12 United States Patent

US007130890B1

(10) Patent No.: US 7,130.890 B1

Kumar et al. 45) Date of Patent: Oct. 31, 2006
(54) METHOD AND SYSTEM FOR ADAPTIVELY 6,023,726 A 2/2000 Saksena

PREFETCHING OBJECTS FROM A 6,085,193 A * 7/2000 Malkin et al. 707/10

NETWORK 6,098,064 A * 872000 Pirollietal. ..evveveenn.... 707/2

6,182,133 B1* 1/2001 HONVItZ wevveoreooooen. 709/223

(75) Inventors: Rajendra Kumar, Los Altos, CA (US); 6.728.840 B1* 4/2004 Shatil et al. .o.ovvvvv..... 711/137

Sujoy Basu, Mountain View, CA (US) 2002/0069375 AL* 6/2002 BOWEN «vvvveeeereeeeernnn. 713/400

(73) Assignee: Hewlett-Packard Development
Company, L.P., Houston, TX (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 829 days.

(21) Appl. No.: 10/235,116

(22) Filed: Sep. 4, 2002
(51) Inmt. CL.
GO6F 15/16 (2006.01)
GO6F 1/12 (2006.01)
(52) US.CL ... 709/218; 7077/10; 713/400;
709/203
(58) Field of Classification Search None
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
5941981 A * &/1999 Tranccccovvvvinennnnnen. 712/207

* cited by examiner

Primary Examiner—Wen-Ta1 Lin

(57) ABSTRACT

A method and system for adaptively prefetching objects
from a network has been disclosed. The mnvention includes
adaptively tuning a prefetch engine to prefetch a plurality of
objects from within the network. Because the prefetch
engine 1s adaptively tuned, the prefetch process 1s optimized,
thereby reducing the number of idle cycles that would
otherwise be required to retrieve objects from the network.
The method and system includes monitoring at least one
proxy server within the network, the at least one proxy
server comprising a prefetch engine and adaptively tuning
the prefetch engine to prefetch a plurality of objects from
within the network.

33 Claims, 6 Drawing Sheets

Monitoring a proxy server within
the network wherein the proxy

| server mcludes a prefetch engine.

| 210

———

Ada_ptivelif tuming the p;refet(*:h
engine to prefetch a plurality
objects from within the network.

220

U.S. Patent Oct. 31, 2006 Sheet 1 of 6 US 7,130.890 B1

100

Figure T
Prior Art

U.S. Patent Oct. 31, 2006 Sheet 2 of 6 US 7,130.890 B1

— — T) 3 T "

Monitoring a proxy server within
the network wherein the proxy

server mcludes a prefetch engine.
210

e N pee— el - " ey - a — —

Adaptively tuning the prefet{*;h
engine to prefetch a plurality
objects from within the network.
220 J

T ——

- R —— | ——
1

L — e

"a— ———

Figure 2

U.S. Patent Oct. 31, 2006 Sheet 3 of 6 US 7,130,890 B1

300

330

Figure 3

U.S. Patent Oct. 31, 2006 Sheet 4 of 6 US 7,130.890 B1

Proxy Server

320

321 - ‘l-/

\&—v | ocal Cache

Replacement Prefetch

Engine ; Engine } \
322 \ / 323

Processor

i

324

e
.

305 A\ Lata Mining

Engine

Access Logs I j

— 326

Figure 4

U.S. Patent Oct. 31, 2006 Sheet 5 of 6 US 7,130.890 B1

326

Object | Object | Object | Object | Object] | ast T
Name | Size Usage | Download | Age Use

027 | X X X | X X X
' O4 X | X | X X | X X
02 X X X X [x X
- O5 X - X X | X

02 X X | X | X
(03 [x [X X X

01 [X [X Ix +x]

02 X X [x X

020 [X |X X X

015 [X X X X

02 X X Ix X
E:j ‘ - T J

Figure S5

U.S. Patent Oct. 31, 2006 Sheet 6 of 6 US 7,130,890 B1

326"

Object | Object | Object | Object Object | Last
Name | Size Usage | Download | Age Use
N R |time | | Time |
027 X X X X X X
04 X X X X X X
02 X X X X X X
{ |
05 | X X X X X | X
02 X | X | X | X x |x
03 [X X X | X X X 1
O1 | X X X X X X
02 X X X ﬁ X X | X
020 | X |X X X X X
015 | X X |x X X X t2
Q02 X | X [X X X X |
l
i Future
|

Figure 6

Us 7,130,890 Bl

1

METHOD AND SYSTEM FOR ADAPTIVELY
PREFETCHING OBJECTS FROM A
NETWORK

FIELD OF INVENTION

The present mvention relates generally to the field of

computer networks and more particularly to a method and
system for adaptively prefetching objects from a network.

BACKGROUND OF THE INVENTION

Computers have become an integral tool used 1 a wide
variety ol different applications, such as in finance and
commercial transactions, three-dimensional and real-time
graphics, computer-aided design and manufacturing, health-
care, telecommunications, education, etc. Computers are
finding new applications as performance and speeds ever
increase while costs decrease due to advances 1n hardware
technology and rapid software development. Furthermore,
the functionality and usefulness of a computer system can be
dramatically enhanced by coupling stand-alone computers
together to form a computer network. In a computer net-
work, users may readily exchange files, share information
stored on a common database, pool resources, communicate
via e-mail and even video teleconference.

One popular type of network setup 1s known as the
“client/server” computing network. Basically, users perform
tasks through their own dedicated desktop computer (1.e.,
the “client”) and the desktop computer 1s networked to
larger, more poweriul central computers (1.e., “servers”).
Servers are high-speed machines that hold programs and
data shared by network users. For a better understanding of
a client/server computer network, please refer now to FIG.
1. FIG. 1 shows a conventional client/server computer
network 100. The network 100 1includes a plurality of client
computers 101-106 coupled to a network of remote server
computers 110.

An assortment of network and database software enables
communication between the various clients and the servers.
Hence, in a client/server arrangement, the data i1s easily
maintained because it 1s stored 1n one location and main-
tained by the servers; the data can be shared by a number of
local or remote clients; the data 1s easily and quickly
accessible; and clients may readily be added or removed.

In today’s networking environment, many clients desire
higher bandwidth and lower latency (delay between the
request and the responses) to access many web and stream-
ing media applications. This can be accomplished by pro-
viding caching servers at more local points in the network
that keep copies of files previously retrieved from the remote
servers for subsequent repeated access by the local clients.
The theory underlying caching 1s that since the same file
may be used more than once, 1t may be more eflicient (both
in terms ol speed and resource utilization) to keep a copy
locally rather than retrieve it a second time from a remote
source. Typically, each caching server caches a small set of
“hot” recently accessed objects 1n a fast and relatively
expensive random access memory attached to its internal
bus, and a somewhat larger set of such objects in a slower
and cheaper random access peripheral storage device such as
a magnetic or optical disk.

Prefetching 1s a known technique for analyzing current
and/or past file requests to predict what files are likely to be
requested in the future. Those predictions are then utilized to
retrieve files from a remote server on a less urgent basis
betore they are actually requested, thereby reducing not only

10

15

20

25

30

35

40

45

50

55

60

65

2

latency but also network congestion. It differs from caching
in that the focus 1s not on whether to keep a local copy of a
file that has already been retrieved or updated (which 1s
mostly a question of how best to use the available local
storage capacity) but rather on whether to obtain from the
remote server a file that 1s not currently available locally and
that 1s not currently the subject of any pending requests.
Since predicting what files are likely to be requested 1n the
future mvolves a plethora of prediction criteria, 1t 1s desir-
able that these predictions be completed as comprehensively
and efliciently as possible.

Accordingly, what 1s needed 1s a method and system for
prefetching objects from a network 1n a comprehensive and
eilicient fashion. The method and system should be simple,
cost eflective and capable of being easily adapted to existing
technology. The present invention addresses these needs.

SUMMARY OF THE INVENTION

A method and system for adaptively prefetching objects
from a network has been disclosed. The invention includes
adaptively tuning a prefetch engine to prefetch a plurality of
objects from within the network. Because the prefetch
engine 1s adaptively tuned, the prefetch process 1s optimized,
thereby reducing the number of idle cycles that would
otherwise be required to retrieve objects from the network.

A first aspect of the present invention 1s a method and
system for adaptively prefetching objects from a network.
The method and system include monitoring at least one
proxy server within the network, the at least one proxy
server including a prefetch engine and adaptively tuning the
prefetch engine to pretfetch a plurality of objects from within
the network.

Another aspect of the present invention 1s a network
proxy server. The network proxy server includes a prefetch
engine for prefetching a plurality of objects from within the
network, a replacement engine for replacing at least one of
a plurality of objects 1n the proxy based on a predetermined
set of criteria and a data mining engine capable of adaptively
tuning the prefetch engine to prefetch a plurality of objects
from within the network.

Other aspects and advantages of the present invention will
become apparent from the following detailed description,
taken 1n conjunction with the accompanying drawings,
illustrating by way of example the principles of the inven-
tion.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a conventional client/server computer net-
work.

FIG. 2 1s a high-level flowchart of the method in accor-
dance with an embodiment of the present invention.

FIG. 3 shows an exemplary system 1n accordance with an
embodiment of the present invention.

FIG. 4 1s a detailed illustration of a proxy server in
accordance with an embodiment of the present invention.

FIG. 5 shows an example of a plurality of access logs 1n
accordance with an embodiment of the present invention.

FIG. 6 shows the access logs wherein two time slices are

1dentified.

DETAILED DESCRIPTION OF TH.
INVENTION

L1l

The present invention relates to a method and system for
prefetching objects from a network. While the mvention 1s

Us 7,130,890 Bl

3

described 1n the general context of an application program
that runs on an operating system 1in conjunction with a
computer system and 1n connection with a server, those
skilled 1n the art will recognize that the invention also may
be implemented in combination with other program mod-
ules. Generally, program modules include routines, operat-
ing systems, application programs, components, data struc-
tures, etc. that perform particular tasks or i1mplement
particular abstract data types. Moreover, those skilled 1n the
art will appreciate that the mnvention may be practiced with
other computer system configurations, including hand-held
devices, multiprocessor systems, microprocessor-based or
programmable consumer electronics, minicomputers, main-
frame computers, and the like.

The mvention may also be practiced in distributed com-
puting environments where tasks are performed by remote
processing devices that are linked through a communica-
tions network. In a distributed computing environment,
program modules may be located 1n both local and remote
memory storage devices. Execution of the program modules
may occur locally 1n a stand-alone manner or remotely 1n a
client/server manner. Examples of such distributed comput-
ing environments nclude local area networks of an ofhice,
enterprise-wide computer networks, and the Internet.

For a better understanding of the present invention, please
refer now to FIG. 2. FIG. 2 1s a high-level flowchart of the
method 1n accordance with an embodiment of the present
invention. First, a proxy server within a network 1s moni-
tored, via step 210. In an embodiment, the proxy server
includes a prefetch engine. Next, the prefetch engine 1is
adaptively tuned to prefetch a plurality of objects from
within the network, via step 220. For the purposes of this
patent application, the term adaptively 1s defined as readily
capable of changing so as to become suitable to a new set of
conditions. Because the prefetch engine 1s adaptively tuned,
the prefetch process 1s optimized, thereby reducing the
number of idle cycles that would otherwise be required to
retrieve objects from the network.

FIG. 3 shows an exemplary system 300 in accordance
with an embodiment of the present invention. The system
300 includes a client system 310, a proxy server 320 and a
content server 330. The client system 310 1s coupled to the
proxy server 320 wherein the proxy server 320 1s coupled to
the content server 330.

A proxy server or “application level gateway,” 1s an
application that breaks the connection between a sender and
a receiver. All input 1s forwarded out a different port, closing
a straight path between two networks thereby preventing a
cracker from obtaining the iternal addresses and details of
a private network. Proxy servers are available for common
network services. For example, an HI'TP proxy i1s used for
Web access, and an SMTP proxy 1s used for e-mail.

Although the above-described embodiment employs a
proxy server, one of ordinary skill 1in the art will readily
recognize that a variety of diflerent proxy servers can be
utilized while remaining within the spirit and scope of the
present invention. For example, there are reverse proxies
(also known as surrogates) that are placed 1n front of a web
server or farm of web servers and present a single IP address
to all clients visiting the server farm. These reverse proxies
can also cache content and ofifload work from the server
tarm. Similarly there are interception proxies that are placed
by ISPs and other network administrators to intercept web
requests sent by their clients. Unlike forward proxies, they
do not depend on the configuration of the browser or any
other user agent making the request.

10

15

20

25

30

35

40

45

50

55

60

65

4

The system 300 1n accordance with an embodiment of the
present invention for adaptively prefetching objects 1n a
network mnvolves the implementation of adaptive, history
based prefetch and replacement engines for use 1n conjunc-
tion with the proxy server 320 whereby objects are
prefetched and replaced within the proxy cache 320 in a
comprehensive and eflicient fashion. A data mining engine
within the proxy server 320 1s employed to analyze prior
usage patterns to determine which objects are likely to be
requested by a client(s) system in the future while simulta-
neously determining the most eflicient manner 1n which to
prefetch these objects.

Data mining involves monitoring, exploring and analyz-
ing data. It implies “digging through large amounts of data™
to uncover patterns and relationships contained within the
data and can be done with programs that analyze the data
automatically.

For a more detailed understanding of the proxy server,
please refer now to FIG. 4. FIG. 4 15 a detailed 1llustration
of a proxy server 320 1n accordance with an embodiment of
the present invention. The proxy server 320 includes a local
cache 321, a replacement engine 322, a prefetch engine 323,
a processor 324, a data mining engine 323 and a plurality of
access logs 326. The replacement engine 322 and the
prefetch engine 323 are coupled to the processor 324 and the
local cache 321 wherein the processor 324 1s coupled to the
data mining engine 325. The data mining engine 325 is
coupled to the plurality of access logs 326.

In particular, the data mining engine 325 analyzes data
contained in the plurality of access logs 326 generated
within the proxy server 320. Based on the analysis, the data
mining engine 325 determines what objects to prefetch from
the content server 1nto the local cache 321 with the prefetch
engine 323; what objects 1n the local cache 321 are still of
value and need to be updated; and what 1s no longer of value
and can be replaced by the replacement engine 322. What
the prefetch engine 323 prefetches can be based, for
example, on links present 1n an already requested web page,
on patterns of recent accesses to web pages and streaming
media objects, on user profiles, on past trends, eftc.

Although the above-described embodiment employs data
mining to analyze the plurality of access logs, one of
ordinary skill 1n the art will readily recognize that a variety
of different analytical techmques can be employed while
remaining within the spirit and scope of the present inven-
tion. For example, techniques such as On-Line Analytical
Processing (OLAP) and standard SQL queries to a relational
database can be utilized. This accordingly requires trans-
forming the content from the access logs into the format
required by these techniques. For example, an SQL query to
a relational database requires that the content of the access
logs be added to the appropriate relational tables in the
database.

Please refer now to FIG. 5. FIG. 5 shows an example of
a plurality of access logs 326 that can be employed by the
proxy server in accordance with an embodiment of the
present invention. The access logs 326 contain information
about the clients whose requests to the content server has
been proxied by the proxy server and served either from its
dedicated local cache or from the content server. For each
request, various details such as the URL requested, whether
it was already present in the local cache (cache hit), the date
and time of the access, number of bytes transferred and type
of request from the client are placed 1n the logs. The logs
may be generated by appending the details of requests
collected 1n the proxy servers memory to the current file for
storing access logs. A different file (or, as shown 1n the

Us 7,130,890 Bl

S

access logs 326, a different section of the same file) can be
used for different time windows for storing the access log of
the proxy server during that particular time period. The
directory structures and file names follow a convention
which allows the data mining engine to read the access logs
326.

In order to make the most eflicient prefetch/replacement
predictions, the data miming engine employs a plurality of
different prefetching and replacement prediction algorithms.
These algorithms are applied to a portion of the plurality of
access logs and based on a comparison of the results of the
application of each of these algorithms, the algorithm(s)
with the best prediction 1s picked to prefetch/replace objects
within the local cache of the proxy server.

For a further understanding of this concept, please refer
now to FIG. 6. FIG. 6 1s related to FIG. 5 1n that 1t shows the
access logs 326 of FIG. 5, however the access logs 326' of
FIG. 6 identity two time slices (11, 12), the time slice t1 being
carlier than the time slice 2. Accordingly, the data mining
engine applies each prediction algorithm to the time slice t1.
The results of these prediction algorithms are then compared
to the actual outcomes of time slice t2. Consequently, the
algorithm(s) that achieves the most eflicient prediction pat-
tern 1s utilized for the real-time prefetch/replacement pro-
cess. The data mining engine may conduct this evalation for
different time windows such as last hour, last day, last week
and so on to detect access patterns that repeat at the same
time every day, every Monday, first working day of a month,
and so on. As a result, the designated prefetch/replacement
algorithm might change.

The prefetching and replacement algorithms can use a
variety ol predetermined criteria i order to make the
predictions. For example, useful criteria for making
prefetching predictions might be the total number of objects
prefetched, the number of bytes prefetched, the usefulness of
the prefetches 1n terms of an object hit ratio (ratio of
prefetched objects actually used 1n time slice 12) and byte hit
ratio (ratio of prefetched bytes actually used 1n time slice t2).
Similarly, useful criteria for making replacement predictions
might be the remaining lifetime of an object, the size of an
object and the likelihood that the object will be needed 1n the
near future.

As previously articulated, the data miming engine uses the
information 1n the access log to determine when and what to
prefetch. Based on an analysis of historical access data, the
data mining engine can predict the content that will probably
be accessed in the near future. For example, data miming
techniques applied to the access logs might reveal that web
pages, audio and video archives of the past day’s news are
accessed heavily from the news.com web site between 7 and
9 AM. To handle these accesses fast, the data mining engine
might 1ssue prefetch mstructions for this content between 6
and 7 AM. These prefetches might be generated 1 a
web-crawler which prefetches the top-level pages from
news.com and follows the hyperlinks in them, issuing
prefetches for each.

Similarly, during 12 to 1 PM, there might be frequent
accesses to restaurant menus available at waiter.com. So
these pages might be prefetched between 11:30 AM and
noon. For large streaming media files, it may not be rea-
sonable to prefetch the entire file. In that case, a prefix of the
file corresponding to the first few seconds of playing time
might be prefetched. This allows a response to a client’s
request with very low latency. Similarly, 11 the data miming,
engine determines that most future requests for a video will
be for a specific format and resolution, 1t may prefetch only
that instance.

[l

5

10

15

20

25

30

35

40

45

50

55

60

65

6

Since the data mining engine monitors all traflic between
the client system and the content server, the data miming
engine knows when a pending request cannot be satisfied
from the local cache of the proxy server (a so-called
“demand miss”). Such demand misses result in additional
bandwidth utilization by the proxy server since resources

must be utilized to satisiy the request from the content
server. The data mining engine responds by reducing the
prefetching activity of the prefetch engine as the number of
demand misses (or more properly, as the download band-
width required to download those requested files not cur-
rently stored in local cache) increases. Thus the prefetch
operation should be accorded a lower priority than retrieving
a requested file from the content server in response to a
demand miss, and the available system resources will be
used more efliciently (and adaptively).

Conversely, even if suflicient bandwidth 1s available to
perform additional prefetching, it may not always be an
ellicient usage of those resources to replace already cached
files with other files obtained by additional prefetching. For
example, if the current demand misses are relatively low
(below a certain threshold), the number of objects prefetched
(or alternatively the allocated network bandwidth) might
even be reduced, since it 1s unlikely that any additional
prefetching would produce a suflicient improvement in
performance to warrant the additional effort, and could even
result 1n a deterioration of the eflectiveness of the local
cache.

The data mining engine can also provide support for
predictive prefetching based on current usage (either a file
just recently cached in response to a demand miss, or the first
request for a previously prefetched file). Based on a review
ol historical access data, the data mining engine may deter-
mine there 1s a high probability of accesses to certain related
other objects following a request for a particular object and
if they are not already present 1n the local cache, 1t 1ssues
prefetches for them. In some cases, such related files may be
determined 1n advance from a prior analysis of historical
information gleaned from the access logs. In other cases, the
other related objects can be ascertained only from the results
of a current request, for example, hyperlinks to other web
pages can be used to mitiate a prefetch to those other pages.

The data miming engine can also be utilized to determine
how much of an object to prefetch. This 1s particularly
applicable to streaming media files. The historical usage data
can prioritize the prefetching of only a certain interval (for
example, the beginning of each track), and the current usage
data can trigger the prefetching of subsequent intervals only
aiter the first interval has actually been requested, perhaps as
a lower priority background task for the content server to
send the rest of the track. Such an approach not only reduces
the amount of data to be prefetched and the associated local
storage required without any increase in latency, 1t also
improves network performance. Similarly, for large objects,
only a small fraction (*chunk™) of the object 1s prefetched
(prefix caching). The prefetched amount can be based on the
storage capacity of the proxy server, the consumption rate of
the client system, and/or the network bandwidth to the
content server. The number of objects to prefetch can also be
determined by the expected hit rates. For large expected hit
rates, fewer objects with a larger chunk size are prefetched.
On the other hand, for small expected hit rates, more objects
with a smaller chunk size would be prefetched.

Us 7,130,890 Bl

7

Exemplary Prefetch Procedure

Step 1

Using the access log data, a table 1s created which gives
content access variations with time-of-day for a weekday or
Saturday or Sunday:

Time Interval List of URLs

URLI1, URL2, URLS3, ...
URLa, URLb, URLcg, . ..
URLx, URLy, . ..

7 am—10 am
10 am—1 pm
1 pm—5 pm

The table lists, for different times of day, the content that
was accessed with a frequency greater than some threshold.

To create this table for a weekday, all entries 1n the access
logs for weekdays could be considered for the previous
week, previous month or several months. Whether to con-
sider the previous week or previous month will depend on
teedback of how accurate the prefetch 1s for each case.

Step 2
The access log data may also be used to 1dentify asso-
ciation rules which could be in formats such as:

AB,C,D—E

According to this rule, if the client has requested URLs A,
B, C and D, 1t 1s lughly likely that the next request will be
for E. Therefore, E 1s a good candidate for pretetch.

(w, X)(U, V, ¥, Z)

According to this clustering rule, there 1s a strong correlation
between accesses to W and X. So 1f either 1s requested by the
client, the proxy server should consider the other as a
candidate for prefetch. Similarly 1f any one of U, V, Y and
7. 1s accessed by the client, the proxy should consider the
other 3 as candidates for prefetch. These rules are not
exhaustive. Others will be evident to those skilled 1n the art.

Step 3
Create a table that indicates activity during different hours
of the day:

Time Interval Requests per second

4 am—7 am 0.1
7 am—10 am 5.5
10 am—1 pm 2.1
1 pm—> pm 1.3
5 pm—7 pm 6.1
7 pm—10 pm 3.1

For each time interval, the average 1s obtained for the
number of requests per second. This gives an estimate of the
traflic from the various clients.

Step 4

The activity level table from Step 3 may be used to
schedule prefetches during time 1ntervals such as 4 am to 7
am, when requests per second 1s low and hence network
traflic 1s low. The content to be prefetched 1s determined by
the usage table 1n Step 1. The prefetch is 1ssued only if the
content 1s not already present in the proxy server. Depending
on the storage capacity of the proxy server, only a subset of
the URLs for that time interval could possibly be prefetched.
In that case, the URLs can be prioritized based on criteria
such as the average expected latency of the origin server for

10

15

20

25

30

35

40

45

50

55

60

65

8

that URL. This criterion can be evaluated based on the
access logs, or 1t can be estimated based on number of
network hops to the origin servers. More network hops
would imply higher latency.

Step S

In addition to the scheduled pretfetches, prefetching can be
done using the rules derived 1 Step 2. Accordingly, 11 the
proxy server gets a request for URL X, 1t can check, in
accordance with the clustering rule of Step 2, whether the
associated URL W 1s present anywhere in the storage
hierarchy. I1 not, 1t can send a request to origin server of W.
If the round-trip latency from the proxy server to origin
server 15 A milliseconds, and the request for W from client
comes to the proxy server after B milliseconds, client will
witness only (A-B) milliseconds of this latency 11 A>B, and
none 1f B>=A.

Step 6

In either Step 4 or Step 3, 1f the URL to be prefetched 1s
streaming media (such as MPEG f{ile) rather than static
content (HTML text with embedded 1mages), then 1t should
be treated as a special case since the user experience 1s
different. For static content, the entire content 1s downloaded
and presented as a single page view to the user. For
streaming media, the user can pause, abort, stop or fast
torward. These VCR-like controls are communicated to the
streaming media server running on the proxy server. The
server then generates an access log. Using data mining
techniques, the segments of the streaming media that are
frequently watched can then be i1dentified. For example, a
client might watch the first minute of a news broadcast to get
the headlines and then fast forward or index 1nto the business
or sports sections of the news. Accordingly, the first few
minutes can be cached along with the business and sports
sections. If a client seems to be watching beyond the first
minute, there 1s a possibility that he will continue. In that
case, prefetches may be 1ssued by the proxy server for
subsequent segments of the news broadcast as the client
continues watching.

Exemplary Replacement Procedure

The proxy server periodically evicts content from 1ts local
cache. The replacement procedure accordingly has some
tunable parameters:

H 1s the higher threshold for disk space utilization by the
local cache.

L 1s the lower threshold for disk space utilization by the local
cache.

V 1s the value of the URL. The idea i1s to retain more
valuable content in the local cache. V may be based on the
frequency of access, time of most recent access, time left for
expiration (as set by the origin server), and/or other hybrd
parameters.

In each replacement run, the replacement procedure per-
forms as follows: Starting with the URL on with the lowest
value V, URLs are deleted from the local cache one by one,
until the disk space utilization falls to the lower threshold L.

For example, suppose H 1s 95% and L 1s 85%. As soon as
the local cache occupancy reached 95%, this replacement
procedure will run, and will keep evicting content from the
local cache until the cache occupies less than 85% of the
available space. By tuning H and L, the frequency with
which the replacement procedure runs and the amount of
work done 1n each run can be controlled.

The replacement procedure keeps most of the URLs
present in the local cache 1n a list ordered by V, so that the
potential candidates for replacement can be selected quickly.

Us 7,130,890 Bl

9

The replacement procedure skips those URLs which are
locked 1n the local cache for expected use later 1n the day.
Locking 1s done in connection with prefetches scheduled
when network traflic 1s low (such as during 5 to 7 am), for
which the content 1s expected to be heavily utilized during
a predictable subsequent busy period (7 to 10 am). The
scheduled pretfetch could lock the URL until the expected
termination of the period of heavy use (10 am). Alterna-
tively, 1t could be locked until shortly after the expected
beginning of the heavy usage period (say 8 am). In that case,
if the prefetch prediction 1s accurate, there will be enough
accesses by 8 am to ensure that 1t will not be replaced as long
as 1t remains heavily accessed. However if the prefetch turns
out to be a misprediction, after 8 am, the URL will get
evicted. Since the replacement procedure has to skip the
locked URLs, those locked URLSs are preferably maintained
in a list separate from the original list and are added to the
original list only after they have been unlocked and are
possible candidates for eviction.

Accordingly, through the implementation of the above-
described features, the proxy server 1in accordance with an
embodiment of the present invention comprehensively
determines what objects to prefetch, how many objects to
prefetch, when to prefetch these objects, how much of each
object to prefetch, and when to replace objects. As a result,
a global framework 1s provided for optimizing the multiple
contlicting requirements present in media and web caching
Proxy Servers.

The invention may also be implemented, for example, by
operating a computer system to execute a sequence of
machine-readable instructions. The instructions may reside
1in various types of computer readable media. In this respect,
another aspect of the present invention concerns a pro-
grammed product, comprising computer readable media
tangibly embodying a program of machine readable mnstruc-
tions executable by a digital data processor to perform the
method 1n accordance with an embodiment of the present
invention.

This computer readable media may comprise, for
example, RAM (not shown) contained within the system.
Alternatively, the nstructions may be contained in another
computer readable media such as a magnetic data storage
diskette and directly or indirectly accessed by the computer
system. Whether contained in the computer system or else-
where, the instructions may be stored on a variety of
machine readable storage media, such as a DASD storage
(for example, a conventional “hard drive” or a RAID array),
magnetic tape, electronic read-only memory, an optical
storage device (for example, CD ROM, WORM, DVD,
digital optical tape), paper “punch” cards, or other suitable
computer readable media including transmission media such
as digital, analog, and wireless communication links. In an
illustrative embodiment of the invention, the machine-read-
able mnstructions may comprise lines of compiled C, C++, or
similar language code commonly used by those skilled in the
programming for this type of application arts.

A method and system for adaptively prefetching objects
from a network has been disclosed. The invention includes
adaptively tuning a prefetch engine to prefetch a plurality of
objects from within the network. Because the prefetch
engine 1s adaptively tuned, the prefetch process 1s optimized,
thereby reducing the number of idle cycles that would
otherwise be required to retrieve objects from the network.

Although the present mmvention has been described in
accordance with the embodiments shown, one of ordinary
skill 1n the art will readily recogmize that there could be
variations to the embodiments and those variations would be

10

15

20

25

30

35

40

45

50

55

60

65

10

within the spirit and scope of the present invention. Accord-
ingly, many modifications may be made by one of ordinary
skill in the art without departing from the spirit and scope of
the appended claims.

What 1s claimed 1s:

1. A method for adaptively prefetching objects from
within a network via at least one proxy server comprising;:

using a data mining engine to monitor the at least one

proxy server within the network, the at least one proxy
server comprising a prefetch engine;

automatically providing a plurality of prefetch algorithms

wherein each of the plurality of prefetch algorithms
predicts which of a plurality of objects should be
prefetched; and

adaptively tuning the prefetch engine to prefetch the

plurality of objects from within the network based on
the prefetch algorithms.

2. The method of claim 1 further comprising:

replacing at least one of a plurality of objects 1n the proxy

server based on a predetermined set of criteria.

3. The method of claim 2 wherein the predetermined set
of criteria comprises a remaining lifetime of an object, a size
of an object and a likelihood that the object will be needed
in the near future.

4. The method of claim 1 wherein the at least one proxy
server includes a plurality of access log files and monitoring,
the at least one proxy server comprises:

data miming the plurality of access log files.

5. The method of claim 4 wherein adaptively tuning the
prefetch engine comprises:
determining what objects to prefetch;
determining when to prefetch the objects;
determining how many objects to prefetch; and
determining how much of each object to prefetch.

6. The method of claim 5 wherein the act of determining
what objects to prefetch further comprises:

generating a list of objects based on the number of hits of

cach object; and

selecting objects from the list as prefetch candidates

wherein objects with a higher number of hits are given
a higher priority for prefetch.
7. The method of claim 5 wherein determining when to
prefetch the objects further comprises:
allocating an amount of bandwidth available to the proxy
server lor storing prefetched objects wherein the
amount of bandwidth 1s based on an amount of band-
width not being utilized to service demand misses;

prefetching a plurality of objects into the proxy server
when the allocated amount of bandwidth reaches a
predetermined threshold; and

suspending the prefetching when a cache hit rate exceeds

a predetermined threshold.

8. The method of claim 5 wherein determining how many
objects to prefetch 1s based on an expected hit rate of objects
being transmitted via the at least one proxy server.

9. The method of claim 5 wherein the act of determining,
how much of each object to prefetch 1s based on a prede-
termined set of critena.

10. The method of claim 9 wherein the predetermined set
of criteria comprises a storage capacity of the proxy server,
a consumption rate of a client system and a bandwidth of a
content server.

11. The method of claim 1 wherein the act of adaptively
tuning the prefetch engine to prefetch a plurality of objects
from within the network further comprises:

selecting one of the plurality of prefetch algorithms to be

utilized by the prefetch engine.

Us 7,130,890 Bl

11

12. The method of claim 11 wherein the act of selecting
one of the plurality of prefetch algorithms to be utilized by
the prefetch engine further comprises:

comparing the predictions of each of the plurality of
prefetch algorithms for a time t1 with actual prefetch
results for a time t2; and

selecting one of the plurality of prefetch algorithms based
on the comparison.

13. A system for adaptively prefetching objects from

within a network via at least one proxy server comprising;:

a data mining engine for monitoring the at least one proxy
server within the network, the at least one proxy server
comprising a prefetch engine;

means for automatically providing a plurality of prefetch
algorithms wherein each of the plurality of prefetch
algorithms predicts which of the plurality of objects
should be prefetched; and

means for adaptively tuning the prefetch engine to
prefetch a plurality of objects from within the network
based on the prefetch algorithms.

14. The system of claim 13 further comprising:

a replacement engine for replacing at least one of a
plurality of objects 1n the at least one proxy server
based on a predetermined set of criteria.

15. The system of claim 14 wherein the predetermined set
of criteria comprises a remaining lifetime of an object, a size
ol an object and a likelihood that the object will be needed
in the near future.

16. The system of claim 13 wherein the at least one proxy
server mcludes a plurality of access log files and the means
for monitoring the at least one proxy server comprises:

a data mining engine for data mining the plurality of

access log files.

17. The system of claam 16 wherein the means for
adaptively tuning the prefetch engine comprises:

means for determining what objects to prefetch;

means for determining when to prefetch the objects;

means for determining how many objects to prefetch; and

means for determining how much of each object to
prefetch.

18. The system of claim 17 wherein the means for

determining what objects to prefetch further comprises:
means for generating a list of objects based on the number
of hits of each object; and

means for selecting objects from the list as prefetch
candidates wherein objects with a higher number of hits
are given a higher priority for prefetch.

19. The system of claam 13 whereimn the means for
adaptively tuning the prefetch engine to prefetch a plurality
ol objects from within the network further comprises:

means for selecting one of the plurality of prefetch
algorithms to be utilized by the prefetch engine.

20. The system of claim 19 wherein the means for
selecting one of the plurality of prefetch algorithms to be
utilized by the prefetch engine further comprises:

means for comparing the predictions of each of the
plurality of prefetch algorithms for a time t1 with actual
prefetch results for a time t2; and

means for selecting one of the plurality of prefetch
algorithms based on the comparison.

21. A network proxy server comprising;:

a prefetch engine for prefetching a plurality of objects
from within the network;

means for allocating an amount of bandwidth available to
the proxy server for storing prefetched objects wherein
the amount of bandwidth 1s based on an amount of
bandwidth not being utilized to service demand misses;

5

10

15

20

25

30

35

40

45

50

55

60

65

12

a replacement engine for replacing at least one of a
plurality of objects 1n the proxy server based on a
predetermined set of criteria; and

a data mining engine capable of adaptively tuning the
prefetch engine to prefetch a plurality of objects from
within the network,

wherein the prefetch engine 1s activated when the allo-
cated amount of bandwidth reaches a predetermined
threshold and suspended when a cache hit rate exceeds
a predetermined threshold.

22. The network proxy server of claim 21 wherein the

predetermined set of criteria comprises a remaimng lifetime
of an object, a size of an object and a likelthood that the

object will be needed 1n the near future.

23. The network proxy server of claim 22 wherein the data
mining engine further comprises:

means for determining what objects to prefetch;
means for determining when to prefetch the objects;
means for determining how many objects to prefetch; and

means for determining how much of each object to
prefetch.

24. The network proxy server of claim 23 wherein the
means for determining what objects to prefetch further
COmprises:

means for generating a list of objects based on the number
of hits of each object; and

means for selecting objects from the list as prefetch
candidates wherein objects with a higher number of hits
are given a higher priority for prefetch.

25. The network proxy server of claim 21 further com-
prising;:

a plurality of prefetch algorithms within the pretetch

engine wherein each of plurality of prefetch algorithms

predicts which of the plurality of objects should be
prefetched; and

means for selecting one of the plurality of prefetch
algorithms to be utilized by the prefetch engine.

26. The network proxy server of claim 25 wherein the
means for selecting one of the plurality of prefetch algo-
rithms to be utilized by the prefetch engine further com-
Prises:

means for comparing the predictions of each of the

plurality of pretetch algorithms for a time t1 with actual
prefetch results for a time t2; and

means for selecting one of the plurality of prefetch
algorithms based on the comparison.

27. A method for adaptively prefetching objects from
within a network via a proxy server comprising;

monitoring the proxy server within the network, the proxy
server comprising a prefetch engine;

allocating an amount of bandwidth available to the proxy
server for storing prefetched objects wherein the
amount of bandwidth 1s based on an amount of band-
width not being utilized to service demand misses; and

adaptively tuning the prefetch engine to prefetch a plu-
rality of objects from within the network,

wherein the prefetch engine 1s activated when the allo-
cated amount of bandwidth reaches a predetermined
threshold and suspended when a cache hit rate exceeds

a predetermined threshold.
28. The method of claim 27, further comprising;

prefetching a plurality of objects into the proxy server
when the adjusted amount of bandwidth reaches a

predetermined threshold.

Us 7,130,890 Bl

13
29. The method of claim 28, further comprising:

suspending the prefetching when a cache hit rate exceeds
a predetermined threshold.

30. The method of claim 27 further comprising: 5

replacing at least one of a plurality of objects in the proxy
server based on a predetermined set of criteria.

31. The method of claim 30 wherein the predetermined set
of criteria comprises a remaining lifetime of an object, a size .
of an object and a likelthood that the object will be needed
in the near future.

14

32. The method of claam 27 wherein the proxy server
includes a plurality of access log files and monitoring the
proxy server comprises: data mining the plurality of access
log files.

33. The method of claim 32 wherein adaptively tuning the
prefetch engine comprises:
determining what objects to prefetch;
determining when to prefetch the objects;
determining how many objects to prefetch; and
determining how much of each object to prefetch.

¥ K H oK ¥

	Front Page
	Drawings
	Specification
	Claims

