12 United States Patent

Glasco

US007107408B2

US 7,107,408 B2
Sep. 12, 2006

(10) Patent No.:
45) Date of Patent:

(54) METHODS AND APPARATUS FOR
SPECULATIVE PROBING WITH EARLY
COMPLETION AND EARLY REQUEST

(75) Inventor: David B. Glasco, Austin, TX (US)
(73) Assignee: Newisys, Inc., Austin, TX (US)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 134(b) by 454 days.
(21) Appl. No.: 10/106,299
(22) Filed: Mar. 22, 2002
(65) Prior Publication Data
US 2003/0182508 Al Sep. 25, 2003
(51) Int. CIL
Go6l’ 12/08 (2006.01)
GO6F 12/16 (2006.01)
(52) US.CL ..., 711/141; °711/118; 711/128;
711/130; 711/146
(58) Field of Classification Search ........ 711/141-146,
711/130, 147-149, 135-136, 119-122, 118,
711/117
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

6,385,705 Bl 5/2002 Keller et al. ................ 711/154
6,490,661 B1 12/2002 Keller et al. ................ 711/150
6,615,319 B1* 9/2003 Khare et al. ................ 711/141
6,633,945 B1* 10/2003 Fuetal. .........oooinill. 710/316
6,754,782 B1* 6/2004 Arimilli et al. ............. 711/144
6,760,819 B1* 7/2004 Dhong et al. ............... 711/146
6,799,252 B1* 9/2004 Bauman ..................... 711/149
6,839,808 B1* 1/2005 Gruner et al. .............. 711/130
OTHER PUBLICATTONS
HyperTransport™I/QO  Link  Specification  Revision  1.03,

HyperTransport™ Consortium, Oct. 10, 2001, Copyright © 2001
HyperTransport Technology Consortium.

U.S. Appl. No. 10/106,426, filed Mar. 22, 2002, Oflice Action
mailed Nov. 21, 2005.

U.S. Appl. No. 10/145,438, filed May 13, 2002, Office Action
mailed Nov. 21, 2005.

U.S. Appl. No. 10/145,439, filed May 13, 2002, Oflice Action
mailed Nov. 21, 2005.

* cited by examiner

Primary Examiner—Matthew Kim
Assistant Examiner—Zhuo H. L1
(74) Attorney, Agent, or Firm—Beyer Weaver & Thomas,

LLP

(37) ABSTRACT

According to the present invention, methods and apparatus
are provided for increasing the efliciency of data access 1n
multiple processor, multiple cluster systems. A cache coher-
ence controller associated with a first cluster of processors
can determine whether speculative probing can be per-

5,195,089 A *  3/1993 Sindhuetal. .............. 370/235 formed before forwarding a data access request to a second
5,958,019 A ) 9/1999 Hagersten et al. cluster. The cache coherence controller can also forward the
6,067,603 A 5/2000 Carpenter et al. .......... 7117141 data access request to the second cluster before receiving a
6,167,492 A 12/2000 Keller et al. ................ 711/154 rohe response
6,292,705 B1* 9/2001 Wang et al. ...oocovevmn.... 700/5 P PORSE.
6,338,122 B1* 1/2002 Baumgartner et al. ...... 711/141
6,374,331 B1* 4/2002 Janakiraman et al. ....... 711/141 33 Claims, 15 Drawing Sheets
L
/ 905
CPU C I C CPU C C C C
901-1 [ 1903-11 ] 907 | 49032 "eo12{ |903-3 903- 903-5 903-6
V|
Request 909
Cluster 500 \ . ]
\ L
' 025
: f
C MC L / C C c || MC
921-1] | 923-1 527 [ 921-3 021-4 921-5[ | 923-2
\
Home 921-2
Cluster 820 -\ -
VOTE
& 045
¢ (| L C ‘
041- 947 || 9412
1
Remote 949

Cluster 940




U.S. Patent Sep. 12, 2006 Sheet 1 of 15 US 7,107,408 B2

Figure 1A
{ D D
~—111d
Processing (¢ i Processing
Cluster 101 R Cluster 103
__ |
llla\ ] éllle . % ’_‘"_'_'f;'/_lllc
/—1 11b
Processing [€ B —  Processing
Cluster 105 T ,’ Cluster 107
Figure 1B
Processing | Processing I
Cluster 121 ¢ | _,|  Cluster 123
141 a—/}lJ J ‘FI 41d
Switch 131
141b — 14]1c
lji:{::: t:i:{?:f_ )
—
Processing [* , »  Processmg

Cluster 125 Cluster 127




o\
aa
L
O i
~ euIyg voz ] .
»0Id
= _
~ d .H el Elinte
2 J:A _
- 0ZC O/1 < 5 917 O/
- OTZ YoHUMS O/1
~——P907C umomﬁ./
| — 2307 L I+ ,
T\, ¥ Ei P80T - )
s PZOT 108880017 « ) 7 ~ — W_c‘m S ]
- < —— i 070¢ 10882001J
pnIu pimn ¥ P -
] W} e
3 .
— A A PCLe
S | | > ﬁ..ﬁommm sy1g—" 4 [ A
= PYIT : ay1e
7o | i N | — -
_ N ﬂ““m.m.‘...... | ﬁr_x > ¢ 1 10882001g lv‘lllw\lm
| _;— N-QRO7 o ﬁéﬂl\\i N JAL » 3JTAIDG _ BV [T
= | | _ 9807~ |
S I N-fe
S 2 v y ! Wiz ! |
-~ _. T lll-lr:l.,'LJ
3 nes || |
y— d —
= | QLT IeTionuo) )
>, Q707 108S9001J - ——>  90U2Is0N — |
/. | - S STIoR p T BE()Z 10589001 |
BTET— HOE U
| qCET
B - . | l._;r. _ -
Kﬂoom r - LR P, N _H
k — | Ve - ||\\
N Y YT — =0T
ERQT !
; \
S12]1STI]Y 210UI
00z—" L) 230ty

U.S. Patent

z a3y




US 7,107,408 B2

Sheet 3 of 15

Sep. 12, 2006

U.S. Patent

6Q€ Iopng
suipueqd

"_

[ 1€ 90BIISIU] JUSISTOOUON 1#
e

COg auIduy 1000101g

LOE S0BLIIU] JUSISON

T

ﬁ( 0t?




US 7,107,408 B2

Sheet 4 of 15

Sep. 12, 2006

U.S. Patent

(A0

10V
Ndo

} 9INS1

[-£0p

[-10¥
(1dD




US 7,107,408 B2

Sheet 5 of 15

Sep. 12, 2006

U.S. Patent

£~ 10§

[1dO

115

SOPON JBO0T-UON]

—

. - |z-108
Ndd

VS 231

1-e0§

1-108

_DmU_




US 7,107,408 B2

Sheet 6 of 15

Sep. 12, 2006

U.S. Patent

| C-1¢CS

IES

SSPON] [BOOT-UON

LTS

d¢ 231y

| 1-12S



US 7,107,408 B2

Sheet 7 of 15

Sep. 12, 2006

U.S. Patent

| (274

A4S
1dD

DS o3

[GS
"1
9323
1 |
| 219 - | LYS 1-€75
NdD [ 8| | ~ [
1

eSS

SOPON [BOOT-UON]

[-1%6
1dO




US 7,107,408 B2

Sheet 8 of 15

Sep. 12, 2006

U.S. Patent

¢ E96¢

O |

€-196

£1d

\ 1.m
¢19§ L9S

¢

(S 2In31yq

1dO 1

NV

1-£9¢

IIN

GLS

SOPON 1800 T-UON

1195
0do |




US 7,107,408 B2

(R4
OW

Sheet 9 of 15

Sep. 12, 2006

U.S. Patent

m:

129

—

=109
{1dD

$-£09

£-109

(1dO

679

019 118N}

[-£Z9

210Uy

079 WISND
QWOH

009 19381y

[-£09

15anbayy

[-109
1dO




US 7,107,408 B2

Sheet 10 of 15

Sep. 12, 2006

U.S. Patent

el

| DA

H1¢L

c-10L
ndan

dt0L

v-1CL

¢ 104
[1dD

[ 2INS1

[-ECL

DA

OpL £=381[D
3]0y

T 0ZL 18N
QWIOY

Q0L 41811
1Senbayy

~10L
9, [1dD |




U.S. Patent Sep. 12, 2006 Sheet 11 of 15 US 7,107,408 B2

Figure 8

| ldentifies Mémm}; Line
| Associated With A |
- Request From A Request

SO Cluster Processor *

x SPBCIIIEL' I

503
Probing Be

805 Proceed With Speculative |
Probing

p—

821 * T
Proceed Without

Received Probg : -
eived Pre Speculative Probing

sl7 Associated With

el
S

Request Cluster —
2T0CESS0

NO {
Y * |

Ves | Provide Probe

| Information To I
l SU5 ™ Intervening Processor

— i P —— e -—.I

| 823
.

] Provide Probe S .
. | Proceed Without
811 Iﬂf%iﬁ?&?%ii i?;:g?ast | Speculative Probing |

1 — T n
SRR Wait For Responses |
]_ | 313

i




US 7,107,408 B2

Sheet 12 of 15

Sep. 12, 2006

U.S. Patent

0¥6 193SN]D)
44 210D
T /
| 2-1v6 L¥6 1-196
0 8 8
16 \
g
e .. 0T6 123sn[)
¢ 176 OTIOH
€76 5-176 b-176 176 126 1-£26 1-126
- _
oW [T | o | O | | O 1 Y] om 1 o
CT6
T
) — 006 193sn]D
606 15onboy
i
Y _ X “ .I - .
9-€06 5-€06 ¥-€06 | C-€C06 Z-106 | | Z-£06 106 1-£06 1-106
-« <+
o 5 O o ndo o 1 [ ] o +..._ ndo
<06 \
T
6 2131




U.S. Patent Sep. 12, 2006 Sheet 13 of 15 US 7,107,408 B2

Figure 10

Start

4 —_

!
1001 [dentify Cache State Tn |
Controller |

|

Cache State =
Shared?

1003

NO Yes

Cache State =
Owned?

1005

No

Cache State =
Exclusive?

1007

1017

1015

Types Of Access
Requested?

No Yes—

Cache State =
Modified?

1009

No
Y

1011 Can Not Complete

5

Can Complete o
Transaction Locaﬂy J :
Write

Transaction Locally r




US 7,107,408 B2

—— QP11 =200
6viT IJ0UIY

Sheet 14 of 15

Sep. 12, 2006

U.S. Patent

1 D
11
1
|
- I e . .
¢iclt 1915N1) QWO
)
.. 4 . | ﬁ
7-€211 G121 1 71T 1 NtAI P LZ11 |,_|1-eeit|,_|1-121T
SN ] D 3 e 1 O | O |
_ = By § o~
| SZIT c
S\
| T ..,Illlrln 0071 I8SND
| 6011 1sanboy
I _/
9-€011 6-c011|  |vco11y |e-€011!  lZ-1011] |Z-€011 011 1-6011] |1-1011
o 3 3 y T lno 51 o unLEu
SO11
g
11 2m81g



U.S. Patent

Sep. 12, 2006 Sheet 15 of 15

Figure 12

1201 Allocate Transaction
\‘] Identifier

e

Y

]

1203 —_| Probe Local And Remote |
Clusters I

Y

Local Transaction
Completes

A 4

1207 ~\ | Maintain Transaction
Identifier

|

All Remote Probe
Responses Received:

1209

Yés
e

1211 '\J Clear Transaction |
Identifier

US 7,107,408 B2



us 7,107,408 B2

1

METHODS AND APPARATUS FOR
SPECULATIVE PROBING WITH EARLY
COMPLETION AND EARLY REQUEST

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s related to concurrently filed U.S.
application Ser. No. 10/106,426, entitled METHODS AND

APPARATUS FOR SPECULATIVE PROBING AT A
REQUEST CLUSTER and to concurrently filed U.S. appli-
cation Ser. No. 10/106,430, entitled METHODS AND
APPARATUS FOR SPECULATIVE PROBING WITH
EARLY COMPLETION AND DELAYED REQUEST, the

disclosures of which are incorporated by reference herein for
all purposes.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to accessing data
in a multiple processor system. More specifically, the
present 1mvention provides techmques for improving data
access elliciency while maintaining cache coherency in a
multiple processor system having a multiple cluster archi-
tecture.

2. Description of Related Art

Data access 1n multiple processor systems can raise 1ssues
relating to cache coherency. Conventional multiple proces-
sor computer systems have processors coupled to a system
memory through a shared bus. In order to optimize access to
data in the system memory, individual processors are typi-
cally designed to work with cache memory. In one example,
cach processor has a cache that 1s loaded with data that the
processor frequently accesses. The cache can be onchip or
offchip. Each cache block can be read or written by the
processor. However, cache coherency problems can arise
because multiple copies of the same data can co-exist in
systems having multiple processors and multiple cache
memories. For example, a frequently accessed data block
corresponding to a memory line may be loaded into the
cache of two different processors. In one example, 11 both
processors attempt to write new values into the data block at
the same time, different data values may result. One value
may be written 1nto the first cache while a different value 1s
written 1nto the second cache. A system might then be unable
to determine what value to write through to system memory.

A variety of cache coherency mechanisms have been
developed to address such problems 1n multiprocessor sys-
tems. One solution 1s to stmply force all processor writes to
g0 through to memory immediately and bypass the associ-
ated cache. The write requests can then be serialized before
overwriting a system memory line. However, bypassing the
cache significantly decreases efliciency gained by using a
cache. Other cache coherency mechamisms have been devel-
oped for specific architectures. In a shared bus architecture,
cach processor checks or snoops on the bus to determine
whether 1t can read or write a shared cache block. In one
example, a processor only writes an object when 1t owns or
has exclusive access to the object. Each corresponding cache
object 1s then updated to allow processors access to the most
recent version of the object.

Bus arbitration can be used when both processors attempt
to write the same shared data block in the same clock cycle.
Bus arbitration logic can decide which processor gets the
bus first. Although, cache coherency mechanisms such as
bus arbitration are effective, using a shared bus limits the

10

15

20

25

30

35

40

45

50

55

60

65

2

number of processors that can be implemented 1n a single
system with a single memory space.

Other multiprocessor schemes 1nvolve imndividual proces-
sor, cache, and memory systems connected to other proces-
sors, cache, and memory systems using a network backbone
such as Fthernet or Token Ring. Multiprocessor schemes
involving separate computer systems each with 1ts own
address space can avoid many cache coherency problems
because each processor has 1ts own associated memory and
cache. When one processor wishes to access data on a
remote computing system, communication 1s explicit. Mes-
sages are sent to move data to another processor and
messages are received to accept data from another processor
using standard network protocols such as TCP/IP. Multipro-
cessor systems using explicit communication including
transactions such as sends and receives are referred to as
systems using multiple private memories. By contrast, mul-
tiprocessor system using implicit commumnication ncluding
transactions such as loads and stores are referred to herein as
using a single address space.

Multiprocessor schemes using separate computer systems
allow more processors to be mterconnected while minimiz-
ing cache coherency problems. However, it would take
substantially more time to access data held by a remote
processor using a network infrastructure than 1t would take
to access data held by a processor coupled to a system bus.
Furthermore, valuable network bandwidth would be con-
sumed moving data to the proper processors. This can
negatively impact both processor and network performance.

Performance limitations have led to the development of a
point-to-point architecture for connecting processors 1 a
system with a single memory space. In one example, 1ndi-
vidual processors can be directly connected to each other
through a plurality of point-to-point links to form a cluster
ol processors. Separate clusters of processors can also be
corrected. The point-to-point links significantly increase the
bandwidth for coprocessing and multiprocessing functions.
However, using a point-to-point architecture to connect
multiple processors in a multiple cluster system sharing a
single memory space presents 1ts own problems.

Consequently, 1t 1s desirable to provide techniques for
improving data access and cache coherency in systems
having multiple clusters of multiple processors connected
using point-to-point links.

SUMMARY OF THE INVENTION

According to the present invention, methods and appara-
tus are provided for increasing the elfliciency of data access
in a multiple processor, multiple cluster system. A cache
coherence controller associated with a first cluster of pro-
cessors can determine whether speculative probing can be
performed before forwarding a data access request to a
second cluster. The cache coherence controller can also
forward the data access request to the second cluster before
receiving a probe response.

According to specific embodiments, a computer system 1s
provided. A first cluster includes a first plurality of proces-
sors and a first cache coherence controller. The first plurality
of processors and the first cache coherence controller are
interconnected 1 a point-to-point architecture. A second
cluster includes a second plurality of processors and a
second cache coherence controller. The second plurality of
processors and the second cache coherence controller are
interconnected 1 a point-to-point architecture. The {irst
cache coherence controller 1s coupled to the second cache
coherence controller. The first cache coherence controller 1s




us 7,107,408 B2

3

configured to receive a cache access request originating
from the first plurality of processors and send a probe to the
first plurality of processors in the first cluster before the
cache access request 1s received by a serialization point 1n
the second cluster. The first cache coherence controller can
be turther configured to forward the cache access request
before determining 1 the cache access request can be
completed locally.

In one embodiment, the serialization point 1s a memory
controller 1n the second cluster. The probe can be associated
with the memory line corresponding to the cache access
request. The first cache coherence controller can be further
configured to respond to the probe originating from the
second cluster using information obtained from the probe of
the first plurality of processors. The first cache coherence
controller can also be associated with a pending bufler.

According to another embodiment, a cache coherence
controller 1s provided. The cache coherence controller
includes interface circuitry coupled to a plurality of local
processors 1n a local cluster and a non-local cache coherence
controller 1n a non-local cluster. The plurality of local
processors are arranged 1n a point-to-point architecture. The
cache coherence controller can also include a protocol
engine coupled to the interface circuitry. The protocol
engine can be configured to receive a cache access request
from a first processor in the local cluster and speculatively
probe a local node. The protocol engine can also forward the
cache access request before receiving a probe response from
the local node associated with the cache.

According to another embodiment, a method for a cache
coherence controller to manage data access 1n a multipro-
cessor system 1s provided. A cache access request 1s received
from a local processor associated with a local cluster of
processors connected through a point-to-point architecture.
It 1s determined if speculative probing of a local node
associated with a cache can be performed before forwarding
the cache request to a non-local cache coherence controller.
The non-local cache coherence controller 1s associated with
a remote cluster of processors connected through a point-
to-point architecture. The remote cluster of processors
shares an address space with the local cluster of processors.
A cache access request can be sent before receiving a probe
response from the local node associated with the cache.

A further understanding of the nature and advantages of
the present invention may be realized by reference to the
remaining portions of the specification and the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The mvention may best be understood by reference to the
tollowing description taken in conjunction with the accom-
panying drawings, which are illustrative of specific embodi-
ments of the present invention.

FIGS. 1A and 1B are diagrammatic representation depict-
ing a system having multiple clusters.

FIG. 2 1s a diagrammatic representation of a cluster
having a plurality of processors.

FIG. 3 1s a diagrammatic representation of a cache coher-
ence controller.

FIG. 4 1s a diagrammatic representation showing a trans-
action flow for a data access request.

FIG. 5A-5D are diagrammatic representations showing
cache coherence controller functionality.

FIG. 6 15 a diagrammatic representation depicting a trans-
action flow for a data access request from a processor
transmitted to a home cache coherency controller.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 7 1s a diagrammatic representation showing a trans-
action flow for speculative probing at a request cluster.

FIG. 8 1s a process flow diagram depicting the handling of
intervening requests.

FIG. 9 1s a diagrammatic representation showing a trans-
action flow for speculative probing with delayed request.

FIG. 10 1s a process tlow diagram depicting the determi-
nation of whether a data access request can complete locally.

FIG. 11 1s a diagrammatic representation showing a
transaction flow for speculative probing with early request.

FIG. 12 1s a process flow diagram depicting the mainte-
nance of transaction information.

DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENTS

Retference will now be made 1n detail to some specific
embodiments of the mmvention including the best modes
contemplated by the inventors for carrying out the invention.
Examples of these specific embodiments are illustrated 1n
the accompanying drawings. While the invention 1s
described 1n conjunction with these specific embodiments, 1t
will be understood that i1t 1s not intended to limit the
invention to the described embodiments. On the contrary, 1t
1s intended to cover alternatives, modifications, and equiva-
lents as may be included within the spirit and scope of the
invention as defined by the appended claims. Multi-proces-
sor architectures having point-to-point communication
among their processors are suitable for implementing spe-
cific embodiments of the present invention. In the following
description, numerous specific details are set forth in order
to provide a thorough understanding of the present inven-
tion. The present invention may be practiced without some
or all of these specific details. Well known process opera-
tions have not been described in detail in order not to
unnecessarily obscure the present invention.

Techniques are provided for increasing data access efli-
ciency i a multiple processor, multiple cluster system. In a
point-to-point architecture, a cluster of processors icludes
multiple processors directly connected to each other through
point-to-point links. By using point-to-point links instead of
a conventional shared bus or external network, multiple
processors are used efliciently 1n a system sharing the same
memory space. Processing and network efliciency are also
improved by avoiding many of the bandwidth and latency
limitations of conventional bus and external network based
multiprocessor architectures. According to various embodi-
ments, however, linearly increasing the number of proces-
sors 1n a point-to-point architecture leads to an exponential
increase in the number of links used to connect the multiple
processors. In order to reduce the number of links used and
to further modularize a multiprocessor system using a point-
to-point architecture, multiple clusters are used.

According to various embodiments, the multiple proces-
sor clusters are mterconnected using a point-to-point archi-
tecture. Each cluster of processors includes a cache coher-
ence controller used to handle communications between
clusters. In one embodiment, the point-to-point architecture
used to connect processors are used to connect clusters as
well.

By using a cache coherence controller, multiple cluster
systems can be built using processors that may not neces-
sarily support multiple clusters. Such a multiple cluster
system can be built by using a cache coherence controller to
represent non-local nodes 1n local transactions so that local
nodes do not need to be aware of the existence of nodes



us 7,107,408 B2

S

outside of the local cluster. More detail on the cache
coherence controller will be provided below.

In a single cluster system, cache coherency can be main-
tained by sending all data access requests through a sernal-
ization point. Any mechanism for ordering data access
requests 1s referred to herein as a serialization point. One
example ol a serialization point i1s a memory controller.
Various processors 1n the single cluster system send data
access requests to the memory controller. The memory
controller can be configured to serialize the data access
requests so that only one data access request for a given
memory line 1s allowed at any particular time. If another
processor attempts to access the same memory line, the data
access attempt 1s blocked until the memory line 1s unlocked.
The memory controller allows cache coherency to be main-
tained 1 a multiple processor, single cluster system.

A senialization point can also be used 1 a multiple
processor, multiple cluster system where the processors in
the various clusters share a single address space. By using a
single address space, internal point-to-point links can be
used to significantly improve intercluster communication
over traditional external network based multiple cluster
systems. Various processors in various clusters send data
access requests to a memory controller associated with a
particular cluster such as a home cluster. The memory
controller can similarly serialize all data requests from the
different clusters. However, a serialization point in a mul-
tiple processor, multiple cluster system may not be as
cilicient as a sernialization point in a multiple processor,
single cluster system. That 1s, delay resulting from factors
such as latency from transmitting between clusters can
adversely aflect the response times for various data access
requests. It should be noted that delay also results from the
use of probes in a multiple processor environment.

Although delay 1n intercluster transactions 1n an architec-
ture using a shared memory space 1s significantly less than
the delay in conventional message passing environments
using external networks such as Ethernet or token ring, even
mimmal delay 1s a significant factor. In some applications,
there may be millions of data access requests from a
processor 1n a single second. Any delay can adversely
impact processor performance.

According to various embodiments, speculative probing
1s used to increase the efliciency of accessing data i a
multiple processor, multiple cluster system. A mechamsm
for eliciting a response from a node to maintain cache
coherency 1n a system 1s referred to herein as a probe. In one
example, a mechanism forsnooping a cache 1s referred to as
a probe. A response to a probe can be directed to the source
or target ol the mtiating request. Any mechanism for
sending probes to nodes associated with cache blocks before
a request associated with the probes 1s recerved at a seral-
1zation point 1s referred to herein as speculative probing.

Techniques of the present invention recognize the reor-
dering or elimination of certain data access requests do not
adversely aflect cache coherency. That 1s, the end value 1n
the cache 1s the same whether or not snooping occurs. For
example, a local processor attempting to read the cache data
block can be allowed to access the data block without
sending the requests through a serialization point 1n certain
circumstances. In one example, read access can be permitted
when the cache block 1s valid and the associated memory
line 1s not locked. The techniques of the present invention
provide mechanisms for determining when speculative
probing can be performed and also provide mechanisms for
determining when speculative probing can be completed
without sending a request through a serialization point.

10

15

20

25

30

35

40

45

50

55

60

65

6

Speculative probing will be described 1n greater detail
below. By completing a data access transaction within a
local cluster, the delay associated with transactions in a
multiple cluster system can be reduced or eliminated.

To allow even more eflicient speculative probing, the
techniques of the present invention also provide mechanisms
for handling transactions that may result from speculatively
probing a local node before locking a particular memory
line. In one example, a cache coherence protocol used 1n a
point-to-point architecture may not allow for speculative
probing. Nonetheless, mechanisms are provided to allow
various nodes such as processors and memory controllers to
continue operations within the cache coherence protocol
without knowing that any protocol variations have occurred.

FIG. 1A 1s a diagrammatic representation of one example
ol a multiple cluster, multiple processor system that can use
the techniques of the present invention. Fach processing
cluster 101, 103, 105, and 107 can include a plurality of
processors. The processing clusters 101, 103, 105, and 107
are connected to each other through point-to-point links
111a—/. In one embodiment, the multiple processors 1n the
multiple cluster architecture shown in FIG. 1A share the
same memory space. In this example, the point-to-point
links 111a— are internal system connections that are used 1n
place of a traditional front-side bus to connect the multiple
processors 1n the multiple clusters 101, 103, 105, and 107.
The point-to-point links may support any point-to-point
coherence protocol.

FIG. 1B 1s a diagrammatic representation of another
example of a multiple cluster, multiple processor system that
can use the techniques of the present invention. Each pro-
cessing cluster 121, 123, 125, and 127 can be coupled to a
switch 135 through point-to-point links 141a—d. It should be
noted that using a switch and point-to-point allows 1mple-
mentation with fewer point-to-point links when connecting
multiple clusters 1n the system. A switch 131 can include a
processor with a coherence protocol interface. According to
various 1mplementations, a multicluster system shown in
FIG. 1A 1s expanded using a switch 131 as shown i FIG.
1B.

FIG. 2 1s a diagrammatic representation of a multiple
processor cluster, such as the cluster 101 shown 1n FIG. 1A.
Cluster 200 includes processors 202a-202d, one or more
Basic I/O systems (BIOS) 204, a memory subsystem com-
prising memory banks 206a—206d, point-to-point commu-
nication links 208a-208e, and a service processor 212. The
point-to-point communication links are configured to allow
interconnections between processors 202a-202d, 1/0 switch
210, and cache coherence controller 230. The service pro-
cessor 212 1s configured to allow communications with
processors 202a-202d, 1/0 switch 210, and cache coherence
controller 230 via a JTAG interface represented in FIG. 2 by
links 214a—-214/. It should be noted that other interfaces are
supported. I/O switch 210 connects the rest of the system to
I/O adapters 216 and 220.

According to specific embodiments, the service processor
of the present invention has the intelligence to partition
system resources according to a previously specified parti-
tioning schema. The partitioning can be achieved through
direct manipulation of routing tables associated with the
system processors by the service processor which 1s made
possible by the point-to-point communication infrastructure.
The routing tables are used to control and 1solate various
system resources, the connections between which are
defined therein. The service processor and computer system
partitioning are described in patent application Ser. No.
09/932.,456 titled Computer System Partitioning Using Data




us 7,107,408 B2

7

Transter Routing Mechanism, filed on Aug. 16, 2001, the
entirety of which 1s incorporated by reference for all pur-
poses.

The processors 202a—d are also coupled to a cache
coherence controller 230 through point-to-point links
232a—-d. Any mechanism or apparatus that can be used to
provide communication between multiple processor clusters
while maintaining cache coherence 1s referred to herein as a
cache coherence controller. The cache coherence controller
230 can be coupled to cache coherence controllers associ-
ated with other multiprocessor clusters. It should be noted
that there can be more than one cache coherence controller
in one cluster. The cache coherence controller 230 commu-
nicates with both processors 202a—d as well as remote
clusters using a point-to-point protocol.

More generally, 1t should be understood that the specific
architecture shown 1n FIG. 2 1s merely exemplary and that
embodiments of the present invention are contemplated
having different configurations and resource interconnec-
tions, and a variety of alternatives for each of the system
resources shown. However, for purpose of illustration, spe-
cific details of server 200 will be assumed. For example,
most of the resources shown 1n FIG. 2 are assumed to reside
on a single electronic assembly. In addition, memory banks
20642064 may comprise double data rate (DDR) memory
which 1s physically provided as dual in-line memory mod-
ules (DIMMs). I/O adapter 216 may be, for example, an
ultra direct memory access (UDMA) controller or a small
computer system interface (SCSI) controller which provides
access to a permanent storage device. I/O adapter 220 may
be an Ethernet card adapted to provide communications with
a network such as, for example, a local area network (LAN)
or the Internet.

According to a specific embodiment and as shown 1n FIG.
2, both of IO adapters 216 and 220 provide symmetric I/O
access. That 1s, each provides access to equivalent sets of
[/0. As will be understood, such a configuration would
tacilitate a partitioning scheme 1n which multiple partitions
have access to the same types of I/O. However, 1t should also
be understood that embodiments are envisioned i which
partitions without I/O are created. For example, a partition
including one or more processors and associated memory
resources, 1.€., a memory complex, could be created for the
purpose of testing the memory complex.

According to one embodiment, service processor 212 1s a
Motorola MPC835T microprocessor which includes inte-
grated chipset functions. The cache coherence controller 230
can be an Application Specific Integrated Circuit (ASIC)
supporting the local point-to-point coherence protocol. The
cache coherence controller 230 can also be configured to
handle a non-coherent protocol to allow communication
with I/O devices. In one embodiment, the cache coherence
controller 230 1s a specially configured programmable chip
such as a programmable logic device or a field program-
mable gate array.

FIG. 3 1s a diagrammatic representation of one example of
a cache coherence controller 230. The cache coherence
controller can 1nclude a protocol engine 3035 configured to
handle packets such as probes and requests received from
processors 1n various clusters of a multiprocessor system.
The functionality of the protocol engine 305 can be parti-
tioned across several engines to improve performance. In
one example, partitioning can be done based on individual
transactions {flows, packet type (request, probe and
response), direction (incoming and outgoing), or transac-
tions flow (request tlows, probe tlows, etc).

10

15

20

25

30

35

40

45

50

55

60

65

8

The protocol engine 305 has access to a pending butler
309 that allows the cache coherence controller to track
transactions such as recent requests and probes and associ-
ated the transactions with specific processors. Transaction
information maintained in the pending builer 309 can
include transaction destination nodes, the addresses of
requests for subsequent collision detection and protocol
optimizations, response information, tags, and state infor-
mation.

The cache coherence controller has an interface such as a
coherent protocol interface 307 that allows the cache coher-
ence controller to communicate with other processors 1n the
cluster as well as external processor clusters. According to
various embodiments, each interface 307 and 311 1s imple-
mented eirther as a full crossbar or as separate receive and
transmit umts using components such as multiplexers and
buflers. The cache coherence controller can also include
other interfaces such as a non-coherent protocol interface
311 for communicating with I/O devices. It should be noted,
however, that the cache coherence controller 230 does not
necessarily need to provide both coherent and non-coherent
interfaces. It should also be noted that a cache coherence
controller in one cluster can communicate with a cache
coherence controller in another cluster.

FIG. 4 1s a diagrammatic representation showing the
transactions for a cache request from a processor 1n a system
having a single cluster without using a cache coherence
controller. A processor 401-1 sends an access request such as
a read memory line request to a memory controller 403-1.
The memory controller 403-1 may be associated with this
processor, another processor 1n the single cluster or may be
a separate component such as an ASIC or specially config-
ured Programmable Logic Device (PLD). To preserve cache
coherence, only one processor 1s typically allowed to access
a memory line corresponding to a shared address space at
anyone given time. To prevent other processors from
attempting to access the same memory line, the memory line
can be locked by the memory controller 403-1. All other
requests to the same memory line are blocked or queued.
Access by another processor 1s typically only allowed when
the memory controller 403-1 unlocks the memory line.

The memory controller 403-1 then sends probes to the
local cache memories 405, 407, and 409 to determine cache
states. The local cache memories 405, 407, and 409 then 1n
turn send probe responses to the same processor 401-2. The
memory controller 403-1 also sends an access response such
as a read response to the same processor 401-3. The pro-
cessor 401-3 can then send a done response to the memory
controller 403-2 to allow the memory controller 403-2 to
unlock the memory line for subsequent requests. It should be
noted that CPU 401-1, CPU 401-2, and CPU 401-3 refer to
the same processor. FIGS. SA-5D are diagrammatic repre-
sentations depicting cache coherence controller operation.
The use of a cache coherence controller in multiprocessor
clusters allows the creation of a multiprocessor, multicluster
coherent domain without aflecting the functionality of local
nodes such as processors and memory controllers i each
cluster. In some instances, processors may only support a
protocol that allows for a limited number of processors 1n a
single cluster without allowing for multiple clusters. The
cache coherence controller can be used to allow multiple
clusters by making local processors believe that the non-
local nodes are merely a single local node embodied 1n the
cache coherence controller. In one example, the processors
in a cluster do not need to be aware of processors 1n other
clusters. Instead, the processors in the cluster can commu-




us 7,107,408 B2

9

nicate with the cache coherence controller as if the cache
coherence controller were representing all non-local nodes.

It should be noted that nodes 1n a remote cluster will be
referred to herein as non-local nodes or as remotes nodes.
However, non-local nodes refer to nodes not in a request
cluster generally and includes nodes 1n both a remote cluster
and nodes 1n a home cluster. A cluster from which a data
access or cache access request originates 1s referred to herein
as a request cluster. A cluster containing a serialization point
1s referred to herein as a home cluster. Other clusters are
referred to as remote clusters. The home cluster and the
remote cluster are also referred to herein as non-local
clusters.

FIG. 5A shows the cache coherence controller acting as an
aggregate remote cache. When a processor 501-1 generates
a data access request to a local memory controller 503-1, the
cache coherence controller 509 accepts the probe from the
local memory controller 503-1 and forwards 1t to non-local
node portion 511. It should be noted that a coherence
protocol can contain several types of messages. In one
example, a coherence protocol includes four types of mes-
sages; data or cache access requests, probes, responses or
probe responses, and data packets. Data or cache access
requests usually target the home node memory controller.
Probes are used to query each cache in the system. The probe
packet can carry information that allows the caches to
properly transition the cache state for a specified line.
Responses are used to carry probe response information and
to allow nodes to inform other nodes of the state of a given
transaction. Data packets carry request data for both write
requests and read responses.

According to various embodiments, the memory address
resides at the local memory controller. As noted above,
nodes including processors and cache coherence controllers
outside of a local cluster are referred to herein as non-local
nodes. The cache coherence controller 509 then accumulates
the responses from the non-local nodes and sends a single
response 1n the same manner that local nodes associated
with cache blocks 505 and 507 send a single response to
processor 501-2. Local processors may expect a single probe
response for every local node probed. The use of a cache
coherence controller allows the local processors to operate
without concern as to whether non-local nodes exist.

It should also be noted that components such as processor
501-1 and processor 501-2 refer herein to the same compo-
nent at different points 1n time during a transaction sequence.
For example, processor 501-1 can initiate a data access
request and the same processor 301-2 can later receive probe
responses resulting from the request.

FIG. 3B shows the cache coherence controller acting as a
probing agent pair. When the cache coherence controller
521-1 recerves a probe from non-local nodes 331, the cache
coherence controller 521-1 accepts the probe and forwards
the probe to local nodes associated with cache blocks 523,
525, and 527. The cache coherence controller 521-2 then
forwards a final response to the non-local node portion 531.
In this example, the cache coherence controller 1s both the
source and the destination of the probes. The local nodes
assoclated with cache blocks 523, 525, and 527 behave as 1f
the cache coherence controller were a local processor with
a local memory request.

FI1G. 5C shows the cache coherence controller acting as a
remote memory. When a local processor 341-1 generates an
access request that targets remote memory, the cache coher-
ence controller 343-1 forwards the request to the non-local
nodes 553. The cache coherence controller 543-1 accepts the
requests and forwards 1t to remote cluster 553. When the

10

15

20

25

30

35

40

45

50

55

60

65

10

remote request specifies local probing, the cache coherence
controller 5343-1 generates probes to local nodes and the
probed nodes provide responses to the processor 3541-2.
Once the cache coherence controller 543-1 has received data
from the non-local node portion 553, 1t forwards a read
response to the processor 541-3. The cache coherence con-
troller also forwards the final response to the remote
memory controller associated with non-local nodes 553.

FIG. 5D shows the cache coherence controller acting as a
remote processor. When the cache coherence controller
561-1 at a first cluster recerves a request from a processor 1n
a second cluster, the cache coherence controller acts as a first
cluster processor on behalf of the second cluster processor.
The cache coherence controller 561-1 accepts the request
from portion 375 and forwards 1t to a memory controller
563-1. The cache coherence controller 561-2 then accumu-
lates all probe responses as well as the data fetched and
forwards the final response to the memory controller 563-2
as well as to non-local nodes 575.

By allowing the cache coherence controller to act as an
aggregate remote cache, probing agent pair, remote memory,
and remote processor, multiple cluster systems can be built
using processors that may not necessarily support multiple
clusters. The cache coherence controller can be used to
represent non-local nodes 1n local transactions so that local
nodes do not need to be aware of the existence of nodes
outside of the local cluster.

FIG. 6 1s a diagrammatic representation depicting the
transactions for a data request from a local processor sent to
a non-local cluster using a cache coherence controller. The
multicluster system includes a request cluster 600, a home
cluster 620, and a remote cluster 640. As noted above, the
home cluster 620 and the remote cluster 640 as well as any
other clusters excluding the request cluster 600 are referred
to herein as non-local clusters. Processors and cache coher-
ence controllers associated with local and non-local clusters
are similarly referred to herein as local processors, local
cache coherence controllers, non-local processors, and non-
local cache coherence controllers, respectively.

A processor 601-1 1n a local cluster 600 can send a data
access request such as a read request to a cache coherence
controller 603-1. The cache coherence controller 603-1 can
track the transaction in the pending bufler (of FIG. 3) and
torward the request to a cache coherence controller 621-1 1n
a home cluster 620. The cache coherence controller 621-1 at
the home cluster 620 receives the access request and tracks
the request 1n 1ts pending bufler. In one example, informa-
tion associated with the requests can be stored 1n the pending
bufler. The cache coherence controller 621-1 forwards the
access request to a memory controller 623-1 also associated
with the home cluster 620. At this point, the memory
controller 623-1 locks the memory line associated with the
request. In one example, the memory line may be a unique
address 1n the memory space shared by the multiple pro-
cessors 1n the request cluster 600, home cluster 620, and the
remote cluster 640. The memory controller generates a
probe associated with the data access request and forwards
the probe to local nodes associated with cache blocks 6235
and 627 as well as to cache coherence controller 621-2.

It should be noted that although messages associated with
requests, probes, responses, and data are described as for-
warded from one node to another, the messages themselves
may contain variations. In one example, alterations are made
to the messages to allow the multiple cluster architecture to
be transparent to various local nodes. It should be noted that
write requests can be handled as well. In write requests, the




us 7,107,408 B2

11

targeted memory controller gathers responses and sends the
responses to the processor when gathering 1s complete.

The cache coherence controller 641-1 associated with the
remote cluster 640 receives a probe from cache coherence
controller 621-2 and probes local nodes associated with
cache blocks 645, 647, and 649. Similarly, the cache coher-
ence controller 603-2 associated with the request cluster 600
receives a probe and forwards the probe to local nodes
associated with cache blocks 6035, 607, and 609 to probe the
cache blocks i the request cluster 600. Processor 601-2
receives probe responses from the local nodes associated
with cache blocks 605, 607, and 609.

According to various embodiments, cache coherence con-
troller 621-3 accumulates probe responses and sends the
probe responses to cache coherence controller 603-3, which
in turn forwards the probe responses to the processor 601-3.
Cache coherence controller 621-4 also sends a read response
to cache coherence controller 603-4, which forwards the
read response to processor 601-4. While probes and probe
responses can carry information for maintaining cache
coherency 1n the system, read responses can carry actual
tetched data. After receiving the fetched data, processor
601-4 may send a source done response to cache coherence
controller 603-5. According to various embodiments, the
transaction 1s now complete at the requesting cluster 600.
Cache coherence controller 603-35 forwards the source done
message to cache coherence controller 621-5. Cache coher-
ence controller 621-5 1n turn sends a source done message
to memory controller 623-2. Upon receiving the source done
message, the memory controller 623-2 can unlock the
memory line and the transaction at the home cluster 620 1s
now complete. Another processor can now access the
unlocked memory line.

It should be noted that because the cache coherence
controller 603-1 sends a probe to a memory controller
associated with a different cluster, a delay 670 1s introduced
into the probing of the local nodes 6035, 607, and 609.
Because the request went from the request cluster 600 to a
home cluster 620 and finally back to a request cluster 600,
delay due to factors such as latency was introduced. Inter-
cluster traflic increases because of the intercluster messages
transmitted to maintain cache coherency. In a single cluster
configuration, a processor 601-1 could more directly trans-
mit probes to local nodes associated with cache blocks 605,
607, and 609. An example of the single cluster transaction
sequence 1s demonstrated 1n FIG. 5. However, 1n a multiple
cluster architecture, a coherent protocol may specily that a
request be transmitted to a serialization point in a home
cluster 620 before the local cache blocks can be probed. In
vartous embodiments, the delay 670, added trathic, and
processing overhead can be substantial. According to vari-
ous embodiments of the present invention, techniques are
provided for reducing or eliminating the delay 670 as well
as the network and processing overhead associated with
probing local nodes associated with cache blocks 1 a
multiple cluster architecture.

As will be appreciated by one of skill in the art, the
specific transaction sequences mvolving requests, probes,
and response messages can vary depending on the specific
implementation. In one example, a cache coherence con-
troller 621-3 may wait to receive a read response message
from a memory controller 623-1 before transmitting both a
probe response message and a read response message to a
cache coherence controller 603-3. In other examples, a
cache coherence controller may be the actual processor
generating the request. Some processors may operate as both
a processor and as a cache coherence controller. Further-

10

15

20

25

30

35

40

45

50

55

60

65

12

more, various data access request messages, probes, and
responses associated with reads and writes are contem-
plated. As noted above, any message for snooping a cache
can be referred to as a probe. Similarly, any message for
indicating to the memory controller that a memory line
should be unlocked can be referred to as a source done
message.

It should be noted that the transactions shown i FIG. 6
show examples of cache coherence controllers performing
many different functions, including functions of remote
processors, aggregate local caches, probing agent pairs, and
remote memory as described with reference to FIGS.
5A-5D.

The cache coherence controller 621-1 at the home cluster
620 1s acting as a remote processor. When the cache coher-
ence controller receives a request from a request cluster
processor, the cache coherence controller 1s directed to act as
the requesting processor on behalf of the request cluster
processor. In this case, the cache coherence controller 621-1
accepts a forwarded request from processor 601-1 and sends
it to the memory controller 623-1, accumulates responses
from all local nodes and the memory controller 623-1, and
forwards the accumulated responses and data back to the
requesting processor 601-3. The cache coherence controller
621-5 also forwards a source done to the local memory
controller 623-2.

The cache coherence controller 603-1 at the request
cluster 600 1s acting as a remote memory. As remote
memory, cache coherence controller 1s designed to forward
a request from a processor to a proper remote cluster and
ensure that local nodes are probed. In this case, the cache
coherence controller 603-1 forwards a probe to cache coher-
ence controller 621-1 at a home cluster 620. Cache coher-
ence controller 603-2 also probes local nodes 603, 607, and
609.

The cache coherence controller 641-1 at the request
cluster 640 1s acting as a probing agent pair. As noted above,
when a cache coherence controller acting as a probing agent
pair recerves a probe from a remote cluster, the cache
coherence controller accepts the probe and forwards 1t to all
local nodes. The cache coherence controller accumulates the
responses and sends a final response back to the request
cluster. Here, the cache coherence controller 641-1 sends a
probe to local nodes associated with cache blocks 645, 647,
and 649, gathers probe responses and sends the probe
responses to cache coherence controller 621-3 at home
cluster 620. Similarly, cache coherence controller 603-2 also
acts as a probing agent pair at a request cluster 600. The
cache coherence controller 603-2 forwards probe requests to
local nodes including local nodes associated with cache
blocks 605, 607, and 609.

The cache coherence controller 621-2 and 621-3 1s also
acting as an aggregate remote cache. The cache coherence
controller 621-2 1s responsible for accepting the probe from
the memory controller 623-1 and forwarding the probe to the
other processor clusters 600 and 640. More specifically, the
cache coherence controller 6212 forwards the probe to cache
coherence controller 603-2 corresponding to request cluster
600 and to cache coherence controller 641-1 corresponding
to remote cluster 640.

As noted above, using a multiple cluster architecture can
introduce delay as well as other undesirable elements such
as 1ncreased traflic and processing overhead because a
request 1s routed from a request cluster 600 to a home cluster
620 belfore local nodes are probed.

FIG. 7 1s a diagrammatic representation showing one
example of a mechanism for reducing data access delay




us 7,107,408 B2

13

associated with multiple cluster architectures. The processor
701-1 sends a request to a cache coherence controller 703-1.
Instead of merely forwarding the request from the request
cluster 700 to a cache coherence controller 721-1 associated
with a home cluster 720, the cache coherence controller
703-1 can also send probes to local nodes associated with
cache block 705, 707, and 709 before locking the memory
line associated with the request. In other words, cache
coherence controller 703-1 can speculatively probe local
nodes. As noted above, any mechanism for sending probes
to local nodes associated with cache blocks before a request
associated with the probes 1s recerved at a serialization point
1s referred to herein as speculative probing. It should be
noted that speculative probing can mean that local nodes are
probed belore the associated memory line 1s locked.

The cache coherence controller 721-1 forwards the
request to memory controller 723-1. The memory controller
723-1 then proceeds to lock the memory line associated with
the request and sends probes to nodes associated with cache
blocks. Cache coherence controller 721-2 sends a probe to
cache coherence controller 703-3 at request cluster 700 as
well as a probe to cache coherence controller 741-1 at
remote cluster 740. Because speculative probing has been
performed, the cache coherence controller 703-3 can 1mme-
diately send a probe response to cache coherence controller
721-3. This 1s one example of a transaction that can improve
the response time for data access requests 1n a multiple
cluster system. The transaction flow can then proceed as
depicted 1n FIG. 6. However, the probing at the request
cluster might not be complete when the probe 1s received at
703-3. The cache coherence controller may have to wait
until it recerves responses from cache blocks 705, 707, and
709.

However, cache coherence controller 703-1 cannot
always speculatively probe. In one example, the memory
line associated with the request from the processor 701-1
may already be locked from probes generated at request
cluster 700. The cache coherence controller 703-1 can
determine whether a memory line 1s already locked by
looking into 1ts pending builer. Any logic or mechanism for
storing information associated with transactions handled by
a cache coherence controller 1s referred to herein as the
pending buflfer. If the memory line 1s locked based on
information from the pending bufler, speculative probing
cannot be performed because another processor 1s accessing
the memory line. Accessing a cache block associated with a
locked memory line can lead to detrimental effects including
cache inconsistencies and system faults. However, 11 the
cache coherence controller 703-1 determines that specula-
tive probing can proceed, then the cache coherence control-
ler 703-1 can probe the local nodes.

If the cache coherence controller 703-1 proceeds with
speculative probing of a particular memory line but another
processor 1s able to send an intervening request to memory
controller 723-1 to lock the memory line before the cache
coherence controller 703-1 can lock the memory line, the
cache coherence controller can use the information from 1ts
speculative probe to respond to the intervening probes. More
specifically, another processor may send a request to
memory controller 723-1 to lock the desired memory after
cache coherence controller 703-1 has sent probes to local
nodes but before the memory controller 723-1 locks the
memory line for the processor 701-1.

FIG. 8 1s a process tlow diagram providing more infor-
mation on handling speculative probing. According to vari-
ous embodiments, a cache coherence controller at a request
cluster identifies the memory line associated with an out-

5

10

15

20

25

30

35

40

45

50

55

60

65

14

going request from a request cluster processor at 801. If the
cache coherence controller determines that the memory line
1s currently being probed at 803, the transaction can continue
without speculative probing at 821 as shown 1n FIG. 6. The
cache coherence controller can determine 11 the memory line
1s currently being probed in the local cluster by referencing
its pending builer. The pending bufler may indicate that
another processor 1n any cluster 1s currently accessing the
memory line. However, if the cache coherence controller
determines that the memory line 1s not currently being
probed, the cache coherence controller can proceed with
speculative probing at 805 as shown in FIG. 7.

A cache coherence controller at a request cluster can then
expect to receive a probe triggered by a memory controller
from a home cluster. The probe may have resulted from the
request cluster processor, or the probe may have resulted
from an intervening processor. A probe request from an
intervening processor may result when an intervening pro-
cessor 1s able to send a request to lock the desired memory
line before the originating processor 1s able to lock the same
line. To handle an intervening processor, the cache coher-
ence controller at the request cluster determines whether the
probe 1s associated with the request cluster processor at 807.
In one example, the cache coherence controller can deter-
mine whether the probe 1s associated with the request cluster
processor by looking at the source identifier or the transac-
tion 1dentifier maintained in its pending bufler. If the cache
coherence controller determines at 807 that the probe 1s not
from the request cluster processor, the probe response infor-
mation 1s provided to the mtervening processor at 809.

At 811, mformation 1s provided to the request cluster
processor. At 815, the cache coherence controller may have
to wait for responses irom the various cache blocks before
completing at 813. At 823, the transaction can continue
without speculative probing. The cluster would subse-
quently receive the probe for the associated request, which
can be processed as shown 1n FIG. 6. In one example, the
probe information 1s also maintained in its pending butler.
When the controller receives a probe from the request
cluster processor, the probe information 1s provided at 811 to
the originating processor and the probe information can be
cleared. Again, 1t should be noted that at 811, the cache
coherence processor may have to wait for responses at 815
from the various cache blocks before completing at 813.

A number of techniques for associating a processor with
a probe are available. In one example, a centralized pending
bufler can be used for maintaining information on various
processors and their associated transactions. In another
example, any memory can be used to maintain speculative
probe information.

Speculative probing as shown 1 FIG. 7 and FIG. 8 allows
local nodes associated with cache to be probed before a
home node memory controller locks the associated memory
line. This can decrease or eliminate delay resulting from a
multicluster architecture. That 1s, local nodes can be probed
before a request 1s routed through a remote cluster and back
to the request cluster. In certain circumstances, delay, net-
work trathc, and processing overhead can be reduced by
allowing local requests to complete before sending a request
to a home cluster.

FIG. 9 1s a diagrammatic representation depicting trans-
actions for speculative probing with delayed request. Specu-
lative probing local nodes before sending a request to a
home cluster can further increase data access efliciency.
According to various embodiments, a processor 901-1 sends
a request to cache coherence controller 903-1. Cache coher-
ence controller 903-1 sends probes to local nodes associated




us 7,107,408 B2

15

with cache blocks 905, and 907, and 909. It should be noted
that the cache coherence controller 903-1 does not send a
request to the home cluster 920 at this point. The local nodes
send probe responses to cache coherence controller 903-2.
The cache coherence controller 903-2 determines whether
the transaction can be completed locally. If the transaction
can be completed locally, no request 1s sent to cache
coherence controller 921-1, and information is sent to CPU
901-2 and completion occurs at 903-3. If the transaction can
not be completed locally, the cache coherence controller
903-2 sends a request to cache coherence controller 921-1
associated with home cluster 920.

The request 1s forwarded to the memory controller 923-1
which sends probes to local nodes as well as cache coher-
ence controller 921-2. It should be noted that the chance of
an 1ntervening transaction occurring during speculative
probing with delayed request can be greater than the chance
of an mterveming transaction occurring during speculative
probing as shown in FIG. 7. The increased chance results
from the longer period of time elapsed before a memory
controller 923-1 can lock the memory line. Instead of
sending a request to lock the memory line before specula-
tively probing local nodes, a request to lock the memory line
1s sent after probe response from local nodes are recerved.

Allowing a cache access request to complete locally
provides significant benefits with respect to data access
times and decreased trailic along point-to-point links
between processors and clusters of processors. Furthermore,
processors and cache coherence controllers of other clusters
are not given the added overhead of processing requests,
probes, responses, etc. Where a transaction cannot complete
locally, a cache coherence controller 921-2 then sends
probes to cache coherence controller 903-4 of request cluster
900 and cache coherence controller 941-1 of remote cluster
940. The transaction flow can then proceed as described 1n
FIG. 7.

FIG. 10 1s a flow process diagram depicting a cache
coherence controller determining whether a transaction can
be completed locally. As noted above, completing a trans-
action locally can decrease overhead associated with a cache
request. As will be appreciated by one of skill 1n the art,
certain types ol transactions can be completed without
regard to the states of other corresponding cache blocks. In
other words, certain cache access requests do not need to
probe other nodes. For example, 1f the data access request 1s
a simple read, a transaction can be completed locally 11 1t 1s
determined that the copy in cache 1s a valid copy. In1 this
example, no request needs to be sent to other clusters to
probe different nodes associated with cache blocks. In
another example, 11 the data access request 1s a write, 1t 1s
less likely that a transaction can be completed locally.

According to various embodiments, a cache coherence
controller i1dentifies the cache state associated with a par-
ticular requested memory line at 1001. If 1t can be deter-
mined specifically that the cache block is 1n a shared state at
1003 or the cache block 1s 1n an owned state at 1005, 1t 1s
then determined what type of access has been requested at
1015. It the type of access request 1s a read, the transaction
can be completed locally at 1017. If the type of access
request 15 a write, the transaction can not be completed
locally at 1011 and a request 1s sent to a home cluster cache
coherence confroller. IT 1t 1s determined at 1007 that the
cache 1s specifically i an exclusive state or a modified state,
the transaction can be completed locally at 1017. Otherwise,
the cache state may be invalid or indeterminate and the
transaction can not be completed locally. It should be noted
that certain protocols do not provide enough information for

10

15

20

25

30

35

40

45

50

55

60

65

16

distinguishing the various states. For example, a coherent
protocol may only provide enough information for distin-
guishing three possible states. More specifically, only
enough information 1s provided to determine whether the
cache state 1s invalid, shared or exclusive, or owned or
modified.

A coherent protocol may not provide enough information
to distinguish between shared or modified and exclusive or
owned. Without being able to distinguish between the states,
a read transaction can still be completed locally because the
protocol provides enough information to indicate that a local
cache 1s not 1n the invalid state. However, a write transaction
can not be completed locally because it can not be specifi-
cally determined that the cache 1s 1n an owned or modified
state. It should be appreciated that a number of other
protocol variations are contemplated. In one example, a
cache coherence protocol may not have an owned state. A
cache may only be allowed to have a modified, exclusive,
shared, or invalid state. In other examples, the protocol may
only be able to distinguish between invalid and valid cache
states. In this example, only read transactions are allowed
when the cache state 1s valid. As will be appreciated by one
of skill in the art, an accurate determination can be made
with available state information as to whether a cache access
transaction can be completed locally.

The techniques of the present invention provide mecha-
nisms for speculatively probing local nodes and for deter-
mining when speculative probing can be performed. Specu-
lative probing allows a reduction or elimination of the delay
and overhead associated with transmitting a request through
a home cluster and back to the request cluster. According to
other embodiments, a request may only be sent through the
home cluster when speculative probing can not be com-
pleted locally. Techniques for determining when speculative
probing can be completed locally are also provided. How-
ever, as noted above, speculatively probing before sending
a request to a home cluster can lead to an increase 1n the
number ol interveming transactions. That 1s, more time
clapses belore the request cluster processor can eflectively
lock the desired memory line. Nonetheless, speculative
probing with the possibility of early completion can signifi-
cantly reduce the amount of time and resources consumed
for data access.

FIG. 11 1s a diagrammatic representation depicting trans-
actions for speculatively probing with the possibility of early
completion while also transmitting a request to a home
cluster to lessen the number of possible intervening trans-
actions. A processor 1101-1 at request cluster 1100 sends a
request to a cache coherence controller 1103-1. Cache
coherence controller 1103-1 sends probes to local nodes
associated with cache blocks 1105, 1107, 1109 and also
sends a request to cache coherence controller 1121-1 of
home cluster 1120. Cache coherence controller 1121-1 then
sends a request to memory controller 1123-1. The memory
controller 1123-1 then locks the memory line associated
with the request.

It should be noted that intervening transactions can be
handled as described 1n FIG. 8. The memory controller
1123-1 can send probes to nodes associated with cache
blocks 1125 and 1127 as well as the cache coherence
controller 1121-2. Cache coherence controller at the request
cluster 1100 receives probe responses and can determine 1f
the transaction can be completed locally. The determination
can be made as shown in FIG. 10 above. In conventional
implementations, as soon as a transaction has completed at
the request cluster 1100, the cache coherence controller
1103-3 can release the identifier associated with the trans-




us 7,107,408 B2

17

action that 1s sent to home cluster 1120. The processor 1101
could reuse the 1dentifier. The 1dentifier can then be used for
subsequent transactions. In this case, however, the transac-
tion can not yet be released because the cache coherence
controller at the request cluster 1100 1s still expecting
responses and probes from the home cluster.

FIG. 12 1s a process flow diagram showing the mainte-
nance of transaction identifier information to allow specu-
lative probing with early completion and early request. That
1s, a request to the home cluster can be sent at the same time
local nodes are probed. Early completion and early request
allows for reduced delay limits the likelithood of intervening
transactions. At 1201, a transaction identifier 1s allocated
when a request 1s received. At 1203, the cache coherence
controller probes local nodes and sends a request to a home
cache coherence controller. At 1205, the local transaction
completes. It should be noted that in certain circumstances
the local transaction may not complete. For example, the
local transaction may not complete 11 the cache block 1s not
in the proper state or does not contain the desired data. If the
local transaction completes at 1203, the requesting processor
receives the fetch data. Whether or not the local transaction
completes at 1207, the transaction i1dentifier can be main-
tained. In one embodiment, the transaction identifier 1is
maintained in the pending bufler. At 1209, the cache coher-
ence controller waits for all transactions associated with the
transaction 1dentifier. It should be appreciated that the cache
coherence controller can identity what other processors
reside 1n the system. When all other transactions have been
received at 1209, the transaction identifier 1s cleared at 1211
to allow subsequent transactions to use the same 1dentifier.

While the mnvention has been particularly shown and
described with reference to specific embodiments thereof, 1t
will be understood by those skilled 1n the art that changes in
the form and details of the disclosed embodiments may be
made without departing from the spirit or scope of the
invention. For example, embodiments of the present inven-
tion may be employed with a multiple processor clusters
connected through a point-to-point, switch, or bus architec-
ture. In another example, multiple clusters of processors
may share a single cache coherence controller, or multiple
cache coherence controller can be used in a single cluster.
Therefore, the scope of the invention should be determined
with reference to the appended claims.

What 1s claimed 1s:

1. A computer system, comprising;

a first cluster including a first plurality of processors and

a first cache coherence controller, the first plurality of
processors and the first cache coherence controller
interconnected 1n a point-to-point architecture;

a second cluster including a second plurality of processors
and a second cache coherence controller, the second
plurality of processors and the second cache coherence
controller interconnected 1n a point-to-point architec-
ture, the first cache coherence controller coupled to the
second cache coherence controller;

wherein the first cache coherence controller 1s configured
to receive a cache access request originating from the
first plurality of processors and send a probe to the first
plurality of processors in the first cluster before the
cache access request 1s received by a serialization point
in the second cluster and wherein the first cache coher-
ence controller 1s further configured to forward the
cache access request before determining 1f the cache
access request can be completed locally.

2. The computer system of claim 1, wherein the cache

access request can be completed locally 11 the cache access

10

15

20

25

30

35

40

45

50

55

60

65

18

request 1s a read and the state of the cache corresponding to
the cache access request 1s valid.

3. The computer system of claim 2, wherein the cache
access request can be completed locally 11 the cache access
request 1s a write and the state of the cache corresponding to
the cache access request 1s valid and exclusive.

4. The computer system of claim 2, wherein the cache
access request can be completed locally i1 the cache access
request 1s a write and the state of the cache corresponding to
the cache access request 1s valid and owned.

5. The computer system of claim 1, wherein the cache
access request 1s associated with an 1dentifier.

6. The computer system of claim 5, wherein the 1dentifier
1s maintained after the transaction has completed locally.

7. The computer system of claim 6, wherein the 1dentifier
1s maintained until all expected probe responses from the
second cluster are received.

8. The computer system of claim 7, wherein the identifier
1s a transaction identifier

memory access serialization point 1s a memory controller
in the second cluster.

9. A computer system, comprising:

a first cluster including a first plurality of processors and
a first cache coherence controller, the first plurality of
processors and the first cache coherence controller
interconnected 1n a point-to-point architecture;

a second cluster including a second plurality of processors
and a second cache coherence controller, the second
plurality of processors and the second cache coherence
controller mterconnected 1 a point-to-point architec-
ture, the first cache coherence controller coupled to the
second cache coherence controller and constructed to
receive a cache access request originating from the first
plurality of processors, send a probe to the first plurality
of processors 1n the first cluster and send the cache
access request to the second cluster, wherein the probe
and the cache access request are sent to the first
plurality of processors at substantially the same time.

10. A cache coherence controller, the cache coherence
controller comprising:

interface circuitry coupled to a plurality of local proces-
sors 1n a local cluster and a non-local cache coherence
controller in a non-local cluster, wherein the plurality
of local processors are arranged 1n a point-to-point
architecture;

a protocol engine coupled to the interface circuitry, the
protocol engine configured to receive a cache access
request from a first processor in the local cluster and
speculatively probe a local node, wherein the protocol
engine forwards the cache access request before receiv-
ing a probe response from the local node associated
with the cache.

11. The cache coherence controller of claim 10, wherein
the protocol engine forwards the cache access request before
determining 1f the cache access request can be completed
locally.

12. The cache coherence controller of claim 11, wherein
the cache access request can be completed locally if the
cache access request 1s a read and the state of the cache
corresponding to the cache access request 1s valid.

13. The cache coherence controller of claim 11, wherein
the cache access request can be completed locally 11 the
cache access request 1s a write and the state of the cache
corresponding to the cache access request 1s valid and
exclusive.

14. The cache coherence controller of claim 11, wherein
the cache access request can be completed locally 1t the




us 7,107,408 B2

19

cache access request 1s a write and the state of the cache
corresponding to the cache access request 1s valid and
owned.

15. The cache coherence controller of claim 11, wherein
the cache access requests 1s associated with an 1dentifier.

16. The cache coherence controller of claim 15, wherein
the 1dentifier 1s maintained after the transaction has com-
pleted locally.

17. The cache coherence controller of claim 16, wherein
the 1dentifier 1s maintained until all expected probe
responses from non-local nodes associated with non-local
clusters are recerved.

18. The cache coherence controller of claim 17, wherein
the 1dentifier 1s a transaction identifier.

19. The cache coherence controller of claim 10, wherein
speculatively probing the local node comprises sending a
probe to the local node before a memory line associated the
probe 1s locked.

20. The cache coherence controller of claam 19, wherein
the plurality of local processors in the local cluster share a
memory address space with a plurality of non-local proces-
sors 1n the non-local cluster.

21. The cache coherence controller of claim 19, wherein
speculatively probing a local node comprises sending a
probe to the local node associated with a cache belore a
request associated with the probe 1s received at a memory
access serialization point.

22. The cache coherence controller of claim 21, wherein
the memory access serialization point 1s a memory controller
in the non-local cluster.

23. The cache coherence controller of claim 10, further
comprising determining 1f speculative probing of the local
node can be performed.

24. The cache coherence controller of claim 23, wherein
determining 1f speculative probing can be performed com-
prises verifying that a memory line associated with the cache
access request 1s not locked.

25. A method for a cache coherence controller to manage
data access 1n a multiprocessor system, the method com-
prising;:

receiving a cache access request from a local processor

associated with a local cluster of processors connected
through a point-to-point architecture;

determining 1f speculative probing of a local node asso-

ciated with a cache can be performed before forwarding
the cache request to a non-local cache coherence con-
troller, the non-local cache coherence controller asso-
ciated with a remote cluster of processors connected
through a point-to-point architecture, wherein the
remote cluster of processors shares an address space
with the local cluster of processors;

sending the cache access request before receiving a probe

response from the local node associated with the cache.

26. The method of claim 25, wherein the cache access
request can be completed locally 11 the cache access request
1s a read and the state of the cache corresponding to the
cache access request 1s valid.

27. The method of claim 25, wherein the cache access
request can be completed locally 11 the cache access request
1s a write and the state of the cache corresponding to the
cache access request 1s valid and exclusive.

28. The method of claim 25, wherein the cache access
request can be completed locally 11 the cache access request
1s a write and the state of the cache corresponding to the
cache access request 1s valid and owned.

29. The method of claim 25, wherein the cache access
requests 1s associated with an i1dentifier.

10

15

20

25

30

35

40

45

50

55

60

65

20

30. The method of claim 29, wherein the identifier 1s
maintained after the transaction has completed locally.

31. The method of claim 30, wherein the identifier 1s
maintaimned until all expected probe responses from non-
local nodes associated with non-local clusters are received.

32. The method of claim 31, wherein the i1dentifier i1s a
transaction identifier.

33. The method of claim 25, wherein speculatively prob-
ing the local node comprises sending a probe to the local
node before a memory line associated the probe 1s locked.

34. The method of claim 25, wherein the plurality of local
processors 1n the local cluster share a memory address space
with a plurality of non-local processors in the non-local
cluster.

35. The method of claim 25, wherein speculatively prob-

ing a local node comprises sending a probe to the local node
associated with a cache before a request associated with the

probe 1s received at a memory access serialization point.
36. The method of claim 35, wherein the memory access
serialization point 1s a memory controller 1n the non-local
cluster.
37. An apparatus for managing data access in a multipro-
cessor system, the method comprising:
means for receiving a cache access request from a local
processor associated with a local cluster of processors
connected through a point-to-point architecture;

means for determining if speculative probing of a local
node associated with a cache can be performed belore
forwarding the cache request to a non-local cache
coherence controller, the non-local cache coherence
controller associated with a remote cluster of proces-
sors connected through a point-to-point architecture,
wherein the remote cluster of processors shares an
address space with the local cluster of processors;

means for sending the cache access request before receiv-
ing a probe response from the local node associated
with the cache.

38. The apparatus of claim 37, wherein the cache access
request can be completed locally 1f the cache access request
1s a read and the state of the cache corresponding to the
cache access request 1s valid.

39. The apparatus of claim 37, wherein the cache access
request can be completed locally 1f the cache access request
1s a write and the state of the cache corresponding to the
cache access request 1s valid and exclusive.

40. The apparatus of claim 37, wherein the cache access
request can be completed locally 1f the cache access request
1s a write and the state of the cache corresponding to the
cache access request 1s valid and owned.

41. The apparatus of claim 37, wherein the cache access
requests 1s associated with an i1dentifier.

42. The apparatus of claim 41, wherein the identifier 1s
maintained after the transaction has completed locally.

43. The apparatus of claim 42, wherein the identifier 1s
maintained until all expected probe responses from non-
local nodes associated with non-local clusters are received.

44. The apparatus of claim 43, wherein the identifier 1s a
transaction identifier.

45. The apparatus of claam 37, wherein speculatively
probing the local node comprises sending a probe to the
local node before a memory line associated the probe 1is

locked.

46. The apparatus of claim 37, wherein the plurality of
local processors 1n the local cluster share a memory address
space with a plurality of non-local processors 1n the non-
local cluster.




us 7,107,408 B2

21

47. The apparatus of claim 37, wherein speculatively
probing a local node comprises sending a probe to the local
node associated with a cache before a request associated
with the probe 1s received at a memory access serialization
point.

48. The apparatus of claim 47, wherein the memory
access serialization point 1s a memory controller i the
non-local cluster.

49. A method for a cache coherence controller to manage
data access 1n a multiprocessor system, the method com-
prising:

receiving a cache access request originating from a first

cluster of processors;

sending a probe to nodes associated with the first cluster

ol processors;

10

22

sending the cache access request to a second cluster of
Processors;

wherein sending the probe and the cache access request
occur at substantially the same time.

50. The method of claim 49, wherein the cache coherence
controller 1s constructed to act as an aggregate remote cache.

51. The method of claim 49, wherein the cache coherence
controller 1s constructed to act as a probing agent pair.

52. The method of claim 49, wherein the cache coherence
controller 1s constructed to act as a remote memory.

53. The method of claim 49, wherein the cache coherence
controller 1s constructed to act as a remote processor.



	Front Page
	Drawings
	Specification
	Claims

