US007120755B2
a2 United States Patent (10) Patent No.: US 7,120,755 B2
Jamil et al. 45) Date of Patent: Oct. 10, 2006
(54) TRANSFER OF CACHE LINES ON-CHIP (56) References Cited
BETWEEN PROCESSING CORES IN A _
MULTLCORE SYSTEM U.S. PATENT DOCUMENTS
(75) TInventors: Sujat Jamil, Chandler, AZ (US): g’ggg’gfg g: ;‘ggg? if.yd.ﬁ? ai* e ;H}ié
; : 292, 1 imilli et al. 1
%“é;‘,%‘:&ﬁifﬂl’;i;;ﬁlh%sérfo 6.587.926 Bl* 7/2003 Arimilli et al. wo.......... 711/122
Collins. CO (US) y: 2002/0023794 AL* 2/2002 Pierce et al. wowmvon... 180/170
; 2002/0184546 Al* 12/2002 Sherburne, Jt. o.o.oo..... 713/322
| . 2003/0023794 Al* 1/2003 Venkitakrishnan 710/105
(73) Assignee: Intel Corporation, Santa Clara, CA 2004/0039880 AL* 2/2004 Pentkovski et al. 711/146
(US) 2004/0260879 Al* 12/2004 Barroso et al. ooovevonn.. 711/122

(*) Notice: Subject to any disclaimer, the term of this | |
patent 1s extended or adjusted under 35 * cited by examiner

U.S.C. 154(b) by 561 days.

Primary Examiner—Jack A. Lane

(21) Appl. No.: 10/039,060 (74) Attorney, Agent, or Firm—DBlakely, Sokolofl, Taylor &

(22) Filed: Jan. 2, 2002 Zatman LLP
(65) Prior Publication Data (57) ABSIRACT
US 2003/0126365 A1 Jul. 3, 2003 Cache coherency 1s maintained between the dedicated
caches of a chip multiprocessor by writing back data from
(51) Int. CI. one dedicated cache to another without routing the data
Gool 12/08 (2006.01) ofl-chip. Various specific embodiments are described, using
(52) US.CL .oovve.. 711/141; 711/119; 711/120; write bufters, fill buffers, and multiplexers, respectively, to
711/124; 711/146 achieve the on-chip transfer of data between dedicated
(58) Field of Classification Search 711/119, caches.
711/120, 124, 141, 146
See application file for complete search history. 13 Claims, 9 Drawing Sheets
1002 00 121 122 T

Processor
113

141
123

!

)

)

I

]

1

'

'

'

'

'

i

!

'

'

153

{

'

'

'

)

' :
| 5
|

_ -
T :
'

'

[

)

|

)

'

|

I

2l |
[

|

|

|

'

t

|

'

l

| |
|

|

I

1

1

{

'

'

'

142
143

L2

1 11 1 .-
Coherency

Unit

—
|| Lnllfi .
3

149
130 I/F

b e e e e ——— I ___________________________
!_ 190 Interconnection Network !

B S A

1192 Other i} 1194 Main } 1198 . :

| Processors } | Memory | ! l

!]

US 7,120,755 B2

Sheet 1 of 9

Oct. 10, 2006

U.S. Patent

Processor

122

Processor

121

Processor

e

196

I/F

Control Logic
Interconnection Network

Other

1192

' 190

141
ke

>
O
-
@
o
@
L
O
O

140

FIG. 1

Main
Memory

h------------

1194 |

Processors
g ——

U.S. Patent Oct. 10, 2006 Sheet 2 of 9 US 7,120,755 B2

200

I

210

First processor

requests data

220

Search for requested
data In other caches

230

Find requested data in 2nd
processor's dedicated cache

240

Request write-back of data from
2nd processor's dedicated cache

Send data from 2nd processor's 250

dedicated cache to on-chip
control logic

260

Send data from on-chip control
logic to 1st processor's dedicated
cache

270

1st processor accesses data from
1st processor's dedicated cache

U.S. Patent Oct. 10, 2006 Sheet 3 of 9 US 7,120,755 B2

100-1
Processor
141 111
142 123
143 151 . .
153

ﬂl

Coherency
Unit

149

||aé

U.S. Patent Oct. 10, 2006 Sheet 4 of 9 US 7,120,755 B2

>50 /___,J s10 |
I Send data from 2nd processor's I

| |

I 20 |

| Obtain access to |

| shared cache input I

I 430 I

l Send data from write |

| buffer to shared cache l

| |
JR— i

260 | Select correct input of
supply-line multiplexer

450
I Send data from shared cache to
I 1st processor's dedicated cache

U.S. Patent Oct. 10, 2006 Sheet 5 of 9 US 7,120,755 B2

100-2
Processor Processor Processor
141 111 112 113
142 123

130

\

143 T T [s1

m 'ﬂ_ﬁq
]!lllnﬂ -

140

I I I D

373
FB
[\
w

Coherency
Unit

149

1192 Other I
! Processors

U.S. Patent Oct. 10, 2006 Sheet 6 of 9 US 7,120,755 B2

610
250 — "l
Select correct input of
' write-back multiplexer

620
Select correct fill buffer
630
Select correct input of
selected fill buffer multiplexer

Select correct input of
supply line multiplexer

U.S. Patent Oct. 10, 2006 Sheet 7 of 9 US 7,120,755 B2

141

142
143

g et fom

L.==:==

---_!
Coherency
Unit 372 373
FB

148

149

U.S. Patent Oct. 10, 2006 Sheet 8 of 9 US 7,120,755 B2

Select correct input of
supply line multiplexer 810

820

Send data from 2nd processor's
dedicated cache to 1st
processor's dedicated cache

FIG. 8

-'"_n‘

I

US 7,120,755 B2

!
b r
: L
" b0
' .
" S
' -
" '
! |
| | - -) "
| O ﬁ—nw) i) i
|8 BREE
. O ! i) | O
O ! ' ; | O
’
O I | | =
) - J
T = P 'S5 eeee-
|
“ﬂ ! -W. ' “
.) 1 O ! -
= ' W O “ | = ! 'S o0,
. 7, — o K= 8 £
=X K % - RN
D : Q -~ NEE ' =
L “ O - LL. LNt = | ! < “
— . N O ”I-n. IO .
7 . 0 = : ' o | Sy B
- b AN Al e
.n._.1,_ m) .m.
"1 O ! 1 @ g o o o
& : |l =} -)
\& " o ! | o | ' |
= : - L I T T \ N}
. | @ A ERE
— _ @ N ! D 0
™ " O S A”uume.
1> . O o 1O 9
& " - ! i |) O
- ! | DY N
| | I |
. BRE=T I~ _
I - Q | e wd
| b Y)
! \ D = !
| o Lo |
-_A.. < O |
|l o - O o))
I o I !
| <« < |
P d

U.S. Patent

us 7,120,755 B2

1

TRANSFER OF CACHE LINES ON-CHIP
BETWEEN PROCESSING CORES IN A
MULII-CORE SYSTEM

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention pertains generally to computers. More
particularly, the invention pertains to cache coherency 1n a
chip multiprocessor.

2. Description of the Related Art

Multi-core computer architecture typically includes mul-
tiple processors on a single chip, referred to as a chip
multiprocessor (CMP), and the chip also includes cache
memory (referred to simply as ‘cache’). Each processor has
its own dedicated on-chip cache memory for fast access to
the code being executed and the data being operated upon.
The chip typically also has another level of cache that i1s
shared by all the processors, and at least one additional level
of memory exists ofl-chip (either main memory or a higher
level of common cache) that serves as a uniform data source
for the on-chip cache. Each processor may modily a cache
line within 1ts own dedicated cache by writing to one or
more locations within its own dedicated cache. However, 11
multiple processors are operating with the same cache line,
one processor may modily the cache line 1n 1ts own dedi-
cated cache while the same cache line 1n other dedicated
caches remains unchanged. This creates a problem with
cache coherency—not all dedicated caches will have the
latest version of the cache line. To maintain cache coher-
ency, whenever a processor requests data from a cache line
that has been modified in another processor’s cache, the
requesting processor’s cache must also be modified to bring
it up to date before the requested cache line 1s read and used.

Traditional multi-core systems maintain cache coherency
by updating a common memory source that 1s ofl-chip, such
as main memory, and then updating the requesting proces-
sor’s cache line from the common memory source. Because
transierring data to/from ofl-chip circuits 1s so much slower
than on-chip transfers, this slows down cache-coherency
updates, and negates some of the speed benefit of using
on-chip cache memories.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may best be understood by referring to the
following description and accompanying drawings that are
used to illustrate embodiments of the invention. In the
drawings:

FIG. 1 shows a block diagram of a multi-core system,
according to one embodiment of the invention.

FIG. 2 shows a flow chart of the operation of the system
of FIG. 1, according to one embodiment of the mvention

FIG. 3 shows a block diagram of a multi-core system
using write buflers, according to one embodiment of the
invention.

FIG. 4 shows a flow chart of the operation of the system
of FIG. 3, according to one embodiment of the imnvention.

FIG. 5 shows a block diagram of a multi-core system
using a fill bufler, according to one embodiment of the
invention.

FIG. 6 shows a flow chart of the operation of the system
of FIG. 5, according to one embodiment of the mnvention.

FIG. 7 shows a block diagram of a multi-core system
using a multiplexer, according to one embodiment of the
invention.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 8 shows a flow chart of the operation of the system
of FIG. 7, according to one embodiment of the invention.

FIG. 9 shows a block diagram of a multi-core system
using 1nstructions to control cache write-back operations,
according to one embodiment of the invention.

DETAILED DESCRIPTION OF TH.
INVENTION

L1

Various embodiments of the invention update the contents
of a first dedicated cache of a first processor with the
previously modified contents of a second dedicated cache of
a second processor, without the first dedicated cache having
to receive the updated information from off-chip. In the
tollowing description, numerous specific details are set forth
to provide a thorough understanding of the invention. How-
ever, 1t 1s understood that the invention may be practiced
without these specific details. In other instances, well-known
circuits, structures and techniques have not been shown 1n
detail in order not to obscure the invention.

Within this specification, the term “data” includes pro-
gram data, instructions, and any other forms of information
that may be transferred between the indicated umnits.
Although the descriptions contained herein refer to a dedi-
cated cache being connected to various devices and data
being written mto and out of a dedicated cache, one of skill
in the art will appreciate that in some embodiments the
associated processor provides an intermediate connection
and the data 1s transferred to/from a processor on its way
in/out of the dedicated cache.

FIG. 1 shows a block diagram of a multi-core system
according to one embodiment of the invention. In the
context of the invention, a core includes a processor and a
dedicated cache associated with the processor. In the 1llus-
trated embodiment of FIG. 1, CMP 100 includes three
individual processors 111-113 with dedicated caches
121-123, respectively, control logic 130, coherency unit
140, shared cache 150, and interface (I/F) 180 to off-chip
devices. FIG. 1 also shows exemplary ofl-chip devices that
may be included 1n a system and connected to CMP 100
through I/F 180, such as an interconnection network 190 to
connect CMP 100 to other processors 192, main memory
194, and mput/output (I/0) devices 196. One skilled in the
art will appreciate that the off-chip devices 1n a system may
differ from those shown without deviating from the scope of
the 1nvention.

Although three processors 111-113 are shown, one skilled
in the art will appreciate that the invention may incorporate
2. 4, 5 or more processors arranged 1n a similar manner. The
illustrated processors 111-113 each include a dedicated
cache 121-123, respectively. In FIG. 1, each processor has
a single level of dedicated cache labeled ‘LL1° and shared
cache 150 has a single cache level labeled ‘L2°. In other
embodiments, each dedicated cache 121-123 and/or shared
cache 150 includes multiple cache levels.

In some embodiments, the data in each of dedicated
caches 121-123 and shared cache 150 includes instructions.
While 1n one embodiment the istructions 1n the dedicated
caches 121-123 are program instructions and follow pro-
gram order, 1n another embodiment the dedicated caches
121-123 are trace caches and contain instructions or micro-
instructions that follow the execution order.

In one embodiment, the coherency unit 140 1s coupled to
dedicated caches 121-123 with probe lines 141-143, respec-
tively, to shared cache 150 with probe line 148, and to main
memory 194 through probe line 149. (Note: Although vari-
ous signal paths are referred to as probe lines, write-back

us 7,120,755 B2

3

lines, and supply lines, one of skill in the art will appreciate
that these signal paths may take any convenient form,
including but not limited to: 1) a single signal line, 2)
multiple parallel signal lines, 3) a bus, etc.) Coherency unit
140 performs snoop functions over the probe lines to deter-
mine which of the above caches and main memory contain
the same cache lines, which of those same cache lines have
been modified, and which have not been modified. In this
manner, coherency unit 140 may determine which caches
contain cache lines with the latest version of their respective
data, and which caches contain cache lines with obsolete
data that needs to be updated before 1t can be used.

In one embodiment, control logic 130 enables eflicient
cache coherency by reading one or more modified cache
lines from a first dedicated cache and writing them back to
a second dedicated cache so that the second dedicated cache
will have the latest version of the associated data. Dedicated
caches 121-123 are connected to control logic 130 through
write-back limmes 151-153, respectively. While 1n one
embodiment, write-back lines 151-153 are unidirectional
lines to transfer modified data from a dedicated cache to
control logic 130, 1in another embodiment write-back lines
151-153 may be bi-directional. Write-back lines 151-153
maybe substantially independent of each other so that data
may be transierred over more than one of the write-back
lines 151-153 at the same time. Dedicated caches 121-123
are also connected to control logic 130 through supply lines
154-156, respectively. While in one embodiment, supply
lines 154-156 are unidirectional lines to transfer modified
data from control logic 130 to a dedicated cache, 1n another
embodiment supply lines 154-156 may be bi-directional.
Supply lines 154-156 maybe substantially independent of
cach other so that data may be transferred over more than
one of supply line 154-156 at the same time.

In one embodiment, control logic 130 1s coupled to shared
cache 150, dedicated caches 121123, and I/F 180 to facili-
tate one or more of the following exemplary transfers of
data: 1) from any of dedicated caches 121-123 to any other
of dedicated caches 121-123, 2) from any of dedicated
caches 121-123 to shared cache 150, 3) from shared cache

150 to any of dedicated caches 121-123, and 4) from an
ofl-chip device to/from any of dedicated caches 121-123.

In some embodiments, coherency unit 140 and caches
121-123, 150 follow a form of Modified-Exclusive-Shared-
Invalid (MESI) protocol. In this protocol, each cache line
has a pair of bits, or other flag, to 1dentify which of the four
states (M, E, S, or I) the cache line 1s currently in within that
specific cache. This protocol allows a quick determination of
whether a requested cache line 1n a specific cache i1s coherent
with the same cache lines in other caches, and theretore
whether the requested cache line needs to be updated. In an
exemplary operation, the protocol 1s used in the following
manner: 1) if a processor experiences a cache miss 1 its
dedicated cache (the requested line i1s not present or 1is
present 1n an Invalid state), the request proceeds to the
shared cache; 2) 11 the requested line 1s 1n the shared cache
in an Exclusive or Modified state, this indicates the cache
line may be 1n one of the other dedicated caches 1n a
Modified state, and coherency unit 140 sends probes to all
the dedicated caches; 3) 1f one of the dedicated caches
responds with a hit, that dedicated cache transiers the cache
line to the requesting processor, while 11 no dedicated cache
responds with a hit, the request may be satisfied from the
shared cache; 4) whether the shared cache 1s updated from
the responding dedicated cache depends on the coherency
policy being used 1n the system.

10

15

20

25

30

35

40

45

50

55

60

65

4

In one embodiment, coherency unit 140 maintains coher-
ency not only between dedicated caches 121-123 and shared
cache 150, but also between all the caches and main memory
194. If the requested cache line 1s not resident in shared
cache 150 or in any of the dedicated caches 121-123, the
requested cache line may be provided to the requesting
processor and 1ts dedicated cache from main memory 194.
Depending on the coherency policy being implemented,
shared cache 150 may also be updated with the requested
cache line so that subsequent requests for that cache line
may be provided more quickly than 1s possible from main
memory.

Coherency unit 140 and control logic 130 may be imple-
mented 1n various forms, including but not limited to: 1)
discrete logic, 2) one or more state machines, and 3)
firmware. In one embodiment, control logic 130 includes
separate control circuits to handle write-back operations for
cach of dedicated caches 121-123 separately. In another
embodiment, control logic 130 uses a single control circuit
to handle write-back operation for all caches 1n an integrated
manner.

FIG. 2 shows a flow chart of the operation of the system
of FIG. 1, according to one embodiment of the invention. In
the following paragraphs, the operational description of flow
chart 200 in FIG. 2 makes reference to the components of
FIG. 1. In particular, to 1llustrate an exemplary operation, the
first and second processors of FIG. 2 are described 1n terms
of processors 111 and 112, respectively, in FIG. 1. However,
FIG. 2 may include operations implemented in structures
other than that shown in FIG. 1, while FIG. 1 may include
structure that implements operations other than that shown
in FIG. 2. In the illustrated example of FIG. 2, an operation
begins at block 210 when a first processor 112 makes a
request for data at a specific address. I the data correspond-
ing to the address i1s not found in the first processor’s
dedicated cache 1n a valid state, the other caches are probed
at block 220 to determine 11 the requested data 1s there, and
it so, whether the data has been modified. In one embodi-
ment, snoop probes are 1ssued to the various caches through
lines 141-143, 148 in response to the request for data. In
another embodiment, snoop probes are 1ssued through lines
141-143, 148 periodically without waiting for a data
request, so the location and MESI status of each cache line
in each location may be known by coherency unit 140 1n
advance. Snoop probes are also 1ssued to external memory
through line 149. Regardless of how snoop operations are
conducted, 11 either of the following conditions 1s true, the
operation continues at block 230: 1) the requested data exists
in the dedicated cache of a second processor but not 1n the
dedicated cache of the first processor, or 2) the requested
data exists 1n the dedicated cache of the second processor 1n
a modified form and 1n the dedicated cache of the first
processor 1 an unmodified form (e.g., the second proces-
sor’s dedicated cache has a more recent version of the data).
If neither of the above conditions exists, the data may be
retrieved through other methods not covered by FIG. 2 and
not described herein.

In the exemplary operation described herein, 1t 1s assumed
that at block 230 the data at the requested address 1s found
in the data’s most recent form in the dedicated cache 122 of
the second processor 112, but not 1n the dedicated cache 121
of the first (requesting) processor 111, and therefore the data
needs to be transferred from the dedicated cache 122 to the
dedicated cache 121 so the data can be read and operated
upon by first processor 111. At block 240, a request 1s sent
to write back the data from the dedicated cache 122. This
request may take any convenient form, including but not

us 7,120,755 B2

S

limited to: 1) a signal, 2) a command, and 3) a message. At
block 250, the data 1s sent over write-back line 152 from the
dedicated cache 122 of the second processor to the control
logic 130, which 1n one embodiment 1s located on the same
chip as the dedicated caches 121 and 122. At block 260, the
data 1s sent over supply line 154 from the control logic 130
to the dedicated cache 121 of the first processor, where it can
be accessed and acted upon by the first processor 111 at
block 270. In an exemplary operation, data 1s transierred in
units of one cache line.

Although the exemplary operation described pertains to a
write-back operation from cache 122 to cache 121, similar
write-back operations can be performed between any two of
the dedicated caches 121-123. In one embodiment, two
separate write-back operations (e.g., a first operation from
dedicated cache 122 to dedicated cache 121 and a second
operation from dedicated cache 121 to dedicated cache 122)
may be performed at least partially at the same time.

External devices can also initiate memory operations and
generally need the most recent version of data, so snoop
operations may be initiated from off-chip. While a cache
miss from one of dedicated processors 111-113 may trigger
an internal snoop probe (1nitiated from within CMP 100), a
cache miss from an ofl-chip device may trigger an external
snoop probe (initiated from outside CMP 100). In one
embodiment, the coherency umit 140 arbitrates between
internal and external snoop probes to maintain overall
memory coherency. When coherency unit 140 cannot accept
any more snoop requests, e€.g., when its probe queues are
tull, 1t may block any more snoop requests until 1t 1s again
able to receive another snoop request.

In some circumstances, a cache line that 1s requested
(block 240 of FIG. 2) for a write-back 1s being victimized
(1.e., deallocated to make room for a new cache entry) at the
time of the request. In one embodiment, this situation 1s
handled by canceling the write-back request. Once a victim
write-back (writing the latest version of the data to shared
cache or main memory) has been completed as part of the
victimization, the requested data may be re-requested. In
other embodiments, this situation may be handled 1n other
ways.

FIG. 3 shows a block diagram of a multi-core system
using write bulilers, according to one embodiment of the
invention. CMP 100-1 of the illustrated embodiment of FIG.
3 15 a specific implementation of the more generalized CMP
100 of FIG. 1. In the embodiment of FIG. 3, control logic
130 includes write bufilers 361-363 coupled between dedi-
cated caches 151-153, respectively, and shared cache 150 to
tacilitate transferring write-back data from any of the dedi-
cated caches 151-153 to the shared cache 150. Once data
has been transferred into shared cache 150 from a first
dedicated cache, 1t may be transferred from shared cache
150 to a second dedicated cache without requiring any
ofl-chip transfers. While in the embodiment shown 1n FIG.
3, control logic 130 also includes fill buflers 371-373 and
multlplexers 364-366 to facilitate writing data into dedi-
cated caches 121-123 from off-chip devices (such as main
memory 194), other embodiments need not implement {ill
butlers.

FIG. 4 shows a flow chart of the operation of the system
of FIG. 3, according to one embodiment of the invention. In
the following paragraphs, the operational description of FIG.
4 makes reference to the components of FIG. 3. In particular,
to 1llustrate an exemplary operation, the first and second
processors of FI1G. 4 are described 1n terms of processors 111
and 112, respectively, in FIG. 3. However, FIG. 4 may
include operations implemented in structures other than that

10

15

20

25

30

35

40

45

50

55

60

65

6

shown i FIG. 3, while FIG. 3 may include structure that
implements operations other than that shown in FIG. 4.
Since the embodiment of FIG. 4 incorporates a specific
write-back operation of the general embodiment of FIG. 2,
only the write-back operation (blocks 250, 260 of FIG. 2) 1s
described for FIGS. 3, 4. The remainder of a complete
operation may be the same as described for FIGS. 1, 2. The
exemplary operation described 1s for a write-back from
dedicated cache 122 to dedicated cache 121. As will be
appreciated by those of skill 1n the art, a similar write-back
may be performed between any two of the dedicated caches
121-123.

At block 410, the data from the second processor’s
dedicated cache 122 is transferred to write buller 362 over
write-back line 152. In one embodiment, each write bufler
includes enough storage capacity to store an entire cache
line. In other embodiments, each write buller may include
more or less than a cache line of storage capacity. While the
write bullers may be implemented 1n any number of ways,
in a particular embodiment each write bufler includes a
first-1n first-out (FIFO) buller. Handshaking control circuitry
(not shown) may be used to prevent dedicated cache 122
from overrunnming the storage capacity of write builer 362.
While 1n the embodiment shown, the outputs of all write
buflers 361-363 are connected to shared cache 150 through
a common bus, 1n another embodiment the outputs of all
write bullers 361-363 may be connected to shared cache 150
through multiplexed data paths rather than through a com-
mon bus.

At block 420, write buller 362 obtains access to the mput
of shared cache 150 by arbitrating to obtain use of the
common bus. At block 430, write bufler 362 sends the data
to shared cache 150.

In the embodiment of FIG. 3, a separate write buller 1s
provided for each dedicated cache so that multiple dedicated
caches may provide write-back data at the same time. In
another embodiment (not shown), a single write bufler is
provided to receive data from all the dedicated caches.

At block 440, the right-hand nput (as shown in FIG. 3) of
supply-line multiplexer 364 1s seclected so that dedicated
cache 121 can receive data from shared cache 150. At block
450, the data that was written to shared cache 150 1n block
430 1s now written from shared cache 150 to dedicated cache
121. This completes the transfer of data from dedicated
cache 122 to dedicated cache 121.

In the illustrated embodiment, write buflers 361-363
provide bullering for data being transierred between dedi-
cated caches on-chip, while fill buffers 371-373 provide
buflering for data being written into dedicated caches
121-123 from ofl-chip. Data from main memory 194 or
from some other off-chip device may be written to one or
more of fill buflers 371-373, from where the data may be
selected by the associated multiplexers 364—-366 to be writ-
ten 1into dedicated cache. In one embodiment, each fill bufler
371-373 includes multiple slots, one for each pending data
request. In one embodiment, each slot icludes enough
storage capacity to store an entire cache line. In other
embodiments, each slot may contain more or less than one
cache line of storage space.

FIG. 5 shows a block diagram of a multi-core system
using fill buflers, according to one embodiment of the
invention. CMP 100-2 of the illustrated embodiment of FIG.
5 15 a specific implementation of the more generalized CMP
100 of FIG. 1. In the embodiment of FIG. 5, control logic
130 1ncludes multiplexers 376379 to route write-back data
from one dedicated cache to another dedicated cache

through fill butlers 371-373. In the illustrated embodiment,

us 7,120,755 B2

7

write-back lines 151-153 are coupled to multiplexer 576 so
that the write-back data from any dedicated cache can be
routed to multiplexers 577-579. Multiplexers 577-579 are
coupled to fill buflers 371-373, respectively, to select
whether one or more of fill buffers 371-373 receives data
from a dedicated cache through multlplexer 576 or from an
external device through I'F 180. As 1n FIG. 3, fill buflers
371-373 provide the data to multiplexers 364-366, respec-
tlvely, which select whether dedicated caches 151-153
receive data from fill builers 371-373 or from shared cache
150. In the illustrated embodiment, each dedicated cache has

a separate fill bufler associated with 1t. In another embodi-
ment (not shown), a single fill bufler 1s used to provide data
to all the dedicated caches, with additional logic to route the
data to the intended dedicated cache during a specific data
trans{er.

FIG. 6 shows a flow chart of the operation of the system
of FIG. 5, according to one embodiment of the invention. In
the following paragraphs, the operational description of FIG.
6 makes reference to the components of FIG. 5. In particular,
in an exemplary operation, the first and second processors of
FIG. 6 are described 1n terms of processors 111 and 112,
respectively, mm FIG. 5. However, FIG. 6 may include
operations 1mplemented 1n structures other than that shown
in FIG. §, while FIG. 5 may include structure that imple-
ments operations other than that shown in FIG. 6. Since the
embodiment of FIG. 6 mcorporates a specific write-back
operation of the general embodiment of FIG. 2, only the
write-back operation (blocks 250, 260 of FIG. 2) 1s
described for FIGS. 5, 6. The remainder of a complete
operation may be the same as described for FIG. 2. As
betore, the exemplary operation described 1s for a write-back
from dedicated cache 122 to dedicated cache 121. As will be
appreciated by those of skill 1n the art, a similar write-back
may be performed between any two of the dedicated caches

121-123.

At block 610, the middle mput (as seen n FIG. 5) of
multiplexer 576 1s selected so that data on write-back line
152 will be passed through to the output of multiplexer 576
and on to the inputs of multlplexers 577-579. At block 620,
{111 butter 371 and/or fill builer multlplexer 577 are selected
to receive data, while the remaining {ill builers and/or fill
bufler multiplexers are deselected. In one embodiment, a
control signal to fill buifer 371 directs fill builer 371 to read
and store whatever data 1s presented by fill buller multi-
plexer 577. In another embodiment, a control signal enables
the output of fill bufler multiplexer 577. At block 630, the
right-hand input (as shown in FIG. 5) of fill bufler multi-
plexer 577 1s selected, so that the output of multiplexer 576
will be passed on to {ill buller 371. At block 640, the data
from dedicated cache 122 is sent through multiplexers 576
and 577 to fill bufler 371, where the data 1s temporarily
stored. In one embodiment, the fill buffers of FIG. 5 include
the same variations and embodiments as described for the
f1ll buflers of FIG. 3.

At block 650, the left-hand mnput (as seen 1n FIG. 5) of
supply-line multiplexer 364 1s selected, so that the output of
{111 bufler 371 will be passed therethrough. At block 660, the
data from dedicated cache 122 that was previously written
into fill buffer 371 1s written from {ill buffer 371 mto
dedicated cache 121. This completes the transfer of data
from dedicated cache 122 to dedicated cache 121.

FIG. 7 shows a block diagram of a multi-core system
using multiplexers, according to one embodiment of the
invention. CMP 100-3 of the illustrated embodiment of FIG.
7 1s a specific implementation of the more generalized CMP
100 of FIG. 1. In the embodiment of FIG. 7, control logic

10

15

20

25

30

35

40

45

50

55

60

65

8

130 includes multiplexers to route data from one dedicated
cache to another dedicated cache by routing data directly
from the write-back line of one dedicated cache to the supply
line of another dedicated cache. Each of write-back multi-
plexers 764766 has an output to its associated dedicated
cache, an mput from shared cache 150, an mnput from an
associated fill bufler 371-373, and puts from each of the
other write-back lines.

FIG. 8 shows a flow chart of the operation of the system
of FI1G. 7, according to one embodiment of the invention. In
the following paragraphs, the operational description of FIG.
8 makes reference to the components of FI1G. 7. In particular,
in an exemplary operation, the first and second processors of
FIG. 8 are described in terms of processors 111 and 112,
respectively, in FIG. 7. However, FIG. 8 may include
operations 1implemented 1n structures other than that shown
in FIG. 7, while FIG. 7 may include structure that imple-
ments operations other than that shown in FIG. 8. Since the
embodiment of FIG. 8 incorporates a specific write-back
operation of the general embodiment of FIG. 2, only the
write-back operation (blocks 250, 260 of FIG. 2) 1s
described for FIGS. 7, 8. The remainder of a complete
operation 1s the same as described for FIG. 2. As before, the
exemplary operation described 1s for a write-back from
dedicated cache 122 to dedicated cache 121. As will be
appreciated by those of skill 1n the art, a similar write-back
may be performed between any two of the dedicated caches
121-123.

At block 810, the second mput from the right (as viewed
in FIG. 7) of supply line multiplexer 764 is selected, thus
connecting the write-back line 152 directly to the supply line
154. At block 820, data 1s sent from dedicated cache 122 to
dedicated cache 121 through supply line multiplexer 764.

This completes the transier of data from dedicated cache 122
to dedicated cache 121.

In one embodiment, there 1s no data buffer between

dedicated caches 122 and 121, so handshaking logic 1is
included to control timing constraints required by both
dedicated caches.
The invention may be implemented 1n one or a combi-
nation of hardware, firmware, and software. The invention
may also be implemented as instructions stored on a
machine-readable medium, which may be read and executed
by at least one processor to perform the operations described
herein. A machine-readable medium may include any
mechanism for storing or transmitting mnformation in a form
readable by a machine (e.g., a computer). For example, a
machine-readable medium may include read only memory
(ROM); random access memory (RAM); magnetic disk
storage media; optical storage media; flash memory devices;
clectrical, optical, acoustical or other form of propagated
signals (e.g., carrier waves, infrared signals, digital signals,
etc.), and others.

FIG. 9 shows a block diagram of a multi-core system
using 1nstructions to control cache write-back operations,
according to one embodiment of the invention. The instruc-
tions may be implemented as code to route data from one
dedicated cache to another dedicated cache. In one embodi-
ment, the code may be implemented as program code. In
another embodiment, the code may be implemented as
contents of a state machine. CMP 100-4 of the illustrated
embodiment of FIG. 9 1s a specific implementation of the
more generalized CMP 100 of FIG. 1.

In the illustrated embodiment of FIG. 9, code 931 15 a part
of control logic 130. In another embodiment, code 931 1is
part of a larger block of control code external to control logic
130 that implements more operations than the transfer of

us 7,120,755 B2

9

data between dedicated caches. Although shown as a part of

CMP 100, code 931 may also be contained in any of the
media previously described. In various embodiments, each
of the operations described 1n FIGS. 2, 4, 6, and 8 may be

executed by code 931.

The foregoing description 1s intended to be illustrative

and not limiting. Variations will occur to those of skill 1n t
art. Those variations are intended to be included 1in ft

1C
1C

invention, which 1s limited only by the spirit and scope of t.
appended claims.

1C

We claim:
1. An apparatus, comprising:
an 1tegrated circuit including:

a first processor with a first dedicated cache;

a second processor with a second dedicated cache; and

control logic, coupled to the first and second dedicated
caches, having;:

a first multiplexer coupled to the first and second
caches to receive a first cache line from the first
dedicated cache and to provide the first cache line to
the second dedicated cache; and

a second multiplexer coupled to the first and second
caches to receive a second cache line from the
second dedicated cache and to provide the second
cache line to the first dedicated cache.

2. The apparatus of claim 1, wherein:

the control logic 1s to transter the first cache line 11 the first
cache line 1s a cache line 1n the first dedicated cache and
not 1n the second dedicated cache.

3. The apparatus of claim 1, wherein:

the control logic 1s to transter the first cache line 11 the first
cache line 1s a modified version of a particular cache
line and the second dedicated cache contains an
unmodified version of the particular cache line.

4. The apparatus of claim 1, further comprising;:

a coherency unit to perform snoop operations on the first
and second dedicated caches.

5. The apparatus of claim 1, wherein the integrated circuit

further includes:

a shared cache coupled to the control logic, to the first
dedicated cache, and to the second dedicated cache;
wherein the control logic 1s further to transfer a second
cache line from the second dedicated cache to the first
dedicated cache:

wherein the control logic includes a first write bufler to
receive the first cache line from the first dedicated
cache and to provide the first cache line to the shared

cache, and further includes a second write buffer to
receive the second cache line from the second dedi-

cated cache and provide the second cache line to the
shared cache:;

wherein the shared cache 1s to provide the first cache line
to the second dedicated cache and to provide the second
cache line to the first dedicated cache.

6. An apparatus, comprising:

an 1tegrated circuit including:

a first processor with a first dedicated cache;

a second processor with a second dedicated cache; and

control logic, coupled to the first and second dedicated
caches, having;:

a first fill bufler coupled to the first and second dedi-
cated caches to receive a first cache line from the first
dedicated cache and to provide the first cache line to
the second dedicated cache:; and

a second fill bufler coupled to the first and second
dedicated caches to receive a second cache line from

10

15

20

25

30

35

40

45

50

55

60

65

10

the second dedicated cache and to provide the second
cache line to the first dedicated cache.

7. The apparatus of claim 6, further comprising:

a coherency unit to perform snoop operations on the first
and second dedicated caches.

8. The apparatus of claim 6, wherein the integrated circuit

further includes:

a shared cache coupled to the control logic, to the first
dedicated cache, and to the second dedicated cache:

wherein the control logic 1s further to transfer a second
cache line from the second dedicated cache to the first
dedicated cache:;

wherein the control logic includes a first write buller to
receive the first cache line from the first dedicated
cache and to provide the first cache line to the shared
cache, and further includes a second write buffer to
receive the second cache line from the second dedi-
cated cache and provide the second cache line to the
shared cache:;

wherein the shared cache is to provide the first cache line

to the second dedicated cache and to provide the second
cache line to the first dedicated cache.

9. A method, comprising;:

transferring a first cache line directly from a first dedi-
cated cache of a chip multi-processor to a first multi-
plexer within control logic coupled to the first cache 1n
the chip multi-processor;

subsequently transterring the first cache line from the first
multiplexer directly to a second dedicated cache of the
chip multi-processor,

transierring a second cache line directly from the second
dedicated cache to a second multiplexer within the
control logic coupled to the second cache in the chip
multi-processor; and

subsequently transferring the second cache line from the
second multiplexer directly to the first dedicated cache.

10. A method, comprising;

transferring a first cache line directly from a first dedi-
cated cache of a chip multi-processor to a first write
bufler within control logic coupled to the first cache 1n
the chip multi-processor;

subsequently transierring the first cache line from the first
write butler directly to a second dedicated cache of the
chip multi-processor,

transierring a second cache line directly from the second
dedicated cache to a second write bufler within the
control logic coupled to the second cache in the chip
multi-processor; and

subsequently transferring the second cache line from the
second write builer directly to the first dedicated cache.

11. A system, comprising:

a main memory,

a chip multiprocessor coupled to the main memory and
including:
a first processor with a first dedicated cache;
a second processor with a second dedicated cache; and

control logic, coupled to the first and second dedicated
caches, having:

a first multiplexer coupled to the first and second
caches to receive a first cache line from the first
dedicated cache and to provide the first cache line
to the second dedicated cache; and

us 7,120,755 B2

11 12
a second multiplexer coupled to the first and second 13. The system of claim 11, wherein the chip multipro-
caches to receive a second cache line from the cessor further includes:

a shared cache coupled to the control logic and to the

second dedicated cache and to provide the second _ _ _
second dedicated cache to provide the first cache line to

cache line to the first dedicated cache.

5 the second dedicated cache;
12. The system of claim 11, wherein the chip multipro- wherein the control logic includes a write buffer to receive
cessor further comprises: the first cache line from the first dedicated cache and to

a coherency unit to perform snoop operations on the first provide the first cache line to the shared cache.

and second dedicated caches. % % % % %

	Front Page
	Drawings
	Specification
	Claims

