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APPARATUS AND METHOD FOR DYNAMIC
INSTRUMENTING OF CODE TO MINIMIZE
SYSTEM PERTURBATION

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention 1s directed to an improved appara-
tus and method for performing traces of program execution.
More specifically, the present invention 1s directed to an
apparatus and method for dynamic insertion of hooks into
program code 1n order to trace the execution of the program
code with mimimal system perturbation.

2. Description of Related Art

In analyzing and enhancing performance of a data pro-
cessing system and the applications executing within the
data processing system, 1t 1s helptul to know which software
modules within a data processing system are using system
resources. Eflective management and enhancement of data
processing systems requires knowing how and when various
system resources are being used. Performance tools are used
to monitor and examine a data processing system to deter-
mine resource consumption as various soltware applications
are executing within the data processing system. For
example, a performance tool may identily the most fre-
quently executed modules and instructions 1n a data pro-
cessing system, or may identily those modules which allo-
cate the largest amount of memory or perform the most I/0
requests. Hardware performance tools may be built into the
system or added at a later point in time.

Soltware performance tools also are useful 1n data pro-
cessing systems, such as personal computer systems, which
typically do not contain many, i any, built-in hardware
performance tools. One known software performance tool 1s
a trace tool. A trace tool may use more than one technique
to provide trace mformation that indicates execution flows
for an executing program.

One technique keeps track of particular sequences of
instructions by logging certain events as they occur, so-
called event-based profiling technique. For example, a trace
tool may log every entry into, and every exit from, a module,
subroutine, method, function, or system component. Alter-
nately, a trace tool may log the requester and the amounts of
memory allocated for each memory allocation request. Typi-
cally, a time-stamped record 1s produced for each such event.
Corresponding pairs of records similar to entry-exit records
also are used to trace execution of arbitrary code segments,
starting and completing I/O or data transmission, and for
many other events of interest.

Event-based profiling tends to perturb the computing
system and possibly invalidate results of the trace of the
program execution. The perturbation of computing systems
1s due to the expense 1n handling too many events. That 1is,
because hooks, which are used to generate events 1n event-
based profiling, must be inserted into the code of the
program before the workload of the program 1s executed, 1t
1s not known where the hooks should be placed. That 1s,
since the trace tool or programmer does not know a priori,
the path of the workload, all possible paths must be covered
by the 1nsertion of hooks. As a result, many more hooks are
encountered during the execution and trace of the program
than may be necessary to obtaining an understanding of the
program execution.

In some cases, hooks 1 a program under trace may be
turned on and off. However, 1in such cases, either all of the
hooks are turned on, or all of the hooks are turned off. As a
result, while the workload of the program can run unper-
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turbed when not being traced, when the events are turned on
for tracing, the perturbation begins and different perfor-
mance results may be obtained by the trace than are actually
experienced when the hooks are turned ofl.

In still other cases, certain ones of the hooks 1n a program
under trace may be turned on while others are turned off. For
example, only hooks on selected threads may be turned on
while all other hooks are turned off. However, with such
systems, there 1s considerable overhead 1n determining
whether a hook 1s to be executed or not, 1.e. whether the
hook 1s turned on or ofl, that results in performance penal-
ties.

Executing hooks frequently causes a significant amount of
perturbation. For example, Java profiling using the Java
Virtual Machine Profiler Interface (JVMPI) for method
entries and exits tends to slow applications from 2 to 30
times.

One approach to avoiding the overhead of execution of
hooks during tracing of a program 1s to execute fewer hooks.
However, 1n this case, all the possible paths of execution are
not hooked and thus, important paths of execution may be
missed. That is, 1f the number of hooks 1s reduced, so 1s the
information that i1s obtained during the trace.

Therefore, 1t would be advantageous to have an apparatus
and method for tracing the execution of a program in which
the number of hooks executed during the trace 1s kept to a
minimum without losing information regarding important
paths of execution of the program. It would further be
advantageous to have an apparatus and method for tracing
the execution of a program in which hooks are inserted into
and removed from the paths of execution of a program
dynamically so as to maintain the number of hooks at a
minimum level.

SUMMARY OF THE INVENTION

The present invention provides an apparatus and method
for the dynamic instrumentation of code and removal of
instrumented code to minimize system perturbation during
tracing of the execution of the code. With the apparatus and
method of the present invention, “hot spots” in the execution
of the code are dynamically determined during tracing of the
execution of the code. These “hot spot” methods or routines
(hereatfter collectively referred to as “methods™) are dynami-
cally instrumented, 1.e. an event hook 1s inserted, to cause
control to be passed to a handler that determines a caller of
the “hot spot” method.

The method that called the “hot spot” method, hereafter
referred to as the “caller” method, 1s identified from a call
stack and 1s dynamically instrumented so that the next time
the calling method 1s executed, the dynamically inserted
hooks are executed. The execution of the hooks in the caller
method 1s continued for a predetermined period, e.g., num-
ber of invocations, to get an understanding of the caller
method’s characteristics.

The present invention maintains a list of callers of 1nstru-
mented methods. When the predetermined period ifor
executing mserted hooks 1n a caller method has expired, the
list of callers 1s used to determine one or more calling
methods of the mstrumented caller method. One or more of
these calling methods 1n the call stack are then instrumented
and the hooks inserted in the instrumented caller method
(called by the one or more calling methods), are removed. In
this way, the call graph of the hot spots of a program
execution 1s “walked up” and characterized over time.

Thus, with the present invention, the number of hooks that
are executed during tracing of a program 1s minimized by



Uus 7,114,150 B2

3

reducing the number of hooks required to be 1nserted prior
to the workload being executed and keeping the number of
hooks that are dynamically inserted to a minimum. The
number of hooks that are dynamically inserted 1s minimized
by performing dynamic instrumentation based on detected
hot spots and by removing inserted hooks from methods
when one of 1ts calling methods 1s instrumented.

These and other features and advantages of the present
invention will be described 1n, or will become apparent to
those of ordinary skill in the art in view of, the following
detailed description of the preferred embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth in the appended claims. The invention itself,
however, as well as a preferred mode of use, further objec-
tives and advantages thereof, will best be understood by
reference to the following detailed description of an 1llus-
trative embodiment when read in conjunction with the
accompanying drawings, wherein:

FIG. 1 depicts a distributed data processing system in
which the present invention may be implemented;

FIGS. 2A-B are exemplary block diagrams depicting a
data processing system in which the present invention may
be implemented;

FIG. 3A 1s an exemplary block diagram depicting the
relationship of software components operating within a
computer system that may implement the present invention;

FIG. 3B 1s an exemplary block diagram depicting a Java
virtual machine in accordance with a preferred embodiment
of the present invention;

FIG. 4 1s an exemplary block diagram depicting compo-
nents used to profile processes 1n a data processing system;

FIG. 5 1s an exemplary diagram illustrating various
phases in profiling the active processes in an operating
system;

FIG. 6 15 a flowchart outlining an exemplary process used
by a trace program for generating trace records from pro-
cesses executing on a data processing system;

FI1G. 7 1s a flowchart outlining an exemplary process used
in a system interrupt handler trace hook;

FIG. 8 1s an exemplary diagram depicting the call stack
containing stack frames;

FIG. 9 1s an 1llustration depicting an exemplary call stack
entry;

FIG. 10 1s a diagram depicting an exemplary program
execution sequence along with the state of the call stack at
cach function entry/exit point;

FIG. 11 1s a an exemplary diagram illustrating a the
primary operational elements of the present invention;

FIG. 12 1s an exemplary block diagram of a dynamic
instrumentation facility according to the present invention;

FIG. 13 1s a flowchart outlining an exemplary process for
dynamically instrumenting code according to the present
imnvention; and

FIG. 14 1s a flowchart outlining an exemplary process for
removal of dynamically inserted hooks according to the
present mvention.

DETAILED DESCRIPTION OF TH.
PREFERRED EMBODIMENT

(Ll

With reference now to the figures, and 1n particular with
reference to FI1G. 1, a pictorial representation of a distributed
data processing system in which the present invention may
be mmplemented 1s depicted. Distributed data processing
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4

system 100 1s a network of computers 1n which the present
invention may be implemented. Distributed data processing
system 100 contains a network 102, which 1s the medium
used to provide communications links between various
devices and computers connected together within distributed
data processing system 100. Network 102 may include
permanent connections, such as wire or fiber optic cables, or
temporary connections made through telephone connec-
tions.

In the depicted example, a server 104 1s connected to
network 102 along with storage unit 106. In addition, clients
108, 110, and 112 also are connected to a network 102.
These clients 108, 110, and 112 may be, for example,
personal computers or network computers. For purposes of
this application, a network computer 1s any computer,
coupled to a network, which receives a program or other
application from another computer coupled to the network.
In the depicted example, server 104 provides data, such as
boot files, operating system images, and applications to
clients 108-112. Clients 108, 110, and 112 are clients to
server 104. Distributed data processing system 100 may
include additional servers, clients, and other devices not
shown. In the depicted example, distributed data processing
system 100 1s the Internet with network 102 representing a
worldwide collection of networks and gateways that use the
TCP/IP suite of protocols to communicate with one another.
At the heart of the Internet 1s a backbone of high-speed data
communication lines between major nodes or host comput-
ers, consisting of thousands of commercial, government,
educational, and other computer systems, that route data and
messages. Of course, distributed data processing system 100
also may be implemented as a number of different types of
networks, such as, for example, an Intranet or a local area
network.

FIG. 1 1s intended as an example, and not as an architec-
tural limitation for the processes of the present invention.
Many modifications to the system shown 1 FIG. 1 may be
made without departing from the spirit and scope of the
present invention.

With reference now to FIG. 2A, a block diagram of a data
processing system which may be implemented as a server,
such as server 104 1n FIG. 1, 1s depicted 1n accordance to the
present invention. Data processing system 200 may be a
symmetric multiprocessor (SMP) system including a plural-
ity of processors 202 and 204 connected to system bus 206.
Alternatively, a single processor system may be employed.
Also connected to system bus 206 1s memory controller/
cache 208, which provides an interface to local memory 209.
I/O Bus Bridge 210 i1s connected to system bus 206 and
provides an interface to I/O bus 212. Memory controller/
cache 208 and I/O Bus Bridge 210 may be integrated as
depicted.

Peripheral component interconnect (PCI) bus bridge 214
connected to I/O bus 212 provides an interface to PCI local
bus 216. A modem 218 may be connected to PCI local bus
216. Typical PCI bus implementations will support four PCI
expansion slots or add-in connectors. Communications links
to network computers 108-112 1n FIG. 1 may be provided
through modem 218 and network adapter 220 connected to
PCI local bus 216 through add-in boards.

Additional PCI bus bridges 222 and 224 provide inter-
faces for additional PCI buses 226 and 228, from which
additional modems or network adapters may be supported.
In this manner, server 200 allows connections to multiple
network computers. A memory mapped graphics adapter
230 and hard disk 232 may also be connected to I/O bus 212

as depicted, either directly or indirectly.
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Those of ordinary skill in the art will appreciate that the
hardware depicted in FIG. 2A may vary. For example, other
peripheral devices, such as optical disk drive and the like
also may be used 1n addition or n place of the hardware
depicted. The depicted example 1s not meant to 1mply
architectural limitations with respect to the present mnven-
tion. The data processing system depicted imn FIG. 2A may
be, for example, an IBM RISC/System 6000 system, a
product of International Business Machines Corporation in
Armonk, N.Y., running the Advanced Interactive Executive
(AIX) operating system.

With reference now to FIG. 2B, a block diagram of a data
processing system in which the present invention may be
implemented 1s 1llustrated. Data processing system 250 1s an
example of a client computer. Data processing system 250
employs a peripheral component interconnect (PCI) local
bus architecture. Although the depicted example employs a
PCI bus, other bus architectures such as Micro Channel and
ISA may be used. Processor 252 and main memory 2354 are
connected to PCI local bus 256 through PCI Bridge 258. PCI
Bridge 238 also may include an integrated memory control-
ler and cache memory for processor 252. Additional con-
nections to PCI local bus 256 may be made through direct
component interconnection or through add-in boards.

In the depicted example, local area network (LAN)
adapter 260, SCSI host bus adapter 262, and expansion bus
interface 264 are connected to PCI local bus 256 by direct
component connection. In contrast, audio adapter 266,
graphics adapter 268, and audio/video adapter (A/V) 269 are
connected to PCI local bus 266 by add-in boards inserted
into expansion slots. Expansion bus interface 264 provides
a connection for a keyboard and mouse adapter 270, modem
2772, and additional memory 274. SCSI host bus adapter 262
provides a connection for hard disk drive 276, tape drive
278, and CD-ROM 280 in the depicted example. Typical
PCI local bus implementations will support three or four PCI
expansion slots or add-in connectors.

An operating system runs on processor 232 and 1s used to
coordinate and provide control of various components
within data processing system 250 1n FIG. 2B. The operating,
system may be a commercially available operating system
such as Windows NT™ or Windows 2000™, which are
available from Microsoit Corporation™,

An object oriented programming system such as Java may
run in conjunction with the operating system and may
provide calls to the operating system from Java programs or
applications executing on data processing system 250.
Instructions for the operating system, the object-oriented
operating system, and applications or programs are located
on storage devices, such as hard disk drive 276 and may be
loaded into main memory 254 for execution by processor
252. Hard disk drives are often absent and memory 1is
constrained when data processing system 250 1s used as a
network client.

Those of ordinary skill in the art will appreciate that the
hardware 1n FIG. 2B may vary depending on the implemen-
tation. For example, other peripheral devices, such as optical
disk drives and the like may be used 1n addition to or 1n place
of the hardware depicted in FIG. 2B. The depicted example
1s not meant to 1mply architectural limitations with respect
to the present invention. For example, the processes of the
present ivention may be applied to a multiprocessor data
processing system.

The present invention provides a process and system for
profiling, e.g., tracing, soitware applications. Although the
present invention may operate on a variety ol computer
platforms and operating systems, 1t may also operate within
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a Java runtime environment. Hence, the present invention
may operate 1n conjunction with a Java virtual machine

(JVM) vet within the boundaries of a JVM as defined by

Java standard specifications. In order to provide a context for
the present invention, portions of the operation of a JVM
according to Java specifications are herein described.

With reference now to FIG. 3A, a block diagram 1s
provided that illustrates the relationship of software com-
ponents operating within a computer system that may imple-
ment the present invention. Java-based system 300 contains
platiorm specific operating system 302 that provides hard-
ware and system support to software executing on a specific
hardware platform. JVM 304 1s one soiftware application
that may execute 1n conjunction with the operating system.
IVM 304 provides a Java run-time environment with the
ability to execute Java application or applet 306, which is a
program, servlet, or software component written in the Java
programming language. The computer system in which
IVM 304 operates may be similar to data processing system

200 or computer 100 described above. However, JVM 304

may be implemented 1n dedicated hardware on a so-called
Java chip, Java-on-silicon, or Java processor with an embed-
ded picolava core.

At the center of a Java run-time environment 1s the JVM,
which supports all aspects of Java’s environment, including
its architecture, security features, mobility across networks,
and platform independence.

-

The JVM 1s a virtual computer, 1.e. a computer that 1s
specified abstractly. The specification defines certain fea-
tures that every JVM must implement, with some range of
design choices that may depend upon the platform on which
the JVM 1s designed to execute. For example, all JVMs must
execute Java bytecodes and may use a range of techniques
to execute the instructions represented by the bytecodes. A
IVM may be implemented completely 1n software or some-
what 1n hardware. This tlexibility allows different JVMs to
be designed for mainframe computers and PDAs.

The JVM 1s the name of a virtual computer component
that actually executes Java programs. Java programs are not
run directly by the central processor but instead by the JVM,
which 1s itsell a piece of soltware running on the processor.
The JVM allows Java programs to be executed on a different
platform as opposed to only the one platform for which the
code was compiled. Java programs are compiled for the
JVM. In this manner, Java 1s able to support applications for
many types of data processing systems, which may contain
a variety of central processing units and operating systems
architectures. To enable a Java application to execute on
different types of data processing systems, a compiler typi-
cally generates an architecture-neutral file format—the com-
piled code 1s executable on many processors, given the
presence of the Java run-time system. The Java compiler
generates bytecode instructions that are nonspecific to a
particular computer architecture. A bytecode 1s a machine
independent code generated by the Java compiler and
executed by a Java interpreter. A Java interpreter 1s part of
the JVM that alternately decodes and interprets a bytecode
or bytecodes. These bytecode instructions are designed to be
casy to mterpret on any computer and easily translated on
the fly into native machine code. Byte codes may be
translated into native code by a just-in-time compiler or JIT.

A JVM must load class files and execute the bytecodes
within them. The JVM contains a class loader, which loads
class files from an application and the class files from the
Java application programming interfaces (APIs) which are
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needed by the application. The execution engine that
executes the bytecodes may vary across platforms and
implementations.

One type of software-based execution engine 1s a just-in-
time compiler. With this type of execution, the bytecodes of
a method are compiled to native machine code upon suc-
cessiul fulfillment of some type of criteria for jitting a
method. The native machine code for the method 1s then
cached and reused upon the next mnvocation of the method.
The execution engine may also be implemented 1n hardware
and embedded on a chip so that the Java bytecodes are
executed natively. JVMs usually interpret bytecodes, but
IVMs may also use other techniques, such as just-in-time
compiling, to execute bytecodes.

Interpreting code provides an additional benefit. Rather
than instrumenting the Java source code, the interpreter may
be mstrumented. Trace data may be generated via selected
events and timers through the instrumented interpreter with-
out moditying the source code. Profile instrumentation is
discussed 1n more detail further below.

When an application 1s executed on a JVM that 1s imple-
mented 1 software on a platform-specific operating system,
a Java application may interact with the host operating
system by invoking native methods. A Java method 1s
written 1n the Java language, compiled to bytecodes, and
stored 1n class files. A native method 1s written 1n some other
language and compiled to the native machine code of a
particular processor. Native methods are stored 1n a dynami-
cally linked library whose exact form 1s platform specific.

With reference now to FIG. 3B, a block diagram ofa JIVM

1s depicted in accordance with a preferred embodiment of
the present ivention. JVM 350 includes a class loader
subsystem 352, which 1s a mechanism for loading types,
such as classes and interfaces, given fully qualified names.
JVM 350 also contains runtime data areas 354, execution
engine 356, native method interface 358, and memory
management 374. Execution engine 356 1s a mechanism for
executing instructions contained in the methods of classes
loaded by class loader subsystem 352. Execution engine 356
may be, for example, Java interpreter 362 or just-in-time
compiler 360. Native method interface 358 allows access to
resources in the underlying operating system. Native method
interface 358 may be, for example, a Java native interface.

Runtime data areas 354 contain native method stacks 364,
Java stacks 366, PC registers 368, method area 370, and
heap 372. These different data areas represent the organiza-
tion of memory needed by JVM 350 to execute a program.

Java stacks 366 are used to store the state of Java method
invocations. When a new thread 1s launched, the JVM
creates a new Java stack for the thread. The JVM performs
only two operations directly on Java stacks: 1t pushes and
pops frames. A thread’s Java stack stores the state of Java
method 1nvocations for the thread. The state of a Java
method 1nvocation includes its local variables, the param-
eters with which 1t was invoked, 1ts return value, 1f any, and
intermediate calculations. Java stacks are composed of stack
frames. A stack frame contains the state of a single Java
method 1invocation. When a thread invokes a method, the
IVM pushes a new frame onto the Java stack of the thread.
When the method completes, the JVM pops the frame for
that method and discards 1t. The JVM does not have any
registers for holding intermediate values; any Java instruc-
tion that requires or produces an intermediate value uses the
stack for holding the intermediate values. In this manner, the
Java mnstruction set 1s well-defined for a variety of platform
architectures.
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PC registers 368 are used to indicate the next mstruction
to be executed. Each instantiated thread gets its own pc
register (program counter) and Java stack. If the thread 1s
executing a JVM method, the value of the pc register
indicates the next instruction to execute. If the thread is
executing a native method, then the contents of the pc
register are undefined.

Native method stacks 364 store the state of mvocations of
native methods. The state of native method invocations 1s
stored 1n an implementation-dependent way in native
method stacks, registers, or other implementation-dependent
memory areas. In some JVM implementations, native
method stacks 364 and Java stacks 366 are combined.

Method area 370 contains class data while heap 372
contains all instantiated objects. The JVM specification
strictly defines data types and operations. Most JVMs
choose to have one method area and one heap, each of which
are shared by all threads running inside the JVM. When the
IVM loads a class file, it parses information about a type
from the binary data contained in the class file. It places this
type information into the method area. Each time a class
instance or array 1s created, the memory for the new object
1s allocated from heap 372. JVM 350 includes an instruction
that allocates memory space within the memory for heap
372 but includes no nstruction for freeing that space within
the memory. Memory management 374 in the depicted
example manages memory space within the memory allo-
cated to heap 370. Memory management 374 may include a
garbage collector which automatically reclaims memory
used by objects that are no longer referenced. Additionally,
a garbage collector also may move objects to reduce heap
fragmentation.

With reference now to FIG. 4, a block diagram depicts
components used to profile processes 1 a data processing
system. A trace program 400 1s used to profile processes 402.
Trace program 400 may be used to record data upon the
execution of a hook, which 1s a specialized piece of code at
a specific location 1 a routine or program in which other
routines may be connected. Trace hooks are typically
inserted for the purpose of debugging, performance analysis,
or enhancing functionality. These trace hooks are employed
to send trace data to trace program 400, which stores the
trace data in bufler 404. The trace data 1n bufier 404 may be
subsequently stored 1n a file for post-processing, or the trace
data may be processed 1n real-time.

With Java operating systems, the present invention
employs trace hooks that aid in i1dentifying methods that
may be used 1n processes 402. In addition, since classes may
be loaded and unloaded, these changes may also be identi-
fied using trace data. This 1s especially relevant with “net-
work client” data processing systems, such as those that may
operate under JavaOS, since classes and jitted methods may
be loaded and unloaded more frequently due to the con-
strained memory and role as a network client. Note that class
load and unload information 1s also relevant 1n embedded
application environments, which tend to be memory con-
strained.

With reference now to FIG. 5, a diagram depicts various
phases in profiling the processes active in an operating
system. Subject to memory constraints, the generated trace
output may be as long and as detailed as the analyst requires
for the purpose of profiling a particular program.

An mitialization phase 500 1s used to capture the state of
the client machine at the time tracing is mnitiated. This trace
initialization data includes trace records that identify all
existing threads, all loaded classes, and all methods for the
loaded classes. Records from trace data captured from hooks
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are written to indicate thread switches, iterrupts, and load-
ing and unloading of classes and jitted methods. Any class
which 1s loaded has trace records that indicate the name of
the class and i1ts methods. In the depicted example, four byte
IDs are used as 1dentifiers for threads, classes, and methods.
These IDs are associated with names that have been output
in the records. A record 1s written to indicate when all of the
start up information has been written.

Next, during the profiling phase 3502, trace records are
written to a trace buller or trace file. In the present invention,
a trace buller may have a combination of types of records,
such as those that may originate from a trace hook executed
1in response to a particular type of event, e.g., a method entry
or method exit, and those that may originate from a stack
walking function executed 1n response to a timer interrupt,
¢.g., a stack unwind record, also called a call stack record.

For example, the following process may occur during the
profiling phase i1 the user of the profiling utility has
requested sample-based profiling information. Each time a
particular type of timer iterrupt occurs, a trace record 1s
written, which indicates the system program counter. This
system program counter may be used to identily the routine
that 1s interrupted. In the depicted example, a timer interrupt
1s used to 1mtiate gathering of trace data. Of course, other
types of interrupts may be used other than timer interrupts.
Interrupts based on a programmed performance monitor
event or other types of periodic events may be employed.

In the post-processing phase 504, the data collected 1n the
trace buller 1s sent to a trace {file for post-processing. In one
configuration, the file may be sent to a server, which
determines the profile for the processes on the client
machine. Of course, depending on available resources, the
post-processing also may be performed on the client
machine. In post-processing phase 504, B-trees and/or hash
tables may be employed to maintain names associated the
records in the trace file to be processed. A hash table
employs hashing to convert an i1dentifier or a key, meaning-
tul to a user, 1nto a value for the location of the correspond-
ing data in the table. While processing trace records, the
B-trees and/or hash tables are updated to reflect the current
state of the client machine, including newly loaded jitted
code or unloaded code. Also, 1n the post-processing phase
504, cach trace record 1s processed 1n a serial manner. As
soon as the indicator 1s encountered that all of the startup
information has been processed, trace records from trace
hooks and trace records from timer interrupts are then
processed. Timer iterrupt information from the timer inter-
rupt records are resolved with existing hash tables. In
addition, this information 1dentifies the thread and function
being executed. The data 1s stored 1n hash tables with a count
identifying the number of timer tick occurrences associated
with each way of looking at the data. After all of the trace
records are processed, the iformation 1s formatted for
output in the form of a report.

Alternatively, trace information may be processed on-the-
fly so that trace data structures are maintained during the
profiling phase. In other words, while a profiling function,
such as a timer interrupt, 1s executing, rather than (or in
addition to) writing trace records to a builer or file, the trace
record information 1s processed to construct and maintain
any appropriate data structures. In such an embodiment, a
determination 1s made as to whether an end condition has
occurred (step 506). If the end condition occurs, 1.e. stopping
of the trace, then the operation terminates. Otherwise, the
operation returns to step 502 and continues the profiling of
the program execution and post-profiling operations to gen-
erate trace data structures.
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For example, during the processing of a timer interrupt
during the profiling phase, a determination could be made as
to whether the code being interrupted 1s being interpreted by
the Java interpreter. If the code being interrupted 1s inter-
preted, the method ID of the method being interpreted may
be placed 1n the trace record. In addition, the name of the
method may be obtained and placed in the appropnate
B-tree. Once the profiling phase has completed, the data
structures may contain all the information necessary for
generating a profile report without the need for post-pro-
cessing of the trace {ile.

With reference now to FIG. 6, a flowchart depicts a
process used by a trace program for generating trace records
from processes executing on a data processing system. FIG.
6 provides further detail concerning the generation of trace
records that were not described with respect to FIG. 5.

Trace records may be produced by the execution of small
pieces ol code called “hooks”. Hooks may be inserted in
various ways 1nto the code executed by processes, including
statically (source code) and dynamically (through modifi-
cation of a loaded executable). This process 1s employed
alter trace hooks have already been 1nserted into the process
or processes of interest. The process begins by allocating a
bufler (step 600), such as bufler 404 in FIG. 4. Next, in the
depicted example, trace hooks are turned on (step 602), and
tracing ol the processes on the system begins (step 604).
Trace data 1s recerved from the processes of interest (step
606). This type of tracing may be performed during phases
500 and/or 502. This trace data 1s stored as trace records 1n
the bufler (step 608). A determination 1s made as to whether
tracing has finished (step 610). Tracing finishes when the
trace buller has been filled or the user stops tracing via a
command and requests that the buller contents be sent to file.
If tracing has not fimshed, the process returns to step 606 as
described above.

Otherwise, when tracing 1s fimshed, the bufler contents
are sent to a file for post-processing (step 612). A report 1s
then generated 1n post-processing (step 614) with the pro-
cess terminating thereafter.

With reference now to FIG. 7, a flowchart depicts a
process that may be used during an interrupt handler trace
hook.

The process begins by obtaining a program counter (step
700). Typically, the program counter 1s available 1n one of
the saved program stack areas. Thereaiter, a determination 1s
made as to whether the code being interrupted 1s interpreted
code (step 702). This determination may be made by deter-
mining whether the program counter 1s within an address
range for the mterpreter used to interpret bytecodes.

If the code bemng interrupted 1s interpreted, a method
block address 1s obtained for the code being interpreted (step
704). The method block address may be obtained, for
example, from the information obtained by the sampling
code of the program trace.

That 1s, the Java profiler and sampling code are configured
such that, for each thread created, the profiler obtains control
(via the JVMPI) and requests a work area from the sampling
code for placing the method block address for the thread.
The sampler returns a pointer which 1s passed back to the
profiler. The profiler then informs the Java Virtual Machine
where to write the method block address when 1t starts
interpreting the method. The profiler obtains control when
the thread 1s destroyed and tells the sampling code that the
thread work area 1s no longer required.

A trace record 1s then written (step 706). The trace record
1s written by sending the trace information to a trace
program, such as trace program 400, which generates trace
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records for post-processing in the depicted example. This
trace record 1s referred to as an mterrupt record, or an
interrupt hook.

This type of trace may be performed during phase 502.
Alternatively, a similar process, 1.¢. determining whether
code that was interrupted 1s interpreted code, may occur
during post-processing of a trace file.

A set of processes may be employed to obtain sample-
based profiling information. As applications execute, the
applications may be periodically interrupted in order to
obtain information about the current runtime environment.
This information may be written to a bufller or file for
post-processing, or the information may be processed on-
the-fly into data structures representing an ongoing history
of the runtime environment. FIGS. 8 and 9 describe sample-
based profiling 1n more detail.

A sample-based profiler may obtain information from the
stack of an interrupted thread. The thread 1s interrupted by
a software timer interrupt available in many operating
systems. The user of the trace facility selects either the
program counter option or the stack unwind option, which
may be accomplished by enabling one major code or another
major code, as described further below. This timer 1interrupt
1s employed to sample information from a call stack. By
walking back up the call stack, a complete call stack can be
obtained for analysis. A “stack walk™ may also be described
as a “‘stack unwind”, and the process of “walking the stack™
may also be described as “unwinding the stack.” Each of
these terms 1llustrates a different metaphor for the process.
The process can be described as “walking” as the process
must obtain and process the stack frames step-by-step or
frame-by-frame. The process may also be described as
“unwinding” as the process must obtain and process the
stack frames that point to one another, and these pointers and
their information must be “unwound” through many pointer
dereferences.

The stack unwind follows the sequence of functions/
method calls at the time of the interrupt. A call stack 1s an
ordered list of routines plus oflsets within routines (1.e.
modules, functions, methods, etc.) that have been entered
during execution of a program. For example, 11 routine A
calls routine B, and then routine B calls routine C, while the
processor 1s executing instructions in routine C, the call
stack 1s ABC. When control returns from routine C back to
routine B, the call stack 1s AB. For more compact presen-
tation and ease ol interpretation within a generated report,
the names of the routines are presented without any infor-
mation about offsets. Offsets could be used for more detailed
analysis of the execution of a program, however, ollsets are
not considered further herein.

Thus, during timer interrupt processing or at post-pro-
cessing, the generated sample-based profile nformation
reflects a sampling of call stacks, not just leaves of the
possible call stacks, as 1n some program counter sampling,
techniques. A leat 1s a node at the end of a branch, 1.e. anode
that has no descendants. A descendant 1s a child of a parent
node, and a leafl 1s a node that has no children.

With reference now FIG. 8, a diagram depicts the call
stack contaiming stack frames. A “stack” 1s a region of
reserved memory 1n which a program or programs store
status data, such as procedure and function call addresses,
passed parameters, and sometimes local variables. A “stack
frame™ 1s a portion of a thread’s stack that represents local
storage (arguments, return addresses, return values, and
local variables) for a single function invocation. Every
active thread of execution has a portion of system memory
allocated for 1ts stack space. A thread’s stack consists of
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sequences of stack frames. The set of frames on a thread’s
stack represent the state of execution of that thread at any
time. Since stack frames are typically interlinked (e.g., each
stack frame points to the previous stack frame), i1t 1s often
possible to trace back up the sequence of stack frames and
develop the “call stack™. A call stack represents all not-yet-
completed function calls—in other words, 1t reflects the
function mvocation sequence at any point 1n time.

Call stack 800 includes imnformation i1dentitying the rou-
tine that 1s currently running, the routine that invoked 1t, and
so on all the way up to the main program. Call stack 800
includes a number of stack frames 802, 804, 806, and 808.
In the depicted example, stack frame 802 1s at the top of call
stack 800, while stack frame 808 1s located at the bottom of
call stack 800. The top of the call stack is also referred to as
the “root”. The timer interrupt (found in most operating
systems) 1s modified to obtain the program counter value
(pcv) of the mterrupted thread, together with the pointer to
the currently active stack frame for that thread. In the Intel
architecture, this 1s typically represented by the contents of
registers: EIP (program counter) and EBP (pointer to stack
frame). By accessing the currently active stack frame, it 1s
possible to take advantage of the (typical) stack frame
linkage convention in order to chain all of the frames
together. Part of the standard linkage convention also dic-
tates that the function return address be placed just above the
imnvoked-function’s stack frame; this can be used to ascertain
the address for the invoked function. While this discussion
employs an Intel-based architecture, this example 1s not a
restriction. Most architectures employ linkage conventions
that can be similarly navigated by a modified profiling
interrupt handler.

When a timer interrupt occurs, the {first parameter
acquired 1s the program counter value. The next value 1s the
pointer to the top of the current stack frame for the inter-
rupted thread. In the depicted example, this value would
point to EBP 808a 1n stack frame 808. In turn, EBP 808
points to EBP 806qa 1n stack frame 806, which in turn points
to EBP 804a in stack frame 804. In turn, this EBP points to
EBP 802a 1n stack frame 802. Within stack frames 802-808
are EIPs 80256-808b, which identily the calling routine’s
return address. The routines may be identified from these
addresses. Thus, routines are defined by collecting all of the
return addresses by walking up or backwards through the
stack.

With reference now to the FIG. 9, an 1llustration of a call
stack 1s depicted. A call stack, such as call stack 900 1s
obtained by walking the call stack. A call stack 1s obtained
cach time a periodic event, such as, for example, a timer
interrupt occurs. These call stacks may be stored as call stack
unwind trace records (also called merely “stack unwinds™)
within the trace file for post-processing or may be processed
on-the-fly while the program continues to execute.

In the depicted example, call stack 900 contains a pid 902,
which 1s the process i1dentifier, and a tid 904, which 1s the
thread i1dentifier. Call stack 900 also contains addresses
addrl 906, addr2 908 . . . addrN 910. In this example, addrl
906 represents the value of the program counter at the time
of the interrupt. This address occurs somewhere within the
scope of the interrupted function. addr2 908 represents an
address within the process that called the function that was
interrupted. For Intel-processor-based data processing sys-
tems, 1t represents the return address for that call; decre-
menting that value by 4 results in the address of the actual
call, also known as the call-site. This corresponds with EIP
808H 1n FIG. 8; addrN 910 1s the top of the call stack (EIP
802bH). The call stack that would be returned 1if the timer
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interrupt interrupted the thread whose call stack state 1s
depicted in FIG. 8 would consist of: a pid, which 1s the
process 1d of the interrupted thread; a tid, which 1s the thread
id for the interrupted thread; a pcv, which 1s a program
counter value (not shown on FIG. 8) for the interrupted
thread; EIP 808b; EIP 806b; EIP 8045; and EIP 8025. In
terms of FIG. 9, pcv=addrl, EIP 808b=addr2, EIP
806b=addr3, EIP 804b=addr4, EIP 802b=addr5.

With reference now to FIG. 10, a diagram of a program
execution sequence along with the state of the call stack at
cach function entry/exit point 1s provided. The illustration
shows entries and exits occurring at regular time intervals,
but this 1s only a simplification for the illustration. If each
function (A, B, C, and X i the figure) were mstrumented
with entry/exit event hooks, then complete accounting of the
time spent within and below each function would be readily
obtained. Note 1n FIG. 10 that at time 0, the executing thread
1s 1n routine C. The call stack at time 0 15 C. At time 1,
routine C calls routine A, and the call stack becomes CA and
so on. It should be noted that the call stack 1n FIG. 10 1s a
reconstructed call stack that 1s generated by processing the
event-based trace records 1n a trace file to follow such events
as method entries and method exits.

It should be appreciated that the entire call stack is not
always ascertainable. That 1s, 1t may be diflicult to determine
the caller of an mterrupted routine at the time of the
interruption because the context of the interrupt handler and
the context of the routine being sampled are different. Trying
to follow the stack of the mterrupted routine may require that
memory pages be read in. This may be a problem while the
processor 1s executing at an interrupt level because other
interrupts required for disk access completion may be inhib-
ited and cannot complete. In addition, not all programs
follow the coding conventions required to make the call
stack traversal correct.

The present invention provides a mechanism for dynamic
instrumentation of code i which the entire call stack need
not be known. In fact, the dynamic instrumentation mecha-
nisms of the present imnvention operate on one level of the
call stack at a time. A “hot spot” method or routine 1s first
identified and instrumented to pass control to an interrupt
handler that 1dentifies a caller of the “hot spot” method or
routine. The caller 1s then instrumented. Thus, the call stack
need not be known and a mechanism 1s provided ifor
identifying the caller of a method or routine one level up 1n
the call stack.

As previously mentioned, the present invention provides

an apparatus and method for the dynamic mstrumentation of
code to minimize system perturbation during tracing of the
execution of the code. In a preferred embodiment, the
present invention operates as a daemon process that executes
in a background of a trace of the execution of a program. In
this way, as the trace 1s being performed, trace imnformation
in a trace bufler or trace file may be analyzed by the present
invention to 1dentily “hot spots,” callers of “hot spots™ and
instrument these “hot spots” and callers.

With the apparatus and method of the present invention,
“hot spots” 1n the execution of the code are dynamically
determined during tracing of the execution of the code. A
“hot spot” 1n the execution of code 1s a portion of code that
1s either executed a many times compared to other portions
of the code, a portion of code that consumes a large amount
of processing cycles compared to other portions of code, or
the like. Hot spot detection 1s generally known 1n the art and
any known or later developed mechanism for the identifi-
cation of hot spots may be used without departing from the
spirit and scope of the present invention.
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For example, in a preferred embodiment, the Tprof
mechanism, in which program counter sampling 1s per-
formed, may be used to identily hot spots 1n the execution
of a program. With the Tprof, or other sampling based
tracing mechanisms, for tracing the execution of a program,
when a sample occurs, the mstrumentation software 1denti-
fies the address of the interrupted routine. The address is
used to access a table, where the count for each tick at that
address 1s incremented. Hash tables may be used to maintain
the table of addresses. In some cases, where the range of
addresses tends to be small, an index into a table may be
constructed from the address. For each address 1dentified by
sampling, a count of occurrences at those addresses 1s
maintained. It 1s this count of occurrences that 1s used to
identify hot spots 1n the execution of the program.

After sampling has been 1n process for a predetermined
period of time, the dynamic mnstrumentation facility, reads
the tables and converts the addresses to the symbolic names
of the functions associated with the addresses. An example
mechanism for the conversion of addresses to symbolic
names 1s described 1 commonly assigned and co-pending
U.S. patent application Ser. No. 09/613,101 entitled “Appa-
ratus and Method for Creating an Indexed Database of
Symbolic Data for Use with Trace Data of a Computer
Program.” The basic approach to obtaining symbolic names
from addresses 1s to capture the information related to all
loaded modules at start up time and to continue updating this
information as new loads take place.

The dynamic support, 1.e. updating of the loaded module
information, 1s especially important with JI'Tted code as
such code tends to be dynamic. For JI'Tted code as methods
are JI'Tted, a profiler attached to the JVM receives events as
cach method 1s JITted via the Java Virtual Machine Profiling
Interface (JVMPI) which 1dentifies the method block, load
address, and length of the method. Although methods are
often relI'Ted, the space for the old methods does not tend to
be reused until the entire class 1s unloaded. For this reason,
the last method i1dentified for each address range 1s used to
resolve the mapping from address to symbolic name. For
executables, the process and address can be used to 1dentity
the executable and displacement within the executable. The
address to symbolic name mapping facility then reads the
executable or the symbolic information related to the execut-
able to determine the function being executed at that
address. By mapping the addresses to processes/modules/
functions, the dynamic instrumentation facility now has a
table of functions with counts of number of occurrences of
samples 1n each function.

If the percentage of occurrences 1n a function or set of
functions (compared to other functions) reaches a predeter-
mined threshold, then the functions are deemed candidates
for the dynamic instrumentation of the present invention, 1.e.
the functions are deemed to be “hot spots.” If there are no
functions that reach the desired percentages, then some
predetermined number of functions that have the highest
counts can be used for the dynamic instrumentation.

When a hot spot 1s detected using a hot spot detection
mechanism, such as the Tprolf mechanism noted above, a
caller of the hot spot method or routine (hereafter only
referred to as a method for simplicity), 1s identified and
instrumented for characteristics of imterest. The 1dentifica-
tion of the caller of the hot spot method may be performed
in different ways depending on the type of code, e.g., native,
jtted or interpreted code, of the hot spot method.

For native or jitted code, the hot spot method 1s simply
instrumented by the msertion of a hook that transfers control
to a handler that 1dentifies the caller of the method 1n which
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the hot spot 1s detected. The nserting of a hook of this type
may be performed, for example, by patching 1n a call to a
handler routine.

One approach to instrumenting code, 1.e. msertion of a
hook ito code, that may be used by the dynamic instru-
mentation facility of the present invention 1s to maintain a
table which represents the address and code that 1s replaced
for each function being modified. The code at the entry to the
function 1s copied to the table 1dentifying the address of the
code being modified and a copy of the code that 1s being
replaced. The code 1s then replaced by an instruction that
causes a break or interrupt (for example an 1nt 3 on Intel x86
processors and a break instruction on IA64 processors).

When the code 1s executed, the break or exception handler
determines that the occurrence of the exception i1s due to
inserted code (the address of where the break occurred 1is
available to the handler). The handler then determines which
code was being executed, restores the code and uses a single
step handler to execute the restored instruction. The single
step handler then determines that the code of interest was
just restored and then puts back the 1int 3 or other code so that
the next time 1t 1s executed, the exception will occur.

Another approach 1s to simply modity the code to jump to
a handler that 1s aware of the code that 1s modified and
causes the replaced instruction to be executed. Such an
approach may require careful modification of relative
addresses 11 the instruction being replaced 1s not directly
relocatable.

When the hook 1s executed during execution of this hot
spot method, control 1s passed to the handler method that
performs the functions of identitying the caller of the hot
spot method. When the dynamic instrumentation facility
obtains control from the hooked or changed code, 1t can
determine the caller by a variety of means. If 1t obtains
control at the entry, then the call stack will have the return
address at a known displacement within the call stack. In
other processor architectures, the caller may be 1n a register.
I1 the code 1s badly behaved, it 1s possible that the caller may
be incorrect. However, even 1n this case, the caller of the
caller will most likely be identified and this should give
acceptable results.

The dynamic mstrumentation facility may also determine
the amount of time that the function has been executing. It
may do this by changing the returns (exits), using the same
technique as with the entries, or 1t may do this by modifying
the return information so that the dynamic instrumentation
tacility gets control when the return occurs, and thereby can
record the desired mmformation. Of course the techniques
similar to the instrumentation at entry can be used to ensure
that the dynamic 1nstrumentation returns control to the real
caller after it has completed its processing of the return.

If the code of the hot spot method 1s interpreted, the
information about the hot spot, e.g., the thread identifier and
method block address, may be passed to a Java profiler
routine connected to the Java Virtual Machine (JVM). The
IVM may enable an instrumented JVM to selectively cause
the class/method of the hot spot to call out to the Java
profiler on entry to the method. The profiler can then
determine the caller of the method by requesting the caller
information from a driver application that investigates the
call stack to 1dentify a caller of the hot spot method.

Alternatively, 1f the code of the hot spot method 1s
interpreted, the byte codes of the method may be changed to
insert the necessary instrumentation, e.g., a hook, to a
method that 1dentifies the caller of the hot spot method from
the call stack. With such an implementation, at the time a
class 1s loaded, the bytecode of the class 1s changed to 1nsert
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the hook. This approach requires the instrumentation to
Ooccur on a separate run or runs.

Alternatively, the instrumentation may be inserted, but not
turned on at the time the class 1s loaded. The nstrumented
code may be mstrumented such that a flag 1s set or reset to
control the firing of the hook. A different flag may be used
for each method, so that the control of firing the hook 1s at
the method level. The update of the flags are done via native
methods by the profiler. Thus, the profiler dynamically
changes the values of the flags as determined by the 1nstru-
mentation facility.

Whether the native or jitted code i1s instrumented by
patching a hook into the code, mterpreted code 1s instru-
mented by use of a profiler or changing of byte code, or the
like, the method that called the “hot spot” method, hereatter
referred to as the “caller” method, 1s 1dentified and 1s
dynamically instrumented For an appropriate metric or
characteristic, e.g., wall clock time, cycles, number of
instructions, or the like. The next time the calling method 1s
executed, the dynamically 1nserted hooks are executed.

In addition, once the caller method 1s instrumented 1n this
fashion, 1 a hook was 1nserted 1nto the hot spot method to
identify this caller method, this hook may be removed 1n
order to maintain the number of hooks inserted in the code
at a minimum. The removal of a hook 1s generally known 1n
the art. For example, a hook may be removed from code by
restoring the original code and removing the entries from the
instrumentation facilities or in the case of Java, by turning
ofl the flags that control the firing of the hooks.

The execution of the hooks 1n the caller method may be
continued for a predetermined period to get an understand-
ing of the caller method’s characteristics. The predetermined
period may be, for example, a predetermined number of
invocations of the caller method, a predetermined number of
clock cycles, a predetermined wall clock time, or the like.
When this predetermined period 1s expired, the call stack 1s
walked up to the next level of caller method and the caller
of the currently mstrumented caller method is then instru-
mented.

In other words, the present invention maimtains a list of
callers of instrumented methods. When the predetermined
period for executing inserted hooks in a caller method has
expired, the list of callers 1s read and used to determine one
or more calling methods of the instrumented caller method.
One or more of these calling methods are then mstrumented
by the insertion of hooks to measure given metrics. In
addition, the hooks inserted in the instrumented caller
method (called by the one or more calling methods), are
removed. In this way, the call stack 1s walked up a single
level at a time and instrumented to 1dentily characteristics of
the execution of a program over time. As a result, 1t 1s not
necessary to instrument an entire call stack to obtain the
trace mformation of interest.

In addition, with the present invention, the number of
hooks that are executed during tracing of a program 1s
minimized by reducing the number of hooks required to be
inserted prior to the workload being executed and keeping
the number of hooks that are dynamically mserted to a
minimum. The number of hooks that are dynamically
inserted 1s minimized by performing dynamic mstrumenta-
tion based on detected hot spots and by removing inserted
hooks from methods when one of 1ts calling methods 1s
instrumented.

FIG. 11 1s an exemplary diagram illustrating the primary
operational elements of the present invention. As shown 1n
FIG. 11, the primary operational elements of the present
invention include a Java Virtual Machine (JVM) 1110, a
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dynamic instrumentation facility 1120, a native stack 1130,
a profiler 1140, a driver 1150, a Java stack 1160, and a caller
list data structure 1170. The core of the present invention lies
in the dynamic mstrumentation facility 1120 which performs
the Tfunctions of hot spot detection and dynamic nstrumen-
tation of caller methods. The JVM 1110, native stack 1130,
profiler 1140, driver 1150 and Java stack 1160 are used to
identify a caller of a hot spot method. The caller list data
structure 1170 1s used to identily a calling method of a
currently mstrumented caller method in order to walk up the
call stack.

With the present invention, a trace tool 1100 1s used to
trace the execution of a program. The dynamic instrumen-
tation facility 1120 1s part of this trace tool 1100 and
performs the functions of hot spot detection. When a hot spot
1s detected, a determination 1s made as to whether the hot
spot 1s native or jitted code, or interpreted code. If it 1s
determined that the hot spot method 1s native or jitted code,
the dynamic instrumentation facility patches a hook into the
hot spot method that passes control to a handler routine.

The handler routine determines a caller of the hot spot
method from the native stack 1130 and passes this informa-
tion back to the dynamic instrumentation facility 1120. The
dynamic mstrumentation facility then instruments the caller
method by, for example, patching 1n hooks to routines that
measure metrics or characteristics of the execution of the
instrumented method.

If the hot spot method 1s interpreted code, then the
dynamic instrumentation facility passes control to the JVM
which 1s 1nstrumented to cause the hot spot method to call
the profiler 1140 which determines the caller of the hot spot
method using the driver 1150. The driver 1150 searches the
Java stack 1180 to identify the caller method of the hot spot
method and returns this information to the profiler 1140. The
profiler 1140 then returns this mformation to the dynamic
instrumentation facility 1120 via the JVM 1110. The
dynamic instrumentation facility 1120 then instruments the
caller method.

In addition to hot spot detection and instrumentation of
callers of hot spot methods, the dynamic instrumentation
facility 1120 also monitors the periods which an instru-
mented caller method has executed hooks. For example, the
dynamic mstrumentation facility 1120 may store 1n the caller
l1st data structure 1170 an 1dentification of caller methods, an
identification of whether the caller method has been dynami-
cally mstrumented, as well as a count of the number of times
the caller method’s hooks have been executed. The count
may be compared to a predetermined threshold to determine
if the metrics measured by the routines associated with the

hooks have been measured for a suilicient period so as to
obtain information about the execution characteristics of the

caller method.

If the predetermined threshold 1s met, the caller list data
structure 1170 1s consulted by the dynamic mstrumentation
tacility 1120 to identify one or more calling methods of the
istrumented caller method. One or more of these calling
methods are then instrumented and the hooks in the cur-
rently instrumented caller method are removed by the
dynamic nstrumentation facility 1120. The hooks may be
removed by consulting the tables generated during the
isertion of the hooks, discussed previously, to perform a
reverse operation to restore the code to its original state.

FIG. 12 1s an exemplary block diagram of a dynamic
instrumentation facility according to the present invention.
The elements shown in FIG. 12 may be implemented 1n
hardware, software, or any combination of hardware and
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software. In a preferred embodiment, the elements of FIG.
12 are implemented as software 1nstructions executed by one
Or MOre Processors.

As shown 1n FIG. 12, the dynamic instrumentation facility
includes a controller 1210, a JVM interface 1220, a hot spot
detection mechanism 1230, an instrumentation mechanism
1240, a caller list data structure interface 1250 and a data
collection and storage mechanism 1260. The eclements
12101260 are 1n communication with one another via a
control/data signal bus 1270. Although a bus architecture 1s
shown 1n FIG. 12, the present invention 1s not limited to such
and any architecture may be used that facilitates communi-
cation ol control/data signals between the elements
12101260 without departing from the spirit and scope of
the present mnvention.

The controller 1210 controls the overall operation of the
dynamic mstrumentation facility and orchestrates the opera-
tion of the other elements 1220-1260. The JVM interface
1220 provides an interface to the Java Virtual Machine. The
hot spot detection mechanism 1230 performs hot spot detec-
tion using any ol a number of different hot spot detection
algorithms.

When the hot spot detection mechamism detects the pres-
ence of a hot spot 1n the execution of a program under trace,
the hot spot detection mechanism informs the mmstrumenta-
tion mechanism 1240 of the existence of the hot spot and the
identity of the method in which the hot spot 1s detected. The
instrumentation mechanism 1240 then determines the caller
method of the hot spot method, using one of the various
techniques discussed above based on the type of code
(native, jitted, or iterpreted) for the hot spot method. The
instrumentation mechanism 1240 then imstruments the caller
method for monitoring purposes and adds an entry to the
caller list data structure via the caller list data structure
interface 1250 for the caller method.

This entry may include, for example, an identification of
the caller method, an indication that the caller method has
been instrumented, and a count of the number of times that
the caller method has been executed following instrumen-
tation of the caller method. The entry may further include an
identification of methods called by the caller method and
methods that call the caller method. For example, the caller
l1st data structure may take the form of a linked list or doubly
linked list.

The dynamic instrumentation facility, or other portions of
the trace tool, performs a trace of the program execution and
collect data on the metrics of interest for characterizing the
execution of the program. This data collection and storage 1s
performed by the data collection and storage mechanism
1260. As cach mstrumented method 1s executed during the
trace, the count for the method 1n the caller list data structure
1s 1ncremented.

The instrumentation mechanism 1240 monitors the counts
for each of the caller methods 1dentified 1n the caller list data
structure to determine 1f any count exceeds a predetermined
threshold. If so, the instrumentation mechanism 1240 reads
the caller list data structure via the caller list data structure
interface 1250 to determine the identity of one or more
calling methods of the caller method, 1f any. This may be
done, for example, by looking at the identifications of the
methods that call the caller method or following the links in
the linked list to the next calling method up the chain of
links. It should be noted that the identification of a calling
method of the caller method only traverses one level in the
call stack and does not require identification of each calling
method 1n the chain of method calls used to reach the caller
method.
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One or more of the calling methods are instrumented by
the instrumentation mechanism 1240 and the instrumenta-
tion that was added to the caller method 1s removed. In this
way, the number of inserted hooks 1s maintained at a
minimum level.

FIG. 13 1s a flowchart outlining an exemplary process for
dynamically instrumenting code according to the present
invention. As shown in FIG. 13, the operation starts with the
determination of the existence of a hot spot (step 1310). The
type of method code for the hot spot 1s then determined (step
1315). A determination 1s made as to whether the hot spot
method code 1s native or jitted code (step 1320). If so, then
a hook 1s inserted, e.g., through patching, into the hot spot
method code (step 1325). Upon execution of the iserted
hook, a handler method 1s entered that identifies the caller of
the hot spot method (step 1330).

If the hot spot method code i1s not native or jitted, the
method mnformation 1s passed to an mstrumented JVM and
ultimately to a profiler (step 1335). The profiler determines
the caller of the hot spot method, e.g., by using a driver that
queries a Java stack, or call stack, to identity the caller
method of the hot spot method (step 1340). Thereatter,
entry/exit hooks that monitor a given metric are inserted into
the caller method (step 1345). The metrics are then mea-
sured using the inserted entry/exit hooks 1n order to identily
characteristics of the execution of the program (step 1350).

FI1G. 14 1s a flowchart outlining an exemplary process for
removal of dynamically inserted hooks according to the
present invention. As shown 1n FIG. 14, the operation starts
with a determination as to whether the metrics of the
instrumented method have been measured for a predeter-
mined period (step 1410). If not, the operation ends. Oth-
erwise, a determination 1s then made as to whether one or
more callings method of the instrumented method have been
istrumented (step 1420). If so, the inserted entry/exit hooks
are removed from the mstrumented method (step 1430). If
one or more of the calling methods of the mstrumented
method have not been instrumented, the calling methods are
identified (step 1440) and one or more of the calling methods
are instrumented (step 1450). The operation then returns to

step 1420.

It 1s important to note that while the present invention has
been described 1n the context of a fully functioning data
processing system, those of ordinary skill in the art waill
appreciate that the processes of the present invention are
capable of being distributed in the form of a computer
readable medium of nstructions and a variety of forms and
that the present invention applies equally regardless of the
particular type of signal bearing media actually used to carry
out the distribution. Examples of computer readable media
include recordable-type media, such as a floppy disk, a hard
disk drive, a RAM, CD-ROMs, DVD-ROMs, and transmis-
sion-type media, such as digital and analog communications
links, wired or wireless communications links using trans-
mission forms, such as, for example, radio frequency and
light wave transmissions. The computer readable media may
take the form of coded formats that are decoded for actual
use 1n a particular data processing system.

The description of the present mvention has been pre-
sented for purposes of illustration and description, and 1s not
intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill 1in the art. The embodi-
ment was chosen and described 1n order to best explain the
principles of the invention, the practical application, and to
enable others of ordinary skill in the art to understand the
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invention for various embodiments with various modifica-
tions as are suited to the particular use contemplated.

What 1s claimed 1s:

1. A computer implemented method of instrumenting
code for tracing of a program, comprising:

identifying a hot spot method of the program:

identitying a caller method that calls the hot spot method;

instrumenting the caller method by inserting one or more
hooks into the caller method:

measuring at least one execution characteristic metric

using the inserted one or more hooks in the caller
method;

determiming 1f the at least one execution characteristic

metric has been measured for a predetermine period;
and

11 the at least one execution characteristic metric has been

measured for a predetermined period of time;

identifying at least one calling method that calls the
caller method;

istrumenting the at least one calling method; and

removing the one or more hooks from the caller
method;

storing the at least one execution characteristic metric in

a storage mechanism for analyzing execution of the
program and system resource usage.

2. The computer implemented method of claim 1, wherein
identifving a caller method that calls the hot spot method
includes:

inserting a hook into the hot spot method, wherein the

hook passes control of execution of the hot spot method
to a handler method that 1dentifies the caller method.
3. The computer implemented method of claim 1, wherein
identifying a caller method that calls the hot spot method
includes:
passing hot spot method information to an mstrumented
Java Virtual Machine: and

calling, via the Java Virtual Machine, a profiler associated
with the Java Virtual Machine, wherein the profiler
obtains the i1dentity of the caller method from a Java
stack.

4. The computer implemented method of claim 1, wherein
identifving a caller method that calls the hot spot method
includes determining 1f code of the hot spot method 1is
native, jitted or interpreted.

5. The computer implemented method of claim 1, wherein
identifying a hot spot method includes analyzing trace data
during a trace of the program to i1dentily a portion of code
of the program that 1s either executed many times or
consumes a large amount of processing cycles compared to
other portions of code of the program.

6. The computer implemented method of claim 1, wherein
identifying a hot spot method includes using program
counter sampling to identily the hot spot method.

7. The computer implemented method of claim 6, wherein
a hot spot method 1s 1dentified as a method whose number
ol occurrences of samples 1in the method exceeds a thresh-
old.

8. The computer implemented method of claim 3, wherein
the hot spot method information includes a thread 1dentifier
and a method block address of the hot spot method.

9. The computer implemented method of claim 1, wherein
identifying at least one calling method that calls the caller
method includes:

maintaining a list of calling methods that call the caller

method;

selecting one or more calling methods from the list of

calling methods; and
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instrumenting the one or more calling methods.

10. The computer implemented method of claim 2, further
comprising: removing the hook from the hot spot method
once the caller method 1s instrumented.

11. A computer program product 1n a computer readable
medium for mstrumenting code for tracing ol a program,
comprising;

first instructions for 1dentitying a hot spot method of the

program;

second instructions for identifying a caller method that

calls the hot spot method;
third 1nstructions for instrumenting the caller method by
iserting one or more hooks into the caller method;

fourth instructions for measuring at least one execution
characteristic metric using the inserted one or more
hooks 1n the caller method;

fifth instructions for storing the at least one execution

characteristic metric 1n a storage mechanism for ana-
lyzing execution of the program and system resource
usage;

sixth 1nstructions for determining 1f the at least one

execution characteristic metric has been measured for a
predetermine period: and

seventh instructions responsive to determine that at least

one calling method has not been instrumented for

performing the following;

identifyving at least one calling method that calls the
caller method;

instrumenting the at least one calling method; and

removing the one or more hooks from the caller
method.

12. The computer program product of claim 11, wherein
the second instructions for identifying a caller method that

calls the hot spot method include:
instructions for mserting a hook 1nto the hot spot method,
wherein the hook passes control of execution of the hot
spot method to a handler method that identifies the
caller method.

13. The computer program product of claim 11, wherein
the second 1nstructions for identitying a caller method that
calls the hot spot method include:

instructions for passing hot spot method information to an

instrumented Java Virtual Machine; and

instructions for calling, via the Java Virtual Machine, a

profiler associated with the Java Virtual Machine,
wherein the profiler obtains the i1dentity of the caller
method from a Java stack.

14. The computer program product of claim 11, wherein
the second instructions for identiifying a caller method that
calls the hot spot method include instructions for determin-
ing 1f code of the hot spot method 1s native, jitted or
interpreted.

15. The computer program product of claim 11, wherein
identifying a hot spot method includes using program
counter sampling to identify the hot spot method.
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16. The computer program product of claim 11, wherein
identifving at least one calling method that calls the caller
method 1ncludes:

maintaining a list of calling methods that call the caller

method:;

selecting one or more calling methods from the list of

calling methods; and

instrumenting the one or more calling methods.

17. The computer program product of claim 12, further
comprising;

instructions for removing the hook from the hot spot

method once the caller method 1s 1strumented.

18. An apparatus for instrumenting code for tracing of a
program, comprising:

means for identifying a hot spot method of the program;

means for identifying a caller method that calls the hot

spot method, wherein the means for identifying a caller

method that calls the hot spot method includes:

means for passing hot spot method immformation to an
instrumented Java Virtual Machine, wherein the hot
spot method information includes a thread i1dentifier
and a method block address of the hot spot method;
and

means for calling, via the Java Virtual Machine, a
profiler associated with the Java Virtual Machine,
wherein the profiler obtains the 1dentity of the caller
method from a Java stack;

means for instrumenting the caller method by inserting

one or more hooks into the caller method;

means for measuring at least one execution characteristic

metric using the inserted one or more hooks in the
caller method; and

means for storing the at least one execution characteristic

metric for analyzing execution of the program and
system resource usage.

19. A method of nstrumenting code for tracing of a
program, comprising:

identifying a hot spot method of the program;

identitying a caller method that calls the hot spot method

by 1nserting a hook into the hot spot method, wherein
the hook passes control of execution of the hot spot
method to a handler method that identifies the caller
method;

instrumenting the caller method by 1nserting one or more

hooks 1nto the caller method:;

measuring at least one execution characteristic metric

using the inserted one or more hooks in the caller
method;

storing the at least one execution characteristic metric in

a storage mechanism for analyzing execution of the
program and system resource usage; and

removing the hook from the hot spot method once the

caller method 1s 1mstrumented.
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