12 United States Patent

US007139899B2

(10) Patent No.: US 7,139,899 B2

Kerr et al. 45) Date of Patent: Nov. 21, 2006
(54) SELECTED REGISTER DECODE VALUES 5,166,674 A 11/1992 Baum et al.
FOR PIPELINE STAGE REGISTER 5,276,822 A * 1/1994 Maekawa et al. 712/218
ADDRESSING 5467476 A * 11/1995 Kawasaki 712/218
5,638,526 A * 6/1997 Nakada 712/218
(75) Inventors: Darren Kerr, Palo Alto, CA (US): 5,790,880 A * 8/1998 Iretoncooevvvvinnnnnnnn. 712/218
John William Marshall, Cary, NC 0,073,233 A 6/2000 Chapman
’ " 6,101,599 A 8/2000 Wright et al.
(US) 6119215 A 9/2000 Key et al.
_ 6,145,074 A * 11/2000 Asatoc.coevvvvevennnnnn.. 712/218
(73) Assignee: Cisco Technology, Inc., San Jose, CA 6.173.386 Bl 1/2001 Key et al.
(US) 6,195,739 B1 2/2001 Wright et al.
(*) Notice: Subject to any disclaimer, the term of this * cited by examiner
%aglg 118 Si}égn](j;do c:;a;l;lijusted under 35 Primary Examiner—Richard L. Ellis
(74) Attorney, Agent, or Firm—Cesar1 and McKenna LLP
(21) Appl. No.: 09/390,079 (57) ABSTRACT
(22) Filed: Sep. 3, 1999 _ _ _ _ _
An mstruction decode mechanism enables an instruction to
(65) Prior Publication Data control data tlow bypassing hardware within a pipelined
processor of a programmable processing engine. The control
US 2003/0159021 Al Aug. 21, 2003 mechanism 1s defined by an 1nstruction set of the processor
as a unique register decode value that specifies either source
(51) Int. CI. operand bypassing (via a source bypass operand) or result
GO6F 9/34 (2006.01) bypassing (via a result bypass operand) from a previous
(52) US.CL .o, 712/218 instruction executing in pipeline stages of the processor. The
(58) Field of Classification Search 712/218,, source bypass Qperand allows source Operand data to be
712/219 shared among the parallel execution units of the pipelined
See application file for complete search history. processor, whereas the result bypass operand explicitly
: controls data flow within a pipeline of the processor through
(56) References Cited the use of result bypassing hardware of the processor. The
U.S. PATENT DOCUMENTS instruction decode control mechanism essentially allows an
instruction to directly 1dentify a pipeline stage register for
4,594,655 A * 6/1986 Ha.o etal.oiiinni, 712/218 use as its source operand.
4,644,466 A * 2/1987 Saitoceoeeiiiiiiiiininnnn, 712/218
5,161,156 A 11/1992 Baum et al.
5,165,034 A * 11/1992 Kanuma 712/218 52 Claims, 5 Drawing Sheets
[FROM IRAM 420}
600

\

FROM READ
LOCAL BUS 424

il " R oay A v e S s

iegs = e . oy e N WEEm gy s el g, - e —

i = e - AT RS S—

N et Ty . o e sl e e sk ki

A I A . e s N

0b2
v] s
| 664 .
owere | LSR2_w

LOCAL BUS 426

US 7,139,899 B2

ekl

NOLLYLS

0c}

Sheet 1 of 5

Nov. 21, 2006

1114
HOLIMS / d3100Y

U.S. Patent

¢0}
NOILVIS
aN3

e

001

US 7,139,899 B2

0gz I 082
OI2010 WoYS) a1 va
xa f 3

ONISSTO0Hd b 0887

1 |
AHONIN

\f,

S

gl

@ 002

7 INION3
QIAVHYY

&

>

-

=

>

&

7

082 1§ 08¢
WA L NN
1X3 {§ 1X3

U.S. Patent

08¢
JEL|
13

082
Wan (400710 NOY4)
13

018

JHIGON
AT

| 1DV

09¢
HOGSI30U

OID0T10 WoHA)

U.S. Patent Nov. 21, 2006 Sheet 3 of 5 US 7,139.899 B2

300

.

(TO/FROM EXT MEM 280) (TO/FROM EXT MEM 280)

REMOTE PROC
EXT MEM 995 Uiz 220

JE 310 (TO EACH PE AND IHB/OHE)

T™HINTNCD 2OMDEeMT —-Co--N9Co

EXT MEM EXT MEM 350
WF 310 F 310

(TO/FROM EXT MEM 280) (TQ/IFROMEXT MEM 280)

F1G. 3

500 502 S04 506
- oo o

FIG. S

US 7,139,899 B2

Sheet 4 of 5

Nov. 21, 2006

U.S. Patent

(0L 41 WIN LX3 OL)

\\Il
GeY

Ot

09

09
3HOO

ONL

G619
T4
JE!.

JAL WYIHLSdN ROAS

9y SN Vo0
1M OL

US 7,139,899 B2

Sheet 5 of 5

Nov. 21, 2006

i av3y Wod4 -
O 0l9 4
KER o3

(024 WyHI HoN4)

U.S. Patent

Us 7,139,899 B2

1

SELECTED REGISTER DECODE VALUES
FOR PIPELINE STAGE REGISTER
ADDRESSING

FIELD OF THE INVENTION

The present invention relates to processor architectures
and, 1n particular, to an improved operand bypassing tech-
nique for a pipelined processing engine of an intermediate
network device.

BACKGROUND OF THE INVENTION

Computer architecture generally defines the functional
operation, 1mcluding the flow of information and control,
among individual hardware units of a computer. One such
hardware unit 1s the processor or processing engine which
contains arithmetic and logic processing circuits organized
as a set of data paths. In some implementations, the data path
circuits may be configured as a processor having a register
file of general-purpose registers (GPRs) for use with opera-
tions that are defined by a set of instructions. The nstruc-
tions are typically stored in an instruction memory and
specily a set ol hardware functions that are available on the
processor. When implementing these functions, the proces-
sor generally processes “transient” data residing i a
memory in accordance with the instructions.

A high-performance processing engine configured for use
in, €.g., an intermediate network device may be realized by
using a number of i1dentical processors to perform certain
tasks 1n parallel. In order to increase instruction throughput,
the processors of the high performance engine may employ
a technique called pipelining. A pipelined processor has a
pipeline containing a number of processing stages, such as
an 1nstruction fetch (IF) stage, an instruction decode (ID)
stage, an execution (EX) stage and a writeback (WB) stage.
These stages are generally arranged so that a new instruction
1s stored 1n an nput register of each stage as the result
calculated 1n that stage i1s stored 1 an mput register of a
subsequent stage. Accordingly, there may be a number of
instructions active in the processor pipeline at any one time.

For example, consider the following instruction sequence
utilizing various GPRs of the processor:

(11) add R3<—R1, R2

(12) add R5<—R3, R4

Execution of mstruction 11 results 1n register R3 storing
the contents of R1+R2, while execution of instruction 12
results 1n RS storing the contents of R3+R4. Assume 11
enters the pipeline at the IF stage in cycle 1 and proceeds to
the ID stage at cycle 2 as 12 enters the pipeline at the IF
stage. During the ID stage, operand values are fetched from
the register file of the processor. That 1s during the ID stage
of 11, the values of the registers R1 and R2 are fetched from

the register file and are loaded 1nto mput registers of the EX
stage at the end of the IF stage cycle.

In cycle 3, 12 reaches the ID stage and expects to load its
operands from registers R3 and R4. However, 11 has only
reached the EX stage and will not complete the WB stage
until the end of cycle 4. Accordingly, the correct operand for
12 will not be loaded into register R3 until cycle 4 has
completed. This 1s an example of data dependency between
instructions executing in parallel in the pipeline. Here, the
data dependency exists between the destination operand of
11 and the source operand of 12; in other words, 12 depends
on a result produced by the preceding instruction 11 and
cannot proceed until that result (stored 1n R3) 1s available.

10

15

20

25

30

35

40

45

50

55

60

65

2

Commercially available pipeline processors employ oper-
and bypassing to improve processing time for sequences of
instructions that have data dependencies. Operand bypassing
1s a technique whereby an operation result may be used
without waiting for that result to flow through all of the
stages of a pipelined processor. An implemention of operand
bypassing involves the use of a conventional control mecha-
nism that employs a GPR operand comparison approach to
identify the data dependency during the ID stage. For
example the comparison may be used to determine a data
dependency between the instructions 11 and 12 for register
R3. Once the dependency 1s 1dentified, the control mecha-
nism provides the result of 11 from the EX stage directly
back to an input register of that stage, thereby bypassing the
WB stage of the pipeline.

Where the data dependency 1s based solely on GPR
registers, that dependency may be 1dentified through use of
a conventional scoreboarding technique that keeps track of
the registers used by instructions propagating through the
pipeline. The technique utilizes a scoreboard data structure
having a plurality of bits associated with the GPRs; these
bits are asserted when instructions utilizing the registers are
dispatched into the pipeline. For example, the scoreboard
technique marks register R3 as “not available” and the
control mechanism suspends execution of 12 until R3 1s
available. Here, the conventional control mechanism
“mmplicitly” specifies bypass conditions through 1nstruction
decode.

However, a problem arises with a processor architecture
that also enables operands to address data from memory via
a memory bus. Application of the conventional scoreboard-
ing technique to memory addresses 1s rather cumbersome
because of the additional “overhead” (logic) needed to
realize the dependency function across an entire memory
address space (e.g., a 32-bit address space). The present
invention 1s directed to a technique that solves this problem.
Specifically, the mvention 1s directed to a pipeline stage
addressing technique that obviates the need for a scoreboard
data structure in the processor. More specifically, the present
invention 1s directed to a technique for explicitly specitying
bypass conditions 1n a manner that 1s eflicient from a logic
implementation and that reduces penalties from a microcode
perspective.

SUMMARY OF THE INVENTION

The present invention relates to a mechanism that enables
an 1nstruction to control data flow bypassing hardware
within a pipelined processor of a programmable processing
engine. The control mechanism 1s defined by an 1nstruction
set of the processor as a unique register decode value that
specifies either source operand bypassing or result bypassing
from a previous instruction executing in pipeline stages of
the processor. The novel 1nstruction decode control mecha-
nism essentially allows an instruction to directly identily a
pipeline stage register (1.e., via pipeline stage register
addressing) for use as 1ts source operand.

In one aspect of the present invention, the register decode
value comprises a result bypass (RRB) operand that explic-
itly controls data flow within a pipeline of the processor
through the use of result bypassing hardware of the proces-
sor. The pipeline generally includes instruction decode,
writeback and execution stages, the latter stage having a
plurality of parallel execution units. Result bypassing allows
data to be retrieved from a current execution unit and
returned to an mput execution register specified by the RRB
operand, thereby bypassing “writeback™ of the data to either

Us 7,139,899 B2

3

a register file or memory at the writeback stage of the
processor. By explicitly specitying the pipeline stage regis-
ter to be used as the source operand for the current mnstruc-
tion, the mvention obviates the need to keep track of a large
scoreboard addressing area and, thus, eliminates the need for
a scoreboard data structure in the processor.

In another aspect of the invention, the register decode
value comprises a source bypass (RISB) operand that allows
source operand data to be shared among the parallel execu-
tion units of the pipelined processor. For example, source
bypassing allows a secondary execution unit to receive data
stored at an eflective memory address specified by a dis-
placement operand 1n a previous instruction executed by a
main execution umt of the processor. This aspect of the
invention improves performance of the processor, particu-
larly for data recerved over a local bus from a memory of the
processing engine. That 1s, source bypassing elflectively
allows realization of two memory references through the use
of a single bus operation over the local bus. In addltlon the
novel RISB decode value represents coding efliciencies
since the operand may be encoded with substantially fewer
bits than those needed for a displacement address.

Advantageously, the novel control mechamism increases
performance of a pipelined processor by enabling bypass
operations without the use of dedicated hardware to 1dentity
and resolve operand dependencies. The uwentlve control
mechanism further allows greater coding e 1c1ency SINCE
memory operand results can be bypassed via a special
register reference as opposed to specilying a memory oper-
and. Moreover, pipeline stage register addressing provides
an eflicient means to specily the use of a previous instruction
result as a source operand for the instruction.

BRIEF DESCRIPTION OF THE

DRAWINGS

The above and further advantages of the invention may be
better understood by referring to the following description in
conjunction with the accompanying drawings in which like
reference numbers indicate 1dentical or functionally simailar
clements:

FIG. 1 1s a block diagram of a computer network com-
prising a collection of mterconnected communication media
and subnetworks attached to a plurality of stations;

FIG. 2 1s a schematic block diagram of intermediate
station, such as a network switch, that may be advanta-
geously used with the present invention;

FIG. 3 1s a schematic block diagram of a programmable
arrayed processing engine having a plurality of processor
complex (PE) elements;

FIG. 4 1s a schematic block diagram of a PE element
comprising a microcontroller processor (1MC) core for use
with the present invention;

FIG. 5 1s a schematic diagram of a TMC instruction that
may be advantageously used with the present invention; and

FIG. 6 1s a schematic diagram of the TMC core that
preferably embodies a multistage pipeline design that may
be advantageously used with the present invention.

DETAILED DESCRIPTION OF AN
ILLUSTRATIVE EMBODIMENT

FIG. 1 1s a block diagram of a computer network 100
comprising a collection of interconnected communication
media and subnetworks attached to a plurality of stations.
The stations are typically computers comprising end stations
102, 112 and intermediate station 200. The intermediate
station 200 may be a router or a network switch, whereas the
end stations 102, 112 may include personal computers or
workstations. The subnetworks generally comprise local
area networks (LANs) 110 and 120, although the mnvention

10

15

20

25

30

35

40

45

50

55

60

65

4

may work advantageously with other communication media
configurations such as point-to-point network links. Com-
munication among the stations of the network 1s typically
cllected by exchanging discrete data frames or packets
between the communicating nodes according to a predefined
protocol. For the illustrative embodiment described herein,
the predefined protocol i1s the Internet protocol (IP),

although the mnvention could be implemented with other
protocols, such as the Internet Packet Exchange protocol,
AppleTalk protocol or DECNet protocol.

FIG. 2 1s a schematic block diagram of intermediate
station 200 that, 1n the illustrative embodiment, 1s preferably

a network switch. The switch generally performs layer 2
processing functions, such as “cut-through” operations
wherein an entire frame does not have to be stored before
transier to a destination; 1n addition, switch 200 may imple-
ment layer 3 forwarding operations. It should be noted,
however, that the imntermediate station may also be config-
ured as a router to perform layer 3 route processing. A
teature of the inventive archutecture described herein 1s the
ability to program the station for execution of either layer 2
and layer 3 operations. To that end, operation of the switch
will be described with respect to IP switching of packets,
although the switch may be programmed for other applica-
tions, such as data encryption.

The switch 200 comprises a plurality of interconnected
components including an arrayed processing engine 300,
various memories, queueing logic 210 and network port
interface cards 240. Operations of these components are
preferably synchronously controlled by a clock module 270
although the arrayed elements of the processing engine may
be operatively configured to function asynchronously. In the
illustrative embodiment, the clock module 270 generates
clock signals at a frequency of 200 megahertz (1.e., 5
nanosecond clock cycles) and globally distributes them via
clock lines to the components of the switch.

The memories generally comprise random access
memory (RAM) storage locations addressable by the pro-
cessing engine and logic for storing software programs and
data structures accessed by the components. An operating
system, portions of which are typically resident in memory
and executed by the engine, functionally organizes the
switch by, inter alia, invoking network operations in support
of software processes executing on the switch. It will be
apparent to those skilled 1n the art that other memory means,
including various computer readable media, may be used for
storing and executing program 1nstructions pertaining to the
operation of the switch.

The arrayed processing engine 300 1s coupled to a
memory partitioned into a plurality of external memory (Ext
Mem) resources 280. A bufler and queuing unit (BQU) 210
1s connected to a packet memory 220 for storing packets and
a queue memory 230 for storing network layer headers of the
packets on data structures, such as linked lists, organized as
queues 235. The BQU 210 further comprises data interface
circuitry for interconnecting the processing engine with a
plurality of line cards 240 via a selector circuit 250 having
an arbiter 255. The line cards 240 may comprise, e.g., OC12,
OC48 and Fast Ethernet (FE) ports, each of which includes
conventional interface circuitry that incorporates the signal,
clectrical and mechanical characteristics, and interchange
circuits, needed to intertace with the physical media and
protocols running over that media. A typical configuration of
the switch may mnclude many mput/output channels on these
interfaces, each of which 1s associated with at least one
queue 2335 1n the queue memory 230. The processing engine
300 generally functions as a switching processor that modi-
fies packets and/or headers 1n sequence as the BQU 210
implements queuing operations.

Us 7,139,899 B2

S

A routing processor (RP) 260 executes conventional rout-
ing protocols for communication directly with the process-
ing engine 300. The routing protocols generally comprise
topological information exchanges between intermediate
stations to determine optimal paths through the network
based on, e.g., destination IP addresses. These protocols
provide information used by the RP 260 to create and

maintain routing tables. The tables are loaded into the
external partitioned memories 280 as forwarding informa-
tion base (FIB) tables used by the processing engine to
perform forwarding operations. When processing a header
in accordance with IP switching, the engine 300 determines

where to send the packet by indexing into the FIB using an
IP address of the header. Execution of the forwarding
operations results in destination media access control
(MAC) addresses of the headers being rewritten by the
processing engine to identily output ports for the packets.

FIG. 3 15 a schematic block diagram of the programmable
processing engine 300 that may be advantageously used
with the present invention. The processing engine comprises
a plurality of processing elements (PE) 400 arrayed into
multiple rows and columns; 1n the illustrative embodiment,
the PEs are arrayed as four (4) rows and four (4) columns in
a 4x4 arrayed configuration that 1s embedded between an
input header bufler (IHB) 360 and an output header buller
(OHB) 370. Note that other configurations, such as a 6x6
arrayed configuration, may be used 1n advantageously used
with the present invention.

A 64-bit feedback path 350 couples the OHB 370 to the
IHB 360 and provides a data path for recycling data through
the PE stages of the processing engine. The PEs of each row
are conflgured as stages connected 1n series by a 100 MHz
64-bit direct memory access (DMA) data path 340 that
synchronously transiers data and control “context” from one
PE to the next. Specifically, the processing elements of each
row are configured as stages of a pipeline that sequentially
execute operations on the transient data loaded by the IHB
360, whereas the processing elements of each column oper-
ate 1n parallel to perform substantially the same operation on
the transient data, but with a shifted phase. An example of
an arrayed processing engine and network switch suitable
for use with the present invention 1s described 1n copending
and commonly-owned U.S. patent application Ser. No.
09/106,4°78 titled Programmable Arrayed Processing Engine
Architecture for a Network Switch, which application 1s
hereby incorporated by reference as though fully set forth
herein.

FI1G. 4 1s a schematic block dlagram of a PE 400. The PE

1s a processor complex comprising a processor 600 coupled
to an instruction memory (IRAM) 420 and a memory
manager (MM) circuit 430. The IRAM 420 stores instruc-
tions for execution by the processor 600, which 1s preferably
a customized microcontroller (ITMC) core having a dense
structure which enables implementation of similar cores on
an application specific integrated circuit. It will be apparent
to those skilled 1n the art, however, that other processor cores
may be advantageously used with the processor complex
architecture described herein.

The TMC core 600 1s preferably a pipelined processor that
includes a plurality of arithmetic logic unmits (ALUs), a
register {ile 615 having a plurality of 32-bit general purpose
registers (GPRs) and an istruction fetch and decode unit
organized as a set of data paths. The GPRs generally store
intermediate result information processed by the ALUs,
whereas the instruction fetch and decode unit decodes
instructions fetched from the IRAM. The intermediate
results are passed among PE stages 400 of the engine 300
over a consistent data path channel 340 provided by a data

mover circuit 440 coupled to the MM 430. The TMC also

10

15

20

25

30

35

40

45

50

55

60

65

6

supports fast task context switching to enable software
pipelining across multiple cores.

A 64-bit local bus 425 (comprising a read bus portion 424
and a write bus portion 426) interconnects the TMC core
with context memories 435, a local memory 450 and a level
zero (L0) cache 460 coupled to an external memory I/F 310.
The local bus 425 can sustain one 64-bit read operation and
one 64-bit write operation per cycle for data aligned on a
4-byte boundary. The maximum sustainable rate for non-
aligned data accesses 1s one 32-bit read operation and one
32-bit write operation per clock cycle. The TMC core may
directly access locations 1n the context memories 435 and
the local memory 450 using an operand address associated
with an instruction. Notably, the context memories 435 and
the local memory 450 support zero wait state non-aligned
accesses; accordingly, there 1s generally no performance
difference when accessing data in those memories or the
internal registers of the TMC core.

Each context memory 433 stores transient “context” data
(e.g., packet/frame data) flowing through the PE 400 that 1s
unique to a specific process, whereas the local memory 4350
1s generally configured to store, inter alia, pointers that
reference data structures and tables stored i1n external
memory 280 for use by the TMC core 600. Management of
the context sensitive memory 1s provided by the MM 430,
which comprises data path and control logic for cooperating
with the data mover 440 and context memories 433 to
clliciently pass data among the PE stages of the processing
engine. The L0 cache 460 may be a fully associative,
multiport data cache that services external memory 280 and
a shared column memory (not shown); notably, the L0 cache
provides various caching and buflfering functions for those
memories, and may further 1ssue specific memory primitives
to the appropriate memory controller of either the external or

internal shared memory to thereby increase the overall
bandwidth and ethiciency of the TMC 600.

The TMC architecture incorporates a VLIW design
capable of executing more than one instruction per cycle
through the use of multiple execution units performing
multiple scalar operations 1n parallel. The execution units
are a main execution unit (M-unit) and a secondary execu-
tion unit (S-unit). As noted, the TMC processor architecture
enables operands to address data from, e.g., local memory
450 via the local bus 425; however a diflerence between the
two execution units 1s that the S-umit does not directly
address memory. Parallel operation of execution units
increases the processing performance of the switch while
also decreasing the number of data transiers over the local
bus. For such a design, an mnstruction decoder determines
whether an execution unit 1s ready for operation. The TMC
architecture utilizes a wide 1nstruction that explicitly sched-
ules operation of the execution units.

In the illustrative embodiment, the TMC core 600 uses a
64-bit 1nstruction word to operate on multiple 32-bit data
values. Logical operations are performed on indirect
memory operands to improve the overall density of the
instruction code by merging arithmetic instructions with
load/store instructions into one instruction. Broadly stated,
multiple opcodes of differing widths can be encoded 1n a
fixed length instruction word. Each istruction word con-
tamns two major opcodes and up to three minor opcodes
(micro-ops) that execute 1n parallel. Instruction level paral-
lelism 1s scheduled by software as opposed to hardware,
thereby eliminating the need for hardware-based schedulers
while enabling completion of multiple instructions per
cycle. An instruction set architecture provides micro-op-
codes to mitiate memory prefetches without requiring a
dedicated instruction.

Each instruction generally includes two primary opcodes,
one of which 1s directed to the M-Unit (e.g., M add) and the

Us 7,139,899 B2

7

other which 1s directed to the S-Unit (e.g., S and). As noted,
cach opcode executes concurrently on 1ts respective unit and
in parallel with the other. FIG. 5 1s a schematic diagram of
a TMC 1nstruction 500 comprising a 32-bit A part 502
containing an opcode directed to the M-Unait, a 22-bit B part
504 containing an opcode 1ssued to the S-Unit (or branch
unit), and a 10-bit C part 506 comprising three micro-opcode
fields. From an instruction decode perspective, the S-Unait
does not have direct access to the local bus 425 primarily
because a (displacement) operand requires 12 bits to encode
in displacement form and the TMC architecture does not
define that quantity of bits for an S-Unit istruction.

FIG. 6 1s a schematic diagram of the TMC core 600 which
preferably embodies a multi-stage pipeline data path orga-
nization comprising (1) an istruction fetch (IF) stage 610;
(11) an 1nstruction decode (ID) stage 620; (111) an execution
(EX) stage 630; and (iv) a writeback (WB) stage 660. The
EX stage includes a main execution umt (M-unit 640) and a
secondary execution unit (S-Unit 650) that are similar with
respect to their execution logic. That 1s, the M-Unit 640
comprises a plurality of interstage registers M-ISR1A 642
and M-ISR1B 644 coupled to mputs of a M-ALU 646;
likewise, the S-Unit 650 comprises interstage registers
S-ISR1A 652 and S-ISR1B 654 coupled to mputs of a
S-ALU 656.

According to the TMC micro-architecture, the M-Unait
640 1s configured to communicate directly with memory
over the local bus 425, whereas the S-Unit 650 1s directed
primarily to register-type operations (which can also be
performed by the M-Unit). To that end, memory operands
may be retrieved from the read local bus 424, stored in
M-ISR1B 644 and provided to the B input of the M-ALU

646, while intermediate (e.g., GPR) operands are stored 1n
M-ISR1A 642 and provided to the A input of that logic unat.

In contrast, only intermediate operands may be stored 1n
S-ISR1A 6352 and S-ISR1B 654, and provided to A and B
inputs of S-ALU 656, respectively. Although data received
by the TMC core 600 over the read bus 424 1s directed solely
to the M-Unit 640, the TMC architecture includes a bypass
mechanism comprising, 1n part, multiplexer 638 that allows

the S-Unit 650 to share such data with the M-Unit.

The WB stage 660 comprises a plurality of registers,
including M-WBR 662 coupled to the output of M-ALU 646

and S-WBR 664 coupled to the output of S-ALU 656.
Outputs of these registers are provided to the register file
615. For instructions that specily the register file as the
destination of the data, the write-back actually occurs during
the EX stage. Another interstage register ISR2 666 1s
coupled to M-WBR 662 and configured to store data that 1s
destined for the write local bus 426.

Functionally, the IF stage accomodates accesses to the
IRAM to acquire instructions. The ID stage fetches infor-
mation (such as source operands) from memory over the
read local bus 424 or from the internal register file 615 for
temporary storage in M-ISR1B, whereas source operands
tetched from only the register file are stored in M-ISR1A,
S-ISR1A and S-ISR1B. The {fetched information flows
through the EX stage of TMC execution units for processing,
and then to the WB stage for storage in M-WBR or S-WBR
prior to transier to the register file 615. For information
destined to either the 1.0 cache 460, the context memories
435 or to the local memory 4350, ISR2 1s employed to store
that information prior to transfer over the write local bus

426. Within this context, the invention 1s directed, 1n part, to
the EX and WB stages.

Broadly stated, the invention 1s directed to use of operand
bypassing to improve processing time for sequences of
instructions that have data dependencies. A typical imple-
mentation of operand bypassing involves the use of a
conventional control mechanism that employs GPR operand

10

15

20

25

30

35

40

45

50

55

60

65

8

comparison and a scoreboard to identily data dependencies
during the ID stage. The conventional control mechanism
“mplicitly” specifies bypass conditions through instruction
decode. However, a problem arises with a processor archi-
tecture, such as the TMC architecture, that enables operands
to address data from memory. Application of conventional
scoreboarding techniques to memory addresses requires
additional “overhead” (logic) to realize the dependency
function across the memory address space. The present
invention 1s directed to a pipeline stage addressing technique
that obviates the need for a scoreboard data structure in the
Processor.

Consider the following instruction with implicit bypass-
ng:

(13) add 10(R3)<—RS5, R2

(14) add R1<—R7, 10(R3)

There 1s a dependency on the displacement memory
operand 10(R3). This dependency may be identified using
address comparison logic of the conventional control
mechanism. In accordance with the present invention, how-
ever, the same function may be achieved via a pipeline stage
register addressing techmique that allows an 1nstruction to
directly 1dentity a pipeline stage register for use as its source
operand without the need for address comparison logic. The
addressing technique 1s an integral part of a novel control
mechanism defined by an instruction set of the TMC pro-
cessor as a unique register decode value that specifies either
source operand bypassing or, as indicated above, result
bypassing from a previous instruction executing in pipeline
stages ol the processor.

In one aspect of the present invention, the register decode
value comprises a register result bypass (RRB) operand that
explicitly controls data flow within the pipeline of the TMC
processor 600 through the use of result bypassing hardware
of the processor.

(13) add 10(R3)<—RS, R2

(14") add R1<—R7, RRB

Rather than actually specitying the memory operand
10(R3), the RRB operand explicity infers feedback of data
delivered from a current execution unit (e.g., M-unit) back
to an mmput execution register (e.g., M-ISR1A) over feed-
back path 670, thereby bypassing write-back of the data to
cither the register file 6135 or to ISR2 of the WB stage. In
addition to bypassing results of a memory operation operand
(e.g., an address) and GPR, the novel RRB operand enables
bypassing of results of a transform register (e.g., a register
internal to the TMC processor). By explicitly specifying the
pipeline stage register to be used as the source operand for
a current instruction, the invention obviates the need to keep
track of a large scoreboard addressing area. This, 1n turn,
climinates the need for any scoreboard structure in the
design of the TMC processor. Elimination of such a data
structure 1s significant because of the dense population of
logic on the TMC processor. Moreover, the RRB operand
allows 14' to be encoded with fewer instruction bits. That 1s,
the novel RRB operand 1s preferably encoded using 4 bits as
opposed to 12 bits needed for a displacement operand.

It should be noted that the term RRB 1s encoded 1n
accordance with an assembler mnemonic wherein the first R
denotes a register operand, and the subsequent RB denotes
the result to be bypassed. Furthermore the term RRB denotes
the current execution unit, whereas the term RIRB (1.e.,
inter-unit result bypass) denotes the alternate execution unait.
It should also be noted that the data dependency referred to
herein exists between a destination operand of a previous
instruction and a source operand of a subsequent instruction.

In accordance with the present invention, a result in either
the current (main) execution unit or the alternate (secondary)
execution unit can be bypassed. That 1s, data can be
bypassed from either the M-Unit or the S-Unit and be used

Us 7,139,899 B2

9

as an mput operand value to those units. The invention thus
comprises, 1 part, an explicit result bypassing mechanism
that obviates the use of scoreboarding structures for main-
taining data dependencies with respect to addresses origi-
nating from memory. The performance realized 1n a pipeline
procesor as the result of resolving data dependencies using
the novel RRB operand is the same as that achieved by a
pipeline processor having a scoreboarding structure to
resolve such dependencies.

In another aspect of the invention, the register decode
value comprises a source bypass (RISB) operand that allows
source operand data to be shared among the parallel execu-
tion units (e.g., the M-Unit and S-Unit) of the pipelined
TMC processor. For example, source bypassing allows the
secondary S-Unit 650 to receive data stored at an effective
memory address specified by a displacement operand 1n a
previous 1nstruction executed by the main M-Unait 640 of the
TMC 600. The source bypassing mechanism involves shar-
ing of the output of M-ISR1B 644 with the S-Unit by way
of multiplexer 658. Assume packet data 1s fetched by the ID
stage 630 over the read local bus 424 for processing by the
M-Unit. Assume further that the following instructions are

executed at the TMC:

(15) M add RI=—R2, 5(R3)

(16) S and R2<—RISB, R3

The M add instruction 1s executed by the M-Unit and
directed to a particular byte (8 bits) within the data field
specified by the memory operand 5(R3). This memory
operand 1s decoded as a displacement operand and translated
to an effective address that 1s driven over the local bus 425.
The local bus transfers at least 32 bits of (non-aligned) data
and, 1n this case, only 8 bits of that data will be operated
upon by the mstruction 15. Yet, the remaining 24 bits
transierred over the local bus may be useful for subsequent
instruction execution. It would thus be desirable to share that
data among the multiple execution units. Source operand
bypassing allows the S-Umnit to recerve data starting at the
cllective memory address specified by the displacement
operand in the previous M add instruction 15. This 1s denoted
by the 16 (S and) mstruction and, 1n particular, the use of
RISB source operand bypassing.

In accordance with the present invention, the source
bypassing mechanism improves performance of the TMC
processor 600, particularly for data recerved over the local
bus 425 from a memory of the processing engine 300. That
1s, source bypassing allows realization of two memory
references through the use of a single bus operation over the
local bus. The RISB operand represents the data retrieved
from the bus and 1s equivalent to the displacement operand
address 1n the previous 15 (M add) instruction. In addition,
the novel RISB decode value represents substantial coding
elliciencies since 1t may be encoded with substantially fewer
bits than those needed for a displacement address. For
example, the RISB operand requires only 4 bits as opposed
to the 12 bits necessary for the displacement address.

An advantage of the novel control mechanism is the
increase 1n performance of a pipelined processor by enabling
bypass operations without the use of dedicated hardware to
identily and resolve operand dependencies. The mventive
control mechanism further allows greater coding efliciency
since memory operand results can be bypassed via a special
register reference as opposed to specilying a memory oper-
and. Moreover, pipeline stage register addressing provides
an eflicient means to specily the use of a previous 1nstruction
result as a source operand for the instruction.

The foregoing description has been directed to specific
embodiments of this mnvention. It will be apparent, however,
that other vanations and modifications may be made to the
described embodiments, with the attainment of some or all
of theiwr advantages. Therefore, 1t 1s the object of the

10

15

20

25

30

35

40

45

50

55

60

65

10

appended claims to cover all such varnations and modifica-
tions as come within the true spirit and scope of the
ivention.

What 1s claimed 1s:

1. A processor, comprising:

a lirst execution unit having a first and second input
register coupled to first and second mputs to a first
arithmetic logic unit (ALU), the first and second input
registers of the first execution unit to store source
operands, the first ALU capable of addressing a
memory to retrieve a source operand;

a second execution unit having a first and second 1nput
register, the second register coupled to a second 1nput
to a second ALU, the first and second mnput registers of
the second execution unit to store source operands, the
second ALU not capable of addressing the memory;
and

a multiplexer (MUX) having 1) a first input coupled to the
first input of the first ALU, 1) a second mput coupled
to the first input register of the second ALU, and 111) an
output directly providing a first imput to the second
ALU, the MUX permitting both the first and second
ALU to share the source operand retrieved by the first
ALU from the memory.

2. The processor of claim 1, further comprising:

an instruction set defining a register decode value that
specifies source operand bypassing, such that the
MUX, 1 response to the register decode value that
specifies source operand bypassing, selects the first
input of the MUX coupled to the first input of the first
ALU as the output of the MUX, the output of the MUX

providing the first input to the second ALU.

3. The processor of claim 2, wherein the source operand
bypassing value allows the second execution unit to receive
data stored at an eflective memory address specified by a
displacement operand in the previous instruction executed
by the first execution unit.

4. The processor of claim 1, further comprising:

a local bus for communicating with the memory;

a register file for storing intermediate operands; and

an 1nstruction decode stage for coupling the register file to

the first and second mnput registers of the first and
second ALUs to provide intermediate operands as the
source operands, and for coupling a memory bus to the
first 1nput register of the of the first ALU to provide
source operands from the memory.

5. The processor of claim 4, wherein the first input register
of the first ALU provides source operands from the memory
to both the first mput to the first ALU and to the first input
of the MUX, thereby permitting the first input to the second
ALU to share the source operands from the memory directly
from the first input register of the first ALU.

6. The processor of claim 1, further comprising:

a pipeline of the processor, the pipeline having a plurality
of stages including instruction decode, writeback, and
execution stages, the execution stage having the first
and second execution units.

7. The processor of claim 6, further comprising:

an struction set defining a register decode value that
defines result bypassing that allows bypassing of a
result from a previous instruction executing in pipeline
stages of the processor by directly addressing a result
register of the first and second execution units.

8. The processor of claim 7, wherein the register decode
value comprises:
one ol a result bypass (RRB) operand and an inter-unit

result bypass (RIRB) operand, each of which explicitly
controls data tlow within the pipeline of the processor.

Us 7,139,899 B2

11

9. The processor of claim 8, wherein the RRB operand
denotes the first execution unit and the RIRB operand
denotes the second execution unit.

10. The processor of claam 8, wherein the RRB operand
explicitly infers feedback of the data delivered from the first 5
execution unit to an iput register of the first execution unit
over a feedback path.

11. The processor of claim 10, wherein the writeback
stage comprises an interstage register and wherein the RRB
operand enables bypassing write-back of the data processed 10
by the first and second execution units to one of the register
file or the interstage register of the writeback stage.

12. The processor of claim 1, further comprising:

an mstruction set defining a register decode value that
defines source operand bypassing that allows source 15
operand data to be shared among the first and second
execution units by directly addressing a source register
of the first execution unit.

13. The processor of claim 12, wherein the source operand
bypassing value allows the second execution unit to receive ,,
data stored at an effective memory address specified by a
displacement operand in the previous instruction executed
by the first execution unit.

14. The processor of claim 1, further comprising:

a register file containing a plurality of general-purpose ,5
registers for storing mtermediate result data processed
by the first and second execution units.

15. The processor of claim 1, wherein the first and second

execution units are parallel execution units.

16. The processor of claim 1, further comprising:

a current execution unit as the first execution unit; and

an alternate execution unit as the second execution unit.

17. The processor of claim 1, wherein the first and second
ALU share the source operand stored in the first input
register of the first ALU substantially simultaneously.

18. A method for use with a processor, the method
comprising;

providing a multiplexer (MUX) having a first and second
MUX mput and a MUX output;

coupling the first MUX 1nput to a first input of a first ALU,
the first ALU capable of addressing a memory to
retrieve a source operand from the memory;

coupling a second MUX 1nput to a first mnput register of
a second AL U, the second ALU not capable of address-
ing the memory; and

directly providing, by the MUX output, a first input to the
second ALU, the MUX permitting both the first and

second ALU to share the source operand retrieved from
the memory by the first ALU.

19. The method of claim 18, further comprising:

defiming a register decode value within an 1nstruction set
that specifies source operand bypassing, such that the
MUX, 1 response to the register decode value that
specifies source operand bypassing, selects the first
MUX 1nput coupled to the first input of the first ALU
as the MUX output, the MUX output providing the first 55
input to the second ALU.

20. The method of claim 19, wherein the source operand
and bypassing value allows the second execution unit to
receive data stored at an effective memory address specified
by a displacement operand in the previous instruction 60
executed by the first execution unit.

21. The method of claim 18, further comprising:

communicating with the memory;

storing intermediate operands 1n a register file; and

identifying an imstruction decode stage for coupling the 65
register file to the first and second input registers of the
first and second AL Us to provide intermediate operands

30

35

40

45

50

12

as source operands, and for coupling a memory bus to
the first imnput register of the of the first ALU to provide
source operands from the memory.

22. The method of claim 21, further comprising;

providing, by the first mput register of the first ALU,
source operands from the memory to both the first input
to the first ALU and to the first MUX 1nput, thereby
permitting the first input to the second ALU to share the
source operands from the memory directly from the
first 1input register of the first ALU.

23. The method of claim 18, further comprising;

including a pipeline of the processor, the pipeline having
a plurality of stages including instruction decode,
writeback, and execution stages, the execution stage
having a first and second execution unit, each having
one of the first and second ALUs, respectively.

24. The method of claim 23, further comprising;

defining a register decode value that defines result bypass-
ing of a result from a previous instruction executing 1n

pipeline stages of the processor.
25. The method of claim 24, further comprising;

identifying a pipeline stage register for use as a source
operand 1n an mnstruction containing the register decode
value by directly addressing a result register.

26. The method of claim 25, further comprising:
explicitly controlling data tflow within the pipeline stages

of the processor through the use of a register result
bypass (RRB) operand in the register decode value.

277. The method of claim 26, wherein the step of explicitly
controlling comprises:

retrieving data from the first execution unit; and

returning the data to an input of the first and second
execution units as specified by the RRB operand,
thereby bypassing write-back of the data to either a
register file or memory at the writeback stage.

28. The method of claim 27, wherein the step of i1denti-

tying further comprises:

explicitly specitying the pipeline stage register to be used
as the source operand for the instruction.

29. The method of claim 28, further comprising:

encoding the RRB operand in fewer bits than a regular
register operand.

30. The method of claim 23, further comprising;

defining a register decode value that defines source oper-
and bypassing of source operand data.

31. The method of claim 30, further comprising;

identifying a pipeline stage register for use as a source
operand 1n an 1nstruction containing the register decode
value by directly addressing a source register.

32. The method of claim 31, further comprising:

sharing source operand data among the first and second
execution units of the pipelined processor through the
use of a source bypass (RISB) operand 1n the register
decode value.

33. The method of claim 32, wherein the step of sharing
further comprises:

receiving data at the second execution unit, the data stored

at a memory address specified by a displacement oper-

and 1n a previous instruction executed by the first
execution unit of the processor.

34. The method of claim 33, wherein the step of sharing
further comprises:

realizing two memory references through the use of a
single bus operation over a local bus.

35. The method of claim 34, wherein the step of sharing
turther comprises:

encoding the RISB operand with substantially fewer bits
than those needed for a displacement address.

Us 7,139,899 B2

13

36. The method of claim 18, further comprising:

sharing a source operand stored 1n a {irst input register of
the first ALU at the first and second ALU substantially
simultaneously.

37. An apparatus, comprising:

a multiplexer IMUX) having a first and second MUX
input and a MUX output;

means for coupling the first MUX 1nput to a first input for
a first ALU, the first ALU capable of addressing a
memory to retrieve a source operand from the memory;

means for coupling a second MUX 1nput to a {irst input
register for a second ALU, the second ALU not capable
ol addressing the memory; and

means for directly providing a first mput to the second
ALU, the means for directly providing permitting both
the first and second ALU to share the source operand
retrieved from the memory by the first ALU.

38. The apparatus of claim 37, further comprising:

means for defining a register decode value within an
instruction set that specifies source operand bypassing,
such that the MUX, in response to the register decode
value that specifies source operand bypassing, selects
the first MUX 1nput coupled to the first input of the first
ALU as the MUX output, the MUX output providing
the first input to the second ALU.

39. The apparatus of claim 38, wherein the source operand

bypassing value allows the second execution unit to receive
data stored at an effective memory address specified by a
displacement operand in the previous instruction executed
by the first execution unit.

40. The apparatus of claim 37, further comprising:

means for communicating with the memory;

means for storing intermediate operands; and

means for identifying an instruction decode stage for
coupling the register file to the first and second 1nput
registers of the first and second ALUs to provide
intermediate operands as source operands, and for
coupling a memory bus to the first input register of the
of the first ALU to provide source operands from the
memory.

41. The apparatus of claim 40, further comprising:

means for providing source operands from the memory to
both the first input to the first ALU and to the first MUX
input, thereby permitting the first input to the second
ALU to share the source operands from the memory
directly from the first input register of the first ALU.
42. The apparatus of claim 37, further comprising:

means for sharing a source operand stored 1n a first input
register of the first ALU at the first and second ALU
substantially simultaneously.

43. A processor, comprising:

a first ALU, the first ALU capable of addressing a memory
to retrieve a source operand from the memory;

a second AL U, the second ALU not capable of addressing,
the memory; and

a circuit to couple a first iput of the first ALU to a first
mput of the second ALU to provide an operand
retrieved from the memory by the first ALU as an input

to the second ALU.
44. The processor of claim 43, wherein the circuit further

COmprises:

a multiplexer, the multiplexer having an 1mput connected
to the first mput of the first ALU and an output
connected to the first input of the second ALU.

10

15

20

25

30

35

40

45

50

55

60

14

45. A processor, comprising;:

a first AL U, the first ALU capable of addressing a memory
to retrieve an operand

a second ALU, the second ALU not capable of addressing,
the memory;

a first circuit capable of providing an operand retrieved by
the first ALU from a memory as an mnput to the second
ALU;

a second circuit capable of providing a result from either
the first ALU or the second ALU as an input to the
second ALU; and

an mstruction set having a register decode value which 1s
capable of selecting as an mput to the second ALU
cither the operand or the result.

46. The processor of claim 435, wherein the circuit further

COmMprises:

a multiplexer, the multiplexer having a first input con-
nected to the first input of the first AL U, a second input
coupled to the result, and an output connected to the
input of the second ALU, the multiplexer selecting
whether the second ALU receives the operand or the
result as an nput.

4'7. The processor of claim 45, further comprising:

a circuit providing the result to both the first AL U and the
second ALU.

48. A method for operating a processor, comprising:

addressing a memory by a first ALU to retrieve a source
operand from the memory;

providing a second ALU, the second ALU not capable of
addressing the memory; and

coupling a first input of the first ALU to a first input of the
second ALU to provide an operand retrieved from the
memory by the first ALU as an input to the second

ALU.
49. The method of claim 48, further comprising:

connecting an mput of a multiplexer to the first input of
the first ALU; and

connecting an output of the multiplexer to the first input
of the second ALU.

50. A method for operating a processor, comprising:

providing an operand retrieved by a first ALU from a
memory as an mput to a second ALU, the second ALU
not capable of addressing the memory;

providing a result from either the first ALU or the second
ALU as an mput to the second ALU; and

selecting, by an instruction set having a register decode
value, either the operand or the result as an iput to the

second ALU.
51. The method of claim 50, further comprising;

connecting a first mput of a multiplexer to the first input
of the first ALU:;

connecting a second 1mput of the multiplexer to the result;
and

connecting an output of the multiplexer to the input of the
second ALU, the multiplexer selecting whether the
second ALU receives the operand or the result as an
input.

52. The method of claim 50, further comprising:

providing the result to both the first ALU and the second
ALU.

	Front Page
	Drawings
	Specification
	Claims

