond an approach that
partitions based on the mndex key.

IBM, DB2, and zZ/OS are registered trademarks or trade-
marks of International Business Machines Corporation in
the United States and/or other countries.

Additional Implementation Details

The described techniques may be implemented as a
method, apparatus or article of manufacture using standard
programming and/or engineering techniques to produce
soltware, firmware, hardware, or any combination thereof.
The term “article of manufacture” as used herein refers to
code or logic implemented 1n hardware logic (e.g., an
integrated circuit chip, Programmable Gate Array (PGA),
Application Specific Integrated Circuit (ASIC), etc.) or a
computer readable medium, such as magnetic storage
medium (e.g., hard disk dnives, floppy disks, tape, etc.),
optical storage (CD ROMs, optical disks, etc.), volatile and
non volatile memory devices (e.g., EEPROMs, ROMs,
PROMs, RAMs, DRAMs, SRAMs, firmware, program-
mable logic, etc.). Code 1n the computer readable medium 1s
accessed and executed by a processor. The code 1n which
described embodiments are implemented may further be
accessible through a transmission medium or from a file
server over a network. In such cases, the article of manu-
facture in which the code 1s implemented may comprise a
transmission media, such as a network transmission line,
wireless transmission media, signals propagating through
space, radio waves, inirared signals, etc. Thus, the “article of
manufacture” may comprise the medium 1n which the code
1s embodied. Additionally, the *“article of manufacture™ may
comprise a combination of hardware and software compo-
nents 1 which the code 1s embodied, processed, and
executed. Of course, those skilled 1n the art will recognize
that many modifications may be made to this configuration
without departing from the scope of the present invention,
and that the article of manufacture may comprise any
information bearing medium known 1n the art.

The logic of FIGS. 2A, 2B, and 3 describe specific
operations occurring 1n a particular order. In alternative
implementations, certain of the logic operations may be
performed 1n a different order, modified or removed. More-
over, steps may be added to the above described logic and
still conform to the described implementations. Further,
operations described herein may occur sequentially or cer-
tain operations may be processed 1n parallel, or operations
described as performed by a single process may be per-
tformed by distributed processes.

10

15

20

25

30

35

40

45

50

55

60

65

8

The 1llustrated logic of FIGS. 2A, 2B, and 3 was
described as being implemented 1n software. The logic may
be implemented 1n hardware or in programmable and non-
programmable gate array logic.

FIG. 4 illustrates one implementation of the architecture
of the computer systems 100, 120 1n accordance with certain
implementations of the invention. The computer systems
100, 120 may implement a computer architecture 400 hav-
ing a processor 402 (e.g., a microprocessor), a memory 404
(e.g., a volatile memory device), a network card 408, and
storage 410 (e.g., a non-volatile storage area, such as mag-
netic disk drives, optical disk drives, a tape drive, non-
volatile RAM, etc.). An operating system 4035 may execute
in memory 404. The storage 410 may comprise an internal
storage device or an attached or network accessible storage.
Computer programs in the storage 410 may be loaded into
the memory 404 and executed by the processor 402 1n a
manner known in the art. A network card 408 enables
communication with a network. An input device 412 1s used
to provide user mput to the processor 402, and may include
a keyboard, mouse, pen-stylus, microphone, touch sensitive
display screen, or any other activation or input mechanism
known 1n the art. An output device 414 1s capable of
rendering iformation transmitted from the processor 402,
or other component, such as a display monitor, printer,
storage, etc.

The computer architecture 400 may comprise any com-
puting device known in the art, such as a mainframe, server,
personal computer, workstation, laptop, handheld computer,
telephony device, network appliance, virtualization device,
storage controller, etc. Any processor 402 and operating
system 405 known 1n the art may be used.

The foregoing description of implementations of the
invention has been presented for the purposes of illustration
and description. It 1s not intended to be exhaustive or to limait
the mvention to the precise form disclosed. Many modifi-
cations and variations are possible i light of the above
teaching. It 1s intended that the scope of the mvention be
limited not by this detailed description, but rather by the
claims appended hereto. The above specification, examples
and data provide a complete description of the manufacture
and use of the composition of the invention. Since many
implementations of the invention can be made without
departing from the spirit and scope of the invention, the
invention resides in the claims hereinaiter appended.

What 1s claimed 1is:
1. A method for database query execution, comprising:

assigning a diflerent range of data pages to each of
multiple parallel tasks;

for each of the multiple parallel tasks,

mapping the assigned different range of data pages to
one or more physical partitions; and

identifying one or more data partitioned secondary
index partitions associated with each of the one or
more physical partitions, wherein each of the one or
more data partitioned secondary index partitions 1s a
partition ol a physically partitioned secondary index;
and

executing each of the multiple parallel tasks to process the
database query against the assigned different range of
data pages using the one or more data partitioned
secondary mdex partitions.

2. The method of claim 1, wherein one data partitioned
secondary mndex partition 1s associated with one physical
partition.

Us 7,146,365 B2

9

3. The method of claim 1, further comprising:

determining whether an access path using a data parti-

tioned secondary index 1s to be used.

4. The method of claim 1, further comprising:

determining whether a partitioning index 1s to be used;

and

if the partitioning index 1s to be used, using the partition-

ing index to 1dentily the one or more physical partitions
in which data pages for one or more tables referenced
in the database query reside.

5. The method of claim 1, turther comprising;:

selecting a number of the multiple parallel tasks to be

executed.

6. The method of claim 1, wherein each range of data
pages comprises a range ol contiguous data pages for an
entire physical partition.

7. The method of claim 1, further comprising;:

using a task structure associated with the database query,

wherein each entry of the task structure stores a range
of data pages assigned to one of the multiple parallel
tasks.

8. A system for database query execution, comprising;

means for assigning a diflerent range of data pages to each

of multiple parallel tasks;

for each of the multiple parallel tasks,

means for mapping the assigned different range of data
pages to one or more physical partitions; and

means for i1dentifying one or more data partitioned
secondary index partitions associated wit each of the
one or more physical partitions, wherein each of the
one or more data partitioned secondary index parti-
tions 1s a partition of a physically partitioned sec-
ondary index; and

means for executing each of the multiple parallel tasks to

process the database query against the assigned differ-
ent range of data pages using the one or more data
partitioned secondary index partitions.

9. The system of claim 8, wherein one data partitioned
secondary index partition 1s associated with one physical
partition.

10. The system of claim 8, further comprising;

means for determining whether an access path using a

data partitioned secondary index 1s to be used.

11. The system of claim 8, further comprising:

means for determining whether a partitioning 1index 1s to

be used; and

means for, if the partitioning index is to be used, using the

partitioning mdex to identity the one or more physical
partitions in which data pages for one or more tables
referenced in the database query reside.

12. The system of claim 8, further comprising;

means for selecting a number of the multiple parallel tasks

to be executed.

13. The system of claam 8, wherein each range of data
pages comprises a range ol contiguous data pages for an
entire physical partition.

10

15

20

25

30

35

40

45

50

55

10

14. The system of claim 8, further comprising:

means for using a task structure associated with the
database query, wherein each entry of the task structure
stores a range ol data pages assigned to one of the
multiple parallel tasks.

15. An article of manufacture including instructions for
database query execution, wherein the instructions cause
operations to be performed, the operations comprising:

assigning a different range of data pages to each of
multiple parallel tasks;

for each of the multiple parallel tasks,

e

mapping the assigned diflerent range of data pages to
one or more physical partitions; and

identifying one or more data partitioned secondary
index partitions associated with each of the one or
more physical partitions, wherein each of the one or
more data partitioned secondary index partitions 1s a
partition of a physically partitioned secondary index;
and

executing each of the multiple parallel tasks to process the
database query against the assigned different range of
data pages using the one or more data partitioned
secondary mdex partitions.

16. The article of manufacture of claim 15, wherein one
data partitioned secondary index partition 1s associated with
one physical partition.

17. The article of manufacture of claim 15, wherein the
operations further comprise:

determining whether an access path using a data parti-
tioned secondary index 1s to be used.

18. The article of manufacture of claim 15, wherein the
operations further comprise:

determiming whether a partitioning index 1s to be used;
and

11 the partitioning index 1s to be used, using the partition-
ing index to 1dentify the one or more physical partitions

in which data pages for one or more tables referenced
in the database query reside.

19. The article of manufacture of claim 15, wherein the
operations further comprise:

selecting a number of the multiple parallel tasks to be
executed.

20. The article of manufacture of claim 15, wherein each
range of data pages comprises a range ol contiguous data
pages for an entire physical partition.

21. The article of manufacture of claim 15, wherein the
operations further comprise:

using a task structure associated with the database query,
wherein each entry of the task structure stores a range
of data pages assigned to one of the multiple parallel
tasks.

	Front Page
	Drawings
	Specification
	Claims

