12 United States Patent

US007124228B2

(10) Patent No.: US 7,124,228 B2

Grouzdev 45) Date of Patent: Oct. 17, 2006
(54) BUS COMMUNICATION ARCHITECTURE, 6,085,238 A 7/2000 Yuasa et al.
IN PARTICULAR FOR MULTICOMPUTING 6,101,555 A * 82000 Goshey et al. 719/321
SYSTEMS 6,112,271 A * 82000 Lanusetal. 710/306
6,161,197 A * 12/2000 Lanus et al. 714/11
(75) Inventor: Vladimir Grouzdev, Saint 6,223,240 B1* 4/2001 Odenwald et al. 710/311
Germain-en-Laye (FR) 6,487,619 Bl * 11/2002 Takagiccooevvvrinnnennn. 710/105
6,574,695 B1* 6/2003 Mott et al.cceene....... 710/302
(73) Assignee: Sun Microsystems, Inc., Santa Clara, 6,615,383 Bl 9/2003 Talluri et al.
CA (US) 6,618,783 B1* 9/2003 Hammersley 710/305
6,662,654 B1* 12/2003 Miao et al.c............. 73/488
(*) Notice: Subject to any disclaimer, the term of this 6,772,420 B1* 82004 Poger et al. ... 719/327
patent 1s extended or adjusted under 35 6,785,894 Bl1* 8/2004 RUDEIE ..oovovvevevereenn. 719/321
U.S.C. 154(b) by 368 days. 6,851,056 Bl 2/2005 Evans et al.
6,856,615 Bl 2/2005 Barve
(21) Appl. No.: 10/192,759 6,895,588 B1* 5/2005 RUDEIE .ovovovevevereeren. 719/321
(22) Filad: Jul. 10, 2002 2003/0200451 Al 10/2003 FEwvans et al.
(65) Prior Publication Data
US 2003/0074513 Al Apr. 17, 2003 OTHER PUBLICATIONS
Sun Microsystems, ChorusOS 4.0 Introduction, Dec. 1999, Sun
(30) Foreign Application Priority Data Microsystems, Inc., part No. 806-0610-10.%
Sun Microsystems, ChorusOS 4.0 Device Driver Framework Guide,
Jul. 10, 2001 (FR) 01 09166 Dec. 1999, ySun Microsystems Inc., part No. 806-0616-10.%
(51) Int. Cl. H (COIltiIlll@d)
GO6F 13/36 (2006.01)
GO6F 15/16 (2006.01) Primary Examiner—Mark H. Rinehart
GO6F 12/16 (2006.01) Assistant Examiner—Christopher Daley
Gool’ 9/44 (2006.01) (74) Attorney, Agent, or Firm—Robert C. Kowert;
(52) US.Cl ooveveeeenn.. 710/306; 709/321; 711/153; ~ Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.
717/124;,719/312
(58) Field of Classification Search 710306, (07 ABSTRACT
710/104, 153; 709/321:; 717/124; 719/321-322,
719/327,312; 711/147, 150, 153 A .
. . computer system comprises first and second computer
See application file for complete search history. boards. each havin board
: g a processor, onboard memory, an
(56) References Cited onboard bus, e.g. a processor bus, and a bus-to-bus bridge

U.S. PATENT DOCUMENTS

5,694,556 A 12/1997 Neal et al.

5,809,303 A * G§/1998 Senatorcoceenen..... 719/325
5,835,738 A 11/1998 Blackledge, Ir. et al.

5,961,606 A 10/1999 Tallur et al.

6,049,808 A 4/2000 Talluri et al.

for interconnecting the onboard bus with an external bus; the
boards have remote slave drivers, and communication driv-
ers, comprising communication management functions, and
forming communication chains or channels between the
remote slave drivers and the onboard memories.

32 Claims, 9 Drawing Sheets

Hardware

CRUBGS >

RAM PCi Bus Bridge |
115 118

PC Bus 122 - >

l SCSI Bus

132 134

Hard Disk l I CD- ROM

SCSI HBA Ethemet
124 126
3

ISA Bus Bridge |

US 7,124,228 B2
Page 2

OTHER PUBLICATIONS

Hu et al., “Formal Verification of the HAL SI System Cache
Coherence Protocol,” Int’l Conf. On Computer Design, 1997, pp.
438-444.

Acher et al., “A PCI-SCI Brnidge for Building a PC Cluster with
Distributed Shared Memory,” Sixth International Workshop on
SCI-Based Low-Cost/High-Performance Computing, Sep. 1996, (8
pages) 444.

Amza et al., “Treadmarks: Shared Memory omputing on Networks
of Workstations,” IEEE Computer, 29(2) Feb. 1996. (20 pages).

Sultan et al., “Scalable Fault-Tolerant Distributed Shared Memory,”
2000 IEEE, (13 pages).

* cited by examiner

U.S. Patent Oct. 17, 2006 Sheet 1 of 9 US 7,124,228 B2

' Hardware

’

CPU RAM PC Bus Bridge
110 115 118

P Bus

122

| SCSIHBA | | FEthemet | | ISABusBridge |
| 14 10 § |

SCSIBus 130

ISABus 135

Hard Disk | | CD-ROM | | UART | Floppy |
| 132 134 | | 138 | | 138 |
FIG. 1

Software

_____________________ -
:-Dewce Drivers

UART | | Floppy

, |

Driver | | Driver | i
N 26 || 28 |
L — A _|
- T
| ISA Bus Bridge Driver |
| 228 X
| |
I PCI Bus Bridge Driver ||
] 218 |
| - Bus Drivers |
e e e e e e e o —— —— — e et —— v— —— — — — — —

Microkernel Basic Services
(CPU Interrupts management, Memory management) 205

FIG. 2

U.S. Patent Oct. 17, 2006 Sheet 2 of 9 US 7,124,228 B2

Dnver Chents
250

I________'BDI 20
IDevice Drivers o |
| Ethernet | | HardDisk | | CD-ROM | | UART | | Floppy |
|| Driver | { Driver | | Driver | Drver Driver
26 || 232 || 23 || 2% 238

L BN L N I [— T T N N]

B
_ |
i —

L

r
]
|

i .
|

|

|

|

|

|

Adapter Driver

Common DKI Services

|
SCS! HOSt SUS ISA Bus Bridge Dnver :
|

DDI 219 |

, PCl Bus Bridge Driver |
_ 218 |

Family Specific DKI Services 206

Micro-Kernel
200

FIG. 3

U.S. Patent Oct. 17, 2006 Sheet 3 of 9 US 7,124,228 B2

| Driver Handle

Device
Regqistry

Device
Node
715

L Z @Dnverlnstence

FIG. 4

ATM Stack Ethernet Pseudo-
Protocol Layer Driver UL2

Logical Layer Logical Communicat&af Driver (multiplexor)

Physical Layer Phys CtIJ_T;n Driver Phys C?_T; Driver Phys C?_T? Driver

FIG. 5

US 7,124,228 B2

Sheet 4 of 9

Oct. 17, 2006

U.S. Patent

-

T I — —

L

00E1
(0ONd)

Pleoq

JNd

||||||]
LLLL |
NdO |
sng sAQ |
AT
8L11 |
T 1oy |
4!
10d7
_
|
| —
__ 0G1
_ Hl494
|
|
|
I
666

US 7,124,228 B2

Sheet 5 of 9

Oct. 17, 2006

U.S. Patent

Z Old

SH00€EL
00Nd

| | wEo ||
R sjoway |
|

|| 3bpug HOL 88

N1091 1
[e907 HO 188

SY0052
Jesy)
ZONd

WH0S1¢

—_—}
I wosTe _
3)0WaY
_ “ e007 N18G & | o0 ie _
L — - I
18914 _ _ |

XNOGL 1
SNXaN

sbpug H189

HOOL LI
dSH

SH0002
Jes))
(N)000Z

US 7,124,228 B2

Sheet 6 of 9

Oct. 17, 2006

U.S. Patent

8 Il SH009¢ Sd00EC SH00€EL

¢ONd } ONd 00Nd

79T
25

[——]

N10Z1L¢ NH0.L1LC WNJ091¢

(le007) (sjoway) (ejowsy)

(8)0Wway)

NI 8H

NT0S12
(leo07) N189

U.S. Patent Oct. 17, 2006 Sheet 7 of 9 US 7,124,228 B2

1 TFG 7|
- I—I
BB1OH |, |
(Remote) |
1160RM || |
—===
2000(H) 1000(H) PMC! PMC2
Z2000RS 1000RS 2300RS 2500RS
FIG. 9
I |
| PMC1 |
| 2301LH |
—] e
| ' FIG. 8 |
—— ¥ | ____::'_I
™ BBIIN o [BB1IN a
| (Local) --— (Remote) |
| 2160Lm | | 2160RM |l |
—) |

-
1000(H) 2000(N) PMC2 PMCO
1000RS 2000RS 2500RS 1300RS

FIG. 10

U.S. Patent Oct. 17, 2006 Sheet 8 of 9 US 7,124,228 B2

FIG. 11

FIG. 12

U.S. Patent Oct. 17, 2006 Sheet 9 of 9 US 7,124,228 B2

Selected Communication Management Protocol

= Cross - interrupt Delivery

Framework Config. Arbitration
(GH only) D04

Cross Interrupt Delivery

Selected Communication Management Protocol
(Bus Control Protocol)

Access Remote Memory

Cross Interrupt Transmission

FIG. 13

US 7,124,228 B2

1

BUS COMMUNICATION ARCHITECTURE,
IN PARTICULAR FOR MULTICOMPUTING
SYSTEMS

BACKGROUND OF THE INVENTION

The invention relates to a bus communication architec-
ture, more particularly for distributed and/or multi-comput-
ing systems.

Existing input/output busses, e.g. the PCI I/O bus, are
basically designed to interconnect a processor board with
iput/output boards (“devices”), e.g. hard disk controllers.
Bus bridges may be used 1n a number of cases: for example,
a system-to-PCI bus bridge may be provided between a
processor or system bus within a board and the PCI bus
itsell; a PCI-to-PCI bus bridge may be used where the
number of existing devices i1s higher than the maximum
connection capability of a single PCI bus; various other bus
bridges may also be used where connection to another bus

operating differently 1s desired, for example PCI to ISA, or
PCI to SCSI.

Generally, a PCI I/O bus provides parallel processing for
a plurality of boards, including I/O boards, and one or more

processor boards. Where several processor boards are
present, one of them may act as a master board.

Communication between the boards may be enabled by
providing in each board a memory areca which 1s made
accessible from the bus, or, 1n other words, “exported” on
the bus. A commumication mechanism 1s also necessary. An
example of such a mechanism has been proposed in: “Com-

pact PCI, Multi-Computing Interface Specification”,
PICMG 2.14 D0.60, May 12, 2000, PCI Industrial Computer

Manufacturers Group (in short “PICMG™). Although inter-
esting, the PICMG approach appears to be much hardware-
dependent, and therefore raises certain problems, {for
example where use on a different bus architecture may be
required.

SUMMARY OF THE INVENTION

A computer system 1n accordance with this invention may
comprise first and second computer boards, each having a
processor, onboard memory, an onboard bus, e.g. a proces-
sor bus, and a bus-to-bus bridge for interconnecting the
onboard bus with an external bus; the boards have remote
slave drivers, and communication drivers, comprising com-
munication management functions, and forming communi-
cation chains or channels between the remote slave drivers
and the onboard memories.

This mvention may also be viewed as a method of
interconnecting first and second computer boards, each
having a processor, onboard memory, an onboard bus, and a
bus-to-bus bridge for interconnecting the onboard bus with
an external bus. The method comprises the steps of:

a. providing each board with a remote slave driver, and

b. providing the boards with communication drivers,
comprising communication management functions,
and forming communication chains between the remote
slave drivers and the onboard memories.

This invention also encompasses a soltware product,
comprising the drivers as used 1n the above computer system
and/or for use 1n the above defined method. This extends to
optional developments of the system and/or method, to be
described herematter. The invention further encompasses a
software product, comprising driver classes for use 1n gen-
erating the above software product. It still further encom-

10

15

20

25

30

35

40

45

50

55

60

65

2

passes larger software products, e.g. an operating system,
comprising any ol the above software product.

BRIEF DESCRIPTION OF THE DRAWINGS

Other alternative features and advantages of the invention
will appear in the detailed description below and in the

appended drawings, in which:

FIG. 1 schematically illustrates a known hardware com-
puter structure;

FIG. 2 schematically illustrates a device driver system for
the hardware computer structure of FIG. 1;

FIG. 3 illustrates a device driver framework correspond-
ing to the device driver system of FIG. 2;

FIG. 4 illustrates a device registry and a driver registry,
cooperating with a driver component and an instantiation of
that driver component;

FIG. 5 schematically illustrates a layered model of use 1n
understanding this mvention;

FIG. 6 shows an exemplary multi-processor board com-
puter system in which this invention may apply;

FIG. 7 shows the driver arrangement seen from board
1110 of FIG. 6 in more detail;

FIG. 8 shows the driver arrangement seen from board
2110 of FIG. 6 1n more detail;

FIG. 9 shows the driver arrangement seen from board
1300 of FIG. 6 1n more detail;

FIG. 10 shows the driver arrangement seen from board
2300 of FIG. 6 in more detail;

FIG. 11 shows the driver arrangement seen from board
2500 of FIG. 6 1n more detail;

FIG. 12, shows an exemplary interconnection between
drivers; and

FIG. 13 1s a diagram showing the general driver functions
for driver classes.

DETAILED DESCRIPTION

As they may be cited 1n this specification, Sun, Sun
Microsystems, Solarits, ChorusOS are trademarks of Sun
Microsystems, Inc. SPARC i1s a trademark of SPARC Inter-

national, Inc.

This patent document may contain material which 1s
subject to copyright protection. The copyright owner has no
objection to the facsimile reproduction by anyone of the
patent document or the patent disclosure, as 1t appears in the
Patent and Trademark Ofilice patent file or records, but
otherwise reserves all copyright and/or author’s rights what-
SOEVer.

Additionally, the detailed description i1s supplemented
with the following Exhibits:

Exhibit A 1s a more detailed description of an exemplary
embodiment of this invention, and

Exhibit B contains code extracts illustrating an exemplary
embodiment of this invention.

In the foregoing description, references to the Exhibits
may be made directly by the Exhibit or Exhibit section
identifier. One or more Exhibits are placed apart for the
purpose of claritying the detailled description, and of
enabling easier reference. They nevertheless form an inte-
gral part of the description of the present invention. This
applies to the drawings as well.

This 1nvention also encompasses software code, espe-
cially when made available on any appropriate computer-
readable medium. The expression “computer-readable

US 7,124,228 B2

3

medium” includes a storage medium such as magnetic or
optic, as well as a transmission medium such as a digital or
analog signal.

The detailed description may hereinafter refer to plat-
forms based on the ChorusOS operating system, and uses the
corresponding terminology. This 1s exemplary only and 1t
should be understood that the invention i1s applicable to a
variety of computer platforms. Generally, ChorusOS has the
tollowing abilities:

work with various processors and various main boards,
adapted to specific products;

be loadable 1n RAM from a so called “[OS] archive” or
“1mage file”, stored e.g. 1n persistent memory or as a
file on the hard disk, depending upon the actual plat-
form architecture;

define independent processes (named “actors”), exchang-
Ing messages.

The exemplary hardware computer structure of FIG. 1
comprises a CPU 110, having a processor or CPU Bus 112,
and RAM 1135 connected thereto. A PCI Bus Bridge 118 1s
interposed between CPU Bus 112 and PCI Bus 122. PCI Bus
122 may 1n turn be connected e.g. to an Ethernet device 126,
an SCSI Host Bus Adapter 124, and an ISA Bus Bridge 128.
SCSI Host Bus Adapter 124 1s connected to SCSI Bus 130,
which 1s connected to one or more hard disks 132, and one
or more CD-Rom drives 134. ISA Bus 135 1s connected to
one or more UART devices 136, and to one or more floppy
drives 138.

As known, the devices necessitate pieces of code named
drivers to be able to correctly operate under control of the
CPU. In accordance with one aspect of this invention, the
tendency 1s to have one driver for each device, with the
driver services being those required for the device.

Accordingly, the device dniver framework may have the
structure shown 1n FIG. 2. The micro kernel basic services,
including CPU Interrupt management and memory manage-
ment, form a module 205, with PCI Bus Bridge driver 218
connected thereto. Module 218 1n turn receives connection
from SCSI Host Bus Adapter driver 224, and from ISA Bus
Bridge driver 228, as well as from an Ethernet peripheral
driver 226. SCSI Host Bus Adapter driver 224 has one or
more hard disk drivers 232, one or more CD-Rom drivers
234. ISA Bus Bridge driver has one or more UART dnivers
236 and one or more floppy drivers 238.

The Interface layering will now be described with refer-
ence to FIG. 3. In the example, the interfaces specified by
ChorusOS for the device drivers implementation are split
logically i two sets:

Drivers/Kernel Interface (DKI), which comprise a set of
services provided by the microkemel 205 for driver
implementation. In other words, all DKI services are
implemented in the microkernel, and used by device
drivers. Typically drivers for buses and devices con-
nected to the CPU local bus will use all DKI services.

Device Drivers Interface (DDI), which comprises a set of
services provided by drnivers for the driver clients
implementation. In fact, a driver client may itself be a
driver. For instance a device driver 1s typically a bus
driver client. Thus, all DDI services are implemented 1n
a driver, and used by the upper layer drivers, or directly
by drivers client applications.

The DKI interface defines all microkernel services pro-
vided for drivers implementation. These services are split in
two categories. Common DKI services 207 have the same
API for all platforms and processors, and are usually used by
all kind of drivers, whatever the layer level 1s. Processor
tamily specific DKI services 206 may have a different API

10

15

20

25

30

35

40

45

50

55

60

65

4

for each different processor family and are usually used only
by the lowest-level drivers, 1.e. drivers for buses and devices
which are directly connected to the CPU local bus 112 (FIG.
1).

The Processor family specific DKI services 206 cover:
Processor interrupts management, Processor caches man-
agement, Processor specific 1/0 services and Physical to
virtual memory mapping. Some or all of these services exist,
and may be implemented i known fashion. These DKI
services operate with the CPU bus (the root of the device
tree) to some extent like DDIs with devices; there 1s a DKI
service for each particular CPU bus function, and the design
of the DKI services 1s rendered modular, thus improving the
portability.

FIG. 3 also shows that the other drivers have interfaces
arranged as DDI services as follows:

DI 219 for PCI bus bridge driver 218;

DI 225 for SCSI host bus adapter driver 224;

DI 229 for ISA bus bridge driver 228; and

DI 240 diagrammatically showing the DDIs for all other
end drivers, communicating with driver clients 2350 1n
application programs.

FIG. 4 shows a driver registry 40, having a particular
driver record 401, and a Device Registry 50, having a
particular device record 501.

Many drivers exist. Only one 1s shown i FIG. 4 for
clanty. A driver 6 has driver program code (“driver text™) 60
and global driver data 61, comprising:

a driver operations section (“driver ops™) 612, adapted to
provide services or functions, using driver program
code 60, and

a driver registry entry section (“DrvRegEntry”) 611.

Driver record 401 has a pointer to “DrvRegEntry” 611 of
the particular driver 6 being considered. For initialization
and shut-down, the “DrvRegEntry” 611 may optionally
define entry points to device independent routines in the
driver, e.g. “drv_probe”, “drv_bind”, “drv_imt” and
“drv_unload”, to be discussed hereinafter.

Driver 6 of FIG. 4 1s a generic driver object or “global”
driver section, which 1s not used as such by devices. In
accordance with the concepts of object programming, the
devices needing the services of the particular driver 6 will
use “instances’ of the object (object class) defined by driver
6.

Such an instance basically comprises “local” driver data
71, defining the instance, together with the global driver
section. The local driver data 71 comprises data forming an
“internal” pointer to the driver object 6. “Internal” means
that the pointer connects the driver instance to the global
driver section within the driver. In other words, a driver
instance comprises its local driver data plus the global driver
section. Preferably, the local driver data 71 also comprises
data forming an “external” pointer to at least one other
driver, typically the parent driver (the root’s parent driver are
the DKI services).

The local driver data 71 may also include local device-
oriented data, defining, in section 712:

data defining the current condition of the local device, and

a device handle, for the local device associated with the
driver instance.

Consideration 1s now given to the case of a driver instan-
tiation for a leaf device 1in FIG. 4, 1.e. one of the devices
directly communicating with driver clients 1n FIG. 3. Such
a leal driver instance i1s also associated with a “Device
registry entry”. In FIG. 4, the device registry entry 1s shown
as a section 711 in “local” device data 71 of the driver
instance (However, the Device registry entry may alterna-

o O O C

US 7,124,228 B2

S

tively be associated with the corresponding record 501 in
device registry 50). In any case, each item in the Device
Registry 50 in FIG. 4 has a corresponding “DevRegEntry”
structure 711.

Device registry 50 forms the basis of a client-to-[leat]-
driver linking mechanism. For subsequently reaching a
bus/nexus driver, a child-to-parent-driver linking mecha-
nism 1s used.

As described above, the device drivers present at the leaf
nodes are hardware device drivers. The applicant company
has been faced to the problem of interconnecting computer
boards, and has found that considerable advances may be
obtained by making use of communication drivers within
such boards, as 1t will now be explained.

This invention uses the observation that the layered model
shown 1n FIG. 5 1s applicable for example to the architecture
of the ChorusOS bus communication framework. Such a
layered approach enables the communication framework to
be portable across diflerent bus bridge architectures. The
layers are:

a protocol or upper layer, comprising e.g. ATM stack UL1

and/or Ethernet pseudo-driver UL2,

a logical or middle layer ML, comprising a logical com-
munication driver or multiplexer. The logical commu-
nication layer provides a basic communication protocol
which then may be used by upper layers in order to
provide a standard communication protocol (e.g., IP) to
user applications (the protocol layer).

a physical or low layer, comprising e.g. physical commu-
nication drivers LL1 through LL3.

The physical layer abstracts the bus architecture and bus
bridge devices making the logical communication layer
portable. Device Driver Interfaces (DDIs) are used by the
physical communication drivers implementing the physical
communication layer. Although the physical communication
layer will be described mainly as designed for the PCI and
CPCI architecture, 1t may apply to other I/O bus types as
well, e.g. to the VME bus, which 1s widely used today in
telecom equipment.

More precisely, the main task of the physical communi-
cation driver 1s to make shared memory resources accessible
from any board within the communication domain. Typi-
cally, among all physical drivers running on a given CPU
board, there will be one driver which provides access to the
board local memory (exported to the bus). All other physical
drivers provide access to the remote memory (imported from
the bus). Thus, the total number of physical drivers on a
CPU board (visible for multiplexer) 1s normally equal to the
number of CPU boards communicating over the bus (or
busses). Another task of the physical driver 1s to provide
interrupt services allowing a so called “cross iterrupt™ to be
sent from one CPU board to another.

The logical communication driver (multiplexer) uses ser-
vices provided by the physical drivers (1.e., shared memory
and cross interrupts) in order to implement a low level
communication protocol over the bus. Various implementa-
tions of such a communication layer are possible. In the
example, ChorusOS implements a quite basic communica-
tion protocol providing simplex (unidirectional) communi-
cation channels over the bus. Memory resources used by a
channel are specified at channel creation time, 1.€. a channel
creator specifies the size of the FIFO used for the frames
transmission over the channel. A channel has a point-to-
point topology allowing only one writer and one reader per
channel. The channel also implements tlow control, notify-
ing the reader and writer about a channel state transition. The

10

15

20

25

30

35

40

45

50

55

60

65

6

reader receives notification when the channel state 1s
changed from empty to non-empty. The writer 1s notified
when the channel state 1s changed from full to non-fill. In
order to take advantage of posted writes (usually supported
by a bridge hardware), the channel bufler 1s preferably
located at the reader local memory. Thus, the channel
transmitter mitiates write transactions on the 1/0 bus which
are asynchronously forwarded to another bus segment by the
bridge hardware.

On top of the logical communication driver (multiplexer),
other software layers may be implemented in order to
provide a given (standard) communication protocol over the
bus. For example, an ATM stack UL1 may use the multi-
plexer driver 1n order to create channels carrying AALS
frames. Another example 1s an ethernet pseudo-driver UL2
which may be implemented using multiplexer channels.
Such a driver may then be used by the ChorusOS IP stack
in order to provide the standard IP protocol over the bus.

An underlying concept of this mvention 1s to create a
single communication domain for a hardware system com-
prised of multiple (hierarchically connected) bus segments.
In other words, the physical layer enables a direct commu-
nication between two CPU boards, even if they are con-
nected through multiple bus-to-bus bridges. Besides, in the
case of a communication domain comprised of multiple
busses, the physical layer design enables communication
across heterogeneous busses. Furthermore, the physical
layer design enables a dynamic configuration of the com-
munication domain. In particular, the dynamic configuration
mechanism allows the physical communication layer to
support the CPU board hot swap on the cPCI bus.

The foregoing description refers mainly to the middle and
low layers of FIG. 5.

Now with reference to FIG. 6, an exemplary multi-board
configuration 1s shown. A first board 1000 has a main unit
1110, comprising processor 1111 and RAM 1115 connected
to a local processor (system) bus 1112, 1n turn connected via
bridge 1118 to a local PCI bus 1122. A PCI-to-PCI bus
bridge 1150 interconnects local PCI bus 1122 with a com-
mon (or “external”) PCI bus 999. Local PCI bus 1122 1s also
connected e.g. via PCI-to-local bus (or “QSpan”) bridge
1160, to a PMC board 1300 (“PMC0”"), which includes its
own processor, not shown. (PMC stands for “PCI Mini
connector’”). Board 1000 forms a so called Host System
Processor (HSP) Board.

One or more other Non-host System Processor (NSP) or
“satellite” boards like 2000 may also be connected to
common PCI bus 999. Like board 1000, board 2000 also has
a main unit 2110, comprising a processor 2111 and RAM
2115 connected to a local processor (system) bus 2112, 1n
turn connected via bridge 2118 to a local PCI bus 2122. A
PCI-to-PCI bus bridge 2150 interconnects local PCI bus
2122 with common (or “external”) PCI bus 999. Local PCI
bus 2122 1s also connected e.g. via PCI-to-Local bus (or
“QSpan”) bridge 2160, to a PMC board 2300 (“PMC1”),
which includes 1ts own processor (not shown). In this
example, a second “QSpan” bridge 2170 1s also connected
to a second PMC board 2500 (*PMC2”). Various other
multi-board multi-processor configurations may be contem-
plated.

In a specific, purely exemplary, embodiment, board 1000
may be a MCP730 board sold by Motorola, and board 2000
a MCPN730 of same origin. In the following, x 1s a thousand
digit which may be 1, 2, etc, depending upon the number of
items 1n presence. Bridges x118 may be the RAVEN model
of Motorola. Bridges x150 may be the DEC21154 of Digital

Equipment Corporation (now Intel). Boards x300 or x500

US 7,124,228 B2

7

may be Force860 boards sold by Force Computing, each
plugged into a respective PMC slot of the local PCI bus
x122.

Generally, the hardware structure of FIG. 6 1s viewed 1n
this invention as defining a communication domain having,
5> processors or CPUs (one 1n each of boards 1110, 1300,
2110, 2300 and 2500), interconnected via I/O busses, 1.e.
cPCI bus 999, and local PCI busses 1122 and 2122 (the
processor busses 1112 and 2112 do not qualify as I/O
busses).

This invention uses an object oriented approach of the
driver architecture, with driver classes, and driver instances
of such classes. Thus, there may at least some of the
following four main communication driver classes:

host (xH), including the subclasses
Global Host (GH), and
local host (LH);

master (xM), including the subclasses
Local Master (LM), and
Remote Master (RM);

slave (RS);

nexus (NX)

FIGS. 7 through 11 illustrate the drniver framework, as
seen from the various processor boards in FIG. 6. In these
figures, the block numbers are the same as in FIG. 5,
however suflixed with the designation of the drniver class

attached to the block. Certain blocks, like 2150, have
doubled driver instances, like 2150RM and 2150LM, for the
above explained reasons. Each remote driver instance RM

should be linked to a local driver instance LM. In fact, FIGS.
7 through 11 are interconnected by these coupled “xM”
drivers.

In FIG. 7 (board 1110 or HSP for Host System processor
Board), the driver mnstance 1110GH forms a point of con-
nection with:

the remote driver instance 1160RM of the corresponding
PCI-to-Local bus bridge in connection with the driver

instance 1300RS of the remote PMCO0 board 1300,

the remote driver instance 1160RM 1s coupled with drniver
instance 1160L.M 1n FIG. 9,

the auxiliary driver instance 1150NX of the corresponding
PCI-to-PCI bnidge,

driver instance 1150NX 1s 1n turn 1n connection with the
remote driver instance 2150RM of the corresponding
PCI-to-PCI bridge 2150, enabling the connection with
the driver instances 2000RS, 2300RS, 2500RS of the
corresponding remote boards 2000(N), PMC1, PMC2,

respectively,

the remote driver imnstance 2150RM 1is coupled with driver
instance 2150LM in FIG. 8.

In FIG. 8 (board 2110 or NSP for Non System processor
Board), the dniver instance 2110LH forms a point of con-
nection with:

the remote driver mnstance 2160RM of the corresponding
remote PCI-to-Local bus bridge in connection with the
driver instance 2300RS corresponding to PMC1 board.,

the remote driver imnstance 2160RM 1is coupled with driver
instance 2160L.M 1n FIG. 10,

the remote driver instance 2170RM of the corresponding
remote PCI-to-Local bus bridge in connection with the
driver instance 2500RS corresponding to PMC2 board.,

the remote driver imnstance 2170RM 1s coupled with driver
instance 2170LM 1n FIG. 11,

the local driver instance 2150LM of the corresponding
PCI-to-PCI bridge 1n connection with the driver

10

15

20

25

30

35

40

45

50

55

60

65

8

instance 1300RS corresponding to PMCO0 board and the
driver istance 1000RS corresponding to the 1000(H)
board,

the local driver mstance 2150LM 1s coupled with driver
instance 2150RM 1n FIG. 7.

In FIG. 9 (board 1300), the local driver imnstance 1301LH
forms a point of connection with the local driver instance
1160LM of the corresponding local PCI-to-Local bus
bridge. This local driver mnstance 1160L.M 1s 1n connection
with the driver mnstance 1000RS corresponding to local main
board 1000(H), the driver instance 2000RS corresponding to
remote main board 2000(N), the driver instance 2300RS
corresponding to the remote PMC1 board 2300 and the
driver instance 2500RS corresponding to the remote PMC2
board 2500. The local driver instance 1160LM 1s coupled
with drniver mstance 1160RM 1n FIG. 7.

In FIG. 10 (board 2300), the driver instance 2301LH of
the corresponding local processor forms a point of connec-
tion with the local driver instance 2160LM of the corre-
sponding local PCI-to-Local bus bridge. This local driver
instance 2160LM 1s in connection with the driver instance
1000RS corresponding to 1000(H), the driver instance
2000RS corresponding to 2000(N), the driver instance
2500RS corresponding to the remote PMC2 board and the
driver mstance 1300RS corresponding to the remote PMCOQ
board. The local driver instance 2160LM 1s coupled with
driver mstance 2160RM 1n FIG. 8.

In FIG. 11 (board 23500), the driver mstance 2501LH of
the corresponding local processor forms a point of connec-
tion with the local driver instance 2170LM of the corre-
sponding local PCI-to-Local bus bridge. This local driver
instance 2170LM 1s 1n connection with the driver instance
1000RS corresponding to 1000(H), the driver instance
2000RS corresponding to 2000(N), the driver instance
2300RS corresponding to the remote PMC1 board and the
driver mstance 1300RS corresponding to the remote PMCO
board. The local driver instance 2170LM 1s coupled with
driver mstance 2170RM in FIG. 8.

The above description of FIGS. 7 through 11 shows how
the drivers are organized, and interconnected with each
other.

This interconnection 1s 1llustrated 1n a simplified way 1n
FI1G. 12, where two boards BA and BB are shown, each
comprising a driver of each driver type (designated only
from the driver class 1dentifier). Boards BA and BB may be
¢.g. any pair of the boards 1000, 1300, 2000, 2300, 2500 1n
FIG. 6. Each board 1in FIG. 12 has a board level driver xH,
a nexus driver NX, an LM driver coupled with an RM driver
in a different board, an RM driver coupled with an LM driver
in a different board, and an RS driver.

A communication path i1s open between slave driver RS of

board BA and a dedicated portion of the memory 1n board
BB, made available by the board level driver xH of board

BB. As illustrated with doubled lines in FIG. 12, the
communication path or channel passes through:

an RM driver adjacent to driver RS 1n board BA,

an LM driver 1n board BB, paired with the RM driver in
board BA,

one or more NX drnivers 1n board BB (optionally),
the xH driver of board BB.

Numerous such paths may be defined 1n FIGS. 7 through
11, from each RS-suthxed driver to each xH-suthxed driver,
bridging from one board to another through a LM-RM pair
of drivers. A such pair 1s denoted “master communication
driver”. This may be applied to any number of boards, in any

US 7,124,228 B2

9

interconnection architecture. Preferably, all possible paths
are implemented; however, only certain of the paths may be
implemented, 11 desired.

The interfaces between the drivers may be as follows:
between an RS and xM driver: Common bus DDI

between xM, NX and xH drivers: PCI DDI (in the
example)+Bus control DDI

FIG. 13 shows the general driver functions for each class.
The classes are noted as follows: D0 for class xH, D1 for
class NX, D2 for class xM and D3 for class RS. Classes DO,
D1 and D2 have a selected communication management
protocol function, D01, D11 and D21, respectively.

Class D0 or xH (1.e. GH or LH), which 1s attached to a
board, has:

a function D02 for dedicating a portion of the board

memory to the driver framework of this invention, and

a function D03 for delivering an interrupt to the processor

of that board, 1n fact a “cross-interrupt” coming from
the dnver framework of this mnvention.

In addition, class GH may have a framework configura-
tion arbitration function D04, for the set-up of the mtercom-
munication within the driver framework, and its mainte-
nance.

Class D1 or NX merely passes the bus control protocol
messages up and down in a bus-to-bus bridge, as shown in
D11.

Class D2 or xM may have the following functions:

at D22 and D23, export the local memory, respectively

import the remote memory;

at D24, ensure the remote communication of bus mes-

sages;

at D235, ensure the cross-interrupt reception.

Class D3 or RS may have the following functions:

at D31, look for an access to a remote memory; and

at D32, transmit or send a cross interrupt to a remote

board.

The interfaces between the drivers may be conveniently
defined by using driver classes.

Basically, the xH driver class 1s intended for creation of
driver istances that manages the local memory, more pre-
cisely:

provide a local communication DDI to the multiplexer, to

access the local memory;

ensure the relationships between diflerent physical com-

munication drivers running on the board, in other
words form a point of connection between multiple bus
segments, which may be residing on the board or
accessible from the board.

It will appear that an xH driver 1s a pseudo-driver, which
does not correspond to a particular device, and may be
viewed as embedded in the so called host bus bridge driver,
which represents the first bus bridge driver after the proces-
sor (local) bus, e.g. bridge 1118 1n board 1000 (FIG. 6).

Normally, there should be only one instance of the xH
driver class on a given CPU board. All but one of the xH
driver instances are LH driver instances; there 1s one GH
driver instance playing a central role within the communi-
cation domain, 1n addition to the basic role of an LH driver
instance. Normally, such a GH driver instance 1s unique 1n
the communication domain (at least at a given time). While
the GH role may be assigned arbltrary to any LH driver, in
tact, the GH driver 1s typically running on the host system
processor (HSP), since the GH driver role 1s important.

Now, the NX driver class designates a nexus bus com-
munication driver. Such a driver 1s typically used on a local
bus bridge (e.g., items x150 i FIG. 6). An NX driver

instance acts as an auxiliary driver used to connect xM

10

15

20

25

30

35

40

45

50

55

60

65

10

drivers running on a board to the local xH driver (of the same
board) via the Bus Control DDI. To this effect, an NX driver
instance 1s connected to the Bus Control DDI provided by 1ts
parent communication driver (xH or another NX), and in
turn it provides the Bus Control DDI, as required for 1ts child
communication drivers (xM or another NX). So, an NX
driver does not need to provide any DDI to the multiplexer.

The xM class designates a driver managing a bus-to-bus
bridge which connects two CPU boards. The first letter of
the class name (R,L) specifies whether the driver instance 1s
remote (R) or local (L) with respect to the device (managed
by the driver instance) and the board on which the device
resides. The driver class 1s “local” 1f the driver 1s running on
the same board on which the device resides, otherwise the
driver instance 1s “remote”.

In the example of FIG. 6, comprising HSP board 1000 and
NSP board 2000, there are two driver instances for bus
bridge 2150 (e.g. an Intel/DEC21554 Drawbridge chip).
One drniver mstance 1s running on HSP board 1000, while
another one 1s running on NSP board 2000.

Now referring to FIGS. 7 and 8, driver instance 2150RM
running on HSP (and managing the primary bridge interface)
1s remote, while driver mstance 2150LM running on NSP
(and managing the secondary bridge interface) 1s local. The
XM driver 1s a nexus. Its main role 1s to provide a Bus
Control communication protocol with peer remote instance.
It enables access to the remote memory regions (exported by
xH drivers), by creating “remote” device nodes representing,
xH drivers running on remote CPU boards. Such “remote”
device nodes are 1n fact children of the xM device node. An
xM driver does not need to provide any DDIs to the
multiplexer, and 1s an auxiliary driver.

Physical communication drivers runmng on “remote”
nodes are designated by the RS class. The RS class driver
provides the Remote Bus Communication DDI to the mul-
tiplexer driver allowing the (remote) memory exported on
the bus to be accessed by an associated xH driver running on
a remote board. It also allows the multiplexer to send cross
interrupts to the remote multiplexer.

Summarizing the discussion above, up to six physical
communication driver classes may exist within a commu-
nication domain. The LH class driver instance represents the
local memory. Normally, there 1s only one LH driver
instance per board. There 1s one LH driver instance which
plays a central role 1n the communication domain. Such a
driver belongs to the GH class; basically, the GH class 1s an
extension ol the LH class. There 1s only one GH driver
instance per the communication domain. The xM class
driver represents a bus-to-bus bridge which connects two
CPU boards 1n the communication domain. The LM driver
instance 1s running locally, 1.e., on the board where the
bridge resides. The RM driver instance 1s runmng remotely,
1.€., on the board which arbitrates the external (primary) bus.
The NX class driver represents a local bus-to-bus bridge.
Finally, the RS class driver represents a CPU board, more
exactly, 1t represents an xH driver instance running on a
remote CPU board. Thus, normally, the number of RS driver
instances running on a given CPU board 1s equal to the total
number of CPU boards, minus one.

The operation of the drivers will now be described 1n
more detail, beginning with the interface between RS and
xM driver classes.

An xM dniver provides the common bus driver interface
to the child RS drivers. Basically a RS driver 1s just a normal
device driver running on top of a bus driver. Such a driver
uses the parent bus operations in order to map both the
device (bridge) registers and the (remote) memory exported

US 7,124,228 B2

11

on the bus. Normally, the RS driver never receives iterrupts
and therefore never uses mterrupt services provided by the
parent driver. On the other hand, an RS driver sends cross
interrupts to the associated remote board using the bus
bridge interface registers. It 1s preferred to limit the RS
driver to the common (bus architecture independent) DDI 1n
order to enable communication between heterogeneous bus-
ses. For example, an RS dniver for a PCI-to-PCI bridge may
run on top of the VME bus. Actually, an RS driver works
with a kind of remote (virtual) device. Such a device may
have no bus specific attributes on the underlying bus. For
example, the configuration header of a PCI-to-PCI bridge
may not be visible (accessible) on a remote bus segment.
Only bridge interface registers are typically accessible.

Now turning to the interface between xM and xH/NX
driver classes, an XM driver 1s always a child of an NX or
xH driver. The NX and xH drivers are bus drivers and
therefore they provide the bus DDI to their child xM drivers
(e.g., PCI bus DDI). In addition, there 1s an extra interface
between a parent NX/xH and child xM drivers that 1s related
to the physical bus commumnication layer support. This
interface 1s called the Bus Control interface.

The Bus Control interface provides specific support for
the communication protocol across the busses. Basically, the
Bus Control interface addresses the following two 1ssues:

communication domain configuration
cross terrupts delivery

The Bus Control interface 1s used by the xH and xM
drivers to start RS driver instances according to the com-
munication domain topology. The configuration interface 1s
also used to update the physical layer configuration when the
hardware configuration 1s changed due to a hot plug 1nser-
tion/removal (or a board shutdown/restart).

The Bus Control interface also allows an xH driver to
receive cross interrupts sent from remote CPU boards.
Basically, when an RS driver instance sends an interrupt to
the associated xH driver instance running on a remote board,
this iterrupt 1s first recertved by the xM driver instance
which connects the remote board to the communication
domain. Using the Bus Control interface, the xM driver
sends such an mterrupt event upstream (to parent). In this
way, 1nterrupt events are propagated up to the xH driver.

Technically, the Bus Control interface 1s implemented as
a separate DDI. An xH driver instance exports the Bus
Control DDI via the device registry. An NX driver instance
imports the Bus Control DDI provided by its parent (xH or
NX) and 1n turn exports the Bus Control DDI downstream
(to children). An xM driver instance imports the Bus Control
DDI exported by its parent (INX or xH). Naturally, the device
tree database 1s used by a child driver to detect (1n the device
registry) the Bus Control interface provided by its parent.

The LM/RM dniver instances managing the same bridge
device provide a communication path between two CPU
boards within the communication domain. This communi-

cation path 1s composed of the following:
data communication path
control communication path

The LM/RM driver typically manages anon transparent
bus bridge. This bridge 1s connected to the local (secondary)
bus and to the remote (primary) bus. It consists of two
devices: the remote device 1s accessible on the primary bus
and the local device 1s accessible on the secondary bus. The
LM 1nstance 1n running locally and it manages the local
(secondary) bridge interface. The RM instance i1s running
remotely (on the board arbitrating the primary bus) and it
manages the remote (primary) bridge interface.

10

15

20

25

30

35

40

45

50

55

60

65

12

So, the LM/RM driver dials with two bus segments
(primary and secondary). Logically, the bridge device splits
the communication domain into two parts: the primary and
secondary communication domains. Initially, the LM/RM
driver 1s responsible for configuring the bridge address
translation logic 1n order to enable access from one bus
segment to communication resources available on the oppo-
site bus segment. These communication resources are, 1n
fact, memory regions exported by all xH drivers running on
CPU boards from the opposite communication domain and
also 1nterface registers of bus-to-bus bridges through which
these CPU boards are connected to the communication
domain. The xM driver 1s responsible for creating (and
managing) RS driver instances i a given (primary or
secondary) communication domain for each stance of xH
driver running in the opposite communication domain.

The xM dniver 1s also responsible to implement the
control communication path in order to forward the Control
Bus DDI calls from one side of the communication domain
to another. The mechanism used by the xM driver to
implement the control communication path 1s bridge specific
and may vary from one driver to another. For example, an
XM driver may use 120 FIFOs 1if the 120 messaging 1s
supported by the underlying bus bridge. Otherwise, mail
boxes or scratchpad registers may be used.

Now, an RS driver instance represents a remote CPU
board 1n the communication domain. The RS driver provides
the Remote Bus Communication DDI to the multiplexer in
order to access the remote board memory exported by the xH
driver (running on this remote board) and to send cross
interrupts to this xH dnver. Interrupts received by the xH
driver are then forwarded to the multiplexer.

Note that a cross interrupt cannot be sent directly to an xH
driver. An xH driver does not correspond to a concrete
(bridge) device but rather to a concrete local memory region.
A cross interrupt should be sent to an xM driver first, and
then 1t will be forwarded upstream (1.¢., up to the xH driver)
using the Bus Control DDI. Therefore, the RS driver 1s bus
bridge specific and it 1s, in fact, the third driver class
(together with LM and RM classes) which must be devel-
oped for a given bus bridge device.

Note that RS drivers for the same CPU board (1.e., for the
same XH driver instance) are not necessary similar. Actually,
a given RS dnver type depends on the bus-to-bus bridge
device through which this CPU board 1s connected to the
communication sub-domain 1n which the RS driver instance
1s running. For example, a given board may be connected to
two (external) bus segments through two different (.e.,
soltware incompatible) bridge devices A and B. In this case,

the commumcation domain 1s logically split on three sub-
domains:

the CPU board itself

first communication sub-domain connected to the bridge
A

second communication sub-domain connected to the
bridge B.

Normally, the RS drivers (representing this CPU board)
running in the first sub-domain will be bridge A specific,
while the RS drnivers (representing this CPU board) runming
in the second sub-domain will be bridge B specific.

-

T'he Bus Control interface will now be considered.

-

T'he Bus Control interface 1s used by physical drivers for
twO purposes:

to propagate a cross interrupt received by an xM driver
upstream 1n order to deliver it to the xH driver

US 7,124,228 B2

13

to configure the communication domain physical drivers

according to the communication hardware.

The following basic operations are defined by the Bus
Control interface in order to support the dynamic configu-
ration of the communication domain:

host declaration

site declaration

site nsertion and connection

site removal and disconnection

Most of the Bus Control operations may be considered as
asynchronous broadcast messages sent to all xH, xM and
NX communication drivers involved into the communica-
tion domain. Note that RS drivers are not concerned by the
Bus Control protocol.

The following message propagation algorithm 1s used by
the communication drivers 1n order to implement such a
broadcast transmission. If a message 1s received from the
parent, 1t 1s sent to all children. If a message 1s recerved from
a child, 1t 1s sent to the parent and to all children except the
message transmitter.

The remote Bus Control connection between peer LM and
RM driver instances (managing the same bridge device) i1s
always considered as being in the downstream direction
from both sides. In other words, the LM driver instance 1s a
chuld of the RM driver mstance and vice versa.

The host declaration message (host_declare) 1s 1ssued by
the GH drniver instance. It 1s a broadcast message which 1s
forwarded to all LH, NX and xM communication drivers
using the propagation mechanism described above. The
main purpose of this operation is to establish a route between
the GH drniver and each other (LH, NX, xM) communication
driver 1n the domain. Actually, the host declaration operation
1s the first Bus Control action which occurs in the commu-
nication domain. This action 1s initiated by the GH driver
instance. All LH drivers are waiting for an incoming host
declaration message 1n order to start their own declaration
process.

When a host declaration message 1s received by a driver,
it memorizes the direction from which the message 1is
received (host route direction). In addition, the driver for-
wards this message in all possible directions (upstream and
downstream) except the message transmaitter.

Note that, 1if a given drniver instance already knows the
host route (1.e., 1t has received the host declaration message)
and there 1s a new child driver which connects to this driver
instance later on, the host declaration message 1s 1ssued to
the new driver instance at connection time.

The host declaration message also carries some useful
information which 1s retained by the commumnication drivers
and used later on in the Bus Control protocol:

communication level

communication path

The communication level 1s an iteger number. It 1s
iitialized to zero by the GH driver and incremented each
time the host declaration message 1s sent over a remote Bus
Control interface between LM and RM drivers. Basically,
the communication level specifies the host route length, 1.¢.,
the distance between a given driver and the GH driver. This
distance 1s measured 1n the number of CPU boards residing
on the host route. Considering the hardware example given
above, the communication level 1s zero on the MCP750
HSP. The level 1s one on MCPN750 NSP and Force860
PMC plugged into HSP. Finally, the level 1s two on Force860
PMC plugged into NSP.

The communication path 1s a NULL terminated ASCII
string designating a CPU board global path 1n the commu-
nication domain. Initially, the communication path 1s set to

10

15

20

25

30

35

40

45

50

55

60

65

14

an empty string by the GH drniver. The communication path
1s then updated each time the host declaration message 1s
sent over a remote Bus Control interface between LM and
RM dnivers. An XM driver appends 1its local device path to
the communication path string. Therefore, the communica-
tion path uniquely identifies a CPU board in the domain
because a local device path 1s supposed to be locally unique.

Once a host declaration message 1s received by an LH
driver instance, the LH driver i1ssues a site declaration
request (site_declare). The site declaration operation allows
an LH driver to obtain i1ts unique site identifier within the
communication domain. The site declaration request 1is

treated by the GH drniver instance. The GH driver 1s respon-
sible for assigning a unique site 1dentifier to each LH drniver
instance present within the communication domain.

When an LH driver 1s started, it waits until a host
declaration down-call 1s 1ssued from one of 1ts child drivers.
This i1dentifies the host route direction i which a site
declaration request has to be sent to. When a site declaration
request 1s recerved by an NX, xM or other LH driver, 1t 1s
also forwarded toward in the host route direction. In this
way, a site declaration request follows the host route until 1t
finally reaches the GH dniver.

Once the GH driver receives a site declaration request it
replies to 1t with a site unique 1dentifier and a site declaration
sequence number (SDSQN). The site unique 1dentifier 1s just
an integer value which uniquely identifies the site in the
communication domain. SDSQN 1s also an integer value
which 1s actually a counter of declaration requests recerved
by the GH driver. This counter 1s initialized to zero and
incremented each time a declaration request 1s received by
the GH driver. SDSOQN 1s used in the configuration protocol
as described later on. Basically, it provides the configuration
process ordering.

Note that the site declaration request carries the LH driver
communication path. In other words, the GH driver receives
in the site_declare request the unique site communication
path assigned to the CPU board being declared. This infor-
mation may be used by the GH driver in the site unique
identifier assignment policy. For example, the GH driver
may use the site communication path 1n order to assign the
same site 1dentifier to a CPU board which has been removed
from the communication domain and then re-inserted again.

Unlike all other Bus Control operations, the site declara-
tion operation 1s synchronous. This means that an LH driver
that 1ssues the site declaration request i1s blocked when
waiting for the reply. The commumnication level 1s typically
used by the xM communication drivers i order to tune a
time out value when waiting for the site_declare reply
message. Usually, the communication level 1s used as a
multiplier for a basic time out value.

Once the site declaration 1s done, the LH driver notifies all
chuld drivers about the site unique 1dentifier assigned to the
CPU board. This notification 1s done via a site enable
up-call and propagated by child drivers downstream. Note
that the site_enable message 1s local and 1t never crosses the
CPU board boundaries. In other words, the site _enable
message 1s never sent by an XM driver to the remote side.
The site unique 1dentifier 1s just memorized by xM and NX
drivers to be used later on. So, the site_enable message does
not take a part in the remote Bus Control protocol imple-
mented by an xM driver.

The next step mn the LH driver mitialization 1s a site
insertion procedure. Such a procedure is iitiated by an LH
driver that sends a site insertion message downstream, 1.€.,

US 7,124,228 B2

15

to all chald drivers. Such a site 1insertion message consists of
the following parts:

site 1dentifier

site communication path

SDSQN

interface descriptor

mapping descriptor

The site insertion message 1s a broadcast message and it
1s propagated to all communication drivers in the domain
using the standard propagation mechanism described above.

The interface descriptor identifies the bus bridge device
used for the communication protocol. This descriptor 1s
empty mitially, and 1t 1s set up when the site insertion
message 1s sent the first time to a remote CPU board by an
XM driver. The xM driver initializes the interface descriptor
according to the underlying bus bridge hardware when a site
isertion message with an empty interface descriptor is
received from the remote side.

The mapping descriptor consists of two parts:

interface mapping descriptor

memory mapping descriptor

The nterface mapping descriptor specifies addresses on
the current bus which the bridge interface registers are
mapped to. Like the interface descriptor, the interface map-
ping descriptor 1s initially empty and it 1s set up together
with the interface descriptor by an xM driver, when a site
insertion message with an empty interface descriptor 1is
received from the remote side.

The memory mapping descriptor specifies a memory
region exported on the bus for the inter-bus communication
purposes. It 1s mitially set up by the LH driver mitiating the
site 1nsertion message and 1t specifies addresses on the
current bus which the local communication memory 1is
mapped to.

Note that the interface descriptor 1s mnitialized only once
and never updated after that. Unlike the mterface descriptor,
the mapping descriptor 1s updated each time the site nser-
tion request 1s forwarded by a physical communication
driver in order to take into account the bus bridge address
translation logic. In general, the memory region may be
located at different addresses on the primary and secondary
busses that a given bus bridge 1s connected to. So, xM and
NX drivers are responsible for keeping the interface and
memory mapping addresses up to date (within the message)
during the site mnsertion message propagation.

When a site isertion message 1s recerved by an xM or xH
driver, the check 1s made whether the message should be
processed or simply 1gnored. The message 1s 1gnored if the
driver SDSQN 1s greater than the message SDSQN. This
means that the site msertion message 1s 1ignored on a CPU
board which has been declared after the CPU board initiated
the message.

In other words, the site insertion message 1ssued by a CPU
board 1s processed only on CPU boards which existed at the
moment this CPU board was declared.

Together with the site msertion message propagation, XM
and xH drnivers take some specific actions. Actions taken by
the driver are driver class specific and detailed below.

When an xM driver receives a site msertion message from
the remote side, i1t creates a child device node that corre-
sponds to the remote device and starts an appropriate RS
driver instance on this node. The device characteristics (e.g.,
the device and vendor 1Ds for a PCI device) are specified in
the interface descriptor. The bus resources needed to access
the remote memory region and bridge interface registers are
also specified 1n the site msertion request (1interface/memory
mapping descriptors). When creating a remote device node,

10

15

20

25

30

35

40

45

50

55

60

65

16

the xM driver has to specily the local and remote site
identifiers as device properties. These properties are then
used by the multiplexer upper layer driver. The local site
identifier 1s provided to the xM driver by the LH driver
running on the board via the site_enable message. The
remote site 1dentifier 1s specified in the site 1nsertion mes-
sage. In this way the RS instance 1s created on a CPU board
for a new (remote) LH dniver instance runming on another
CPU board.

When an insertion message 1s recerved by an xH dniver,
the driver sends a site connection message (site_connect)
back to the site insertion initiator. The site connection
message content 1s similar to the site insertion message
content except that 1t contains an extra field that specifies the
destination site identifier, 1.e., 1dentifier of the site initiated
the site msertion process. In other words, the site connection
message includes both source and destination site 1dentifiers.
The source site 1dentifier corresponds to the CPU board that
sent the site connection message and the destination site
identifier corresponds to the CPU board from which the site
insertion request has been sent.

The site connection message 1s a broadcast message and
it 1s propagated using the standard propagation mechanism
described above. The mterface and mapping descriptors are
initialized and updated similarly. The purpose of the site
connection message 1s to create an RS driver instance
associated with a given (remote) xH driver on the newly
inserted CPU board. So, when a site connection message 1s
received by an xM driver from the remote side, the driver
checks whether the destination site identifier matches the
local site identifier. If the check 1s positive, a device node 1s
created and an RS driver instance 1s started. Otherwise, the
site connection message 1s simply propagated upstream, and
no other action 1s taken. In this way, an RS driver instance
associated with an existing xH driver 1s created on a newly
inserted CPU board.

The CPU board removal mechanism 1s described below.
Note that only a non-surprise removal 1s considered here.

When a CPU board requests to be removed from the
communication domain, a shutdown event 1s received by the
xH driver running on the board. The shutdown event 1s
propagated downstream using an event mechanism imple-
mented by the ChorusOS driver framework. So, a shutdown
event 1s received by xM driver istances running locally on
the board. When an xM driver 1nstance receives this event 1t
initiates the site removal procedure described below.

The site removal procedure consists of sending a site
removal message to the remote side through the remote Bus
Control protocol. The removal message contains the site
unique 1dentifier of the CPU board being removed from the
communication domain.

The site removal message 1s a broadcast message and 1t 1s
propagated using the standard propagation mechanism
described above.

When a site removal message 1s received by an xM driver
from the remote side, the driver shuts down the child RS
driver instance which matches the site identifier given in the
message. So, the purpose of the site removal message 1s to
shut down all RS driver mstances associated with the xH
driver that 1s being removed. Note that the site removal
message should be propagated upstream (1.€., to the parent)
only when an appropriate RS driver instance 1s destroyed.

When an xH driver receives a site removal message,
analogously to the site insertion process, it sends a site
disconnection message (site_disconnect) back to the CPU
board that initiated the site removal process. The site dis-
connection message 1s composed of two site identifiers:

US 7,124,228 B2

17

source and destination. The purpose of the site disconnection
message 1s to destroy the RS driver instance (associated with
this xH driver) that 1s running on the CPU board being
removed. The site disconnection message 1s a broadcast
message and 1t 1s propagated using the standard propagation
mechanism described above. On the other hand, 1t 1s only
taken ito account by an xM driver running on the board
matching the destination site identifier. On receiving such a
site disconnection message, an XM driver shuts down an RS
driver instance that matches the source site 1dentifier.
When the last RS child mstance goes away, the xM driver
performs sell shutdown and therefore closes connection to
the parent communication driver. In such a way, the shut-
down process 1s propagated upstream and terminated by the
xH dniver.
It will now be appreciated that this invention offers a
computer system, comprising first and second computer
boards (1000; 2000), each having a processor (1111; 2111),
onboard memory (1115; 2115), an onboard bus (1112; 2112),
which 1s usually a so-called processor bus, and at least one
bus-to-bus bridge (1118, 1150; 2118, 21350) for interconnect-
ing the onboard bus (1112; 2112) with an external bus (999).
The boards (1000; 2000) have remote slave drivers
(1000RS; 2000RS). They also have communication drivers
(1110GH, 1150NX, 1160xM; 2110LH, 2150xM, 2160xM),
comprising communication management functions, and
forming communication chains (or channels) between the
remote slave drivers and the onboard memories.
The definition 1n the above paragraph may also read in
several different ways within one of the main boards 1000
and 2000. For example, considering board 2000 and 1its
sub-board 2300:
the computer system comprises first and second computer
boards (2000; 2300), each having a processor, onboard
memory, an onboard bus, (all three not shown for board
2300) and at least one bus-to-bus bridge (2118; 2150)
for interconnecting the onboard bus with an external
bus (2122).

the boards (2000; 2300) have remote slave drivers
(2000RS; 2300RS). They also have communication
drivers (2110LH, 2150xM, 2160xM), comprising com-
munication management functions, and forming com-
munication chains (or channels) between the remote
slave drivers (2000RS; 2300RS) and the onboard
memories (not shown 1n 2300; 2115).

Each board (1000, 1300, 2000, 2100, 2500) has a host
communication driver (1110GH, 1301LH; 2110LH,
2301LH, 2501LH), comprising an onboard memory access
function, making a local onboard portion of memory acces-
sible to other boards through the communication drivers.

One of the boards, e.g the first computer board (1000),
plays a central role. In that board, the host communication
driver (1110GH) further comprises a memory manager func-
tion, capable of providing access to a portion of the memory
(1115) 1n the first board (1000) for driver intercommunica-
tion. As 1t will be understood, the driver intercommunication
basically comprises a Bus control protocol, with correspond-
Ing messages or data.

The host communication driver (1110GH) in the first
computer board (1000) may further comprise a driver frame-
work configuration function, in charge of the set-up and
follow-up of the drniver mtercommumnication.

The communication drivers may comprise master com-

munication drivers (1160xM; 2150xM, 2160xM), each asso-
ciated with a bus-to-bus bridge (1160; 2150, 2160), and
remote slave communication drivers (RS), each associated
with an end-of-chain portion of memory 1n a remote board,

10

15

20

25

30

35

40

45

50

55

60

65

18

and having a remote memory function for remotely access-
ing the end-of-chain portion of memory.

A remote slave communication driver (RS) may further
have a remote interrupt function, for delivering an nterrupt
event to a remote board, which may be the same as the
remote board comprising the end-of-chain portion of
memory which 1s associated to that RS dniver.

Each master communication driver may comprise a local
bus-to-bus communication driver (e.g. 1160LM), enabling
remote access to a local portion of onboard memory, and a
remote bus-to-bus communication driver (e.g. 1160RM),
enabling local access to a remote portion of onboard
memory. FIGS. 7 through 11 show numerous other examples
of such pairs of drivers.

Each master communication driver may further comprise
the said communication management function, at least to the
extent 1t 1s devoted to the remote transmission of bus control
messages.

The computer system may further comprise a nexus
communication driver (1150NX), capable of managing an
onboard bus-to-bus bridge (1150), and of thus providing a
local connection between the communication drivers run-
ning on that board. This 1s useful where busses are not
“transparent” to the type ol messages the drivers have to
exchange.

As shown in FIGS. 7 through 11, the communication
drivers 1n a board may be viewed as interconnected 1n a tree
structure, whose root 1s a host communication driver (xH),
and whose leaves are remote slave drivers (RS).

In the above description, the communication drivers are
instances of communication drniver classes, each having
communication management functions in accordance with
the selected protocol (except for the RS dnivers). More
generally, the driver classes may also be viewed as “types”
of drivers.

In the embodiment described, the driver classes comprise
a local bus-to-bus communication driver class (LM), a
remote bus-to-bus communication driver class (RM), board
communication driver classes (xH), and a nexus communi-
cation drniver class (NX), all having the communication
management functions, plus the remote slave driver class
(RS).

A specific embodiment of this mnvention 1s described 1n
Exhibit A, with reference to the exemplary interfaces as
defined by the C-type code extracts shown 1n exhibit B.

Although the above description involves PCI busses, this
invention may extend to numerous other types o1 I/0 busses.
Also, while some portions of the above description refer to
platforms based on the ChorusOS operating system, this
invention may be applied to other operating systems as well.

Exhibit A—Comments on the Example (Code Extracts)

EA-1
The local Bus Control DDI 1s provided by each xH and
NX driver instance running on a CPU board.

The character string “buscom-ctl]” (alias BUSCOM_
CTL_CLASS) names the local Bus Control device class. A
pointer to the BusComCtlOps structure 1s exported by the
driver via the svDeviceRegister microkernel call. A drniver
client invokes the svDeviceLookup and svDeviceEntry
microkernel calls 1n order to obtain a pointer to the device
service routines vector. Once the pointer 1s obtained, the
driver client 1s able to mnvoke the driver service routines via
indirect function calls.

The local Bus Control DDI 1s a multi-client DDI. Multiple
child communication drivers may reside on top of an xH or

US 7,124,228 B2

19

NX communication driver. So, the device registry allows for
multiple lookups being done on the same driver instance.

All methods defined by the BusComCtlOps structure
must be called 1n the DKI thread context. The methods are
shown 1n EB-101.

The version field specifies the maximum local Bus Con-
trol DDI version number supported by the dniver. The
version number 1s mcremented each time one of the local
Bus Control DDI structures 1s extended 1n order to include
new service routines. In other words, a new symbol 1s added
to the BusComCtlVersion enumeration each time the API 1s
extended 1n this way. A driver client specifies a minimum
DDI version number required by the client when calling
svDeviceLookup. The svDeviceLookup routine does not
allow a client to look up a driver 1nstance if the DDI version
number provided by the driver 1s less than the DDI version
number required by the client.

A client that 1s aware of DDI extensions may still specily
a minimum DDI version when looking for a device in the
registry. Once a device 1s successiully found, the client may
examine the version field in order to take advantage of
extended DDI features which may be provided by the device
driver.

The open method 1s the first call a child must make to the
parent driver. The open call 1s used to establish a connection
to the dniver. It enables subsequent invocation of all other
methods defined by the BusComCtlOps structure.

The 1d mput argument specifies a given communication
device driver instance. It 1s given by the device registry
entry. The up calls input argument specifies the child driver
up call methods. Because the Bus Control interface 1s
bi-directional, there 1s a significant intersection between the
BusComCtlUpCalls and BusComCtlOps structures. The
only up call specific methods are intr_attach, intr_detach and
site_enable. The only down call specific methods are open,
close and site shutdown.

All methods specified by the BusComCtlUpCalls struc-
ture must be called 1n the DKI thread context.

This 1s shown 1 EB-102.

The cookie mput argument 1s passed back to the client
driver each time an up call method 1s mvoked.

Upon successiul completion, the parent driver returns
K_OK and passes back to the child the connection identifier
via the cid output argument. The connection 1dentifier must
be passed back to the parent driver 1n subsequent mvoca-
tions of all other methods defined by BusComCtlOps. The
K_ENOMEM error code 1s returned, 1f there are not enough
memory resources to establish a connection. In this case, the
cid output argument 1s not modified.

The close method 1s used to close the connection with the
parent driver. This call must be the last call made to the
driver. The cid input argument specifies a given connection
to the communication driver instance. It 1s given by the open
routine.

The site_declare operation 1s used to declare a new site
connected to the communication domain. The site declare
request 1s mitiated by an LH driver instance running on the
site being declared. Then, using the site_declare up and
down calls, the request 1s propagated by LH/NX/xM com-
munication drivers up to the GH driver instance which
handles the request and replies to 1t. The request always
moves 1n the host route direction, established by the host_
declare operation. The replay moves 1n the opposite direc-
tion 1n order to return to the site declare initiator. The main
purpose of the site_declare operation 1s to assign a unique
identifier to the site being declared. Actually, this 1s the first
action (with respect to the Bus Control interface) taken by an

10

15

20

25

30

35

40

45

50

55

60

65

20

LH dniver at mitialization time. Usually, an LH dnver
initiates the site_declare operation as soon as one of 1ts child
drivers invokes the host declare down call in order to
specily the host route direction.

Note that, the site_declare operation 1s synchronous.
Theretfore, the communication driver 1s blocked awaiting for
the site_declare reply. Actually, site_declare 1s the only
synchronous operation specified by the Bus Control inter-
face. All other operations are actually asynchronous broad-
cast messages.

The first argument 1s down/up call specific but, 1n both
cases, 1t 1dentifies a given child-to-parent connection. The
cookie up call argument 1s given by the child at open time.
The cid down call argument is returned to child by open.

All other arguments are 1dentical for both down and up
calls. Note that the cpath, cplen and site input argument are
set up by the mitiator LH driver and they are never changed
by the intermediate drivers that forward the site_declare
request. Similarly, the site and seq output arguments are set
up by the GH driver and they are never changed by the
intermediate drivers that forward the side_declare reply.

The cpath and cplen mput arguments specily the com-
munication path of the site being declared. The communi-
cation path 1s a NULL terminated ASCII string which
umiquely 1dentifies the site within the communication
domain. The communication path 1s given to the driver by
the host_declare call. Basically, 1t 1s a hint for the GH driver
which may be used in the policy of site 1dentifier assign-
ment.

The site argument 1s both mmput and output. From one
hand, the site_declare initiator may specily a suggested
identifier to be assigned to the site. For example, a geo-
graphical slot number may be used on the cPCI bus as a
suggested site identifier. On the other hand, the site argument
1s set up by the GH dniver to the unique i1dentifier really
assigned to this site. Note that the GH driver may not satisty
the LH dniver suggestion. This typically happens when the
suggested site 1dentifier 1s already assigned to another site.
The suggested site identifier must be in the range 1 to
Ox I, If the site_declare mitiator has no specific sugges-
tion on the site 1dentifier, the site argument must be set to O
(BUSCOM_SITE_INVALID).

The seq output argument specifies the site declaration
sequence number (SDSQN). The SDSQN value should be
retained by the site_declare iitiator 1n order to be used later
on. Basically, because the site declaration operation 1is
synchronous, SDSQN provides a kind of ordering for all
future asynchronous actions taken by communication driv-
ers at initialization time.

Upon successtul completion, the site_declare routine
returns K_OK and passes back to the caller, the assigned site
identifier and SDSQN.

The K _EINVAL error code 1s returned, if the communi-
cation driver does not reside on the host route. The
K_ENOMEM error code 1s returned, 11 there are not enough

memory resources to process the site declaration request.
The K_FETIMEOUT error code 1s returned, 1f a time out has
occurred when waiting for a reply from a remote site. The
K_EFULL error code 1s returned, if there are no more
avallable site 1dentifiers in the domain. In case of error, the
site and seq output arguments are not modified.

The site_insertion operation 1s used to establish forward
connections between a newly declared site and all other sites
existing within the communication domain. The site_inser-
tion message 1s initiated by the LH driver mstance runming
on a newly declared site. Then, using the site_insertion up

and down calls, the request 1s broadcasted by xH/NX/xM

US 7,124,228 B2

21

communication drivers across the communication domain.
The main purpose of the site_insertion operation 1s to create,
on each site, a RS driver instance representing the LH driver
instance that imitiated this site_insertion message. This
allows a remote site to access local memory exported by this
LH driver and to send cross interrupts to 1t. In such a way
the site insertion initiator establishes connection to each
other site within the communication domain. In addition,

receiving a site_insertion message, an XxH driver initiates a
site_connect message toward the site_insertion initiator.

The main purpose of the site_connect operation 1s to
create, on the site_insertion initiator site, an RS driver
instance representing the LH driver instance that initiated
this site_connect message. This allows the site_insertion
initiator site to access local memory exported by this LH
driver and to send cross interrupts to 1t. In such a way a
connection 1s established to the site insertion initiator from
each other site within the communication domain. So, the
site_connect message 1s an XH driver reply on an incoming
site_1insertion message. Usually, the site_insertion message
1s in1tiated by an LH driver at initialization time once the site
declaration operation 1s successiully completed.

The first argument 1s down/up call specific but, in both
cases, 1t 1dentifies a given child-to-parent connection. The
cookie up call argument 1s given by the child at open time.
The cid down call argument 1s returned to child by open. All
other arguments are identical for both down and up calls.
The seq argument specifies the SDSQN of the site_insertion
initiator. It 1s given to the driver by the site_declare opera-
tion. This argument 1s set up by the site_insertion initiator
and 1t 1s never changed by the intermediate communication
drivers that forward the message. Note that when an incom-
ing site_insertion message 1s received by a communication
driver, it must compare the seq arument value with the
SDSQN assigned to the driver. In case the driver SDSQN 1s
greater than the seq value, the site_insertion message must
be 1gnored. This means that the site_insertion message 1s not
processed on a site which has been declared later than the
site_insertion initiator. Indeed, such a site will initiate 1ts
own site_insertion operation which will then be processed
on the site from which this (ignored) site_insertion message
has been sent.

The src argument specifies the site_insertion mitiator
identifier. It 1s given to the dniver by the site_declare
operation. This argument 1s set up by the site_insertion
initiator and 1t 1s never changed by the intermediate com-
munication drivers that forward the message. The cpath and
cplen arguments specily the communication path of the
site_insertion mnitiator. The communication path 1s a NULL
terminated ASCII string which uniquely identifies the site
within the communication domain. The communication path
1s given to the driver by the host_declare operation. These
arguments are set up by the site_insertion initiator and they
are never changed by the intermediate communication driv-
ers that forward the message. The dev argument specifies the
bus bridge device (interface) which connects the site_inser-
tion 1nitiator to the communication domain. Note that this
argument 1s set to NULL by the LH driver that initiated the
site_insertion operation, because the LH driver cannot 1den-
tify the interfaces through which the site 1s connected to the
domain. The bus bridge device 1s identified when the site_1in-
sertion message leaves the site insertion imtiator site, in
order to go to a remote site. Therefore, when an xM driver
receives a site_insertion message from the remote site with
a NULL interface descriptor, 1t sets up the descriptor accord-
ing to the underlying bus bridge device hardware. Once the

10

15

20

25

30

35

40

45

50

55

60

65

22

interface descriptor 1s set up, 1t 1s never changed by the
intermediate communication drivers that forward the mes-
sage.

This 1s shown 1 EB-103.

The interface descriptor 1s used by an xM driver in order
to 1dentily the RS driver type which should be launched to
communicate with the site_insertion initiator. Basically,
when an xM driver creates an RS device node, 1t attaches the
interface descriptor to the node as the “dev-info” property
(alias BUSCOM_RS_PROP_DEV_INFO). This allows an
RS driver to examine such a property at bind time 1n order
to detect whether the bridge hardware 1s supported by the RS
driver.

The map argument specifies addresses on the current bus
segment which the exported memory (memory mapping)
and bus bridge registers (interface mapping) are mapped to.

This 1s shown 1n EB-104.

Obviously, the interface mapping 1s invalid i1f the interface
descriptor 1s NULL. So, the site_insertion initiator sets up
the memory mapping only. The interface mapping 1s set up
by an XM dniver together with the iterface descriptor. Note
that the mapping descriptor must be updated by any inter-
mediate communication driver forwarding the message, in
order to take into account the underlying bus bridge trans-
lation logic. In general, a region may be located at different
addresses on the primary and secondary busses that a given
bus bridge 1s connected to. So, xXM and NX commumnication
drivers are responsible for keeping the interface and map-
ping descriptors up to date during the site_insertion message
propagation.

The mapping descriptor 1s used by an xM driver in order
to specily bus resources for an RS driver launched to
communicate with the site_insertion initiator. Basically,
when an XM driver creates an RS device node, it attaches the
“10-regs” and “mem-rgn” properties to the node. The prop-
erties values (1.e., space, base address, size) are set up
according to the mapping descriptor of the site insertion

IMCS5dLC.

The site_connect operation 1s used to establish a back-
ward connection to the site_insertion initiator. Basically, the
site_connect message 1s the reply of an xH driver instance to
an 1ncoming site_insertion message. Like all other bus
communication operation (except site_declare), site_con-
nect 1s an asynchronous broadcast message. It 1s mitiated by
an xH driver mnstance and then propagated by xH/NX/xM
communication drivers across the communication domain
using the site_connect up and down calls.

The site_connect arguments are similar to the site inser-
tion ones except the dst extra argument which designates the
destination site, 1.e., the site initiated the site insertion
message. Despite the broadcast nature of the site_connect
message, 1t 1s only processed on the destination site. There-
fore, receiving an mcoming site_connect message, a coms-
munication driver checks whether the dst site matches the
driver local site. In case of mismatch, the message 1s simply
forwarded to parent/child drivers using the propagation
mechanism described above, and no other action i1s taken.
Note however, that a communication driver that forwards a
site_connect message must update the interface (11 needed)
and mapping descriptors 1n the same way as for the site_in-
sertion message.

An incoming site_connect message 1s only taken into
account by an xM driver instance when 1t 1s received from
the remote site and the destination site matches the local site.
In this case, analogous to the site_insertion operation, the
XM driver creates a child device node and launches an RS

US 7,124,228 B2

23

driver instance on this node. Unlike the site_insertion opera-
tion, XxH communication drivers does not reply to the site
connect message.

The site_removal operation 1s used to close forward
connections to a given site from all other sites within the
communication domain. Like all other bus communication
operations (except site_declare), site_removal 1s an asyn-
chronous broadcast message. It 1s imnitiated by an xM drniver
instance and then propagated by xH/NX/xM communication
drivers across the communication domain using the site
removal up and down calls.

Usually, the site_removal operation 1s used at site shut-
down time. Note that the site shutdown 1s always 1nitiated by
the LH drniver instance which sends a shutdown event to all
chuld drivers. Such a shutdown event 1s propagated down-
stream by communication drivers running on this board
using the standard driver framework mechanism. Finally,
such a shutdown event 1s received by an xM driver mstance
which sends a site_removal message to its remote peer xM
driver mstance.

The first argument 1s down/up call specific but, 1n both
cases, 1t 1dentifies a given child-to-parent connection. The
cookie up call argument 1s given by the child at open time.
The cid down call argument 1s returned to the child by open.
The src argument specifies the site identifier of the site_
removal 1mtiator. When an xM driver receives an incoming,
site_removal message from the remote site, 1t must shut
down an RS driver instance that matches the src site 1den-
tifier and must delete associated device node. Only follow-
ing this, the driver can forward the site_removal message
upstream.

When an xH driver receives an incoming site_removal
message, analogous to the site_insertion operation, 1t replies
with a site_disconnect message sent back to the site_
removal mitiator. The main purpose of the site_disconnect
operation 1s to destroy the RS driver instance runming on the
site_removal imitiator board, that represents this xH driver
instance.

The site_disconnect operation 1s used to close a backward
connection to the site_removal initiator. Basically, the site_
disconnect message 1s a reply of an xH driver instance on an
incoming site_removal message. Like all other bus commu-
nication operations (except site_declare), site_disconnect 1s
an asynchronous broadcast message. It 1s mitiated by an xH
driver instance and then propagated by xH/NX/xM commu-
nication drivers across the communication domain using the
site_disconnect up and down calls.

The site_disconnect arguments are similar to the site_
removal ones except for the dst extra argument which
designates the destination site, 1.e., the site 1mtiated the
site_removal message. Despite the broadcast nature of the
site_disconnect message, 1t 1s only processed on the desti-
nation site. So, on receiving an incoming site_disconnect
message, a communication driver checks whether the dst
site matches the driver local site. In the case of a mismatch,
the message 1s simply forwarded to parent/child drivers
using the propagation mechanism described above and no
other action 1s taken.

An 1incoming site_disconnect message 1s only taken into
account by an xM driver instance when 1t 1s received from
the remote site and the destination site matches the local site.
In this case, the xM driver must shut down a RS driver
instance that matches the src site identifier and must delete
the associated device node. When the last RS child driver
goes away, the XM driver performs self shutdown and closes
connection to the parent communication driver. In this way,

5

10

15

20

25

30

35

40

45

50

55

60

65

24

the shutdown process 1s propagated upstream, and finally
terminated by the LH dniver instance.

The host_declare operation 1s used to establish a host
route between the GH driver instance and all LH driver
instances within the communication domain. The host route
1s used to implement the site_declare operation. Like all
other bus communication operations (except site_declare),
host_declare 1s an asynchronous broadcast message. It 1s
initiated by the GH driver instance and then propagated by
xH/NX/xM communication drivers across the communica-
tion domain using the host_declare up and down calls.

Basically, host_declare 1s the first operation (with respect
to the Bus Control interface) made by the GH driver instance
at mitialization time. Note that the GH driver neither ini-
tiates site_declare nor site_insertion operations. Indeed, the
site_declare operation 1s always processed by the GH driver.
Theretore, the GH driver 1s able to assign a site identifier to
itself. Naturally, the SDSQN 1s always set to zero for the GH
driver. The GH driver then increments SDSQN each time 1t
processes a new site_declare request. So, the GH driver has
the minimal SDSOQN 1n the domain and therefore it 1s useless
to send the GH site_insertion message because such a
message will be 1gnored by all communication drivers.
Instead, the GH driver replies with a site_connect message
on each mcoming site_insertion message.

The first argument of host_declare 1s down/up call spe-
cific but, 1n both cases, 1t 1dentifies a given child-to-parent
connection. The cookie up call argument 1s given by the
chuld at open time. The cid down call argument 1s returned
to the child by open. All other arguments are 1dentical for
both down and up calls. The level argument specifies a
distance between the GH driver and a given communication
driver. Such a distance 1s measured 1 number of sites (1.e.,
CPU boards). The GH driver iitially sets the level to zero.
The level 1s incremented each time the host_declare message
1s forwarded by an xM driver 1nstance to 1ts remote peer xM
partner. The communication level 1s a hint for a communi-
cation driver. It might be used, for example, 1n order to tune
a time out period used by an xM driver to wait for the site
declare reply from the remote site. The cpath and cplen
arguments specily the current communication path. The
communication path 1s a NULL terminated ASCII string
which uniquely 1dentifies the site within the communication
domain. Such a path i1s dynamically constructed by xM
communication drnivers during the host_declare message
propagation process. The communication path 1s mitially set
to an empty string by the GH driver. Then, the local path of
the underlying bus bridge device i1s appended to the string
cach time the host_declare message 1s forwarded by an xM
driver instance to its remote peer XM partner. Therefore, the
communication path uniquely identifies a site within the
domain because a local device path 1s assumed to be locally
unique.

Note that any communication driver must support a
deferred propagation of the host declare message. This
means that once the host_declare message 1s received by a
communication driver, 1t must retain all needed information
in order to be able to re-send this message later on (1.e., 1n
a deferred way). Such a deferred host_declare message
re-send must take place each time a new child communica-
tion driver 1s connected (locally or remotely) to the driver.

The site_shutdown down call 1s used to notify the LH
driver of a site shutdown request, detected by a communi-
cation driver. Typically, a shutdown request may be mnitially
received by an LM drniver instance from 1ts remote peer RM
partner. For example, 1t may be a board removal request
detected on the cPCI bus by a RM drniver instance (running

US 7,124,228 B2

25

on the system controller board) and transmitted (through the
remote Bus Control interface) to the peer LM partner. On
receiving such a remote shutdown request, the LM driver
notifies 1ts parent communication driver of the invocation of
the site_shutdown routine. In the same way, the parent driver
notifies 1ts parent and so on. Finally, the shutdown request
reaches the LH dniver instance which initiates the site
shutdown process as described above (see site_removal).

The c1d input argument specifies a given connection to the
driver. It 1s returned by open.

The site_enable up call 1s used to put local communica-
tion drivers 1 a fully operational state. The site_enable
operation 1s 1mitiated by the xH drniver once the site_decla-
ration operation 1s successiully completed. Then, the
site_enable operation 1s propagated downstream by NX
communication drivers up to the leave xM communication
drivers. Note that this operation 1s local and 1t does not take
a part in the remote Bus Control protocol. On receiving a site
enable_call, the xM driver becomes fully operational. Now,
the driver 1s able to process site_insertion and site_connec-
tion messages. The site_enable call specifies, to the driver,
the umique 1dentifier and SDSQN assigned to the local site.

The cookie argument specifies a given connection to the
driver. It 1s given by child at open time. The site argument
specifies the unique 1dentifier assigned to the local site. The
seq argument specifies SDSQN assigned to the local site.
The site and seq arguments are set up by the xH driver and
they are never changed by the intermediate NX communi-
cation drivers that forward the site _enable call downstream.
In an analogous way to the host_declare deferred propaga-
tion, xH and NX communication drivers must support the
site_enable deferred propagation mechanism. In case a new
chuld driver 1s connected to a fully operational (1.¢., enabled)
xH or NX driver instance, the driver must immediately 1ssue
the site_enable call to this chuld driver in order to put it in
a Tully operational state.

The intr_attach method connects a given handler to a
given (virtual) cross interrupt source. The cookie input
argument specifies a given child communication driver. It 1s
provided at open time. The 1ntr input argument 1s an integer
value that specifies a given (virtual) cross interrupt source.
Note that 1f a given interrupt number exceeds the number of
physical cross interrupts supported by the hardware, the
interrupt handler 1s connected to the last available physical
cross interrupt. Note also that multiple handlers may be
attached to the same 1nterrupt source.

The intr_handler mput argument specifies an interrupt
handler invoked by the child communication driver when a
cross interrupt 1s received. The mtr_cookie input argument
specifies a cookie that 1s passed back to the interrupt handler.

This 1s shown 1n EB-105.

Upon successiul completion, the child driver returns
K_OK and passes back to the parent the interrupt identifier
through the 1ntr_id output argument. The intr_1d argument 1s
opaque for the parent. It must be passed back to the child
driver as an argument in a subsequent mvocation of the
intr_detach routine.

The K_ENOMEM error code 1s returned, if the system 1s
out of memory resources. In case of error, the intr_1d output
argument 1s not modified. When the interrupt handler is
invoked, the child driver prevents re-entry to the interrupt
handler. An interrupt handler must return a value specified
by the BusComlntrStatus type, as shown in EB-126.

An nterrupt handler must return BUSCOM_INTR_UN-
CLAIMED 1f the interrupt 1s unclaimed, 1i.e., there 1s no
usetul work done 1n the interrupt handler.

5

10

15

20

25

30

35

40

45

50

55

60

65

26

An interrupt handler must return BUSCOM_INTR_
CLAIMED 1f the interrupt has been claimed, 1.¢., there was
a useful work done 1n the iterrupt handler.

The intr_detach up call disconnects the interrupt handler
previously connected by intr_attach. The intr_1d mnput argu-
ment speciiies the interrupt handler being disconnected. It 1s
returned by intr_attach.

EA-2

This section describes a message based interface used to
provide a remote Bus Control communication between peer
LM and RM driver instances runmng on different CPU
boards but managing the same bus-to-bus bridge device.

The messages described below are basically equivalent to
the local Bus Control interface defined in the previous
section. In fact, these messages are just used to make the Bus
Control DDI distributed across the communication domain.

Note that this section does not specily which hardware
mechanism should be used to transfer a message from one
site to another. Such a mechanism 1s LM/RM driver imple-
mentation specific and generally depends on the underlying
hardware. For example, 11 a bridge supports 120 messaging,
120 FIFO’s may be used for the Bus Control message
transier. Otherwise, scratchpad registers may be used for this
purpose.

Each message has a standard header defined by the
BusComMsg structure shown in EB-201.

The size field specifies the message size including the
BusComMsg header. The type field specifies the message
type as listed above. Recerving an incoming message the
communication driver should cast it to an appropriate mes-
sage structure according to the message type. Message
specific structures are described in the rest of the document.

The BusComMsg_site_declare structure defines the site_
declare request layout. Note that because the site_declare
operation 1s synchronous, the Bus Control interface also
specifies the BusComMsg_site_declare_ack structure which
defines the site_declare reply layout. This 1s shown 1n
EB-202.

The token field 1s used to associate the site declare
acknowledgment recerved from a remote site to the site_de-
clare request 1ssued by the local site. The token is set up by
the local site when a site_declare request 1s sent. A remote
site copies the token to the site_declare acknowledgment
message when replying to the site_declare request. Basi-
cally, the token allows a communication driver to implement
the site_declare synchronous call via two asynchronous
messages: the site_declare request and site_declare
acknowledgment. The site field of the site_declare request
specifies a suggested site unique 1dentifier. The path field
specifies the start location of the communication path. The
path size must be calculated using the total message size
given by the message header.

The res field of the site_declare reply specifies the site_
declare operation result. If the operation 1s failed, 1.e., the res
value 1s not K_OK, the site and seq fileds are meaningless.
The site field of the site_declare reply specifies the site
unmique 1dentifier assigned to the site_declare imitiator. The
seq field of the site_declare reply specifies SDSQN that 1s
assigned to the site_declare initiator. The BusComMsg_
site_insertion structure defines the site_insertion message
layout, as shown 1n EB-203.

The seq field specifies SDSQN assigned to the site_in-
sertion 1nitiator. The src field specifies the unique site
identifier assigned to the site_insertion initiator. The dev
field specifies the interface (bus bridge device) descriptor.
The map field specifies the interface and memory mappings

US 7,124,228 B2

27

on the current bus segment. The path field specifies the start
location of the communication path. The path size has to be
calculated using the total message size given by the message
header.

The BusComMsg_site_connect structure defines the site
connect message layout, as shown in EB-204.

The dst field specifies the unique identifier of the desti-
nation site, 1.e., the site insertion initiator. The src field
specifies the unique identifier of the source site, 1.e., the
site_connect initiator. The dev field specifies the interface
(bus bridge device) descriptor. The map field specifies the
interface and memory mappings on the current bus segment.
The path field specifies the start location of the communi-
cation path. The path size must be calculated using the total
message size given by the message header.

The BusComMsg_site_removal structure defines the
site_removal message layout, as shown 1n EB-205. The src
field specifies the unique site identifier of the site_removal
initiator.

The BusComMsg_site_disconnect structure defines the
site_disconnect message layout, as shown in EB-206.

The dst field specifies the unique identifier of the desti-
nation site, 1.e., the site_removal i1nitiator. The src field
specifies the unique identifier of the source site, 1.e., the
site disconnect initiator.

The BusComMsg host declare structure defines the
host_declare message layout, as shown 1n EB-207.

The level field specifies the current communication level.
The path field specifies the start location of the current
communication path. The path size has to be calculated
using the total message size given by the message header.

The BusComMsg_site_shutdown structure defines the
site_shutdown request layout, as shown 1n EB-208. Such a
message 1s sent to the remote side 1 order to request the site
shutdown.

The BusComMsg_site_shutdown_ack structure defines
the site_shutdown acknowledgment layout. As shown in
EB-209. Such a message 1s sent to the site_shutdown
initiator 1n order to notily him that the site shutdown process
has been entered 1n a final phase.

For example, on the cPCI bus, a hot swap removal event
1s received by a RM driver instance running on the system
controller board. Receiving such an event, the RM driver
sends the site_shutdown request to the peer LM driver
instance. Receiving such a message, the LM driver initiates
the board shutdown process. At final phase of the board
shutdown, the LM driver sends back to the peer RM driver
instance the site_shutdown acknowledgment message.

EA-3

This section specifies some generic properties related to a
device tree node representing a bus communication device.
The section 1s divided onto three subsections which address
the xH, GH and RS specific properties respectively. Note
that xH device node 1s typically created statically i the
device tree. Therefore, a system administrator 1s typically
responsible for configuring xH drivers via device node
properties. On the other hand, RS device nodes are typically
created dynamically by the xM commumnication drivers that
process site_insertion and site_connect messages. So, an XM

driver developer 1s responsible for attaching the appropriate
properties to a RS node at node creation time.

Concerning the xH Node Properties, the “site” property
(alias BUSCOM_LH_PROP_SITE) specifies a suggested
site 1dentifier to be assigned to an xH driver. The property
value type 1s BusComSite. This property 1s optional.

5

10

15

20

25

30

35

40

45

50

55

60

65

28

An LH dniver uses the property value 1n the site_declare
operation 1n order to specily a suggested site i1dentifier. If
property 1s not present, the BUSCOM_SITE_INVALID
constant (0Ox0) 1s used in the site_declare operation. This
means that the driver has no suggestion for the site identifier.

A GH dnver uses the property value as the unique
identifier assigned to the local site. If property 1s not present
or the property value 1s 1nvalid, a minimal site i1dentifier
assigned to the domain 1s used.

The “mem-size” property (alias BUSCOM_LH_MEM_
SIZE) specifies the memory size which should be allocated
by an xH driver for communication purposes. The property
value type 1s BusComSize. This property 1s optional. If the
property 1s not present, driver uses a default value which 1s
driver implementation specific.

Concerning the GH Node Properties, the “host” property
(alias BUSCOM_GH CLASS) attached to a node specifies
that an xH driver instance running on the node should act as
the GH driver. The property has no value.

The “site-min’ (alias BUSCOM_GH_PROP_
ITE_MIN) and “site-max” (alias BUSCOM_GH_PROP_
_MAX) properties specily a range of unique site 1den-
tifiers assigned to the communication domain. Both prop-
erties use BusComSite as the value type. Both properties are
optional. The BUSCOM_DEF_SITE_MIN constant (0x1) 1s
used as the default value for the BUSCOM_GH_PROP_
SITE_MIN property, 1t the property 1s not present 1n the
node. The BUSCOM_DEF_SITE_MAX constant (Ox{Ii{ii)
1s used as the default value for the BUSCOM_GH_PROP_
SITE_MAX property, 1f the property 1s not present in the
node.

Concerning the RS Node Properties, the “mem-size”
peoperty (allas BUSCOM_RS_MEM_SIZE) specifies a
memory size which i1s allocated on the remote site for
communication purposes. The property value type 1s Bus-
ComSize. This property 1s mandatory.

The “dev-nio” property (alias BUSCOM_RS_PROP_
DEV_INFO) specifies an interface (1.¢., bus bridge device)
used to communicate to the remote site. The property value
type 1s bus architecture specific. This property 1s mandatory.

EA-4

Unlike the Bus Control DDI which 1s a private interface
for the physical communication layer, there are two public
DDIs provided by the physical commumnication layer to the
upper (logical) communication layer:

local bus communication DDI

remote bus communication DDI
The local BusCom DDI 1s provided by an xH driver

instance running on the local site.

First of all, the local BusCom driver 1s responsible for
allocating a system memory region for communication
purposes and for making it accessible on all remote sites
involved 1n the communication domain. In addition, the
local communication driver allows a client to receive a cross
interrupt sent from any remote site involved in the commu-
nication domain. The character string “buscom-loc™ (alias
BUSCOM_LOCAL_CLASS) names the local BusCom
device class. A pointer to the BusComLocOps structure 1s
exported by the driver via the svDeviceRegister microkernel
call. A driver client invokes the svDeviceLLookup and svDe-
viceEntry microkernel calls in order to obtain a pointer to the
device service routines vector. Once the pointer 1s obtained,
the driver client 1s able to mnvoke the driver service routines
via indirect function calls. A local BusCom driver i1s mono-
client device driver. The device registry prevents multiple
lookups being done on the same driver instance.

'u L.L

S-'Fr__‘-

US 7,124,228 B2

29

All methods defined by the BusComLocOps structure, as
shown 1n EB-211, must be called in the DKI thread context.

The version field specifies the maximum local BusCom
DDI version number supported by the dniver. The version
number 1s mncremented each time one of the local BusCom
DDI structures 1s extended 1n order to include new service
routines. In other words, a new symbol 1s added to the
BusComlLocVersion enum each time the API 1s extended 1n
this way. A driver client specifies a mimnimum DDI version
number required by the client when calling svDevice-
Lookup. The svDeviceLookup routine does not allow a
client to look up a driver 1nstance 11 the DDI version number
supported by the driver 1s less than the DDI version number
required by the client. A client that 1s aware of DDI
extensions may still specity a minimum DDI version when
looking for a device 1n the registry. Once a device 1s
successiully found, the client may examine the version field
in order to take advantage of the extended DDI {features
which may be supported by the device driver.

The open method 1s the first call a client must make to a
local BusCom device driver. The open call 1s used to
establish a connection to the driver. It enables subsequent
invocation of the intr_attach, intr_detach, and close routines.

The 1d mput argument specifies a given local BusCom
device driver instance. It 1s provided by the device registry
entry. Upon successiul completion, the local BusCom driver
returns K_OK and passes the communication resources
(back to the client), through the config output argument. The
BusComConfig structure specifies the memory region allo-
cated for the inter-bus communication, as shown in EB-212.

The mem_base field specifies the region base address in
the supervisor virtual address space. The mem_ size specifies
the region size 1n bytes. This region 1s located in the local
system memory and 1t 1s also accessible (through a bus) from
any remote site 1n the communication domain.

Note that the memory region 1s zeroed by the local
BusCom driver except the BusComHeader structure (shown
in EB-213) located at the beginning of the region. The
BusComHeader structure 1s mitialized by the local BusCom
driver in the following way. Each byte 1n the Iborder field
contains its address, 1.e., byte 0 1s 0, byte 1 1s 1 and so forth.
The rborder field 1s mitialized to the BYTE ORDER
LITTLE constant. The BusComHeader structure 1s typically
used on a remote site in order to detect the memory byte
order.

The local BusCom driver returns K

_ENOMEM 1f the
system 15 out ol memory resources. In this case, the config
output argument 1s not modified.

The intr_attach method connects a given client specific
handler to a given (virtual) cross interrupt source.

The 1d mput argument specifies a given local BusCom
device driver instance. It 1s provided by the device registry
entry. The intr input argument 1s an integer value that
specifles a given (virtual) cross interrupt source. Note that 1f
a given interrupt number exceeds the number of physical
cross interrupts supported by the hardware, the interrupt
handler 1s connected to the last available physical cross
interrupt. Note also that multiple handlers may be attached
to the same interrupt source. The intr_handler mput argu-
ment specifies a client specific interrupt handler invoked by
the local BusCom driver when a cross interrupt 1s recerved.
The mtr_cookie mput argument specifies a cookie being
passed back to the interrupt handler, as shown in EB-214.

Upon successtul completion, the local BusCom driver
returns K_OK and passes the interrupt identifier (back to the
client) through the intr_id output argument. The ntr 1d
argument 1s opaque for the client. It must be passed back to

10

15

20

25

30

35

40

45

50

55

60

65

30

the local BusCom driver as an argument in a subsequent
invocation of the intr detach service routine. When the
interrupt handler 1s mvoked, the local BusCom driver pre-
vents re-entry to the interrupt handler.

An mterrupt handler must return a value specified by the
BusComlIntrStatus type, shown at EB-215.

An mterrupt handler must return BUSCOM_INTR_UN:-
CLAIMED 1f the interrupt 1s unclaimed, 1.e., there 1s no
useiful work done in the interrupt handler. An interrupt
handler must return BUSCOM INTR CLAIMED 1f the
interrupt has been claimed, 1.e., there was a useful work done
in the mterrupt handler.

The local BusCom driver returns K ENOMEM 1if the

system 1s out of memory resources. In this case, the intr_id
output argument 1s not altered.

The intr_detach method disconnects the mterrupt handler
previously connected by intr_attach. The intr_1d nput argu-
ment specifies the interrupt handler being disconnected. It 1s
returned by intr_attach.

The close method 1s used to close the connection to a local
BusCom driver. This call must be the last call made to the
local BusCom driver. The client 1s responsible for 1ssuing
intr_detach for each attached interrupt handler prior to
calling the close routine. The 1d mput argument specifies a
grven local BusCom device driver instance. It 1s given by the
device registry entry.

EA-5
The remote bus communication DDI 1s provided by each

RS driver instance running on the local site and representing
a remote site mvolved 1n the communication domain.

First of all, the remote BusCom driver 1s responsible for
mapping a shared memory region allocated on the associated
remote site into the supervisor address space in order to
make 1t available for the communication protocol. In addi-
tion, the remote BusCom driver allows a client to send a
cross interrupt to the associated remote site.

Such a cross interrupt will be received by an LH (or GH)
driver running on this remote site. This will result i the
interrupt handlers attached to this cross interrupt source
being invoked. The character string “buscom-rem™ (alias
BUSCOM_REMOTE_CLASS) names the remote BusCom
device class. A pointer to the BusComRemOps structure
(shown 1n EB-216) 1s exported by the driver via the svDe-
viceRegister microkernel call. A driver client invokes the
svDeviceLookup and svDeviceEntry microkernel calls 1n
order to obtain a pointer to the device service routines
vector. Once the pointer 1s obtained, the driver client 1s able
to invoke the driver service routines via indirect function
calls.

A remote BusCom driver 1s mono-client device driver.
The device registry prevents multiple lookups being done on
the same dniver instance. The open and close methods
defined by the BusComRemOps structure must be called 1n
the DKI thread context. The intr_trigger method may be
called at interrupt level.

i

T'he version field specifies the maximum remote BusCom
DDI version number supported by the driver. The version
number 1s incremented each time one of the remote BusCom
DDI structures 1s extended in order to include new service
routines. In other words, a new symbol 1s added to the
BusComRemVersion enum each time the API 1s extended 1n
this way.

A dniver client specifies a mimimal DDI version number
required by the client when calling svDeviceLookup. The
svDeviceLookup routine does not allow a client to look up

US 7,124,228 B2

31

a driver instance 1f the DDI version number supported by the
driver 1s less than the DDI version number required by the
client.

A client that 1s aware of DDI extensions may still specily
a minimum DDI version when looking for a device 1n the
registry. Once a device 1s successiully found, the client may
examine the version field in order to take advantage of
extended DDI features which may be supported by the
device dniver.

In the following description, a local site means the site on
which the remote BusCom driver istance 1s running while
a remote site means the remote site which 1s represented by
this remote BusCom driver instance.

The open method 1s the first call a client must make to a
remote BusCom device driver. The open call 1s used to
establish a connection to the driver. It enables the subsequent
invocation of the intr_trigger and close routines.

The 1d mput argument specifies a given remote BusCom
device drniver instance. It 1s provided by the device registry
entry. Upon successful completion, the remote BusCom
driver returns K_OK and passes the communication
resources (back to the client) through the config output
argument.

The BusComConfig structure specifies the memory
region allocated for the inter-bus communication. The mem_
base field specifies the region base address 1 the supervisor
virtual address space. The mem_size specifies the region
s1ze 1n bytes. This region 1s located 1n the system memory of
the remote site and it 1s accessible (through a bus) on this
local site. The BusComHeader structure 1s located at the
beginning of the region. The BusComHeader structure i1s
initialized on the remote site in the following way. Each byte
in the lborder field contains 1ts address, 1.e., byte 0 1s O, byte
1 1s 1 and so forth. The rborder field 1s initalized to the
BYTE ORDER LITTLE constant. The BusComHeader
structure fields are used to detect the memory byte order
with respect to the system memory (lborder) and to the
shared memory mapping on the remote site (rborder). The
value read from the lborder field specifies the shared
memory byte order on the local site (BYTE_ORDER_
LITTLE or BYTE_ORDER_BIG). The value read from the
rborder field specifies whether the byte order 1s inverted with
respect to the memory mapping on the remote site. I the
BYTE_ORDER_LITTLE value 1s read, the byte order is the

same, otherwise the byte order 1s mverted.

The remote BusCom driver returns K ENOMEM 1t the

system 1s out of memory resources. In this case, the config
output argument 1s not modified.

The mtr_trigger method 1s used to send a cross 1nterrupt
to the remote site. The 1d mput argument specifies a given
remote BusCom device driver istance. It 1s given by the
device registry entry. The intr argument specifies the (vir-
tual) cross interrupt event to send. Note that 1f a given cross
interrupt number exceeds the number of physical cross
interrupts supported by hardware, the last available physical
cross interrupt 1s sent. As was mentioned above, the mtr_
trigger method may be called at iterrupt level.

The close method 1s used to close connection to a remote
BusCom driver. This call must be the last call made to the

remote BusCom drniver. The 1d input argument specifies a
given remote BusCom device driver instance. It 1s given by
the device registry entry.

A device node associated to a remote or local BusCom
device driver instance has two properties:

device position in the commumnication domain
device path 1n the communication domain

10

15

20

25

30

35

40

45

50

55

60

65

32

The “domain™ (alias BUSCOM_PROP_DOMAIN) prop-
erty specifies the communication device position in the
domain. The property value 1s a BusComPropDomain struc-
ture, as shown 1n EB-217.

The BusComSite type (an mteger 32-bit value) 1s used to
enumerate all sites within a communication domain. The
local field of the BusComPropDomain structure specifies the
site on which the driver instance 1s running. The remote field
of the BusComPropDomain structure specifies the site
which 1s represented by the driver instance. Obviously, for
a local BusCom driver instance both fields have the same
value which designates the local site. On the other hand, for
a remote BusCom driver instance these fields normally have
different values.

The “path” (alias BUSCOM_PROP_PATH) property
specifies the communication device path 1n the domain. The
property value 1s a NULL terminated ASCII string. This path
unmiquely designates the remote site represented by the driver
instance. Note that the remote site 1s equal to the local one
for a local BusCom driver instance. So, for a local BusCom
driver instance this property designates the site path in the
communication domain.

Events will now be discussed.

A BusCom driver sends a shutdown event to 1ts client 1n
order to notity 1t about a site shutdown condition. There are
two events which may be delivered to a BusCom driver

client through the device registry event mechanism:
DEV_EVENT_SHUTDOWN

DEV_EVENT_REMOVAL

The DEV_EVENT_SHUTDOWN event sent by a local
BusCom device means that the local system 1s going to be
shut down. So, the driver client 1s requested to gracefully
shut down all connections 1n the communication domain and
release all (local and remote) BusCom driver instances. Note
that, the DEV_EVENT SHUTDOWN event will also be
signaled on each remote site for a remote BusCom driver
instance representing this site.

The DEV_EVENT_REMOVAL event sent by a local
BusCom device means that the local system has detected a
tatal error. The driver client 1s requested to stop its activity
as soon as possible and release all (local and remote)
BusCom driver instances.

The DEV_EVENT_SHUTDOWN event sent by a remote

BusCom device means that the remote system 1s going to be
shut down. So, the drniver client 1s requested to gracefully
shut down all connections with this remote site and release
the BusCom driver instance.

The DEV_EVENT_REMOVAL event sent by a remote

BusCom device means that a fatal error (e.g., bus time out)
has been detected while accessing remote memory or bridge
interface registers. The driver client 1s requested to stop
communication with this remote site as soon as possible and
release the BusCom driver instance.

EA-6
This Logical Communication Layer section describes a

basic communication protocol that 1s provided on top of the
physical communication layer.

This basic communication layer 1s composed of three
(logical) device classes:

bus multiplexer device
receive channel device
transmit channel device

Each of these device classes provides a separate device
driver interface described below.

The bus multiplexer driver 1s a client of the local and all
remote BusCom driver instances running on the site. The

US 7,124,228 B2

33

main role of the bus multiplexer driver 1s to inform 1ts clients
about an 1nital configuration of the communication domain
and all configuration changes (1.¢., site msertion/removal)
that happen in the domain. In addition, the bus multiplexer
driver allows a client to create (and to destroy) a commu-
nication channel with a remote site. Such a communication
channel 1s represented by a receive channel device on the
local site and a transmit channel device on the remote site.

The character string “busmux” (alias BUSMUX_CLASS)
names the BusMux device class. A pointer to the BusMux-
Ops structure 1s exported by the driver via the svDevice-
Register microkernel call. A driver client invokes the svDe-
viceLookup and svDeviceEntry microkernel calls 1n order to
obtain a pointer to the device service routines vector. Once
the pointer 1s obtained, the driver client 1s able to invoke the
driver service routines via indirect function calls.

A BusMux driver 1s multi-client device driver. In other
words, a BusMux device driver instance may be looked up
multiple times 1n the device registry. It 1s shown 1n EB-300.

The version field specifies the maximum BusMux DDI

version number supported by the driver. The version number
1s incremented each time one of the BusMux DDI structures

1s extended 1n order to include new service routines. In other

words, a new symbol 1s added to the BusMuxVersion enum
cach time the API 1s extended in this way.

A driver client specifies a minimum DDI version number
required by the client when calling svDeviceLookup. The
svDeviceLLookup routine does not allow a client to look up
a driver instance 11 the DDI version number supported by the
driver 1s less than the DDI version number required by the
client.

A chient that 1s aware of DDI extensions may still specily
a minimum DDI version when looking for a device 1n the
registry. Once a device 1s successiully found, the client may
examine the version field in order to take advantage of
extended DDI features which may be supported by the
device dniver.

The open method 1s the first call a client must make to a
BusMux device driver. The open call 1s used to establish a
connection to the driver. It enables the subsequent invoca-
tion of the create, destroy and close routines. The 1d input
argument specifies a given BusMux device driver instance.
It 1s provided by the device registry entry. The proto input
argument specifies a communication protocol implemented
by the client. It 1s an integer value which should be arbi-
trarily assigned to all high-level communication protocols
(e.g., Ethernet, ATM). The handler input argument specifies
a client notification handler. This handler will be imnvoked by
the BusMux driver each time a site insertion or removal 1s
detected 1n the communication domain. The cookie mput
argument 1s passed back to the client as an argument of the
notification handler.

This 1s shown 1n EB-301.

Together with the cookie argument, the notification han-
dler also has two extra arguments. The event input argument
speciflies whether a site insertion or removal 1s detected 1n
the communication domain. The BUSMUX SITE CON-
NECTED value means that a site has been inserted. The
BUSMUX SITE DISCONNECTED wvalue means that a
site 1s removed. The site mput argument specifies the site
which has been inserted or removed.

The notification handler 1s called 1n the DKI thread
context. This allows a client to directly invoke the create and
destroy routines inside the handler. Upon successiul comple-
tion, the BusMux driver returns K_OK and passes back to
the client a connection identifier through the cid output

10

15

20

25

30

35

40

45

50

55

34

argument. The connection identifier must be given to the
BusMux drniver 1n all subsequent invocation of the driver.

Note that the notification handler may be called by the
BusMux driver before returning from open. This typically
happens for all remote sites already present 1n the commu-
nication domain at open time. In this case, the BusMux
driver guarantees that the cid output argument 1s already
updated when the notification handler 1s imnvoked.

The BusMux driver returns K_ENOMEM 11 the system 1s
out of memory resources. The BusMux driver returns
K_EBUSY if another connection has been already estab-
lished for a given protocol. IT an error code 1s returned by the
BusMux driver, the cid output argument 1s not altered. The

open method must be called 1n the DKI thread context.

The create method 1s used to create a simplex (i.e.,
umdirectional) communication channel with a remote site
belonging to the communication domain.

The cid mput argument specifies an open connection to
the BusMux driver. It 1s given by open. The channel input
argument specifies the channel number being created. The
site input argument specifies a remote site to which the
channel will be created. The fifosize input argument speci-
fies the memory size (in bytes) being allocated for the

channel FIFO.

Upon successiul completion, the BusMux driver returns
K OK and creates a receive channel device on the local site.
At the same time, a transmit channel device 1s also created
on the remote site. Note that the channel creation 1s asyn-
chronous. In other words, the BusMux driver does not
guarantee that both (transmit and receive) channels are
created when returning from create. A channel client should
use a new device notification mechanism provided by the
device registry module. This means that, in order to be
notified when a new channel 1s created, a client should attach
a new device nofification handler to the device registry.
When such a handler 1s invoked by the registry, the client
should scan the device registry in order to look up a newly
created channel device.

The BusMux drniver returns K_ENOMEM 11 the system 1s

out of memory resources. The BusMux driver returns
K_EOVERLAP if the system 1s out of the shared memory
resources. In other words, there 1s not enough free space in
the shared memory region to locate the channel descriptor
and channel FIFO of a given size. The BusMux driver
returns K FEBUSY 1t another connection with the same

channel number already exists for a given protocol. The
create method must be called 1n the DKI thread context.

The destroy method 1s used to destroy a given simplex
communication channel which has been previously created
via the create routine. The cid input argument specifies an
open connection to the BusMux driver. It 1s given by open.
The channel input argument specifies the channel number
being destroyed.

Note that the function does nothing 1f a given channel
does not exist. Note that the channel destruction 1s asyn-
chronous. In other words, the BusMux driver does not
guarantee that both (transmit and receive) channels are
destroyed when returning from destroy. The destroy routine

60 Just starts the destruction process sending a shutdown event

65

on both channel devices. Such a shutdown event will be
received by channel clients on both sites. A channel will only
be destroyed when both channel clients release both channel

devices on local and remote sites. The destroy method must
be called in the DKI thread context.

The close method 1s used to close connection to a BusMux
driver. This call must be the last call made to the BusMux

US 7,124,228 B2

35

driver. The cid mput argument specifies an open connection
to the BusMux dniver. It 1s provided by open.

Note that the close routine will destroy all previously
created channels. Note also that the channels will be
destroyed asynchronously. The close method must be called
in the DKI thread context.

The character string “busmux-rx” (alias BUSMUX_RX_
CLASS) names the BusMux Rx channel device class. A
pointer to the BusMuxRxOps structure 1s exported by the
driver via the svDeviceRegister microkernel call. A driver
client mvokes the svDeviceLookup and svDeviceEntry
microkernel calls 1n order to obtain a pointer to the device
service routines vector. Once the pointer 1s obtained, the
driver client 1s able to invoke the driver service routines via
indirect function calls.

A BusMux Rx channel driver 1s mono-client device
driver. The device registry prevents multiple lookups being
done on the same driver instance. It 1s shown 1n EB-302.

The version field specifies the maximum BusMux Rx
channel DDI version number supported by the driver. The
version number 1s incremented each time one of the BusMux
Rx channel DDI structures 1s extended 1n order to include
new service routines. In other words, a new symbol 1s added
to the BusMuxRxVersion enum each time the API 1s
extended 1n this way.

A driver client specifies a minimum DDI version number
required by the client when calling svDeviceLookup. The
svDeviceLookup routine does not allow a client to look up
a driver instance 11 the DDI version number supported by the
driver 1s less than the DDI version number required by the
client.

A client that 1s aware of DDI extensions may still specily
a minimum DDI version when looking for a device in the
registry. Once a device 1s successiully found, the client may
examine the version field in order to take advantage of
extended DDI features which may be supported by the
device driver.

The open method 1s the first call a client must make to a
BusMux Rx channel device driver. The open call 1s used to
establish a connection to the driver. It enables the subsequent
imnvocation of the mask, unmask, receive, free and close
routines. The 1d mput argument specifies a given BusMux
Rx channel device drniver instance. It 1s given by the device
registry entry.

The handler input argument specifies a client Rx handler.
This handler 1s normally invoked by the BusMux Rx chan-
nel driver if the following conditions are met:

last invoked receive has returned FALSE, in other words,

a client has detected
that the channel FIFO 1s empty
the channel FIFO 1s not currently empty

the channel 1s unmasked

The cookie mput argument 1s passed back to the client as the
argument of the Rx handler, as shown in EB-303.

Note that the Rx handler may be falsely invoked by the
BusMux Rx channel driver. This 1s due to a weak synchro-
nization between the Rx and Tx channel drivers. The chan-
nel drivers do not utilize an atomic read-modify-write cycle.
Such a feature may be unavailable on some busses (PCI for
example). The channel drivers also avoid handling a clas-
sical mutual exclusion spin lock based on two variables.
Such a spin lock would introduce unnecessary dependencies
between the Tx and Rx channel drivers. In particular, when
one site 1s suddenly down holding such a lock. This results
in an mexact flow control which may introduce (usually a
small number) of spurious (unnecessary) nterrupts.

5

10

15

20

25

30

35

40

45

50

55

60

65

36

When the Rx handler is called, the channel 1s 1n a masked
state. In other words, the BusMux Rx channel driver protects
from re-entry in the Rx handler code. The channel 1is
unmasked once the Rx handler returns to the BusBux Rx
channel driver.

Upon successiul completion, the BusMux Rx channel
driver returns K _OK. Otherwise, K ENOMEM 1s returned
to notily that the system 1s out of memory resources.

Note that the channel 1s 1n a masked state by default, 1.e.,
the Rx handler invocation 1s disabled. In order to enable the
Rx handler invocation, the unmask routine should be called.

The open method may block. So, it must be called at base
level only.

The mask method disables the invocation of the Rx
handler 11 1t has been previously enabled by unmask. The 1d
input argument specifies a given BusMux Rx channel device
driver 1nstance. It 1s given by the device registry entry. The
mask method must be called at base level only.

The unmask method enables invocation of the Rx handler
if 1t has been disabled either implicitly by open or explicitly
by a previously mmvoked mask routine. The 1d input argu-
ment specifies a given BusMux Rx channel device driver
instance. It 1s provided by the device registry entry.

Note that interrupts received during a masked period are
not lost. Once the channel 1s unmasked, the Rx handler 1s
invoked 1f conditions listed above are met. The unmask
method must be called at base level only. The mask/unmask
pairs must not be nested.

The receive method 1s mnvoked by a client in order to
obtain a pointer to the first frame of the channel FIFO. The
id mput argument specifies a given BusMux Rx channel
device drniver instance. It 1s provided by the device registry
entry. If the channel FIFO 1s empty, the receive routine
returns FALSE. Otherwise, the receive routine returns
TRUE and passes the frame descriptor (back to the client)
through the frame output argument.

A BusMux frame 1s specified by the BusMuxFrame
structure. A frame may contain up to two fragments: head
and tail. Each fragment 1s specified by the BusMuxChunk
structure, shown 1n EB304. The addr field of the BusMux-
Chunk structure specifies the start address of the frame
fragment 1n the supervisor address space. The size field of
the BusMuxChunk structure specifies the frame fragment
s1ze 1n bytes. I the tail size 1s zero, the frame 1s contiguous
and the frame start address and size are specified by the head
descriptor. Otherwise, the frame 1s fragmented.

The frame head start address 1s always aligned to a four
byte boundary. If frame 1s not contiguous, the head size and
the tail start address are also always aligned to a four byte
boundary. After a successtul receive, a client 1s able to
access the frame contents located into the channel FIFO.

Note that 1t 1s allowed to sequentially call the receive
method multiple times. Once the receive routine returns
TRUE, the subsequent invocation of the receive method will
return the same frame descriptor. The receive method must
be called either at base level or from the Rx handler.

The free method 1s mvoked by a client 1n order to free
memory occupied by the first frame in the channel FIFO.
The released memory becomes available for transmaission.
The 1d input argument specifies a given BusMux Rx channel
device drniver istance. It 1s provided by the device registry
entry.

If the channel FIFO 1s empty, the free routine behavior 1s
unpredictable. The receive method must be called either at
base level or from the Rx handler.

The close method 1s used to close connection to a BusMux
Rx channel driver. This call must be the last call made to the

US 7,124,228 B2

37

driver. The 1d input argument specifies a given BusMux Rx
channel device driver instance. It 1s provided by the device
registry entry. The close method may block. Therefore, it

must be called at base level only.
The character string “busmux-tx” (allas BUSMUX_TX_

CLASS) names the BusMux Tx channel device class. A
pointer to the BusMuxTxOps structure 1s exported by the
driver via the svDeviceRegister microkemel call. A driver
client mvokes the svDeviceLookup and svDeviceEntry
microkernel calls 1n order to obtain a pointer to the device
service routines vector. Once the pointer 1s obtained, the
driver client 1s able to invoke the driver service routines via
indirect function calls.

A BusMux Tx channel driver 1s a mono-client device
driver. The device registry prevents multiple lookups being
done on the same driver instance.

It 1s shown 1n EB-303.

The version field specifies the maximum BusMux Tx
channel DDI version number supported by the driver. The
version number 1s incremented each time one of the BusMux
Tx channel DDI structures 1s extended in order to include
new service routines. In other words, a new symbol 1s added
to the BusMuxRxVersion enum each time the API 1s
extended 1n this way.

A driver client specifies a minimum DDI version number
required by the client when calling svDeviceLLookup. The
svDeviceLookup routine does not allow a client to look up
a driver instance 1f the DDI version number supported by the
driver 1s less than the DDI version number required by the
client.

A client that 1s aware of DDI extensions may still specily
a minimum DDI version when looking for a device in the
registry. Once a device 1s successiully found, the client may
examine the version field in order to take advantage of
extended DDI features which may be supported by the
device driver.

The open method 1s the first call a client must make to a
BusMux Tx channel device driver. The open call 1s used to
establish a connection to the driver. It enables the subsequent
imnvocation of the mask, unmask, alloc, transmit and close
routines. The 1d mput argument specifies a given BusMux
Tx channel device driver instance. It 1s given by the device
registry entry. The threshold mnput argument specifies a
channel FIFO threshold. It threshold value 1s greater than the
FIFO size, 1t 1s adjusted to the FIFO size. Note that 11 the
channel FIFO threshold 1s set to zero, the Tx handler
invocation 1s disabled. The handler input argument specifies
a client Tx handler. This handler 1s mnvoked by the BusMux
Tx channel driver if the following conditions are met:

The last invoked alloc has returned FALSE, in other
words, a client has detected that the channel FIFO 1s
full.

The channel FIFO threshold 1s not zero.

The channel FIFO free size 1s equal to or grater than the
channel FIFO threshold.

The channel 1s unmasked.

The cookie input argument 1s passed back to the client as

the argument of the Tx handler, as shown 1n EB-306.

Note that the Tx handler may be falsely invoked by the
BusMux Tx channel driver. This 1s due to a weak synchro-
nization between the Rx and Tx channel drivers. The chan-
nel drivers do not utilize an atomic read-modify-write cycle.
Such a feature may be unavailable on some busses (PCI for
example). The channel drivers also avoid handling a clas-
sical mutual exclusion spin lock based on two variables.
Such a spin lock would introduce unnecessary dependencies
between the Tx and Rx channel drivers. In particular, when

5

10

15

20

25

30

35

40

45

50

55

60

65

38

one site 1s suddenly down holding such a lock. This results
in an inexact flow control which may introduce (usually a
small number) of spurious (unnecessary) nterrupts.

When the Tx handler 1s called, the channel 1s 1n a masked
state. In other words, the BusMux Tx channel driver protects
from re-entry 1 the Tx handler code. The channel 1is
unmasked once the Tx handler returns to the BusBux Tx
channel driver.

Upon successiul completion, the BusMux Tx channel
driver returns K _OK. Otherwise, K ENOMEM 1s returned
to notily that the system 1s out of memory resources.

Note that the channel 1s 1n a masked state by default, 1.e.,
the Tx handler invocation 1s disabled. In order to enable the
Tx handler invocation, the unmask routine should be called.
The open method may block. Therefore, 1t must be called at
base level only.

The mask method disables invocation of the Tx handler 1f
it has been previously enabled by unmask. The 1d mput
argument specifies a given BusMux Tx channel device
driver 1nstance. It 1s given by the device registry entry. The
mask method must be called at base level only.

The unmask method enables invocation of the Tx handler
if 1t has been disabled either implicitly by open or explicitly
by a previously mvoked mask routine. The 1d mput argu-
ment specifies a given BusMux Rx channel device driver
instance. It 1s given by the device registry entry.

Note that interrupts received during a masked period are
not lost. Once the channel 1s unmasked, the Tx handler 1s
invoked 11 conditions listed above are met.

The unmask method must be called at base level only. The
mask/unmask pairs must not be nested.

The alloc method 1s mvoked by a client in order to
allocate space for a frame 1n the channel FIFO. The 1d mput
argument specifies a given BusMux Tx channel device
driver instance. It 1s given by the device registry entry. The
size 1nput argument specifies the frame size. Note that,
because a frame 1n the channel FIFO 1s prefixed by its size,
there are extra four bytes (i.e., size of (BusMuxSize)) which
need to be allocated in the channel FIFO for each frame.

If the channel FIFO 1s tull (i.e., there 1s no room for frame
of a given size), the alloc routine returns FALSE. Otherwise,
the alloc routine returns TRUE and passes the frame descrip-
tor (back to the client) through the frame output argument.

A BusMux frame 1s specified by the BusMuxFrame
structure. A frame may contain up to two fragments: head
and tail. Each fragment 1s specified by the BusMuxChunk
structure. The addr field of the BusMuxChunk structure
specifies the start address of the frame fragment 1n the
supervisor address space. The size field of the BusMux-
Chunk structure specifies the frame fragment size in bytes.
If the tail size 1s zero, the frame 1s contiguous and the frame
start address and size are specified by the head descriptor.
Otherwise, the frame 1s fragmented.

The frame head start address 1s always aligned to a four
byte boundary. If frame 1s not contiguous, the head size and
the tail start address are also always aligned to a four byte

boundary.

After a successiul alloc, a client 1s able to copy frame
contents to the channel FIFO.

Note that i1t 1s possible to sequentially call the alloc
method multiple times. In this case, the current alloc over-
rides the previous one. The alloc method must be called
either at base level or from the Tx handler.

The transmit method 1s invoked by a client 1n order to start
transmission of the previously allocated frame. The 1d input
argument specifies a given BusMux Tx channel device
driver instance. It 1s given by the device registry entry. If
there 1s no frame allocated 1n the channel FIFO, the transmait

US 7,124,228 B2

39

routine behavior 1s unpredictable. In other words, a transmit
routine 1nvocation should always follow the successiul
invocation of alloc. The transmit method must be called
either at base level or from the Tx handler.

The close method 1s used to close connection to a BusMux
Tx channel driver. This call must be the last call made to the
driver. The 1d 1nput argument specifies a given BusMux Tx
channel device driver instance. It 1s provided by the device
registry entry. The close method may block. Therefore, it
must be called at base level only.

A BusMux device node has a “site” (allas BUSMUX _
PROP_SITE) property. The property value type 1s BusMux-
Site. The property value specifies the local site 1dentifier.

A BusMux Rx/Tx channel node has a *“‘channel” (alias
BUSMUX_PROP_CHANNEL) property. The property
value 1s a BusMuxPropChannel structure which specifies the
characteristics of a given communication channel, as shown
in EB-307.

The Isite field specifies the local site 1dentifier. The rsite
ficld specifies the remote site i1dentifier. The proto field
specifies the channel protocol. It 1s provided at channel
creation time. The channel field specifies the channel 1den-
tifier. It 1s provided at channel creation time. The fifosize
field specifies size (in bytes) of the channel FIFO. It 1s
provided at the channel creation time. The lbswap field
specifies whether the shared memory byte order 1s mverted
with respect to the local memory. Obviously, Ibswap 1s

EB-101

10

15

20

typedef uint32_ {f BusComSite;
typedef umnt32_ { BusComSize;
typedef umnt32_ f BusComSeq;
typedef uint32_ 1 BusComLevel;
typedef struct BusComCtlOps {

BusComCtlVersion version;

40

always FALSE for an Rx channel because the channel
descriptor and FIFO are located 1n the local memory on the
receiver site. Note that if Ibswap 1s TRUE, a general purpose
bcopy (or memcpy) routine cannot typically be used to copy
a transmitting frame to the channel FIFO. This 1s due to the
fact that such a bcopy routine 1s usually optimized to use
word (4 bytes) or double-word (8 bytes) load/store mnstruc-
tions 1f possible. So, this does not work 1f the byte order 1s
inverted between the source and destination memory.

The rbswap field specifies whether the shared memory
byte order 1s mverted with respect to the memory mapping
on the remote site. Note that Ibswap 1s always FALSE for an
Rx channel. So, the byte swapping (if needed) 1s always
performed on a transmitter site.

Events will now be discussed.

When the BusMux driver receives a shutdown event from
the local or a remote BusCom driver instance, 1t forwards the
cvent to BusMux and Rx/Tx channel clients using the
following strategy.

If a shutdown event 1s received from the local BusCom
device, 1t 1s signaled on the BusMux device and all Rx and
Tx channels.

If a shutdown event 1s recerved from a remote BusCom
device, 1t 1s signaled on all Rx and Tx channels associated
with a given remote site. In addition, the BusMux notifica-
tion handler 1s invoked in order to signal the remote site
disconnection.

Exhibit B - code extracts

KnError
(*open) (BusComCtlId 1d,
BusComCtlUpCalls™ upcalls,
volid* cookie,
BusComCtlConnld* cid);
void
(*close) (BusComCtlConnld cid);
KnkError
(*site__declare) (BusComCtlConnld cid,
char®* cpath,
unsigned int cplen,
BusComSite* site,
BusComSeq* seq);
void
(*site__shutdown) (BusComCtlConnld cid);
void
(*site__insertion) (BusComCtlConnld cid,
BusCom$eq seq,
BusComSite SIC,
BusComDevice™ dev,
BusComMapping* map,
char*® cpath,
unsigned int cplen);
void
(*site__removal) (BusComCtlConnld cid,
BusComSite SIC);
void
(*site_ connect) (BusComCtlConnld cid,
BusComSite dst,
BusComSite SIC,
BusComDevice™ dev,
BusComMapping* map,
char*® cpath,
unsigned int cplen);

void

41

US 7,124,228 B2

-continued

Exhibit B - code extracts

/* bridge device architecture */
/* unknown bridge architecture */

(*site_disconnect) (BusComCtlConnld cid,
BusComSite dst,
BusComSite SI'C);
void
(*host__declare) (BusComCtlConnld cid,
BusComlLevel level,
char*® cpath,
unsigned int cplen);
} BusComCtlOps;
EB-102
typedef umnt32_ 1 BusComIntr;
typedef struct BusComCtlUpCalls {
KnkError
(*1ntr__attach) (void™® cookie,
BusComlIntr intr,
BusComliIntrHandler intr__handler,
vord* intr__cookie,
BusComlIntrId* intr__1d);
void
(*intr__detach) (BusComlIntrld mtr_ 1d);
void
(*site__enable) (void™ cookie,
BusComSite site,
BusComSeq seq);
KnkError
(*site__declare) (void™® cookie,
char* cpath,
unsigned int cplen,
BusCom®Site* site,
BusComSeqg* seq));
void
(*site__insertion) (void™ cookie,
BusComSeq seq.,
BusComSite SI'C,
BusComDevice™ dev,
BusComMapping* map,
char*® cpath,
unsigned int cplen);
void
(*site__removal) (void* cookie,
BusComsSite SIC);
void
(*site__connect) (void™ cookie,
BusComSite dst,
BusComSite SI'C,
BusComDevice™ dev,
BusComMapping* map,
char*® cpath,
unsigned int cplen);
void
(*site__disconnect) (void™ cookie,
BusComSite dst,
BusComSite SIC);
void
(*host__declare) (void* cookie,
BusComlLevel level,
char* cpath,
unsigned int cplen);
} BusComCtlUpCalls;
EB-103
typedef uint32_ f BusComDevType;
#define BUSCOM__CTL__DEV__UNKNOWN 0
#define BUSCOM__CTL_DEV__VME 1 /Y
#define BUSCOM_ CTL_ DEV_ PCI 2

typedef struct BusComVmeDevInfo {
/* TBD */

} BusComVmeDevInfo;

typedef struct BusComPciDevInfo {
umntlé_ f ven_ id;
umntl6_ f dev_ id;
unt32_ f primary;

®f

} BusComPciDevInfo;

typedef union {

BusComVmeDevInfo vme;

c bridge */

/* PCI bridge */

/* PCI vendor ID */
/* PCI device
/* primary/secondary interface

) */

/* VME device */

US 7,124,228 B2

-continued
Exhibit B - code extracts
BusComPciDevInfo pci; /* PCI device */

} BusComDevInfo;
typedef struct BusComDevice {

BusComDevType type; /* bridge type (PCI, VML, ...)
¥/

BusComDevInfo info; /* bridge info */

} BusCombDevice;
EB-104

typedef wint32_ f BusComBusType;

#tdefine BUSCOM_CTL__BUS__ UNKNOWN 0 /* unknown bus architecture */
#tdefine BUSCOM__CTL_BUS_ VME 1 /* VME 32-bit bus */
#define BUSCOM_ CTL__BUS__VME64 2 /* VME 64-bit bus */
#tdefine BUSCOM__CTL_BUS_ PCI 3 /* PCI 32-bit bus */
#tdefine BUSCOM__ CTL__BUS_ PCI64 4 /* PCI 64 bit bus */
typedef struct BusComVmeBusInfo {
/* TBD */
} BusComVmeBusInfo;
typedef struct BusComVme64BusInfo {
/* TBD */
} BusComVme64BusInfo;
typedef struct BusComPciBusInfo {
PciloSpace reg Space; /* PCI space where the bridge CSR are
mapped */
PciAddr reg base; /* CSR base address */
PciSize reg S17€; /* CSR size */
PciAddr mem__base; /* memory region base address */
PciSize mem__S1ze; /* memory region size */
} BusComPciBuslnfo;
typedef struct BusComPci64Buslnfo {
PciloSpace reg space; /* PCI space where the bridge CSR are
mapped */
Pci64 Addr reg base; /* CSR base address */
Pci164S1ze reg S17e; /* CSR size */
Pci64 Addr mem__base; /* memory region base address */
Pci164S1ze merm__size; /* memory region size */
} BusComPci64Buslnfo;
typedef union {
BusComVmeBuslnio vine; * VME (32-bit) */
BusComVme64Buslnfo vime6t4; * VME (64-bit) */
BusComPciBusInfo pCi; /* PCI (32-bit) */
BusComPc164Buslnfo pci164; /* PCI (64-bit) */
} BusComBusInfo;
typedef struct BusComMapping {
BusComBus'Type type; /* current bus architecture */
BusComBusInfo info; /* bridge mapping mmfo */
} BusComMapping;
EB-105

typedef BusComlntrStatus (*BusComlIntrHandler) (void*® cookie);
EB-106

typedef enum {
BUSCOM_ INTR_UNCLAIMED = 0,

BUSCOM__INTR__CLAIMED
} BusComlIntrStatus;
EB-201

typedef struct BusComMsg {
BusComSize S1Z€; /* total message size (including header) */
BusComMsgType type; /* message type */
} BusComMsg;
typedef uint32_ f BusComMsgType;
#define BUSCOM__ MSG__ UNKNOWN
#define BUSCOM__MSG__SITE._DECLARE
#define BUSCOM__ MSG_ SITE_ SHUTDOWN
#define BUSCOM__MSG__ SITE__INSERTION
#define BUSCOM__MSG__SITE_ REMOVAL
#define BUSCOM__MSG_ SITE._ CONNECT
#define BUSCOM__MSG__SITE_ DISCONNECT
#define BUSCOM_MSG__HOST_DECLARE
#define BUSCOM__MSG__SITE_ DECLARE ACK
#define BUSCOM__MSG__SITE. SHUTDOWN__ ACK
EB-202

/* site_ declare()

/* site_ shutdown()
/* site_ insertion()
/* site__removal()
/* site__connect()

/* site__disconnect()

/* host__declare()

D00 -1 Oyt B D b~ O

typedef wint32_ 1 BusComMsgToken;
typedef struct BusComMsg_ site declare {

/* site__declare() ack
/* site_ shutdown() ack

*f
*/
*f
*/
*f
*/
*/
*f
*/

44

BusComMsg

BusComMsgToken
BusComSite
char

US 7,124,228 B2

-continued

Exhibit B - code extracts

header;
token;
site;

path;

} BusComMsg__site_ declare;
typedef struct BusComMsg_ site declare_ ack {

BusComMsg
BusComMsgToken
site__declare */
Knkrror
BusComSite
BusCombeq

header;
token;

res;
site;
seq;

} BusComMsg_ site declare ack;

EB-203

typedef struct BusComMsg_ site__insertion {

BusComMsg
BusComSeq
BusComSite
BusComDevice
BusComMapping
char

header;
S€q;
SI'C;
dev;
map;
path;

} BusComMsg_site insertion;

EB-204

typedef struct BusComMsg site connect {

BusComMsg

BusComSite

BusComSite

BusComDevice
*f

BusComMapping

char

path */

header;
dst;
SI'C;
dev;

Hl&p .
path;

} BusComMsg_site_ connect;

EB-205

typedef struct BusComMsg site removal {

BusComMsg
BusComSite

header;
SI'C;

} BusComMsg_ site removal;

EB-206

typedef struct BusComMsg_ site_ disconnect {

BusComMsg
BusComSite
BusComSite

header:;
dst;
SI'C;

} BusComMsg_ site disconnect;

EB-207

typedef struct BusComMsg__host__declare {

BusComMsg
BusComl.evel
char

header;
level;
path;

} BusComMsg__host__declare;

EB-20¥

typedef struct BusComMsg site shutdown {

BusComMsg

header;

} BusComMsg_site shutdown;

EB-209

typedef struct BusComMsg_ site_ shutdown__ack {

BusComMsg

I BusComMsg_site shutdown__ack;

EB-211

header;

typedef struct BusComILocOps {
BusComLocVersion version;

/* generic message header */
/* acknowledge token */

/* suggested site UID */

/* communication path */

/* generic message header */
/* token specified 1n

/* call result */
/* assigned site UID */
/* assigned SDSQN */

/* generic message header */
/* site SDSQN */

/* site UID */

/* interface descriptor */

/* mapping descriptor */

/* site communication path */

/* generic message header */
/* destination site UID */

/* source site UID */
/* source interface descriptor

/* source mapping descriptor */

/* source site communication

/* generic message header */
/* site UID */

/* generic message header */
/* destination site UID */
/* source site UID */

/* generic message header */
/* communication level */
/* communication path */

/* generic message header */

/* generic message header */

Knkrror
(*open) (BusComlId 1d,
BusComConfig* config);
Knkrror

(*intr__attach)

(BusComld

BusComlIntr

id,

intr,

46

US 7,124,228 B2
47

-continued

Exhibit B - code extracts

BusComIntrHandler intr__handler,
vold® intr__cookie,
BusComIntrId* intr__id);
void
(*intr__detach) (BusComlntrld intr_ 1d);
void

(*close) (BusComld 1d);
} BusComLocOps;
EB-212

typedef struct BusComConfig {
void® mem__base;
BusComSize mem__SI1Ze;
} BusComConfig;
EB-213

typedef struct BusComHeader {
PropByteOrder lborder;

PropByteOrder rborder;
} BusComHeader;

EB-214

typedef BusComlIntrStatus (* BusComlIntrHandler)(void* cookie);
EB-215

typedef enum {
BUSCOM__INTR_UNCLAIMED =0,
BUSCOM_ INTR_CLAIMED
} BusComlIntrStatus;
EB-216

typedef struct BusComRemOps {
BusComRemVersion version;
Knkrror
(*open) (BusComlId 1d,
BusComConfig* config);
void
(*intr__trigger) (BusComld 1d,
BusComlIntr intr);
void
(*close) (BusComlId id);
} BusComRemOps;
EB-217

typedef struct BusComPropDomain {
BusComSite local;
BusComSite remote;
} BusComPropDomain;

EB-300
typedel BusComSite BusMuxSite;
typedef wint32_ f BusMuxSize;
typedef uint32_ { BusMuxProto;
typedef wunt32_ 1 BusMuxChannel;
typedef struct BusMuxOps {
BusMuxVersion version;
KnkError
(*open) (BusMuxId 1d,
BusMuxProto proto,
BusMuxHandler handler,
vold™® cookie,
BusMuxConnld* cid);
Knkrror
(*create) (BusMuxConnld cid,
BusMuxChannel channel,
BusMuxSite site,
BusMuxSize fifosize);
void
(*destroy) (BusMuxConnld cid,
BusMuxChannel channel);
void
(*close) (BusMuxConnld cid);
} BusMuxOps;
EB-301

typedef enum {
BUSMUX__SITE__ CONNECTED =1,

48

US 7,124,228 B2
49 50

-continued

Exhibit B - code extracts

BUSMUX__SITE__DISCONNECTED = 2
} BusMuxEvent;

typedetf void (* BusMuxHandler) (void* cookie,
BusMuxEvent event,
BusMuxSite site);
EB-302

typedef struct BusMuxRxOps {
BusMuxRxVersion version;

Knkrror
(*open) (BusMuxRxId id,
BusMuxRxHandler handler,
void* cookie);
void
(*mask) (BusMuxRxId 1d);
void
(*unmask) (BusMuxRxId id);
Bool
(*receive) (BusMuxRxId id,
BusMuxFrame® frame);
void
(*free) (BusMuxRxId id);
void

(*close) (BusMuxRxId 1d);

} BusMuxRxOps;
EB-303

typedef void (*BusMuxRxHandler) (void* cookie);
EB-304

typedef struct BusMuxChunk {
wnt® f* addr;
BusMuxSize size:

} BusMuxChunk;

typedef struct BusMuxFrame {
BusMuxChunk head;
BusMuxChunk tail;

} BusMuxFrame;
EB-305

typedef struct BusMuxTxOps {
BusMuxTxVersion version;

KnError
(*open) (BusMuxTxId id,
BusMuxSize threshold,
BusMuxTxHandler handler,
vord*® cookie);
void
(*mask) (BusMuxTxId 1d);
void
(*unmask) (BusMuxTxId id);
Bool
(*alloc) (BusMuxTxId 1d,
BusMuxSize s1Ze,
BusMuxFrame®* frame);
void
(*transmit) (BusMuxTxId 1d);
void
(*close) (BusMuxTxId 1d);
I BusMuxTxOps;

EB-306

typedef void (*BusMuxTxHandler) (void* cookie);
EB-307

typedef struct BusMuxPropChannel {

BusMuxSite Isite;
BusMuxSite rsite;
BusMuxProto proto;
BusMuxChannel channel;
BusMuxSize fifosize;
Bool Ibswap;
Bool rbswap;

} BusMuxPropChannel;

US 7,124,228 B2

51

What 1s claimed 1s:

1. A system, comprising:

a plurality of boards communicably coupled via an exter-

nal bus;

wherein each of the plurality of boards comprises:

a Processor;

a memory coupled to the processor;

a host driver module executable by the processor;
wherein the host driver module comprises memory
management functions configured to expose a por-
tion of the memory to one or more others of the
plurality of boards;

one or more slave driver modules executable by the
processor, wherein each slave driver module corre-
sponds to the host driver module of a respective
other one of the plurality of boards;

an onboard bus;

a bus-to-bus bridge configured to couple the onboard
bus to the external bus;

one or more bus communication driver modules
executable by the processor, wherein each bus com-
munication driver module 1s configured to commu-
nicate with a corresponding bus communication
driver of a respective other one of the plurality of
boards via the bus-to-bus bridge and across the
external bus:

wherein each of the one or more bus communication

driver modules 1s further configured to route commu-

nication from its corresponding bus communication
driver module to the host driver module; and

wherein each of the one or more slave driver modules 1s

configured to access a portion of memory exposed by
its corresponding host driver module of a respective
other one of the plurality of boards via one of the one
or more bus communication driver modules and the
corresponding bus communication driver module of the
respective other board.

2. The system of claim 1, wherein each of the one or more
slave driver modules 1s further configured to send an inter-
rupt to the corresponding host driver module of a respective
other one of the plurality of boards via one of the one or
more bus communication driver modules and the corre-
sponding bus communication driver module of the respec-
tive other board.

3. The system of claim 1, wherein one of the plurality of
boards comprises a nexus driver module configured to route
communication between each of one or more bus commu-
nication driver modules of the one of the plurality of boards
and the host driver module of the one of the plurality of
boards.

4. The system of claim 1, wherein the host driver module
of a host board of the plurality of boards comprises a global
host driver configured to broadcast a host declaration mes-
sage to each of one or more others of the plurality of boards.

5. The system of claim 1, wherein each of the plurality of
boards 1s configured to broadcast a site insertion message to
cach of one or more others of the plurality of boards.

6. The system of claim 1, wherein each of the plurality of
boards 1s further configured to broadcast a site removal
message to each of one or more others of the plurality of
boards.

7. The system of claim 1, wherein one of the plurality of
boards further comprises:

a second bus-to-bus bridge;

a sub-board, comprising:

a Processor;

a memory coupled to the processor;

10

15

20

25

30

35

40

45

50

55

60

65

52

a host driver module executable by the processor;
wherein the host driver module comprises memory
management functions configured to expose a por-
tion of the memory to the plurality of boards;

one or more slave driver modules executable by the
processor, wherein each slave driver module corre-
sponds to the host driver module of a respective one
of the plurality of boards;

an onboard bus;

one or more bus communication driver modules
executable by the processor, wherein each bus com-
munication driver module 1s configured to commu-
nicate with a corresponding bus communication
driver of a respective one of the plurality of boards;

wherein each of the one or more bus communication
driver modules 1s configured to route communication
from 1ts corresponding bus communication driver
module to the host driver module; and

wherein each of the one or more slave driver modules
1s configured to access a portion of memory exposed
by 1ts corresponding host driver module of a respec-
tive one of the plurality of boards via one or the one
or more bus communication driver modules and 1ts
corresponding bus communication driver module of
the respective one of the plurality of boards;

a separate bus-to-bus bridge configured to couple the
onboard bus the to onboard bus of the sub-board;
an additional bus communication driver module execut-

able by the processor configured to:

communicate with a corresponding bus communication
driver module of the sub-board;

route communication from the corresponding bus com-
munication driver module of the sub-board to the
host driver module;

route communication from each of the one or more
other bus communication driver modules to the
corresponding bus communication driver module of
the sub-board; and

route communication from the corresponding bus com-
munication driver module of the sub-board to one of
the one or more bus communication driver modules,
wherein the one of the one or more bus communi-
cation driver modules 1s configured to route com-
munication from the additional bus communication
driver modules to its corresponding bus communi-

cation driver module of a respective one or more
other board of the plurality of boards;

wherein each of the one or more slave driver modules of
the sub-board 1s configured to access a portion of
memory exposed by 1ts corresponding host driver mod-
ule of a respective one of the plurality of boards via the
separate bus-to-bus bridge and via one of the one or
more bus communication driver modules of the sub-
board and a corresponding bus communication driver
module of the respective one of the plurality of boards.

8. The system of claim 4, wherein, 1n response to recerv-
ing the host declaration message, each of the plurality of
boards 1s configured to send a site declaration request
message to the global host driver.

9. The system of claim 5, wherein each of the plurality of
boards 1s configured to, 1n response to receiving a site
isertion message from one of the one or more others of the
plurality of boards, imitiate one of the one or more slave
driver modules, wherein the initiated slave driver module
corresponds to a host driver module of the board from which
the site msertion message was received.

US 7,124,228 B2

53

10. The system of claim 5, wherein each of the plurality
of boards 1s further configured to, 1n response to receiving a
site 1nsertion message from one of one or more others of the
plurality of boards, send a site connection message to the
board from which the site insertion message was recerved.

11. The system of claim 8, wherein in response to rece1v-
ing the site declaration request message, the global host
driver 1s further configured to send a site declaration
response message, wherein the site declaration response
message comprises a site 1identifier, wherein the site 1denti-
fier 1s unique for each respective one of the plurality of
boards.

12. The system of claim 10, wherein each of the plurality
of boards 1s further configured to, 1in response to receiving a
site connection message from one of the one or more others
of the plurality of boards, initiate one of the one or more
slave driver modules, wherein the initiated slave driver
module corresponds to a host driver module of the board
from which the site connection message was received.

13. The system of claim 12, wherein each of the plurality
of boards 1s further configured to, 1n response to receiving a
site removal message from one of one or more others of the
plurality of boards, terminate one of the one or more slave
driver modules, wherein the terminated slave driver module
corresponds to a host driver module of the board from which
the respective site removal message was received.

14. The system of claim 13, wherein each of the plurality
of boards 1s further configured to, 1n response to receiving a
site removal message from one of one or more others of the
plurality of boards, send a site disconnection message to the
board from which the respective site removal message was
received.

15. The system of claim 14, wherein each of the plurality
of boards 1s further configured to, 1n response to receiving a
site disconnection message irom one of the one or more
others of the plurality of boards, terminate one of the one or
more slave driver modules, wherein the terminated slave
driver module corresponds to a host driver module of the
board from which the site disconnection message was
received.

16. A method, comprising:

a host driver module of a board exposing a portion of a
memory on the board to each of one or more other
boards, wherein an external bus communicably couples
the board to each of the one or more other boards,
wherein the board comprises an onboard bus and a
bus-to-bus bridge configured to couple the onboard bus
to the external bus;

cach of one or more bus communication driver modules
of the board communicating with a corresponding bus
communication driver module of a respective one of
the one or more other boards via the bus-to-bus bridge
and across the external bus;

cach of the one of more bus communication driver
modules routing communication from its correspond-
ing bus communication driver module to the host driver
module; and

cach of one or more slave driver modules of the board
accessing a portion of memory exposed by a corre-
sponding host driver module of a respective one of the
one or more other boards via one of the one or more bus
communication driver modules and the corresponding
bus communication driver module of the respective
other board.

17. The method of claim 16, further comprising one of the

one or more slave driver modules sending an interrupt to a
corresponding host driver module of one of the one or more

5

10

15

20

25

30

35

40

45

50

55

60

65

54

other boards via one of the one or more bus communication
driver modules and a corresponding bus communication
driver module of the one of the one or more other boards.

18. The method of claim 16, further comprising a nexus
driver of the board routing communication between each of
the one or more bus communication driver modules and the
host driver module.

19. The method of claim 16, further comprising the host
driver module broadcasting a host declaration message to
cach of the one or more other boards.

20. The method of claim 16, further comprising the host
driver module receiving a host declaration message from
one of the one or more other boards and in response to said
receiving sending a site declaration request message to the
board from which the host declaration message was
received.

21. The method of claim 16, further comprising the host
driver module broadcasting a site insertion message to each
of the one or more other boards.

22. The method of claim 16, further comprising;

recerving a site insertion message from one of the one or

more other board; and

1n response to recerving a site insertion message from one

of the one or more other boards, initiating one of the
one or more slave driver modules, wherein the initiated
slave driver module corresponds to a host driver mod-
ule of the board from which the site insertion message
was recerved.

23. The method of claim 16, further comprising broad-
casting a site removal message to each of the one or more
other boards.

24. The method of claim 16, further comprising;

recerving a site removal message from one of the one or

more other boards; and

in response 1o receiving a site removal message from one

of the one or more other boards, terminating one of the
one or more slave driver modules, wherein the termi-
nated slave driver module corresponds to a host driver
module of the board from which the site removal
message was received.

25. The method of claim 16, further comprising:

receiving a site disconnection message from one of the

one or more other boards; and

in response to receiving a site disconnection message

from one of the one or more other boards, terminating
one of the slave driver modules, wherein the terminated
slave driver module corresponds to a host driver mod-
ule of the board from which the site disconnection
message was received.

26. The method of claim 16, further comprising;

an additional bus communication driver module commu-

nicating with a corresponding bus commumnication
driver module of a sub-board of the board, wherein an
onboard bus of the sub-board 1s coupled to the onboard
bus of the board via an additional bus-to-bus bridge of
the board;

the additional bus communication driver module routing

communication from the corresponding bus communi-
cation driver module of the sub-board to the host driver
module:

the additional bus communication driver module routing

communication from one or more of the one or more
bus communication driver modules to the correspond-
ing communication driver module of the sub-board;
the additional bus communication driver module routing
communication from the corresponding bus communi-
cation driver module of the sub-board to one of the one

US 7,124,228 B2

3

or more bus communication driver modules, wherein
the one of the one or more bus communication driver
modules 1s configured to route communication from the
additional bus communication driver module to a cor-

responding bus communication driver module of one of 5

the one or more other boards; and

a slave driver module of the sub-board accessing memory
exposed by the host dnver module via a bus commu-
nication driver module of the sub-board and a corre-
sponding bus communication driver module of the
board.

27. The method of claim 19, further comprising the host
driver module receiving a site declaration request message
from one or more of the one or more other boards.

28. The method of claim 24, further comprising, in further
response to receiving a site removal message from one of the
one or more other boards, sending a site disconnection
message to the board from which the site removal message
was recerved.

29. The method of claim 26, further comprising:

a slave driver module of the sub-board accessing memory
exposed by a host driver module of another one of the
one or more other boards, wherein said accessing
memory CoOmprises:

the slave drive module of the sub-board communicating
with a bus communication driver module of the sub-
board;

the sub communication drive module of the sub-board
communicating with the additional bus communication
driver module of the board:;

the additional corresponding bus communication driver
module communicating with one of the one or more
bus communication driver modules of the board; and

the one of the one or more bus communication driver
modules communicated with a corresponding bus com-
munication driver module of the another one of the one
or more boards.

30. The method of claim 26, further comprising a slave
driver module of one of the one or more other boards
accessing memory exposed by a host dniver module of the
sub-board, where said accessing memory comprises:

the slave drive module of the one of the one or more other
boards communicating with a bus communication
driver module of the one of the one or more other
boards:

10

15

20

25

30

35

40

56

the sub communication drive module of the one of the one
or more other boards communicating with one of the

one or more bus communication driver modules of the
board;

the one of the one or more bus communication driver
modules of the board communicating with the addi-
tional corresponding bus communication driver mod-
ule; and

the additional corresponding bus communication driver
module communicating with a corresponding bus com-
munication driver module of the sub-board.

31. The method of claim 27, further comprising the host
driver module, 1n response to receiving a site declaration
request message from one of the one or more other boards,
sending a site declaration response message to the board
from which the site declaration message was received.

32. A computer accessible medium, comprising program
istruction configured to implement:

a host driver module of a board exposing a portion of a
memory on the board to each of one or more other
boards, wherein an external bus communicably couples
the board to each of the one or more other boards,
wherein the board comprises an onboard bus and a
bus-to-bus bridge configured to couple the onboard bus
to the external bus;

cach of one or more bus communication driver modules
of the board communicating with a corresponding bus
communication driver module of a respective one of
the one or more other boards via the bus-to-bus bridge
and across the external bus;

cach of the one of more bus communication driver
modules routing communication from 1ts correspond-
ing bus communication driver module to the host driver
module; and

cach of one or more slave driver modules of the board
accessing a portion of memory exposed by a corre-
sponding host driver module of a respective one of the
one or more other boards via one of the one or more bus
communication driver modules and the corresponding
bus communication driver module of the respective
other board.

	Front Page
	Drawings
	Specification
	Claims

