US007133994B2
12 United States Patent (10) Patent No.: US 7,133,994 B2
Abbey 45) Date of Patent: Nov. 7, 2006
(54) CONFIGURATION SIZE DETERMINATION 6,546,457 B1* 4/2003 Don etal. 711/114
IN LOGICALLY PARTITIONED 6,594,749 BL1* 7/2003 CzajkowsKicoo..... 711/170
ENVIRONMENT 6,857,058 B1* 2/2005 Gurumoorthy et al. 711/209
(75) IIlVBIltOfZ Christopher Patrick Abbey, 1{0(:11681:61,,:j 6,912,625 Bl * 6/2005 Foster et al. 711/153
MN (US) 6,915,402 B1* 7/2005 Wilson et al. 711/173
2002/0129127 Al* 9/2002 Romero et al. 709/220
(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)
(*) Notice: Subject to any disclaimer, the term of this * cited by examiner
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 454 days.
Primary Examiner—Mano Padmanabhan
(21) Appl. No.: 10/418,349 Assistant Examiner—Jasmine Song
(74) Attorney, Agent, or Firm—Patterson & Sheridan, LLP
(22) Filed: Apr. 17, 2003
(37) ABSTRACT
(65) Prior Publication Data
US 2004/0210734 Al Oct. 21, 2004
Method, apparatus and article of manufacture for determin-
(51) Int. CI. Ing memory requirements for a partition manager based on
Gool’ 12/00 (2006.01) a given configuration. In one embodiment, a quantity of
(52) US.CLcooeeeeen, 711/173;711/170; 711/172; memory required for each of a plurality of components 1s
713/1;713/100 determined, where each component 1s a collection of func-
(58) Field of Classification Search None tion-related code portions. Then, a total quantity of memory
See application file for complete search history. required for the partition manager based on the quantities of
(56) References Cited memory required for the plurality of components 1s deter-
mined.
U.S. PATENT DOCUMENTS
5,860,134 A * 1/1999 Cowellc.ccceceeruuennnc. 711/172 18 Claims, 5 Drawing Sheets
LP LP LP
302A — 1 : — 3028 302N
304A R 304B —\ 304N B
PROCESSOR (S)| | |PROCESSOR (S) PROCESSOR (S)
306A ™\ 3068 ™\ 308 Nj
MEMORY MEMORY MEMORY
308Aj 3DBBj *oe 310Nj
O e, I/O
310Aj 31OBﬂ\ SOBN—\
. O/S O/S O/S
30— i i 312
MEMORY -
,— 318 —]
| COMPILER NON - DISPATCHABLE PARTITION MANAGER — 316
MEMORY

U.S. Patent Nov. 7, 2006 Sheet 1 of 5 US 7,133,994 B2

NETWORK
100

FIG. 1

[

CO00ad00o000

ooooooooaon
118

N
[

U.S. Patent

Nov. 7, 2006 Sheet 2 of 5 US 7,133,994 B2
JTAG/I2C BUSSES
201A 201B 201C 201D 201
. vl \ 234
PROCESSOR |- | PROCESSOR | | PROCESSOR| | PROCESSOR |
ATTN SIGNAL
| 206 SERVICE
P R L SYSTEM BUS 235 ~ pacRY e
295 |
208 MEMORY | PC1 BUS]
CONTROLLER/
CACHE BRIDGE ISA 292
SERVICE PROCESSOR NVRAM ‘
260A. MAILBOX INTERFACE | —
N\ AND ISA BUS ACCESS 296
I LOCAL | | PASSTHROUGH
MEMORY | 294 PCI/ISA OP
293 7\ BRIDGE PANEL
2608 | i 231 290
‘ LOCAL i 230 220A —
MEMORY PCI HOST PCI 1/0
BRIDGE [poiBUS ADAPTER |
200C - 590R
LOCAL oy | 218 PCIBUS I__A_'I
MEMORY 10 216 PCI 1/O
Buss|| 214 945 RN ADAPTER
PCI HOST o
260D BRIDGE [pgiBUS EADS% 5C1 BUS 2_2%3%_
LOCAL f ADAPTER
MEMORY 219 et
220D
| 226 PCIBUS 5C1 /O
| 22 g 224
PCI HOST
BRIDGE
07 ADAPTER
OATA PROCESSING 220F
SYSTEM 242 244 PCIBUS ["aoapHic
240 241) ADAPTER
PCI HOST
..._ . EADS 220G
BRIDGE N
PCIBUS PCIBUS [LARD DIS-K_I
745 ADAPTER

FIG. 2

250

US 7,133,994 B2

Sheet 3 of 5

Nov. 7, 2006

U.S. Patent

¢le

NCOt

¢ Ol

g1€~—¥3OVNVIN NOILILYVd 3719VHOLVdSIA - NON

S/0

— NI0Ot

—

o]

HZo 23

AJOWNIN _
N8Ot

V1€ ~— H3IOVNVYIN NOILILYEVd F19VHILVdSIA

(S) "0SS3ID0Hd

N0t

d¢0¢

S/0

d0le

O/l

g80¢
ASOWSIN

(S) H"0SSID0Ud

dv0t

o

mom

>W_OS_MS_
va0¢L

A w) HO0SS320¥d

AHOWIN

33 1dNOD

8LE

J3OVNVIA
AJOWNSIN

\ 40>

]

o0

M .

=N v 9l

o ——
e,

1.-...,.

™~

- g ININOJWOD

S39OVNVIA
NOILllLaVvd
J318VHO1VdSId - NON

1 H0d3d4 JZIS 140d3dd 3ZIS bl

- N LNINOdWOJ
I
-
N AH1SIO3Y
P 321S -
=
= ININOJWOD 771

ch 0Zh 14043y

v113d
o YN | { 3OV4H3LINI H¥3SN
= NOILYHNDIANOD
a dOLVINO VO NOILVHN9OIINOD
~ = A B
2 90
Z
| 30%
HIOVYNVIA NOILILYVd |
3719VHOLYdSIA - NON
e HIOVNVIA HIOVNVYI Td|
PLE JUYMAYVYH

14817 20

U.S. Patent
|

U.S. Patent Nov. 7, 2006 Sheet 5 of 5 US 7,133,994 B2

| 414A
|
F1=XBYTES F1=ABYTES — —
F2 =Y BYTES F2 =B BYTES X
¢ M
o ® o O
. J
FM =Z BYTES FM = C BYTES —

SIZE REPORT 1 SIZE REPORT N

416 420
MASTER SIZE COUNT REPORT
REPORT F1 — COUNT,
2, (F1) F2 — COUNT,
1...N ®
Y (F2) ¢
@
1...N
.
Y (FM)
1.N

Z [T(R[NJ[M])* C[M]]=TOTAL MEMORY (EQUATION 1)
1.N
1M

FIG. 5

Us 7,133,994 B2

1

CONFIGURATION SIZE DETERMINATION
IN LOGICALLY PARTITIONED
ENVIRONMENT

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to data processing
and more particularly to memory management 1n a logically
partitioned environment.

2. Description of the Related Art

Logical partitioning refers to the ability to make a system
run as 1l 1t were two or more independent systems. Each
logical partition represents a division of resources in the
system and operates as an independent logical system. Each
partition 1s logical because the division of resources may be
physical or virtual. An example of logical partitions 1s the
partitioning ol a multiprocessor computer system into mul-
tiple independent servers, each with 1ts own processors,
main storage, and I/O devices. One of multiple diflerent
operating systems, such as AIX®, LINUX, and others can be
running in each partition. AIX® 1s a registered trademark of
International Business Machines, Inc.

Logically partitioned systems include a software compo-
nent referred to as a partition manager. The partition man-
ager 1s responsible for managing the various logical parti-
tions on the system. In order to perform its responsibilities,
the partition manager must have suflicient memory avail-
able. In addition, some form of a preemptive memory
management technique 1s needed to avoid arriving at some
unknown point in an activation path before discovering that
msuilicient memory 1s allocated to the partition manager.
Such a condition would require extensive ability to “undo”
a partially accepted configuration change throughout the
partition manager. Implementing such ability would
involves central tracking of which components had already
been 1nitialized and which had not, as well as interfaces 1n
all the components to deal with undoing the partially com-
mitted change a user has requested. In addition, the likeli-
hood of a memory allocation failing during the activation
path increases, which may expose a coding bug for not
handling the failure.

One possibility to ensure suflicient memory 1s to “pre-
allocate” memory. However, pre-allocation presents numer-
ous challenges and undesirable consequences. In particular,
pre-allocation would require extensive cross component
interfaces between configuration management and every
other component 1n the partition manager which allocates
storage. New interfaces would also be necessitated between
numerous other components to pipe pre-allocation messages
around. In essence, the entire allocation code paths would
have to be triplicated: pre-allocate, rollback-pre-allocated,
and commit-pre-allocated. The pre-allocate code path allo-
cates space for a given configuration change, but does not
allow the system to act as i the change has been accepted.
The rollback-pre-allocated code path returns the pre-allo-
cated space to the system because the change 1s being
discarded (most likely because of some component’s failure
to pre-allocate due to msuflicient storage). The commit-pre-
allocated code path accepts the change that caused the
pre-allocate. In addition, all components which allocate
memory would have to track the state of their allocations
(1.e., non-allocated, pre-allocated and allocated), and par-
ticipate 1 some form of multiphase commitment control,
such as the above three phases. These changes would add
considerable amounts of code to the partition manager, 1n
addition to nontrivial code complexity to every component

"y

10

15

20

25

30

35

40

45

50

55

60

65

2

that allocates memory, as well as requiring additional space,
since components would need to allocate structures 1n order
to track the pre-allocation and allocation state of their
allocations.

Therefore, there 1s a need for a system and method for
managing memory in a partitioned environment.

SUMMARY OF THE INVENTION

The present invention generally pertains to determining
memory requirements for a partition manager based on a
given configuration.

One aspect provides a method for determining a memory
requirement for a partition manager in a logically partitioned
environment of a computer. A quantity of memory required
for each of a plurality of components 1s determined, where
cach component 1s a collection of function-related code
portions. Then, a total quantity of memory required for the
partition manager based on the quantities of memory
required for the plurality of components 1s determined.

Another aspect of a method for determining a memory
requirement for a partition manager in a logically partitioned
environment ol a computer includes providing a size report
for each of a plurality of components, where each compo-
nent 1s a collection of function-related code portions and
where each size report of a given component specifies a
quantity of memory required for the given component; and
determining a total quantity of memory required for the
partition manager based on at least (1) the size reports; and
(11) a particular configuration of the computer.

Another aspect provides a method for determining a
memory requirement for a partition manager in a logically
partitioned environment of a computer comprising hardware
resources. The method includes providing a size registry
comprising a size report for each of a plurality of compo-
nents, wherein each component 1s a collection of function-
related code portions and wherein each size report comprises
a plurality of fields each corresponding to a configurable
option and each having a memory requirement value. The
method turther includes initializing the hardware resources,
initializing each memory requirement value of each of the
plurality of fields, and determining a total quantity of
memory required for the partition manager based on at least
(1) the size reports; and (11) a particular configuration of the
computer.

Yet another aspect provides a computer readable medium
containing a program which, when executed on a logically
partitioned computer system, performs an operation includ-
ing accessing a plurality of size reports, wherein each size
report 1s specific for each of a plurality of components,
wherein each component 1s a collection of function-related
code portions and wherein each size report of a given
component comprises a plurality of fields, each field being
specific to a configurable option on the computer system and
having a memory requirement value. The operation further
provides calculating a total quantity of memory required for
the partition manager based on at least (1) the size reports;
and (1) a particular configuration of the computer.

Still another aspect provides a computer having a plurality
of resources 1including memory and at least one processor; a
logical partition manager configured to at least manage one
or more logical partitions present on the computer; a size
calculator and a configuration manager. The size calculator
1s configured to determine an amount of the memory needed
by the logical partition manager at initial program load (1.¢.,
boot time) for a particular configuration and prior to accept-
ing configuration requests from users. The configuration

Us 7,133,994 B2

3

manager 1s configured to at least determine whether the
amount of memory needed by the logical partition manager
1s available for a particular configuration; and 1f so, accept
the particular configuration.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner 1n which the above recited features,
advantages and objects of the present invention are attained
and can be understood in detail, a more particular descrip-
tion of the mvention, briefly summarized above, may be had
by reference to the embodiments thereol which are illus-
trated 1n the appended drawings.

It 1s to be noted, however, that the appended drawings
illustrate only typical embodiments of this invention and are
therefore not to be considered limiting of its scope, for the
invention may admit to other equally effective embodi-
ments.

FIG. 1 1s a block diagram of a network of computers,
including a logically partitioned computer.

FIG. 2 1s a block diagram of a computer illustrating
hardware resources, some of which may be partitioned.

FIG. 3 1s a block diagram of a logically partitioned
computer.

FI1G. 4 1s a diagram of software components of a logically
partitioned system configured to determine memory require-
ments ol a partition manager.

FIG. 5 shows one embodiment for calculating a memory
requirement for a partition manager.

DETAILED DESCRIPTION OF TH.
PREFERRED EMBODIMENTS

L1

The present invention generally pertains to memory man-
agement 1n a logically partitioned environment. Predictive
calculations are made to determine 1n advance the amount of
memory required by a partition manager. The calculated
amount of memory 1s then reserved for the exclusive use of
the partition manager, thereby preventing logical partitions
from being configured into the reserve memory. Another
aspect of the mvention provides for rejecting additional
configuration requests that exceed the capabilities of the
partition manager’s current memory allocation.

One embodiment of the invention 1s implemented as a
program product for use with a computer system. The
program(s) of the program product defines functions of the
embodiments (including the methods described herein) and
can be contamned on a variety of signal-bearing media.
Illustrative signal-bearing media include, but are not limited
to: (1) information permanently stored on non-writable stor-
age media (e.g., read-only memory devices within a com-
puter such as CD-ROM disks readable by a CD-ROM
drive); (1) alterable information stored on writable storage
media (e.g., floppy disks within a diskette drive or hard-disk
drive); and (i11) information conveyed to a computer by a
communications medium, such as through a computer or
telephone network, including wireless communications. The
latter embodiment specifically imncludes mformation down-
loaded from the Internet and other networks. Such signal-
bearing media, when carrying computer-readable instruc-
tions that direct the functions of the present invention,
represent embodiments of the present invention.

In general, the routines executed to 1mplement the
embodiments of the mvention, may be part of an operating
system or a specific application, component, program, mod-
ule, object, or sequence of structions. The computer pro-
gram of the present invention typically 1s comprised of a

10

15

20

25

30

35

40

45

50

55

60

65

4

multitude of instructions that will be translated by the native
computer into a machine-readable format and hence execut-
able istructions. Also, programs are comprised of variables
and data structures that either reside locally to the program
or are found 1n memory or on storage devices. In addition,
various programs described hereinafter may be i1dentified
based upon the application for which they are implemented
in a specilic embodiment of the invention. However, it
should be appreciated that any particular program nomen-
clature that follows 1s used merely for convenience, and thus
the mvention should not be limited to use solely 1 any
specific application identified and/or 1mplied by such
nomenclature.

Retferring now to FIG. 1, a distributed data processing
system 100 1s shown. The distributed data processing system
100 1s a network of computers 1n which the present invention
may be implemented. The distributed data processing sys-
tem 100 includes a network 102, which 1s the medium used
to provide communications links between various devices
and computers connected within the distributed data pro-
cessing system 100. The network 102 may include perma-
nent connections, such as wire or fiber optic cables, or
temporary connections made through telephone connec-
tions. In a particular example, the distributed data processing
system 100 1s the Internet, with the network 102 represent-
ing a worldwide collection of networks and gateways that
use the TCP/IP suite of protocols to communicate with one
another. The distributed data processing system 100 also
may be implemented as a number of different types of
networks such as, for example, an intranet or a local area
network.

In the depicted example, a data processing system 104
configured as a server 1s connected to the network 102, along
with a storage unit 106. A plurality of clients 108, 110 and
112 are also connected to network 102. These clients, 108,
110 and 112, may be, for example, personal computers or
network computers. For purposes of this application, a
network computer 1s any computer coupled to a network that
receives a program or other application from another com-
puter coupled to the network. In the depicted example, the
server 104 1s a logically partitioned platform and provides
data, such as boot files, operating system 1mages and appli-
cations, to the clients 108-112.

The server 104 1s connected to a hardware management
console 150. The hardware system console 150 may be a
laptop computer and 1s used to display messages to an
operator from each operating system 1mage runmng on the
server 104, as well as to send input information received
from the operator, to the server 104.

The distributed data processing system 100 also includes
devices such as printers 114, 116 and 118. A client, such as
client 110, may print directly to the printer 114. In contrast,
clients, such as the clients 108 and 112, do not have directly
attached printers. These clients may print to printer 116,
which 1s attached to the server 104, or to the printer 118,
which 1s a network printer that does not require connection
to a computer for printing documents. The client 110,
alternatively, may print to the printer 116 or the printer 118,
depending on the printer type and the document require-
ments. Of course, the distributed data processing system 100
may include additional servers, clients, and other devices not
shown.

It 1s noted that the distributed system 100 shown 1n FIG.
1 1s merely representative, and the other embodiments or
contemplated. For example, although the server 104 1is
shown as a component of a distributed system, the invention
may also be practiced in a standalone system.

Us 7,133,994 B2

S

It 1s noted that the network 100 shown 1n FIG. 1 1s merely
representative, and the other embodiments or contemplated.
For example, although the data processing system 104 1is
shown as a component of a distributed system, the invention
may also be practiced in a standalone system.

Referring now to FIG. 2, an illustrative representation of
the data processing system 104 1s shown which depicts
various resources that may be allocated between various
logical partitions. Illustratively, data processing system 104
1s a symmetric multiprocessor (SMP) system including a
plurality of processors 201 A-D connected to system bus
206. In a particular embodiment, data processing system 104
may be an eServer 1Series computer, a product of Interna-
tional Business Machines Corporation i Armonk, N.Y.,
implemented as a server within a network. Although shown
as a SMP system, a single processor system may alterna-
tively be employed. Also connected to system bus 206 1s
memory controller/cache 208, which provides an interface
to a plurality of local memories 260A—D. I/O bus bridge 210
1s connected to system bus 206 and provides an interface to
[/O bus 212. Memory controller/cache 208 and I/O bus
bridge 210 may be integrated as depicted.

The data processing system i1s a Peripheral component
interconnect (PCI) bus implementation which supports a
plurality of Input/Output adapters. Typical PCI bus imple-
mentations will support between four and eight I/O adapters
(1.e. expansion slots for add-in connectors). Illustratively, the
processing system 104 includes seven (7) I/O adapters
220A—G. Each I/O Adapter 220A—G provides an interface
between data processing system 104 and input/output
devices such as, for example, other network computers,
which are clients to data processing system 104. By way of
example, a PCI Host bridge 214 connected to 1/0O bus 212
provides an interface to PCI local bus 215. A number (two
shown) of I/O adapters 220B—C may be connected to PCI
bus 215 via EADS 216 and respective PCI buses 218 and
219. Other I/O adapters may be similarly connected by
respective PCI host bridges (e.g., bridges 222, 230 and 240),
EADS (e.g., EADS 224, 232, and 242) and PCI buses (e.g.,
223, 226227, 231, 233, 241 and 244-245).

As examples of particular types of adapters, the system
104 includes a memory mapped graphics adapter 220F,
which may be connected to I/O bus 212 through the PCI
Host Bridge 240 and EADS 242 via PCI buses 241 and 244
as depicted. Also, a hard disk 250 may be connected to I/O
bus 212 through PCI Host Bridge 240 and EADS 242 via
PCI buses 241 and 245, and a hard disk adaptor 220G as
depicted.

The PCI host bridge 230 provides an interface for a PCI
bus 231 to connect to I/0 bus 212. PCI bus 231 connects PCI
host bridge 230 to the service processor mailbox interface
and ISA bus access passthrough logic 294 and EADS 232.
The ISA bus access passthrough logic 294 forwards PCI
accesses destined to the PCI/ISA bnidge 293, which also
connects to NV-RAM storage 292 via an ISA bus 296. A
Service processor 235 1s coupled to the service processor
mailbox interface 294 through 1ts local PCI bus 295. The
SErvice processor 235 1s also connected to processors
201A-D via a plurality of JTAG/I’C buses 234. JTAG/I°C
buses 234 are a combination of JTAG/scan busses (see IEEE
1149.1) and Phillips I°C buses. However, alternatively,
JTAG/T?C buses 234 may be replaced by only Phillips I°C
busses or only JTAG/scan busses. All SP-ATTN signals of
the host processors 201 A—D are connected together to an
interrupt input signal of the service processor 235. The
service processor 233 has 1ts own local memory 291, and has
access to the hardware op-panel 290.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

When data processing system 104 1s imitially powered up,
service processor 233 uses the JTAG/scan buses 234 to
interrogate the system (Host) processors 201 A-D, memory
controller 208, and I/O brnidge 210. At completion of this
step, service processor 235 has an mventory and topology
understanding of data processing system 104. Service pro-
cessor 2335 also executes Built-In-Self-Tests (BISTs), Basic
Assurance Tests (BATs), and memory tests on all elements
found by interrogating the system processors 201A-D,
memory controller 208, and I/O bridge 210. Any error
information for failures detected during the BISTs, BATs,
and memory tests may be gathered and reported by service
processor 235.

If a meaningful/valid configuration of system resources 1s
still possible after taking out the elements found to be faulty
during the BISTs, BATSs, and memory tests, then the data
processing system 104 1s allowed to proceed to load execut-
able code into local (Host) memories 260A-D. Service
processor 235 then releases the Host processors 201 A—D for
execution of the code loaded into Host memory 260A-D,
also according to the determined state. The service processor
235 may also perform monitoring functions, such as check-
ing for, and reporting, errors i1n the data processing system
104.

It 1s understood that FIG. 2 1s merely one configuration for
a data processing system. Embodiments of the invention can
apply to any comparable configuration, regardless of
whether the system 104 1s a complicated multi-user appa-
ratus, a single-user workstation, or a network appliance that
does not have non-volatile storage of 1ts own. As such, the
depicted example 1s not meant to 1imply architectural limi-
tations with respect to the present mvention and those of
ordinary skill in the art will appreciate that the hardware
depicted i FIG. 2 may vary. For example, other peripheral
devices, such as optical disk drives and the like, also may be
used 1n addition to or in place of the hardware depicted. In
addition, the system 104 may be a single processor system
instead of a multiprocessor system.

As noted above, the server computer 104 1s logically
partitioned, whereby where each separate group of resources
of a logical partition 1s under the control of a separate
operating system. Thus, the data processing system 104 may
have multiple heterogeneous operating systems (or multiple
instances of a single operating system) running simulta-
neously. Each of these multiple operating systems may have
any number of soltware programs executing within in 1t.
When logically partitioned, different hardware resources,
such as processors 201 A-D, memories 260A-D, and 1I/O
adapters 220A—F may be assigned to different logical par-
titions.

For example, suppose data processing system 104 1s
divided 1nto three logical partitions, P1, P2, and P3 where
cach partition has a diflerent operating system assigned to 1t.
Thus, one instance of the Advanced Interactive Executive
(AIX) operating system may be executing within partition
P1, a second instance (1image) of the AIX operating system
may be executing within partition P2, and a LINUX oper-
ating system may be operating within logical partition P3.

Each operating system executing within data processing
system 104 may access only those 1/O units that are within
its logical partition. Thus, each of I/O adapters 220A-F,
cach of the processors 201 A—D, each of the local memories
260A—-D 1s assigned to one of the three partitions. For
example, processor 201 A, memory 260A, and 1/O adapters
2208, 220D, and 220E may be assigned to logical partition
P1; processors 202B—C, memory 260B, and I/O adapters
220C and 220A may be assigned to partition P2; and

Us 7,133,994 B2

7

processor 201D, memories 262C-D, and /O adapters
220F—G may be assigned to logical partition P3. Alterna-
tively, the logical partitions may define one or more logical/
virtual resources, such as processors. A virtual processor, for
example, corresponds to processing capability provided by
one or more physical processors. Where virtual processors
are implemented, the logical partitions do not have exclusive
ownership over specific physical processors. Rather, the
physical processors may be shared amongst the various
logical partitions, and are available to the logical partitions
according to the virtual processors defined for the respective
logical partitions.

It should be noted, that even singular resources may be
shared. For example, the system 104 may be a single
processor system, 1n which the single processor 1s a shared
resource between multiple logical partitions. In such a
hardware environment, each logical partition “owns™ a frac-
tional portion of the processor.

Referring now to FIG. 3, one representation of a logically
partitioned instance of the data processing system 104 1s
shown. The system 104 includes multiple logical partitions
302A, 302B ... 302N (collectively, logical partitions 302).
The system 104 includes multiple logical partitions 302A,
302B . . . 302N (collectively, logical partitions 302). In a
particular embodiment, the system 104 may have up to
sixty-two logical partitions 302; however, the particular
capacity for logical partitions 1s not limiting of the invention.
The logical partitions are managed by a partition manager
312. Each logical partition 302 has processor(s) 304A,
304B, . . . 304N, memory 306A, 3068, . . . 306N, and /O
devices 308A, 308B, . . . 308N, and may run 1ts own
operating system 310A, 3108, . . . 310N independently of
the other logical partitions 302. The resources associated
with the various partitions 302 may be physical or logical/
virtual. A virtual resource represents the capacity of a logical
partition to the resource, which capacity 1s made available
by one or more resources not exclusively under the control
of the partition. A virtual processor, for example, corre-
sponds to processing capability provided by one or more
physical processors. Where virtual processors are imple-
mented, the logical partitions do not have exclusive owner-
ship over specific physical processors. Rather, the physical
processors may be shared amongst the various logical par-
titions, and are available to the logical partitions according
to the virtual processors defined for the respective logical
partitions.

In one embodiment, logical partitions may be added or
dropped from the system 104 dynamically during operation,
and the system 104 1s therefore referred to as being dynami-
cally partitioned. In another embodiment, the logical parti-
tions may be established at IPL (1mitial program load) and
remain unchanged during operation, in which case the
system 104 1s referred to as being statically partitioned.

In either case, handling partitioning i1s the responsibility
ol a partition manager 312. In a particular embodiment, the
partition manager 312 1s implemented as a “Hypervisor”, a
soltware component available from International Business
Machines, Inc. of Armonk, N.Y. In one embodiment, the
partition manager 312 may be considered to comprise a
dispatchable partition manager 314 and a non-dispatchable
partition manager 316. Generally, the non-dispatchable par-
titton manager 316 1s generally implemented as system
firmware of the computer system 104, provides low-level
partition management functions, such as transport control
enablement, page-table management, and contains the data
and access methods needed to configure, service, and run
multiple logical partitions 302. The dispatchable partition

10

15

20

25

30

35

40

45

50

55

60

65

8

manager 314 1s system firmware that generally handles
higher-level partition management functions, such as virtual
service processor functions, and starting/stopping partitions.

According to one aspect of the invention, the partition
manager 312 1s configured to calculate a predicted amount
of memory needed to operate. In addition, the partition
manager 1s configured to reject additional configuration
requests (e.g., from a user) which exceed the available
amount of memory.

Referring now to FIG. 4, a diagram 1s shown 1illustrating
one embodiment of the present invention. Generally, FI1G. 4
shows the non-dispatchable partition manager 316 and vari-
ous aspects of the dispatchable partition manager 314. In one
embodiment, the various aspects of the dispatchable parti-
tion manager 314 are implemented as objects 1n an object-
ortented programming language, such as Java. However,
while aspects of the invention may be described in the
context of an object-oriented programming (OOP) language,
it 1s understood that the invention 1s not limited to OOP nor
any other particular programming language. References to
OOP terms such as objects, classes, subclasses and the like
are merely for convenience ol explanation.

The dispatchable partition manager 314 generally
includes an initial program load (IPL) manager 402, a
hardware manager 404, a configuration manager 406, a size
calculator 410, and a component size registry 412. At the
initial program load, the IPL manager 402 initiates the
independent executions of the hardware manager 404 and
the configuration manager 406. The hardware manager 404
1s responsible for the hardware on the system 104. These
responsibilities include ensuring that devices are working
properly (e.g., ensuring that the various PCI devices are
properly 1itialized) and that the allocations of hardware to
the various logical partitions 302 are approprate. The con-
figuration manager 406 tracks the various logical partitions
302 and the logical associations between hardware and the
logical partitions 302. A significant function of the configu-
ration manager 406 1s to call the size calculator 410 to
determine how much main memory 1s required for the given
logical partition configuration on the system 104. Once
invoked for this purpose by the configuration manager 406,
the size calculator 410 may wait for a call from the hardware
manager indicating that all hardware resources on the sys-
tem 104 have been accounted for (1.e., have reported to the
hardware manager 404). The size calculator 410 then
accesses the component size registry 412 and calculates a
summation of the total main memory needed by the partition
manager 312. In one embodiment, the component size
registry 410 1s a collection of individual size reports 414 A,
4148, . . . 414N registered by the various components
configured for the system 104. In one embodiment, a “com-
ponent” refers to code related to a common function. For
example, one component 1s all code related to configuration
of a logical partition, another component 1s all the code
related to PCI buses, another component 1s all the code
related to global iterrupt queues, and so on. As such, some
of the entities of the partition manager 312 shown 1n FIG. 4
are themselves components (such as the IPL manager 402
and hardware manager 404) and, therefore, registers a size
report 414 with the component size registry 412.

Each size report 414 provides component-specific size
information for wvarious configuration options. In one
embodiment, the size reports 414 are implemented using a
base class containing a number of fields with default values
(1.e., zeros) and a separate set ol methods to handle rounding
of the requested size to the allocated size. An exemplary

Us 7,133,994 B2

9

base class 1s shown below 1n TABLE I and an exemplary
rounding method 1s shown in TABLE II.

TABLE 1

[llustrative Base Class

001 Class BaseSize {

002 int Base = 0;

003 int PerLpSize = 0;
004 int PerlOSlotSize = 0;
005

006

TABL

L1

11

[llustrative Rounding Method

001
002

int round (int requestsize) {return (((requestsize + granularity-1)
/granularity)*granularity) + overhead;}

Note that lines 002 through 004 of TABLE 1 illustrate
fields of configuration option types for which main memory
1s needed by a particular component. Illustratively, the
option type fields shown include a “Base” type, a “PerLp-
Si1ze” type and a “PerlOSlotSize”. The “Base” option type
corresponds to the memory needed for a component to exist
on the system 104. The “PerLpSize” option type corre-
sponds to the memory needed by a component per logical
partition. The “PerlOSlotSize” option type corresponds to
the memory needed by a component for an 10 slot. The
option types shown 1n TABLE 1 are merely 1llustrative and
it 1s understood that the base class may provide for any
number of additional or diflerent option types.

Each component then subclasses the base class and pro-
vides 1ts component-specific information for those configu-
ration option types needed. As such, a given component may
provide values for any number (1.e., one or more) of the
available option types provided by the base class. An exem-

plary representation of a size report for a specific component
1s shown 1n TABLE III.

TABLE 111

Illustrative Size Report

001 Class OurComponentSize : public BaseSize {

002 OurComponentSize() {

003 Base = methodToRoundUp (sizeof (fool)) *
004 numberOfThemWeCreate +

005 methodToRoundUp (sizeof (foo2) *

006 numberOfTheseUsed;

007 PerLpSize = methodToRoundUp (sizeof (f003));
008

009

In the example provided by TABLE III, a value for the
“Base” option type 1s provided for a class “fool”. In
operation, a compiler 318 (shown 1n FIG. 3) calculates the
amount of memory (e.g., number of bytes) needed by the
instantiated object for the class “fool”. In practice, the
amount of memory needed may be calculated as a number
of bytes, while the memory manager 320 (also shown 1n
FIG. 3) responsible for allocating the memory to “fool” at
runtime may be configured to allocate blocks of memory on
a different size scale. Accordingly, the method, “method-
ToRoundUp”, 1s used to round up the requested memory
(1.e., the amount of memory calculated by the compiler 318)
to a size consistent with the scale used by the memory
manager 320. The same process 1s performed for each of the

10

15

20

25

30

35

40

45

50

55

60

65

10

other classes of each configuration option type of a given
component (e.g., “foo2”, “foo3”, etc). In this manner, a
value (1.e., bytes of memory) 1s calculated for each configu-
ration option type of a given component, and these values
are registered with the component size registry 412 in the
form of a size report 414.

To determine the total amount of memory needed by the
partition manager 312, the size calculator 410 1terates
through each size report 414 registered with the component
s1ze registry 412 and sums the values for each configuration
option type. The summed values for each configuration type
may be stored to a master size report 416. The size calculator
410 then multiplies out the various summations according to
the configuration and hardware present. For example,
assume that the total sum value for the “PerLpSize” option
type 1n the master size report 416 1s 100 bytes, and that 5
partitions are configured for the system 104, where “57 1s
referred to a configuration multiplier and 1s specific to the
particular configuration. The total memory required for
“PerLpSize” option type 1s the product of 100 and 5 (100%*5),
or 500 bytes. This calculation i1s performed for each con-
figuration option type field using the appropriate configu-
ration multiplier for each field. The size calculator 410 then
sums the individual per-option-type values, to arrive at the
total memory needed for the partition manager 312. This
total value 1s returned to the configuration manager 406. In
one embodiment, the configuration multipliers are provided
1n a separate registered report, referred to a count report 420.

It 1s contemplated that the individual per-option-type
values may be rounded to account for overhead needed to
manage the memory space to be allocated. Further, an
additional amount of memory may be added to this rounded
value as a “safety net” to account for unaccounted/unex-
pected variations in the mnput. It 1s noted that the rounding
methods 1mplemented according to the present invention
may vary depending on the particular memory management
scheme implemented by the memory manager 320. In some
environments, a plurality of memory managers may be
implemented to handle different allocations (1.e., different
granularities of allocation memory blocks). In this case, the
report size processing described herein 1s performed for each
memory manager to ensure that the rounding for each
memory manager 1s consistent with the respective block
S1Z€.

Persons skilled in the art will recognize that the math-
ematical operations may be performed 1n different orders.
For example, the values of the individual option type fields
are multiplied, summed and then provided to the master size
report 416. In either case, the values of the fields in the
master size report 416 represent the total memory required
for a particular configuration option type.

The configuration manager 406 then validates the con-
figuration on the system 104 based on the total value
received from the size calculator 410. That 1s, the configu-
ration manager 406 determines whether suflicient main
memory was set aside for the partition manager 312 the last
time the persistent configuration was updated. I insuilicient
memory was set aside, the configuration manager 406 makes
the necessary adjustments to the configuration i order to
free up the needed memory for the partition manager 312, 1f
possible. If the needed memory cannot be made available
then an error occurs, of which a user may be notified via a
configuration user interface 418. In one embodiment, the
configuration user interface 418 1s the hardware manage-
ment console 150 of FIG. 1. If the needed memory 1s
available, the configuration manager 406 1ssues a notifica-
tion via a configuration user interface 418. The configuration

e

Us 7,133,994 B2

11

manager 406 then signals the partition configuration to the
non-dispatchable partition manager 316. In response, the
non-dispatchable partition manager 316 partitions the sys-
tem and sets up the hardware to make 1t ready for the logical
partitions’ operating systems to start.

In one embodiment, configuration changes are made
during operation (post-IPL). For example, a user may make
configuration changes via the configuration user interface
418. Illustrative configuration changes include requests to
create a partition, delete a partition, assign a particular 10
slot to a particular partition, create a virtual 10 adapter, etc.
Configuration changes may also be 1n the form of a batch.
In any case, a request for configuration changes causes the
configuration manager 406 to determine a delta value, where
the delta value 1s the change 1n the number of configuration
object types. In one embodiment, the delta values are
provided 1n a report referred to as a delta report 422, in
which the delta values are the calculated diflerences between
the count values (per field) of the count report 420 and the
new values specified 1mn the request. As an example, a
configuration change adding another logical partition results
in a “PerLpSize” option type change of positive one (+1),
while the removal of a logical partition results 1n a “PerLp-
Si1ze” option type change of negative one (-1). The delta
value 1s then provided to the size calculator 410, which uses
the delta values as multipliers of the previously initialized
fields 1n the master size report 416. The individual product
values of each field are then summed. The resulting value 1s
the additional memory needed by the partition manager 312
as result of the configuration changes. This resulting value 1s
returned to the configuration manager 406. The resulting
value may be a positive number (1n which case additional
memory 1s needed for the partition manager 312), a negative
number (1n which case no additional memory 1s needed, and
the memory requirements for future IPLs can be reduced) or
zero (1n which case no additional memory 1s needed). If the
resulting value 1s a positive number, the configuration man-
ager 406 determines whether the memory request can be
honored. In some 1nstances the partition manager 312 may
already have more memory allocated to it than initially
required (1.e., as determined during IPL), in which case no
additional allocation 1s needed. If the required memory
value 1s more than the currently allocated memory, then the
configuration manager 406 must determine whether addi-
tional memory can be allocated. That 1s, the configuration
manager 406 determines whether unallocated memory can
be allocated to the partition manager 312. If so, the memory
1s allocated accordingly and the configuration manager 406
signals the configuration to the non-dispatchable partition
manager 316, which then implements the configuration.
Otherwise, an error message 1s returned to a user via the
configuration user iterface 408; 1n which case the user may
choose to reallocate memory via the configuration user
interface 408. If the configuration 1s altered to an acceptable
state, then a user may retry.

A particular example will now be described with refer-
ence to FIG. 5. FIG. 5§ shows a number, N, of size reports
414. Each size report has a plurality of configuration option
fields, F1, F2, . . . F,, The total memory needed for the
partition manager 1s given by the representative Equation. In
particular, the values for each of the plurality of configura-
tion option fields are summed for all size reports (IN) to
arrive at a summation value for each field, which values are
maintained in the master size report 416. These summations
are represented by the mner sum of the Equation (1.e. the
sum of R[N][M] for 1 through M, wherein N 1s a given

report and M 1s a field 1n the given report). To calculate the

10

15

20

25

30

35

40

45

50

55

60

65

12

total memory needed for the partition manager, the product
of each summation value (in the master size report) and
corresponding configuration multiplier (C,,) 1s calculated.
As noted above, the configuration multipliers are each
specific to a particular configuration option field and may be
provided 1n a count report 420. The sum of the products 1s
the total memory required for the partition manager (Equa-
tion 1). Again, depending upon the particular memory
management scheme, rounding techniques may be used at
different points during the calculation to ensure suflicient
memory. Thus, the mdividual byte values for each field in
the size reports may be rounded and the calculated result of
Equation 1 may be rounded. Further, the latter value may
itsell also be rounded.

In one aspect, the registry approach of the present mnven-
tion allows each of the components to update 1ts respective
s1ze reports individually and independently, without requir-
ing manual mtervention by any central entity or contention
over centrally located table. Instead, the components can
simply update their own module that provides the report
which 1s registered, and rebuild the module that contains the
report.

While the foregoing 1s directed to embodiments of the
present invention, other and further embodiments of the
invention may be devised without departing from the basic
scope thereof, and the scope thereof 1s determined by the
claims that follow.

What 1s claimed 1s:

1. A method for determining a memory requirement for a
partition manager 1n a logically partitioned environment of
a computer, comprising:

determining a quantity of memory required for each of a

plurality of components, where each component 1s a
collection of function-related code portions; and
determining a total quantity of memory required for the
partition manager based on the quantities of memory
required for the plurality of components; wherein the
logical partition manager 1s configured to at least
manage logical partitions present on the computer, each
logical partition having a separate operating system
wherein determiming the total quantity of memory 1s
dependent upon a particular configuration of the com-
puter and wherein the method further comprises:

receiving a configuration change request;

calculating a change in the total quantity of memory
required for the partition manager based on the
configuration change request; and

if the change 1s an increase in the total quantity of
memory, determining whether the increase 1n the
total quantity of memory i1s available.

2. The method of claim 1, further comprising:

11 the increase 1s available, allocating the increase 1n the
total quantity of memory to the partition manager.

3. A method for determining a memory requirement for a
partition manager in a logically partitioned environment of
a computer, comprising:

providing a size report for each of a plurality of compo-

nents, where each component 1s a collection of func-
tion-related code portions and where each size report of
a given component specifies a quantity of memory
required for the given component; and

determining a total quantity of memory required for the
partition manager based on at least (1) the size reports;
and (1) a particular configuration of the computer;
wherein the logical partition manager 1s configured to

Us 7,133,994 B2

13

at least manage logical partitions present on the com-
puter, each logical partition has a separate operating
system;

receiving a configuration change request;

calculating a change i1n the total quantity ol memory
required for the partition manager based on the con-
figuration change request; and

if the change 1s an increase in the total quantity of
memory, determining whether the increase in the total
quantity of memory 1s available.

4. The method of claim 3, further comprising;:

if the increase 1s available, allocating the increase in the

total quantity of memory to the partition manager.
5. A method for determining a memory requirement for a
partition manager in a logically partitioned environment of
a computer, comprising;:
providing a size report for each of a plurality of compo-
nents, where each component 1s a collection of func-
tion-related code poritions and where each size report
ol a given component specifies a quantity of memory
required for the given component, wherein each size
report comprises a plurality of fields each correspond-
ing to a configurable option and each having a memory
requirement value; and
determining a total quantity of memory required for the
partition manager based on at least (1) the size reports;
and (1) a particular configuration of the computer;
wherein the logical partition manager 1s configured to
at least manage logical partitions present on the com-
puter, each logical partition has a separate operating
system.
6. The method of claim 5, wherein determining the total
quantity of memory comprises:
summing the memory requirement values for each of the
plurality of fields corresponding to a given configurable
option to arrive at a configurable-option-specific sum;

for each configurable-option-specific sum, multiplying
the configurable-option-specific sum with a configura-
tion multiplier to arrive at a total memory requirement
value for each configurable option, wherein each con-
figuration multiplier 1s specific to the particular con-
figuration; and

summing the total memory requirement values for each

configurable option.

7. A method for determining a memory requirement for a
partition manager 1n a logically partitioned environment of
a computer comprising hardware resources, comprising:

providing a size registry comprising a size report for each

of a plurality of components, wherein each component
1s a collection of function-related code portions and
wherein each size report comprises a plurality of fields
cach corresponding to a configurable option and each
having a memory requirement value;

initializing the hardware resources;

initialing each memory requirement value of each of the
plurality of fields;

determining a total quantity of memory required for the
partition manager based on at least (1) the size reports;
and (1) a particular configuration of the computer.

8. The method of claim 7, wherein determining the total

quantity ol memory comprises:

summing the memory requirement values for each of the
plurality of fields corresponding to a given configurable
option to arrive at a configurable-option-specific sum;

for each configurable-option-specific sum, multiplying
the configurable-option-specific sum with a configura-

5

10

15

20

25

30

35

40

45

50

55

60

65

14

tion multiplier to arrive at a total memory requirement

value for each configurable option; and

summing the total memory requirement values for each
configurable option.

9. The method of claim 7, further comprising:

recerving a configuration change request; and

calculating a change in the total quantity of memory
required for the partition manager based on the con-
figuration change request.

10. The method of claim 9, further comprising:

i the change 1s an increase in the total quantity of
memory, determining whether the increase in the total
quantity ol memory 1s available.

11. The method of claim 10, further comprising:

11 the increase 1s available, allocating the increase 1n the
total quantity of memory to the partition manager.

12. A computer readable medium containing a program
which, when executed on a logically partitioned computer
system, performs an operation comprising:

accessing a plurality of size reports, wherein each size
report 1s specific for each of a plurality of components,
wherein each component 1s a collection of function-
related code portions and wherein each size report of a
given component comprises:

a plurality of fields, each field being specific to a
configurable option on the computer system and
having a memory requirement value; and

calculating a total quantity of memory required for the
partition manager based on at least (1) the size reports;
and (1) a particular configuration of the computer.

13. The computer readable medium of claim 12, wherein
calculating the total quantity of memory comprises:

summing each of the memory requirement value for each
corresponding configurable option in each size report to
arrive at a plurality of configurable-option-specific val-
ues;

multiplying each of the plurality of configurable-option-
specific values by a configuration multiplier to arrive at
a plurality of values, wherein each configuration mul-
tiplier 1s specific to the particular configuration; and

summing the plurality of values to arrive at the total
quantity ol memory.

14. The computer readable medium of claim 12, the

operation further comprising:

recerving a configuration change request; and

calculating a change in the total quantity of memory
required for the partition manager based on the con-
figuration change request.

15. The computer readable medium of claim 14, further
comprising, 1f the change 1s an increase 1n the total quantity
of memory, determining whether the increase in the total
quantity of memory 1s available.

16. The computer readable medium of claim 15, further
comprising, 1f the increase 1s available, allocating the
increase in the total quantity of memory to the partition
manager.

17. A computer, comprising;:

a plurality of resources including memory and at least one

Processor;

a logical partition manager configured to at least manage
one or more logical partitions present on the computer,
cach logical partition has a separate operating system;

a size registry comprising a plurality of size reports,
wherein each size report 1s specific for each of a
plurality of components, wherein each component 1s a
collection of function-related code portions and
wherein each size report of a given component com-

Us 7,133,994 B2

15

prises a plurality of fields, each field being specific to
a configurable option on the computer and having a
memory requirement value;

a size calculator configured to determine, based on the
s1ze reports, an amount of the memory needed by the
logical partition manager at initial program load for a
particular configuration and prior to accepting configu-
ration requests from users; and

a configuration manager configured to at least;

determine whether the amount of memory needed by the
logical partition manager 1s available for a particular
configuration; and

if so, accept the particular configuration.

18. The computer of claim 17, wherein the configuration
manager determines whether the amount of memory needed
by the logical partition manager 1s available for the particu-
lar configuration by at least;

10

15

16

accessing the registry; and

summing each of the memory requirement value for each
corresponding configurable option in each size report to
arrive at a plurality of configurable-option-specific val-
ues; and

multiplying each of the plurality of configurable-option-
specific values by a configuration multiplier, wherein
cach configuration multiplier 1s specific to the particu-
lar configuration.

	Front Page
	Drawings
	Specification
	Claims

