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1
HIGHER RADIX LOG MAP PROCESSOR

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present mnvention generally relates to communication
systems.

2. DESCRIPTION OF THE RELATED ART

A Log MAP (Maximum A Posterior1) processor processes
information 1n accordance with the Log MAP algorithm.
The Log MAP processor 1s usually part of a communication
system that receives information which 1s to be decoded
alter such information has been exposed to noisy environ-
ments. The Log Map algorithm 1s a recursive algorithm for
calculating the probability of a processing device being 1n a
particular state at a given time based on received informa-
tion. The probabilities are calculated by forward recursions
and backward recursions over a defined time window or a
block of information. The Log Map algorithm essentially 1s
the recursive calculation of probabilities of being 1n certain
states based on received information and the a prior1 prob-
abilities of going to specific states from particular states. The
states describe the condition of a process that generates the
information that i1s ultimately received. The output of the
Log MAP algorithm 1s called the LLR (Log Likelihoo
Ratio) which represents the probability that the original
information (1.e., information prior to exposure to any noisy
environment and prior to any processing) was a certain
value. For example, for digital information, the LLR repre-
sents the probability that the original information was either
a “0” bit or a “1” bit given all of the received data or
observations. The Log MAP processor 1s a Soft Input Soft
Output (SISO) device.

A SISO device recerves soft information, processes such
information 1n accordance with a particular algorithm or
processing method and outputs soft information that can be
used to make a hard decision about the received information
or can be used for further processing. The soft information
1s probability data on the received information where such
data give an indication of the confidence that 1s to be
attributed to the value of the received information. For
example, 1f received information was decoded to be a “0”
bit, the soft information associated with that recerved infor-
mation gives an indication ol how likely that the original
information was indeed a “0” bit. The SISO device also
generates additional soft information as it 1s processing the
input mformation; the difference between the additional
generated soft information and the soft information at the
input 1s called extrinsic mnformation. In many applications
where a SISO device 1s used, the extrinsic information 1s
recursively inputted as soft mput information to allow the
SISO to generate more reliable soft mmformation about a
particular received information.

In processing digital information, a SISO device that
employs the Log MAP algorithm (1.e., a Log MAP proces-
sor) processes the recetved information one bit at a time. The
Log MAP algorithm and how the Log MAP processor
operates are often represented by a trellis which has a certain
number of states. Each state has a probability associated
with 1t and transition probabilities indicating the likelihood
of transitioning from one state to another state either forward
or backward in time. Referring to FIG. 7, there 1s shown a
portion of a ftrellis for a Log MAP processor; the trellis
shows the possible transitions between states over time.
Note that o/, which is called a forward path metric, repre-
sents the probability of being 1n state 7 at time t for a forward
recursion and 7/, which is called a backward path metric,
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2

also represents the probability of being 1n state 1 at time t
given the received imnformation. Also note that

Y: s

which 1s called a branch metric, 1s the probability of observ-
ing the received imformation given the transition from state
1 to state k and arriving at state k at time t. Although at most
only two states are shown for each of the time instants, FIG.
7 can be, for example, an 8 state Radix-2 trellis where there
are 8 states at each particular time 1nstant representing the
condition of the Log MAP processor. FIG. 7 1s called a
Radix-2 trellis because each state has two transition prob-
abilities entering 1t and two transition probabilities leaving
it. Thus, 1n general a radix-K ftrellis has K branches entering
and K branches leaving each state 1n the trellis.

As communication systems have developed and as other
systems that use Log MAP processors have developed, a
need has emerged to process more information per unit time.
For example, such communication systems or communica-
tion system components as turbo decoders or equalizers
often use Log MAP processors as key components. In order
to have communication systems with increased capacity
and/or throughput, these key components have to process
received mformation at relatively faster rates. Accordingly,
there 1s a need to have Log M AP processors that can process
information fast enough to meet the demands of the latest
communication systems. In many applications, the Log
MAP processing 1s implemented with the use of software.
Generally, software implementations are inherently slower
than hardware implementations of the Log MAP algorithm
because of the time needed to execute software nstructions
within a processor or processing system. Indeed when the
amount ol processing per unit time 1s 1ncreasing, many times
a software implemented algorithm becomes cannot be modi-
fied (1.e., reducing the number of 1nstructions) sufliciently to
meet the processing demand. In hardware implementations,
the required hardware needed to increase the processing
time often 1s complicated and costly because typically more
components are added to perform the processing in parallel.
What 1s therefore needed 1s a Log MAP processor that can
process more mformation per unit of time than a Radix-2
Log MAP processor and avoids the limitations of software
and hardware implementations.

SUMMARY OF THE

INVENTION

The method and apparatus of the present invention pro-
vides a Log MAP processor that processes information in
accordance with a Log MAP algorithm using a Radix-K
N-state trellis where N 1s an 1integer equal to 2 or greater and
K 1s an iteger equal to 4 or greater. The Radix-K N-state
trellis 1s a ligher radix trellis that enables the Log MAP
processor of the present invention to process relatively more
information per unit time. The Log MAP processor has N
states as defined by the trellis and each of the N states can
transition to or from any one of K states as defined by the
forward and backward path metrics and the branch metrics
of the trellis. The forward path metrics are calculated as per
a recursive formulation that uses previously calculated for-
ward path metrics and branch metrics. Sumilarly, the back-
ward path metrics are calculated as per a recursive formu-
lation that uses previously calculated backward path metrics
and branch metrics.
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The Log MAP processor 1s a SISO device that comprises
a Branch Metric Calculator (BMC) which calculates branch
metrics as per the Log MAP algorithm for the N-state
Radix-K processing procedure. The Log MAP processor
turther comprises forward and backward Path Metric Cal-
culators (PMC) configured to receive the calculated branch
metrics and configured to recursively calculate forward and
backward path metrics which are fed to Log Likelihood (L)
calculators having at least two outputs. The PMCs are
coupled to the Log Likelithood calculators. The Log Like-
lihood calculators use the calculated path metrics to calcu-
late log likelithood values. The Log Likelihood calculators
are coupled to subtracting circuits to calculate the difference
between their outputs and an extrinsic information input
resulting 1n a Log Likelihood Ratio (LLR) output of the Log
MAP processor of the present invention. The extrinsic
information mput can be obtained as a previous output of the
Log MAP processor or can be other soft information gen-
erated or received from elsewhere. The Path Metric Calcu-
lators and the Log Likelihood calculators are constructed
with LogSum operators designed with an Add Compare
Select (ACS) architecture. The ACS architecture 1s based on
a definition of the LogSum operation called the Jacobian
relationship; the ACS architecture uses an approximation of
the Jacobian relationship.

BRIEF DESCRIPTION OF THE

DRAWINGS

FIG. 1 1s a block diagram of a Log MAP processor of the
present invention.

FIG. 2 shows a path metric calculator for a forward path
metric for an 8-state Radix-4 Log MAP processor.

FIG. 3 shows the architecture of a LogSum operator based
on an approximation of the LogSum operation.

FIG. 3A shows another architecture of a LogSum opera-
tors also based an approximation of the LogSum operation.

FIG. 4 shows an implementation of the Log Likelithood
calculators of FIG. 1 using LogSum operators.

FIG. 4A shows part of a mapping between a Radix-2
trellis and a Radix-4 trellis.

FI1G. 5 depicts an 8-state Radix-4 trellis used by Log MAP
processor of FIG. 1.

FIG. 6 depicts a portion of an 8-state Radix-4 trellis as per
the Log MAP algorithm with branch metrics and path
metrics calculated 1n accordance with the Log MAP algo-
rithm.

FIG. 7 depicts a portion of a radix-2 trellis used 1n a Log
MAP algorithm.

FIG. 8 1s a block diagram of a turbo encoder.

FIG. 9 show a block diagram of a turbo decoder imple-
mented with Log MAP processors of the present invention.

FIG. 10 1s a chart showing the performance curves of a
radix-2 turbo decoder and a radix-4 turbo decoder.

DETAILED DESCRIPTION

The method and apparatus of the present mvention pro-
vides a Log MAP processor that processes information in
accordance with a Log MAP algorithm using a Radix-K
N-state trellis where N 1s an integer equal to 2 or greater and
K 1s an integer equal to 4 or greater. The Radix-K N-state
trellis 1s a higher radix trellis that enables the Log MAP
processor of the present invention to process relatively more
information per unit time. The Log MAP processor has N
states as defined by the trellis and each of the N states can
transition to or from any one of K states as defined by the
torward and backward path metrics and the branch metrics
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4

of the trellis. The forward path metrics are calculated as per
a recursive formulation that uses previously calculated for-
ward path metrics and branch metrics. Sumilarly, the back-
ward path metrics are calculated as per a recursive formu-

lation that uses previously calculated backward path metrics
and branch metrics.

r

The Log MAP processor 1s a SISO device that comprises
a Branch Metric Calculator (BMC) which calculates branch
metrics as per the Log MAP algorithm for the N-state
Radix-K processing procedure. The Log MAP processor
turther comprises forward and backward Path Metric Cal-
culators (PMC) 1n communication with the BMC and con-
figured to receive the calculated branch metrics and config-
ured to recursively calculate forward and backward path
metrics which are fed to Log Likelihood (LLL) calculators
having at least two outputs. The PMCs are coupled to the
Log Likelihood calculators. The Log Likelihood calculators
use the calculated path metrics to calculate log likelithood
transition terms. The Log Likelihood calculators and an
extrinsic information mput resulting in a Log Likelihood
Ratio (LLR) output of the Log MAP processor of the present
invention. The extrinsic information mput can be obtained as
a previous output of the Log MAP processor or can be other
soit information generated or received from elsewhere. The
Path Metric Calculators and the Log Likelihood calculators
are constructed with LogSum operators designed with an
Add Compare Select (ACS) architecture. The ACS archi-
tecture 1s based on a definition of the LogSum operation
called the Jacobian relationship; the ACS architecture uses
an approximation of the Jacobian relationship.

The method and apparatus of the present invention are
generally designed for an N-state Radix-K Log Map pro-
cessor where N 15 an mteger equal to 2 or greater and K 1s
equal to 4 or greater. Received information 1s applied to the
Radix-K Log MAP algorithm. An N-state Radix-K process-
ing guide (1.e., a trellis) 1s thus provided on which the
application of received information to the Log MAP algo-
rithm 1s based. The branch and path metrics are processed as
per the N-state Radix-K processing guide (1.e., a trellis). The
calculation of the branch and path metrics may be expressed
in terms ol various equations depending on the particular
values of K and N and depending on the type of information
being processed. For example, when the information being
processed 1s 1n digital form (1.e., binary data), the equations
for the branch and path metrics will have specific forms. For
illustration purposes only, the method and apparatus of the
present mvention will be described in the context of an
8-state Radix-4 trellis for processing digital information.
The equations that follow are derived for the 8-state Radix-4
implementation of the present invention used to process
digital information.

Referring to FIG. 1, there 1s shown the LogMap processor
100 of the present invention. The LogMAP processor 1s a
SISO device configured with a BMC 1n communication with
PMCs which are coupled to LL calculators whose outputs
are used to generate the LLR outputs. In particular BMC 102
uses received mformation (i.e., received samples) stored in
an Input Symbol History (ISH) bufler (not shown) to gen-
erate branch metrics (y) in accordance with the following
equation (rate

b —
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systematic code):

1 RO b1 00) (1)
75"; — E((YSI +l¢,€xr)E§rb + YPrEgrb )a

1=0, . . ., N; b=0,1 are binary bits and where E S:’q’f"(f) 1s the
expected value of a received systematic sample at time t for

a hypothesis (supposed decision or “guess” on the value of 10

the original information) corresponding to a transition from
state 1 to state ¢, (1);

@, (i)
s

1s the expected value of a received parity sample at time t for
a hypothesis corresponding to a transition from state 1 to
state ¢,(1). L, ., 1s extrinsic information associated with the
received samples; L, ., can be, for example, a previous
output of the LogMAP processor of the present invention. In
general, the notation ¢, (1) can represent the next state after
a “0” transition (1.e., ¢,(1)) or the next state after a “1”
transition, i.e., ¢,(1). Also, ¢,~"(j) denotes the previous state
for a “0” transition into state j and ¢, '(j) denotes the
previous state for a “1” transition 1nto state j. Y , represents
received parity information, 1.¢., information used for error
correction and detection. Y5 represents received systematic
samples, 1.e., recetved information. It should be noted that
for the Radix-4 8-state example, BMC 102 contains 8 BMC
calculating units. The calculating units comprise typical
digital hardware for calculating the branch metrics as per
equation (1).

It should be noted that generally the branch metric 1s a
measure of proximity of the recerved information relative to
what 1s expected. The branch metrics are calculated for a
stream of information partitioned into time windows. The
current time window 1s W time units 1n length where W 1s
an integer. The next window can also be W time units 1n
length. The set of branch metrics calculated during the

current window 1s stored 1n memory 104 and the next set of

branch metrics for the next window 1s stored in memory 106.
The outputs of memories 104 and 106 are fed to multiplexer
114 which routes one or the other output to forward path
metric calculator 108 depending on which time window 1s
being processed. Memories 104 and 106 are preferably dual
port memories which allow data to be read in one or more
locations while data 1s being retrieved from one or more
other locations for the same memory. For example, for one
memory branch metrics for a current window are being
retrieved from the memory while branch metrics for another
window are being 1nserted into the memory; simultaneously
tor the other memory, branch metrics for the current window
are being transierred and branch metrics for the other
window are being inserted. Then for a subsequent window
the roles of the memories are reversed thus causing a
“ping-pong’”’ ellfect 1n the 1nsertion and/or retrieval of branch
metrics to or from the memories. Generally, a multiplexer 1s
a circuit that more than one mput and routes one of the inputs
to 1ts output based on a control signal applied to 1ts one or
more select mputs.

Although not shown, 1t 1s understood that forward path
metric calculator 108 has various temporary locations where
the different branch metrics are stored to be used to calculate
the forward branch metrics, a. The output of BMC 102 1s
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6

also fed to backward path metric calculator 110. As with
torward PMC 108, backward PMC 110 has various tempo-
rary locations where backward path metrics for time window
W, 1.e., 3, and backward path metrics for the next time
window, 1.€., 3, are stored. The forward PMC 108 and the
backward PMC 110 are thus in communication with BMC
102 meaning that information 1s conveyed (i.e., received
and/or transmit) between BMC 102 and the PMCs. The
forward and backward path metrics for radix-4 are calcu-
lated per the following equations:

(2)

. I B S I 1,
al = logsum ((cyf_ﬂz %01 +7f_”1 ORI +’J/fﬂ (J}’J)a

. P N —1
o e ) B Pl (- Il ) o el ) B e 0N
(ﬂfr—lz ’ + r—l X X "'?’rﬂ )5
11, P N 1.
o (e ) I Pl (P IR R ) N P ) N
(ﬂfr—z + Vi1 + Y: )-,-
P B P R 1
e C P ) B Ml (= Mk 7 )R- Ml ) A DRt ) WY
(ﬂfr—z + Y1 + Vs ))
. oldol) Lo () @ l1)dodp () 3
B, = log sum (( 2 Vel T V2 )a (3)
¢ 1 (@) Ldo (i) dolidk¢y (@olim
r+2 Vil T2 2
¢ Pold (1) L@y (1) @1 ihdgldy M
) Vil TV 2

1 (@1 ) Ly (i) @1 ()@ (g ()
(}8?:2 T Yerl T Vee2 ))

Again, equations (2) and (3) are used for the 8-state
Radix-4 implementation of a Log MAP processor of the
present invention designed to process digital information.
Referring momentarily to FIG. 2, there 1s shown a path
metric calculator comprising adders 204, 206, 208, 210, 212,
214, 216 and 218 and a 4-mput LogSum operator 202 for

calculating a forward path metric as per equation (2) above.
A similar path metric calculator 1s used for the calculation of

a backward path metric as per equation (3) above. LogSum
operator 202 logarithmically combines all of the sums from
adders 204-218. In general LogSum operators 202 performs
an arithmetic operation on 1ts mputs that can be defined by
the following relationship:

LogSum(A,, A,, A,, ... )=max(A,, A,, A,, ... +1(A,, A,,

A;, ... ) where (A, A,, A,, . . . =log(exp(-A,)+exp—
(A, )+exp(-A;)+ . . . ) and where A=A -min(A,, A,,
Ay, oL

The above definition of the LogSum operation is referred
to as a Jacobian relationship, Erfanian, J., Pasupathy, S. and
Gulak, G.: “Reduced Complexity Symbol Detectors with
Parallel Structures for ISI Channels”, IEEE Transactions on
Communications, vol. 42, no. 2/3/4. pp. 1661-16771, Febru-
ary/March/April 1994.

Referring momentarily to FIG. 6, there 1s shown a portion
of a radix-4 N-state trellis that shows how the Log MAP
processor of the present mvention transitions forward from
time t-2 from any one of four states to state 1 at time t and
how the LogMAP processor of the present invention tran-
sitions backward from time t-2 from any one of four states
to state 1 at time t 1n accordance with equations (2) and (3)
respectively.

Referring back to FIG. 1, the calculated branch metrics
and path metrics (backward and forward) are transferred to
Log Likelihood (LL) calculators 122 and 118 which calcu-
late Log Likelithood values. Depending on which time
window 1s being processed, multiplexer 112 will route
branch metrics from either memory 104 or 106 to Log
Likelihood calculator 122. Referring momentarily to FIG. 4,
there 1s shown the architecture for each of the Log Likeli-
hood calculators. It should be noted that because a radix-4
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Log MAP processor 1s being discussed, there are two Log
Likelihood calculators. As stated earlier, the present inven-
tion 1s certainly not limited a radix-4 implementation and
thus the number of Log Likelithood calculators can change
depending on the value of K for a Radix-K Log MAP
processor ol the present mvention. For example, for a
Radix-8 Log MAP processor, there are 3 LL calculators(each
of which has 16 inputs) and for a Radix-16 Log MAP
processor there are 4 LL calculators (each of which has 32
inputs). For ease of explanation and illustration only, the
Radix-4 implementation i1s discussed in detail. The LL
calculators (118, 122) of the Log MAP processor are shown
to be constructed with LogSum operators. For LL 122, there
are eight 4-mput LogSum operators (430, 432, 434, 436,
438, 440, 442 and 444). The outputs of the first four Logsum
operators (1.e., 430-436) are coupled to a 4-input aggregate
LogSum operator 428. The remaining four LogSum opera-
tors have their outputs coupled to another aggregate
LogSum operator 426. The difference between the log
likelithood values at the outputs of the aggregate LogSum
operators and extrinsic information input 1s performed by a
subtractor circuit. Thus LLR 120 of FIG. 1 1s the subtractor
circuit 420 shown i FIG. 4. In other words, the Log
Likelihood ratio at time t 1s provided by subtractor 420.

As with LL 122, LL 118 of FIG. 1 comprises eight
LogSum operators (424, 422, 418, 402, 404, 406, 408 and
410 shown 1n FIG. 4) where the first four LogSum operators
(424, 422, 418 and 402) are coupled to aggregate LogSum
operators 414 and the remaining LogSum operators (404,
406, 408 and 410) are coupled to aggregate LogSum opera-
tor 412. The difference between the outputs of the aggregate
Logsum operators and an extrinsic information input is
performed by a subtractor circuit 416. Thus, LLR 116 of
FIG. 1 1s the subtractor 416 shown in FIG. 4. Depending on
the application, the extrinsic information 1mput can be from
previous LLR outputs of the LogMAP processor or soit
information from elsewhere.

The LL calculators logarithmically combine the path
metrics (backward and forward) and branch metric results to
calculate the log likelihood values. Referring to FIG. §
momentarily, each of the LL calculators has two outputs.
One output represents the contributions (from the branch
and path metrics) to the mformation bit being a “17, 1.e.,
output of logsum operator 428 for LL, and output of logsum
operator 414 for LL, ,. The other output represent the
contributions to information bit being a “0”, 1.e., output of
logsum operator 426 for LL, and output of logsum operator
412 for LL,, . For a Radix-4 Log MAP processor, the trellis
shows that the branch metrics traverse two time unmits when
going from one state to another state; this represents a time
compression with respect to a radix 2 trellis. That 1s, as
shown 1n FIG. 5, the processor transitions from time t to time
t+2; the state of the processor at time t+1 1s not shown.
However, to calculate the LL values, the contributions by the
path and branch metrics for every time transition 1s to be
included. It would thus seem that for a Radix-4 (or Radix-K
where K 1s 4 or greater) case some type of mterpolation 1s
needed to calculate the metrics at the time instants that do
not appear in the trellis. However, judicious selection of the
branch metrics for the higher Radix trellis (i.e., Radix-K
where K 15 4 or greater) eliminates the need for interpolation
calculations; this 1s shown and explained 1n FIG. 4A.

Referring to FIG. 4A, there 1s shown an 8-state radix-2
trellis and an 8-state radix-4 trellis. For the radix-2 trellis
cach of the branches has an information bit associated with
it. In other words, the branches that are labeled with a “0”
are the contributing to the information bit being a “0”. The

10

15

20

25

30

35

40

45

50

55

60

65

8

branches that are labeled with a *“1” are contributing to the
information bit being a “1”. The Radix-4 trellis also has 8
states with only the branches entering state O shown for ease
of explanation and clarity of 1llustration. As with the Radix-2
trellis, each branch in the Radix-4 has information baits
assoclated with 1t. However, the information 1s a 2-bit
information and therefore the particular information associ-
ated with a particular branch 1s obtained from a mapping of
a Radix-2 trellis to a Radix-4 trellis. For example, the
transition from state 3 to state O ({from time t to time t+2) 1s
shown to be associated with the bit pattern 10. The bat
pattern 10 1s obtained by observing the bottom portion of the
Radix-2 trellis from which two transitions for going from
state 3 to state O can be determined. The first transition (from
t to t+1) 1s from state 3 to state 1 (associated information bit
1s “0”) and then the next transition (from t+1 to t+2) 1s from
state 1 to state O (associated information bit 1s “17). The first
transition 1s associated with the Least Significant Bit (LSB)
and the second transition 1s associated with the Most Sig-
nificant Bit (MSB) of the 2-bit pattern. The remaining three
transitions shown entering state O of the Radix-4 trellis are
obtained in a similar fashion. Therefore, because the radix-2
transitions and bit associations can be used to determine the
information bit association for the branches of a radix-4 (or
higher radix) trellis, the contributions of all of the branch
metrics and path metrics to a particular information bit can
be determined for higher radix trellises. Thus, certain branch
metrics and path metrics transitions are grouped together to
calculate all of the contributions to a particular information
bit and thus determine the log likelihood value for that
information bit. Referring to FIG. 4, for example, the
contributions to a “0” bit in the LSB position for the Radix-4
processor are mputted into LogSum operators 438, 440, 442
and 444. The contributions to a “1” bit 1n the LSB position
are inputted into LogSum operators 430, 432, 434, and 436.
The contributions to a “1” bit in the MSB position are

inputted into LogSum operators 424, 422, 418 and 402.
Finally, the contributions to a *“0” bit 1n the MSB position are

inputted into LogSum operators 404, 406, 408, and 410.
Therefore, the mputs of the LL calculators (118, 122)
arranged 1n groups whereby each group represents selected
branch and path metric calculations that contribute to a
particular log likelihood value.

As has been shown above, the Path Metric Calculators
used to calculate the forward and backward path metrics and
the LL calculators used to calculate the log likelithood values
are constructed with LogSum operators. Referring momen-
tarily to FIG. 3, there 1s shown the architecture for the
LogSum operators depicted by FIG. 4. The Jacobian defi-
nition of the LogSum operation 1s replicated here for ease of
reference:

LogSum(A,, A,, A5 ... =max(A;, A,, A, ... )+{(A,, A,
As, .. ) IAL A, As, L L L )=log(exp(—A, ) +exp—(A, )+exp
(-Ay)+ . .. ) and where A,=A -min(A,, A,, A, ... ). The
Logsum definition 1s approximated as follows: =max (A;,
A, ... = IA,, 1 —A,,ol)

LogSum = max(A|, A,, ...)+f(Amax max
1 2

|
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where

AIIIEK

and

AIIIEK

are the two largest values being considered by the LogSum
operator at a particular time. The LogSum operators are
designed using a particular architecture called an Add-
Compare-Select (ACS) architecture that implements the
approximation of the Jacobian definition of the LogSum
operation. Still reterring to FIG. 3, the results of the adders
(not shown, see FIG. 2) at the input to LogSum operator 350
are fed to 4-way comparison circuit 340. Comparison circuit
340 outputs the two largest mnputs (1.e., maximum and next
maximum) of the four inputs. By sending the proper select
control signal over path 390, comparison circuit 340
accesses the value

A

stored 1n Lookup Table (LUT) 360. Adder 380 sums the
LUT value with the output of comparison circuit 340 thus
resulting in a calculated branch or path metric.

Another implementation of the ACS architecture 1s shown
in FIG. 3A. Referring now to FIG. 3A, the results of adders
at the mput of the LogSum operator 300 (not shown; see
FIG. 2) are applied to comparators 304 and 302. The outputs
of the comparators as well as the mputs are applied to
multiplexers 306 and 308 as shown. The outputs of the
multiplexers are again applied to a comparator 310 whose
output along with the outputs of multiplexers 306 and 308
are applied to multiplexer 312. The values for

A

are stored in LUT 314. The outputs of multiplexer 312 and
Lookup Table (LUT) 314 are added with adder 316 to form
the final output of the LogSum operator. It 1s intended that
comparators 304, 302 and 310 along with multiplexers 306,
308 and 312 find the two largest (1.e., maximum and next
maximum) values among the four input values. However,
because at most two of the inputs are being compared to
cach other at any time, the architecture 1n FIG. 3A will yield
the maximum value among the four inputs but not neces-
sarily the next maximum value. Therefore, the implemen-
tation shown 1n FIG. 3 A reduces the accuracy of the calcu-
lated metric and thus adversely aflects the performance of
the LogMAP processor. As will be shown later the degra-
dation 1 performance 1s negligible and thus the architecture
shown 1n FIG. 3A can also be used to construct the LogSum
operators.

Note the output of LogSum operator 428 represents the
probability that a “1” bit was received at time t; the output

Ama:{ - Amax

1 2

Ama:{ - Amax

1 2
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10

of Logsum operator 426 represent the probability that a “0”
bit was received at time t. Similarly the outputs of LogSum
operators 414 and 412 represent the probability that a “1”
and a “0” bit were received at time t+1 respectively.

Referring now to FIG. 5, there 1s shown an 8-state
Radix-4 trellis representing how the LogMAP processor of
the present invention processes incoming information to
generate the branch metrics and use such branch metrics to
calculate the forward and backward path metrics. The pro-
cessing window 1s W time units in length and note that the
odd time instants (t=1, 3, 5, . . . ) are not shown. Also for
clarity of 1llustration, the branch metrics for each of the
transitions are not shown. It will be understood, however,
that the branch metrics and path metrics are calculated
according to equations (1), (2) and (3) above. The forward
recursion starts at time t=0 and 1s mnitialized using the
forward path metrics at the end of the previous window. The
forward and backward processing are done for a block of
information occurring during a time window of W times
units as shown.

Each state in the Radix-4 trellis has four branches entering,
it and four branches emanating from it. The trellis 1s
compressed 1n time because a transition from one state to
another state encompasses two information bits as compared
to one information bit for the Radix-2 trellis. Theretore, for
a Radix-4 trellis, the LogMAP processor of the present
invention processes two bits at a time and has two LLR
outputs corresponding to the two bits. Accordingly, for a
Radix-8 trellis (not shown), the transition from one state to
another state encompasses three information bits. For a
Radix-16 trellis (not shown), a transition from one state to
another state encompasses four information bits. Thus, gen-
crally for a Radix-K trellis where K 1s equal to 4 or greater,
a transition from one state to another encompasses log, K
information bits. As the LogMAP processor 1s transitioning
from one state to another state starting at time t=0 to time
t=W, 1t 1s processing the forward path metrics and the branch
metrics as per equations (1) and (2). At time t=W, the
forward recursion stops and the backward recursion starts.
Dummy backward path metrics from the next window are
used to iitialize the backward recursion in time window W.
In other words, the backward recursion actually starts from
part of the next window.

Retferring to FIGS. 1 and 5, at time t=0 the forward
recursion starts for window W. The calculated branch met-
rics are stored in memory 104 and are transferred from
memory 104 via multiplexer 114 to PMC 108 at the proper
time stants. The forward path metrics calculated by PMC
108 are transtferred to LL calculators 118 and 122. Also, the
branch metrics from memory 104 are transierred via mul-
tiplexer 112 to LL 118 and 122 and PMC 110. Thus LL 122
and 118 are 1n communication with BMC 102 meaning that

information 1s conveyed (1.e., received and/or transmit)
between the LLs and BMC 102. At time t=W, branch metrics

from BMC 102 are transferred to PMC 110 to allow PMC
110 to calculate the dummy backward path metrics, [3,,; that
1s, mitially branch metrics from the next window are first
transferred to PMC 110 to allow PMC 110 to calculate the
B35’ s. Another approach 1s that the $,5°s could have been
prestored in BMC 102 and transierred to PMC 110 at time
t=W. PMC 110 has diflerent memory locations for storing
the calculated dummy backward path metrics (1.e., p,) and
for storing the other backward path metrics (1.e., [3). The two
types of backward path metrics are then transferred to LL
118 and 122. At the next time window, the branch metrics
from memory 106 are transierred to LL calculators 118 and

122 and PMC 110 via multiplexer 112. The branch metrics
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from memory 106 are also transferred to forward PMC 108
and LL calculators 118 and 122 via multiplexer 114. The
path metrics are calculated 1n the same manner as the
previous window.

Referring now to FIG. 1 only, the LL calculators 118 and
122 logarithmically combine the path metrics and the branch
metrics as per the LogSum operation to generate log like-
lthood values. Thus, two information bits can be determined
(for each trellis time from t to t+2) from the outputs of the
Radix-4 Log MAP processor discussed above. Thus, a turbo
decoder constructed with Log MAP processors of the
present invention are able to process relatively more infor-
mation per unit time than radix-2 turbo decoders. It should
be noted that in general for an N-state Radix-K Log MAP
processor, there are a total of 4log, K BMC operators, log,
K PMCs, log, K BMCs and the number of PMC’s remain
the same. Although the number of PMCs remain the same,
the complexity of the PMCs increases as K increases.

Because the higher radix LogMAP processor of the
present invention can process relatively more information
per unit time, many applications that use LogMAP proces-
sors can now benefit from the device of the present inven-
tion. For example, turbo decoders and channel equalizers
use SISO devices such as the LogMAP processor of the
present mvention to decode recerved information that has
been exposed to various anomalies of a communication
channel.

A turbo decoder 1s a device that 1s used to decode
information that has been encoded by a turbo encoder and
possibly has been processed by other coding devices. Refer-
ring to FIG. 8, there 1s shown an example of a turbo encoder
800 comprising Recursive Systematic Coders (RSC) 802
and 804 and interleaver 806. Interleaver 806 perform well
known interleaving operations on its mput and outputs its
result to RSC 804. Interleaving 1s the alteration 1n time of a
stream of information bits, 1.e., changing the time order of
information bits. Both RSC 102 and 104 perform coding
operations on the information bits and the interleaved infor-
mation bits respectively. RSC 102 and 104 generate parity
bits X, and X, respectively as a result of their coding
operations. Also, each information bit 1s essentially repli-
cated and 1s called the systematic bit (1.e., Xg). The X, , and
Xp, parity bits and the systematic bit are transmitted over a
communication channel that typically has channel anoma-
lies such as amplitude fading and phase jitter and thermal
noise at the receiver front end. The channel anomalies
introduce error in the transmitted mnformation. The received
parity bits become Y, and Y, and the systematic bit
becomes Y . and are referred to as samples.

Referring now to FIG. 9, turbo decoder 900 comprises
LogMAP processors 902 and 906 constructed 1n accordance
with the present mvention. Turbo decoder 900 further com-
prises 1terleaver 904 and deinterleaver 908. Deinterleaver
908 performs a reverse interleaving operation. Received
samples Y and Y are applied to LogMAP processor 902
and recetved sample Y, 1s applied to LogMAP processor
906 as shown. Turbo decoder 900 generates a Log Likel:-
hood Ratio output. Interleaver 908, deinterleaver 904 and
LogMAP processors 902 and 906 all share buflers and
memory locations to retrieve and store extrinsic information.
When the LogMAP processors process information as per
Radix-4 trellis, the turbo decoder 1s able to decode 2 bits per
unit time. For Radix-8, the turbo decoder 1s able to decode
3 bits per unit time and for Radix-16—4 bits per unit time.
To ensure that multiple memory accesses can be done at the
same time, a repetitive extrinsic information memory archi-
tecture 1s employed. The extrinsic information from the
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vartous components of the turbo decoder are stored in
vartous memory blocks called extrinsic information
memory.

In particular, for a Radix-4 turbo decoder, because two
information bits are being processed per unit time, the turbo
decoder retrieves relatively more information per unit time.
Referring again to FIG. 9, boundary 910 symbolically
represents the two memory spaces (for interleaver 904,
deinterleaver 908 and the LogMAP processors) that are
addressed differently. The side of boundary 910 where Log
MAP processor 902 1s located has memory for storing
extrinsic information where such information is stored in
memory having sequential memory addresses. In other
words, the information that 1s to be retrieved 1s located 1s
contiguous memory locations. However, because of the
alteration 1n the time order of extrinsic information stored on
the other side of boundary 910 (i.e., side where LogMAP
processor 906 1s located), the extrinsic information i1s not
retrieved from sequential memory locations.

Unlike the sequential case where only one memory
address need be known and the other memory address 1s
simply the next higher address, two distinct memory
addresses are used to retrieve the extrinsic information. The
retrieval of information from two memory addresses 1n a
sequential manner therefore reduces the speed of operation
of the turbo decoder. To resolve this decrease 1n speed of
operation, the extrinsic memory 1s replicated a certain num-
ber of times depending on the radix value of the turbo
decoder. For example, for a Radix-4 turbo decoder, the
extrinsic memory 1s duplicated. For a Radix-8 turbo decoder,
there are three blocks of extrinsic memory with same
addresses and same contents. In general, for a Radix-K turbo
decoder there are log, K blocks of extrinsic information
memory where all of them have the same addresses and the
same contents stored at the addresses; that 1s, the extrinsic
memory 1s replicated and corresponding memory addresses
contain 1dentical information at all times. In this manner
multiple retrieval of extrinsic information can be done at a
particular instant. Note that the multiple addresses generated
can have the same value, but the actual values retrieved will
be from different memory blocks. The replicated extrinsic
information memories are independent of each other mean-
ing that accessing information from one extrinsic memory
does not, 1n any manner, aflect any other extrinsic memory.

Referring now to FIG. 10 there 1s shown a performance
comparison chart of a Radix-4 turbo decoder (constructed

with LogMAP processors of the present invention) versus a
Radix-2 turbo decoder. For an equal BER (say 107%), the
signal to noise ratio

&)

of the radix-4 turbo decoder 1s approximately 0.05 dB less
than the signal to noise ratio of the radix-2 decoder. This
difference 1n signal to noise ratio 1s negligible and for
practical purposes 1s of very little or no sigmificance. The
negligible deterioration 1s due to the approximations made in
the design of the PMCs. Therefore, for practical purposes,
the radix-2 and radix-4 turbo decoders have virtually the
same performance with the radix-4 turbo decoder being able
to process information at a relatively faster rate.
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We claim:

1. A processor comprising:

a device having at least one mput for recerving at least one
input signal and having at least one output where the
device processes the received signal based on an
N-state Radix-K trellis to produce at least one output
signal where K 1s an integer equal to or greater than 4
and N 1s an 1mteger equal to or greater than 2, and the
device has at least one LogSum operator having a
comparison circuit and a lookup table where the com-
parison circuit receives at least four branch and path
metric summation and/or path metric mnputs and selects
a largest valued input and a value of one other 1nput as
two comparison outputs, and where the two compari-
son outputs are used to select a value from the lookup
table for determining an approximation of a Jacobian
definition of a LogSum operator.

2. The processor of claim 1 where the device 1s a LogMAP
processor comprising a Soit Input Soit Output device that
processes information 1n accordance with a LogMAP algo-
rithm using a Radix-K N-state trellis where K 1s an integer
equal to 4 or greater and N 1s an integer equal to 2 or greater.

3. The processor of claim 2 where the Soft Input Soft
Output device comprises:

at least one branch metric calculator; at least one forward
path metric calculator and at least one backward path
metric calculator where both calculators are 1n com-
munication with the branch metric calculator;

at least one Log Likelihood calculator coupled to the path
metric calculators; and

at least one subtracter circuit having an extrinsic infor-
mation mput and coupled to the at least one Log
Likelihood calculator to provide at least one Log Like-
lithood Ratio output wherein the path metric calculators
and the at least one Log Likelihood calculator are
constructed with LogSum operators which are designed
based on an approximation of a Jacobian definition of
a LogSum operation.

4. The processor of claim 3 where the extrinsic informa-
tion mput 1s obtained from a previous Log Likelihood Ratio
calculation of the LogMAP processor.

5. The processor of claim 3 where the Logsum operators
are constructed using an Add-Compare-Select architecture.

6. The processor of claim 3 where the at least one branch
metric calculator 1s in communication with the at least one
Log Likelihood calculator.

7. The processor of claim 3 where the calculated branch
metrics for a defined time Window are stored in a memory
device assigned to that time window and coupled to the at
least one branch metric calculator.

8. The processor of claim 3 where there are N branch
metric calculators, a total of log2 K path metric calculators
and a total of log2 K Log Likelihood calculators.

9. The processor of claim 3 where the at least one Log
Likelihood calculator has inputs arranged in at least one
group where each group represents selected branch and path
metric calculations that contribute to a particular log likeli-
hood value.
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10. The processor of claim 9 where the branch metrics are
selected based upon information bit mappings associated
with the associated particular log likelihood calculations,
and only existing path metric results are used.

11. A method of processing information using LogMAP
algorithm, the method comprises the step of:

providing an N-state Radix-K processing guide on which

the application of the information to the LogMAP
algorithm 1s based where K 1s an integer equal to 4 or
greater and N 1s an integer equal to 2 or greater, and the
method has at least one LogSum operator having a
comparison circuit and a lookup table where the com-
parison circuit receives at least four branch and path
metric summation and/or path metric mputs and selects
a largest valued 1nput and a value of one other of the
iputs as two comparison outputs, and where the two
comparison outputs are used to select a value from the
lookup table for determining an approximation of a
Jacobian definition of a LogSum operator.

12. The method of claim 11 where the step of providing
an N-state Radix-K procedure comprises the steps of:

recerving the information;

calculating branch metrics based on the received infor-
mation and extrinsic information;

calculating path metrics based on the calculated branch
metrics;

calculating log likelihood values from the branch metrics
and path metrics where the calculated log likelihood
value and the calculated path metrics are obtained
through logsum operations based on an approximation
of a Jacobian definition; and

calculating a log likelihood ratio through a subtraction
operation of the calculated log likelithood values and
extrinsic information.

13. A turbo decoder for decoding information, the turbo
decoder comprising:

a first SISO device and a second SISO device both of
which process mformation in accordance with a Log-
MAP algornithm based on an N-state Radix-K ftrellis
where N 1s an 1mteger equal to 2 or greater and K 1s an
integer equal to 4 or greater where the SISO devices are
coupled to an interleaver and a deinterleaver, and where
cach SISO device has at least one LogSum operator
having a comparison circuit and a lookup table where
the comparison circuit recerves at least four branch and
path metric summation and/or path metric mputs and
selects a largest valued mput and a value of one other
of the mputs as two comparison outputs, and where the
two comparison outputs are used to select a value from
the lookup table for determining an approximation of a
Jacobian definition of a LogSum operator.

14. The turbo decoder of claim 13 where the SISO
devices, the interleaver and deinterleaver have log,K repli-
cated memory blocks for storing extrinsic memory informa-
tion.
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