12 United States Patent

Hutchins

US007106336B1

US 7,106,336 B1
Sep. 12, 2006

(10) Patent No.:
45) Date of Patent:

(54) METHOD AND SYSTEM FOR DEFERRED
EVALUATION OF TRANSFORMS IN
GRAPHICS PROCESSORS

(75) Inventor: Edward A. Hutchins, Mountain View,

CA (US)

(73) Assignee: nVidia Corporation, Santa Clara, CA

(56) References Cited
U.S. PATENT DOCUMENTS
5,801,711 A * 9/1998 Koss et al. 345/441
6,198,488 B1* 3/2001 Lindholm et al. 345/426
6,259,461 B1* 7/2001 Brownc..ccocee.... 345/556

* cited by examiner

US
(US) Primary Examiner—Kee M. Tung

Assistant Examiner—Jom Hsu

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35

U.S.C. 154(b) by 0 days. (57) ABSTRACT

A method of deferring evaluation of a transform, in accor-

(21) Appl. No.: 10/846,787 : _ _ :
dance with one embodiment of the present invention,

(22) Filed: May 14, 2004 includes bufllering a plurality of vertex data. The method

also 1includes receiving a draw command, accessing a given

(51) Imt. CL vertex data corresponding to the draw command and an

GO06T 1/60 (2006.01) associated transtorm indicator bit. The given vertex data 1s

GO6T 15/10 (2006.01) transtormed 1f the associated indicator bit 1s cleared. After

G09G 5/36 (2006.01) performing the transform, the vertex data 1s overwritten with

(52) US.Cl .o, 345/530; 345/556; 345/427 the transformed vertex data and the associated transform
(58) Field of Classification Search 345/530, 1ndicator bit 1s set.

345/427, 419, 556, 418
See application file for complete search history.

(BEGIN >
'

RECEIVE DRAW COMMAND FROM HOST
INTERFACE
340

'

RCCESSING VERTEX DATA CORRESPONDING TO
DRAW COMMAND FROM VERTEX BUFTER
345

'

CHECK TRANSFORM INDICATOR BIT TO
DETERMINE IF VERTEX DATA CORRESPONDING\ TRANSFORMED
T0 DREW COMMAND HAS BEEN Tmmsromwy

20 Claims, 9 Drawing Sheets

350

lNﬂT TRANSFORMED

TRANSFORM VERTEX DATR CORRESPONDING TO
DRAW COMMAND
395

J,

WRITE TRANSFORMED VERTEX DATA TO VERTEX
CACHE END SET TRANSFORM INDICATOR BIT
360

l<
(o

U.S. Patent Sep. 12, 2006 Sheet 1 of 9

PROCESSOR
105

US 7,106,336 B1

e SYSTEM MEMORY SYSTEM MEMORY
CONTROLLER 110 115

HOST INTERFACE
120

o

oy

FIGURE 1A

GRAPHICS MEMORY

CRAPHICS PROCESSOR | | GRAPHICS MEMORY .
125 CONTROLER 130 ||

135

DISPLAY CONTROLLER ~ DISPLAY
140 145

U.S. Patent Sep. 12, 2006 Sheet 2 of 9 US 7,106,336 B1

HOST INTERFACE PROCESSOR
110 155

GRAPHICS PROCESSOR l IUNIFIED MEMORY | UNIFIED MEMORY l

115 CONTROLLER 160 165

—ul =

DISPLAY CONTROLLER DISPLAY
BT " 185

FIGURE 1B

U.S. Patent

Sep. 12, 2006 Sheet 3 of 9
HOST INTERFACE
Al
GRAPHICY PROCESSOR
i: 200

v

RASTER MODULE
215

220

—

CATEREEPER MODULE

i

| DATA FETCH MODULE
| 223

'

| 240

MICRO-SHADER MODULE

l

DATR WRITE MODULE
235

p—

SETUP MODULE VERTEX BUFFER
all 240

SCOREBCARD
248

FETCH CACHE
230

WRITE BUITER
225

]

I

FIGURE 2

US 7,106,336 B1

MEMORY

» (ONTROLLER

263

U.S. Patent

Sep. 12, 2006 Sheet 4 of 9

C BEGIN)
I .

RECEIVE NEW VERTEX DATA FROM HOST
INTERFACL
310

'

DETERMINE IF NEW VERTEX DATR WILL
OVERWRITE VERTEX DATA CURRENTLY BEING
UTILIZED BY THE GRAPHICS PROCESSING UNIT
315

N0
Y

WRITE NEW VERTEX DATA INT0 VERTEX BUFTER
AND CLEAR TRANSFORM INDICATOR BIT
349

FIGURE 3A

US 7,106,336 B1

YES

HOLD OFF HOST
INTERFACE
320

U.S. Patent

Sep. 12, 2006 Sheet 5 of 9

| BEGIN |
v

RECEIVE DRAW COMMAND FROM HOST
INTERFACE

| 340
RCCESSING VERTEX DATR CORRESPONDING TO

DRAW COMMAND FROM VERTEX BUFFER
345

CHECK TRANSFORM INDICATOR BIT T0
DETERMINE IF VERTEX DATA CORRESPONDING

T0 DRAW COMMAND HAS BEEN TRANSFORMED
350

NOT TRANSFORMED
Y

| TRANSFORM VERTEX DATA CORRESPONDING TO
DRAW COMMAND

399
WRITE TRANSFORMED VERTEX DATA TO VERTEX

CACHE AND SET TRANSFORM INDICATOR BIT
360

END

FIGURE 3B

US 7,106,336 B1

TRANSFORMED

U.S. Patent

405
415
425
435
445

Sep. 12, 2006 Sheet 6 of 9

VERTEX DATA 1
VERTEX DATA 2

US 7,106,336 B1

VERTEX DATA 3
VERTEX DATA 4

VERTEX DATA 5

455

VERTEX DATA X

FIGURE 4A

460

U.S. Patent Sep. 12, 2006 Sheet 7 of 9 US 7,106,336 B1

400

45— L VERTEXDATA1 40
g5— | VERTEX DATA 2 — 420

4

as—1 1 VERTEX DATAS 30
435— | VERTEX DATA ¢ 440
ys—) " ~ VERTEXDATAS 45
45— VERTEX DATEX |~ 460

FIGURE 4B

U.S. Patent Sep. 12, 2006 Sheet 8 of 9 US 7,106,336 B1

—

ACCESSING PARRMETERS OF EACH VERTEX OF PRIMITIVE
m |
vy @@

CALCULATE LEVEL OF DETAIL AT EACH VERTEX
515

| INTERPOLATE LEVEL OF DETAIL ACROSS EACH PIXEL OF
| PRIMITIVE
YAl

I T

CLAMP LEVEL OF DETAIL VALUE FOR EACH PIXEL TO A
FIRST SET OF BITS INDICATING LEVEL OF MIP-MAP AND
SECOND SET OF BITS INDICATING INTERPOLATION
949

I T

OUTPUT CLAMPED LEVEL OF DETAIL VALUE
ad(

FIGURE 5

U.S. Patent Sep. 12, 2006 Sheet 9 of 9 US 7,106,336 B1

605

\:“-""

b20 .
7
TN
TN
TN
ANEEES
= a
L

e
pd

b15

b10

FIGURE 6

US 7,106,336 Bl

1

METHOD AND SYSTEM FOR DEFERRED
EVALUATION OF TRANSFORMS IN
GRAPHICS PROCESSORS

CROSS-REFERENCE TO RELATED D
APPLICATIONS

The present application 1s related to U.S. patent applica-
tion Ser. No. 10/846,786, filed May 14, 2004, by Edward
Hutchins, entitled “Method and System for Interpolating
Level-of-Detail in Graphics Processors,” which 1s incorpo-
rated herein by reference.

10

BACKGROUND OF THE INVENTION 15

Three-dimensional graphics processing 1s utilized 1n a
number of applications, from electronic games, and movies
to computer aided design (CAD). Conventionally, three-
dimensional graphics processing includes a multi-step ren-

dering process of transitioning from a database representa-
tion of three-dimensional objects to a two-dimensional
projection of the object into a display space. The process
generally includes setting up a polygon model (e.g., a
plurality of primitives) of objects, applying linear transior-
mation to each primitive, culling back facing primitives,
clipping the primitives against a view volume, rasterizing
the primitives to a pixel coordinate set, shading/lighting the
individual pixels using interpolated or incremental shading
techniques, and the like. Typically, graphics processors are
organized 1n a “deep” pipeline architecture, where each
stage 1s dedicated to performing specific functions. A benefit
of a deep pipeline architecture 1s that it permits fast, high
quality rendering of even complex scenes.

20

25

30

: : : 35
The stages of a conventional graphics processor architec-

ture are optimized for high-speed rendering operations (e.g.,
interpolating parameters, such as color, texture and depth
over each two dimensional projection of a primitive). The
architecture of the deep pipeline 1s configured in order to
maximize the overall rendering throughput of the graphics
processor. Generally, deep pipeline architectures have sui-
ficient data throughput (e.g., pixel fill rate) to implement
tast, high quality rendering on large display space devices of
even complex scenes. For example, such conventional deep
pipelines are configured to compute the various parameters
required to render the pixels using multiple, high precision
functions. The functions are implemented such that they
generate high precision results even 1n those circumstances
where such precision i1s redundant or unnecessary.

40

45

50
The dedicated stages of deep pipeline architectured graph-

Ics processors require a relatively high transistor count.
Accordingly, conventional graphic processors require a sig-
nificant chip area, resulting in relatively high costs. In
addition, to achieve fast, high quality rendering in deep 55
pipeline architectures, various stages experience periods of
idle processing cycles. Many of the stages consume about
the same amount of power regardless of whether they are
processing pixels or i1dle. Accordingly, conventional graph-
1CS processors consume significant power, even if the stages ¢,
are performing comparatively little processing.

As aresult of cost and power consumption considerations,
conventional graphics processors are unsuitable for many
mobile and wireless applications (e.g., wireless phones,
personal digital assistants and the like). Therefore, what 1s 65
desired 1s a graphics processor architecture having relatively
low power consumption and costs.

2
SUMMARY OF THE INVENTION

Embodiments of the present invention are directed toward
performing transforms on geometric primitives by a graph-
ics processor. In one embodiment, a method of performing
transformations on a geometric primitive includes storing a
geometric primitive 1 a slot of a vertex bufler. The vertex
bufler includes a plurality of slots, wherein vertex data
associated with a particular geometric primitive may be
stored. Each slot also stores a respective transform 1ndicator
bit. The method further includes clearing a transform indi-
cator bit associates with said slot when the geometric
primitive 1s stored. In response to a draw command 1nvolv-
Ing a given geometric primitive, the given geometric primi-
tive 1s transformed 1f the associated transform indicator bit
1s cleared. Otherwise, the given geometric primitive may be
used without performing a transformation.

In another embodiment, a graphics processor includes a
vertex buller, a setup module and a raster module. The raster
module 1s communicatively coupled to the setup module.
The setup module 1s communicatively coupled to the vertex
bufler. The vertex buller stores a plurality of vertex data and
a plurality of transform indicator bits, wherein each trans-
form indicator bit 1s associated with a respective one of the
vertex data. The setup module receives draw commands.
The setup module transforms a given vertex data in response
to the draw command when a corresponding transform
indicator bit 1s 1n a first state. After performing the trans-
formation, the transformed vertex data 1s saved 1n the vertex
bufler and the corresponding indicator bit 1s set to a second
state by the setup module. The raster module receives pixel
packets that include the transformed vertex data and an
istruction corresponding to said draw command from the
setup module.

In yet another embodiment, a method of deferring evalu-
ation of a transform includes buflering a plurality of vertex
data. The method also includes receiving a draw command,
accessing a given vertex data corresponding to the draw
command and an associated transform indicator bit. The
given vertex data 1s transformed 1f the associated indicator
bit 1s cleared. After performing the transform, the vertex data
1s overwritten with the transformed vertex data and the
associated transform indicator bit 1s set.

Embodiments of the present invention advantageously
defer evaluation of transforms. Transforms are not automati-
cally performed when vertex data 1s loaded into the vertex
bufler. In addition, 1f a given vertex data has already been
transiformed, repeated transform of the given vertex data
may be advantageously eliminated by embodiments of the
present nvention. Eliminating the repeated transform of
vertex data currently stored in the vertex bufller reduces
power consumed by the graphics processor. Furthermore, 1t
1s appreciated that the transtorm indicator bit enables storage
of pre-transform vertex data and post-transform vertex data
in a single vertex bufler. Storing vertex data (both pre- and
post-transform) into a single vertex builer simplifies arbi-
tration between transform and setup units and allows the
same underlying hardware to be utilized for both tasks.
Hence, the hardware cost and complexity of the graphics
processor may be reduced.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention are illustrated by
way of example and not by way of limitation, in the figures
of the accompanying drawings and in which like reference
numerals refer to similar elements and in which:

US 7,106,336 Bl

3

FIG. 1A shows a block diagram of exemplary computing
device architecture for implementing embodiments of the
present mvention.

FIG. 1B shows a block diagram of another exemplary
computing device architecture for implementing embodi-
ments ol the present invention.

FIG. 2 shows a block diagram of a graphical processor, in
accordance with one embodiment of the present invention.

FIGS. 3A and 3B show a flow diagram of an exemplary
method of deferred transform evaluation, in accordance with
one embodiment of the present invention.

FIGS. 4A and 4B show an exemplary vertex builer, in
accordance with one embodiment of the present invention.

FIG. 5 shows a flow diagram of a method of interpolating,
level-ot-detail (LOD), 1n accordance with one embodiment
ol the present invention.

FIG. 6 shows an exemplary primitive, 1n accordance with
one embodiment of the present invention.

DETAILED DESCRIPTION OF TH.
INVENTION

L1l

Reference will now be made in detail to the embodiments
of the ivention, examples of which are illustrated 1n the
accompanying drawings. While the invention will be
described 1n conjunction with these embodiments, 1t will be
understood that they are not intended to limit the invention
to these embodiments. On the contrary, the mvention 1s
intended to cover alternatives, modifications and equiva-
lents, which may be included within the scope of the
invention as defined by the appended claims. Furthermore,
in the following detailed description of the present inven-
tion, numerous specific details are set forth in order to
provide a thorough understanding of the present invention.
However, 1t 1s understood that the present invention may be
practiced without these specific details. In other instances,
well-known methods, procedures, components, and circuits
have not been described in detail as not to unnecessarily
obscure aspects of the present invention.

Embodiments of the present invention provide a method
and system for implementing deferred evaluation of trans-
forms 1n a graphics processor. Embodiments of the present
invention enable the transier of primitive parameters without
automatically evaluating transforms therecon. Embodiments
of the present invention also advantageously limit repetition
of evaluating transforms of the same parameters. The defer-
ral of transform evaluation 1s achieved without a substantial
increase in bufler capacity. Limiting the need to evaluate
transforms reduces power expenditures and reduces the
number of circuit elements. Embodiments of the present
invention and their benefits are further described below.

Referring to FIGS. 1A and 1B, block diagrams of exem-
plary computing device architectures for implementing
embodiments of the present invention, are shown. The
computing device may be a cellular telephone, PDA or other
portable wireless appliance, navigation system (e.g., map
enabled GPS), palm-sized computer, tablet computer, game
console, personal entertainment center, media center PC,
computer based simulator, desktop computer, laptop com-
puter, or the like. The computing device architectures pro-
vide the execution platform for implementing certain soit-
ware-based functionality of embodiment of the present
invention. As depicted mn FIG. 1A, a first computing device
may include a processor 103, system memory controller 110,
system memory 115, host interface 120, graphics processor
1235, graphics memory controller 130, graphics memory 135,
display controller 140 and display 1435. The processor 1035

10

15

20

25

30

35

40

45

50

55

60

65

4

may be communicatively coupled to the system memory 115
through the system memory controller 110. The processor
105 may also be communicatively coupled to the graphics
processor 125 through the host interface 120. The graphics
processor 125 may be communicatively coupled to the
graphics memory 135 through the graphics memory con-
troller 130. The graphics memory controller 130 may also
communicatively couple the display controller 140 to the
graphics memory 135. The display 145 may be communi-
catively coupled to the display controller 140.

The processor 105 provides one or more applications by
operating on 1nstructions (e.g., computer executable code)
and information (e.g., data) stored in the system memory 115
(c.g., computer-readable memory). The system memory
controller 110 controls the tlow of such information and
instructions between the processor 105 and the system
memory 115. Images to be output on the display 145 may be
ofl-loaded to the graphics processor 125 by the processor
105. The images are off-loaded by transferring geometric
primitive parameters (e.g., vertex data representations of
triangulated three-dimensional models of objects), draw
commands and 1nstructions for controlling the operation of
the graphics processor 125. The primitive parameters, draw
commands and 1nstructions are transferred from the proces-
sor 105 to the graphics processor 125 under control of the
host mterface 120. In one implementation, a widely 1mple-
mented graphics application programming interface, such as
the OpenGL-ES™ graphics language, Direct3D™, or the
like, 1s utilized for the software interface between the
graphics processor 125 and the applications provided by the
processor 105.

The graphics processor 125 generates a color and depth
value for each pixel of the display 145 1n response to the
received primitives, draw commands and instructions. In
one 1implementation, the primitive parameters are stored 1n
a first bufler local to the graphics processor 125. The
graphics processor 1235 performs geometrical calculations
(e.g., transforms) on the primitive in accordance with the
draw commands. The graphics processor 125 also performs
rasterization wherein values from the geometrical calcula-
tions are mapped to corresponding pixels i the display
space. The graphics processor 125 also retrieves color,
texture and depth information from the graphics memory
135. The graphics memory controller 110 controls the flow
of such information between the graphics memory 1335 and
the graphics processor 125. The color, texture and depth
information may be cached local to the graphics processor
125.

The color and depth value of each pixel may then be
determined by the graphics processor 125 upon applying
such functions as texture mapping, fogging, alpha testing,
depth testing for culling occluded pixel, alphablend color
combining and the like. The color of each pixel may then be
cached 1n a second builer local to the graphics processor
125. When the second bufler is filled, the output pixel data
(e.g., color and depth value of each of a plurality of pixels)
may then be stored by the graphics processor 125 in the
graphics memory 135 under control of the graphics memory
controller 130. The display controller 180 reads the output
pixel data out of the graphics memory 135, under control of
the graphics memory controller 130. The display controller
180 generates scan control signals, from the pixel data, for
output to the display 145. An 1mage 1s project by the display
145 as a function of the scan control signals.

As depicted 1n FIG. 1B, a second computing device may
include a processor 155, host interface 170, graphics pro-
cessor 175, unified memory controller 160, unified memory

US 7,106,336 Bl

S

165, display controller 180 and display 18S. The processor
155 may be communicatively coupled to the unified memory
165 through the unified memory controller 160. The pro-
cessor 155 may also be communicatively coupled to the
graphics processor 175 through the host interface 170. The
graphic processor 175 may be communicatively coupled to
the unified memory 165 through the unified memory con-
troller 160. The unified memory controller 160 may also
communicatively couple the display controller 180 to the
unified memory 165. The display 185 may be communica-
tively coupled to the display controller 180.

The processor 155 provides one or more applications by
operating on instructions (e.g., computer-executable code)
and information (e.g., data) stored in the unified memory
165 (e.g., computer-readable memory). The unified memory
controller 160 controls the flow of such information and
istructions between the processor 155 and the unified
memory 165. Images to be output on the display 185 may be
ofl-loaded to the graphics processor 175 by the processor

55. The 1mages are ofl-loaded by transierring geometric
primitive parameters (€.g., vertex data), draw commands and
instructions for controlling the operation of the graphics
processor 175. The primitive parameters, draw commands
and 1nstructions are transterred from the processor 155 to the
graphics processor 175 under control of the host interface
170. In one implementation, a widely implemented graphics
application programming interface, such as the OpenGL-
ES™ goraphics library, Direct3D™, or the like, 1s utilized for
the software interface between the graphics processor 175
and the applications provided by the processor 155.

The graphics processor 175 generates a color and depth
value for each pixel of the display 185 1n response to the
received primitives, draw commands and instructions. In
one 1mplementation, the primitive parameters are stored 1n
a first bufler local to the graphics processor 175. The
graphics processor 175 performs geometrical calculation
(e.g., transforms) on the primitive in accordance with the
draw commands. The graphics processor 175 also performs
rasterization wherein values from the geometrical calcula-
tions are mapped to corresponding pixels in the display
space. The graphics processor 175 also retrieves color,
texture and depth information from the unified memory 165.
The unified memory controller also controls the tlow of such
information between the graphics processor 175 and the
unified memory 165. The color, texture and depth informa-
tion may be cached local to the graphics processor 175.

The color and depth values of each pixel may then be
determined by the graphics processor 175 upon applying
such functions as texture mapping, fogging, alpha testing,
depth testing for culling occluded pixels, alphablend color
combining and the like. The color of each pixel may then be
cached 1 a second bufler local to the graphics processor
175. When the second bufler is filled, the output pixel data
(e.g., color and depth value of each of a plurality of pixels)
may then be stored by the graphics processor 175 1n the
unified memory 165, under control of the unified memory
controller 160. The display controller 180 reads the output
pixel data output from the umfied memory 165, under
control of the unified memory controller 160. The display
controller 180 generates scan control signals, from the pixel
data, for output to the display 185. An 1mage 1s projected by
the display 185 as a function of the scan control signals.

Referring now to FIG. 2, a block diagram of a graphical
processor 200, in accordance with one embodiment of the
present nvention, 1s shown. As depicted in FIG. 2, the
graphical processor 200 includes a setup module 210, a
raster module 2135, a gatekeeper module 220, a data fetch

10

15

20

25

30

35

40

45

50

55

60

65

6

module 225, a micro-shader module 230, and a data write
module 235. The graphics processor 200 may further include
a vertex buffer 240, a scoreboard 245, a fetch cache 250
and/or a write bufler 255. The modules 210-235 of the
graphical processor 200 are arranged 1n a pipeline architec-
ture.

The setup module 210 may be communicatively coupled
to a host interface 260. The setup module 210 receives
geometric primitives (e.g., parameters defining a polygon 1n
three-dimensional space), draw commands and 1nstructions
(e.g., for controlling operation of the modules 210-2353)
from the host mterface 260. The setup module 210 prepares
parameters (€.g., vertex data) of the primitives for rasteriza-
tion. In one implementation, the primitives include param-
cters describing the three vertices of a triangle 1n three-
dimensional space. The setup module 210 supports 1nput

formats of 32 bit IEEE floating point, 32 bit S15.16 fixed
pomnt (e.g., OpenGL-ES™ fixed standard) and/or 8 bit
packet (e.g., for colors) data packets. The data packets may
contain up to 24 parameters 1 addition to X, y, z, and w
parameters, per primitive.

The setup module 210 may be communicatively coupled
to the vertex bufler 240. The vertex bufler 240, in one
implementation, includes storage (e.g., a plurality of discrete
slots) for 256 words (e.g., vertex words). In one implemen-
tation, the discrete slots may either be 1n 8 or 16 word vertex
formats, under control of software. Primitive parameters
(e.g., three-dimensional vertex data) may be loaded from the
host interface 260 into the vertex builer 240 through the
setup module 210, under software control. Although the host
interface 260 1s communicatively coupled to the setup
module 210, the host interface 260 may eflectively load
vertex data directly into the vertex bufler 240.

A transform (e.g., matrix multiplication) 1s performed
upon the vertices to convert the three-dimensional arbitrary
space that a given application 1s working in to the two-
dimension space that is being projected onto (e.g., view
surface). The transform process 1s not automatically per-
tformed when vertex data 1s loaded 1nto the vertex bufler 240
by the host interface 260.

Referring now to FIGS. 4A and 4B, an exemplary vertex
buller 240, 1n accordance with one embodiment of the
present invention, 1s illustrated. As depicted 1n FIG. 2 1n

conjunction with FIGS. 4 and 4B, a transform indicator bit
405, 415, 425, 435, 445 and 455 1s associated with each

vertex word 410, 420, 430, 440, 450 and 460, respectively,
stored 1n the vertex builer 240. The associated transform
indicator bit 405 i1ndicates whether the given vertex word
410 has been transformed. When the host interface 260 loads
a vertex word (e.g., 440) 1nto the vertex buller 240, the data
1s 1n three-dimensional space and therefore the associated
transform indicator bit (e.g., 435) 1s set to a {first state (e.g.,
cleared). When the setup module 210 accesses a draw
command from the host interface 260, the setup module 210
retrieves vertex data, applicable to the given draw command,
from the vertex bufler 240. The state of the associated
transform indicator bit 1s checked upon retrieving the given
vertex data. If the given vertex word 1s three-dimensional
data (e.g., 440) as indicated by the transform indicator bat,
the setup module 210 transforms the given vertex data from
a three-dimensional into a two-dimensional representation.
The vertex word (e.g., 440) may be over written with the
transiformed (e.g., two-dimensional) vertex word (e.g., 440")
and the associated transform indicator bit (e. 435") 1s set to
a second state (e.g., set). For a given triangle, 11 its indicator
bit indicates transformed data, then the triangle 1s accessed
directly for rasterization without transformation required.

US 7,106,336 Bl

7

After transformation, the setup module stores the vertex data
back to the vertex buflter and sets the indicator bit to indicate
the transformation state.

Referring now to FIG. 6, an exemplary primitive, in
accordance with one embodiment of the present invention,
1s illustrated. As depicted 1n FIG. 2 1n conjunction with FIG.
6, the level-of-detail (LOD) for each vertex 605—610 of the
given primitive 1s also calculated by the setup module 210.
Calculation of the LOD includes determining the approxi-
mate area of each vertex pixel projected into the 1mage space
(¢.g., the area of each box represents an area of an exemplary
pixel projected into the image space). In the conventional
art, an LOD value of each vertex of a primitive may be
calculated as a function of the primitive’s vertex X coordi-
nate value, the vertex Y coordinate value, the texture S
coordinate value and the texture T coordinate value accord-
ing to Equation 1, as follows:

LOD=Log,(max(sqrt(ds/dx*+dt/dx?), sqrt(ds/dy*+
di/dy?))) (1)

In accordance with embodiments of the present invention,
LOD interpolant values (LOD _interp(n)) of the vertices of a
triangular primitive are determined prior to calculating the
logarithm base two. The pre-Log,() LOD 1s also divided by
the square of the homogeneous view distance (w) square for
cach vertex (n) according to Equation 2, as follows:

LOD_interp(n)=[max(sqrt(ds/dx(n)°+dt/dx(n)?), sqrt

(ds/dy(n)>+dt/dy(n)y*) /wn)’ (2)

It 1s appreciated that the pre-Log,() LOD should actually
be divided by w(n)” (e.g., based on the partial derivatives of
the pre-Log,() LOD calculations with respect to changes in
X and Y). However, using w(n)” is sufficiently accurate to
provide relatively good quality images as perceived by the
human eye under substantially all circumstances. Utilizing
w(n) advantageously reduces computation costs and the
dynamic range. Upon determining the LOD interpolant
values of the vertices, they may be interpolated just like any
other perspective-correct primitive parameter.

Accordingly, the LOD calculations are done on a per
primitive basis, as opposed to per-pixel. Calculating the
L.OD on a per-primitive basis reduces power consumption
by the graphics processor 200. The LOD values of the vertex
pixels may then be utilized 1n the raster module 215 to
interpolate the LOD values of the other pixels in the given
primitive based on the vertex data.

In one implementation, the setup module 210 calculates
barycentric coeflicients for rastering. In a barycentric coor-
dinate system, distances in primitives (e.g., triangles) are
measured with respect to its vertices. The use of barycentric
coordinates reduces the required dynamic range, which
permits using fixed-point calculations that require less
power than floating point calculations. The two-dimensional
parameters (e.g., barycentric) are sent from the setup module
to the raster module. The setup module 210 may also
perform clipping and viewport operations. The setup module
210 may also perform culling of back-facing primitives and
occlusion. Thus, culling and occlusion operations are per-
formed before texturing and shading. Eliminating pixels, as
a result of culling and/or occlusion, before texturing and
shading reduces power consumption and reduces the asso-
ciated memory accesses by the data fetch module 225 and
the data write module 235. The setup module 210 may also
support guard-band clipping, power management for the rest

of he pipeline, and/or collection of statistics from other
modules 215-235, buflers 240, 255, caches 250 and/or the

scoreboard 245.

10

15

20

25

30

35

40

45

50

55

60

65

8

The raster module 2135 may be communicatively coupled
to the setup module 210. The raster module 215 receives
instructions and applicable transformed vertex data and
performs rasterization thereupon. The raster module 215
determines which pixels on a screen correspond to a given
polygon as defined by the transiformed vertex data. Raster-
1zing ncludes “walking” the primitive and generating pixel
packets that contain parameters (e.g., set of descriptions for
cach pixel). The raster module 215 also determines shader
processing operations to be performed, as part of rendering,
on cach pixel, such as color, texture and fog operations.
Hence, the raster module 215 converts from per polygon
(e.g., triangle) to per pixel processing.

The raster module 215 generates at least one pixel packet
for each pixel of a primitive. Each pixel packet includes
fields for a payload of pixel parameters required for pro-
cessing, an instruction sequence ol operation to be per-
formed on the pixel packet, and sideband information. The
payload of the pixel may include color values, texture
coordinates (e.g., S and T), X coordinate values, Y coordi-
nate values, 7 depth values, LOD values and the like. In one

implementation, the color field may be a pair of 8-bit

precision color values, or packed 35555 ARGB color values.
The texture field may be 16-bit S and T coordinates, with a
4-bit LOD value. The depth field may be a 16-bit value. In
one 1mplementation, the sideband information includes a
valid field, a kill field, a packet type descriptor (whether the
packet 1s a register write or contains pixel data) or the like.
The generated pixel packets may be four 20-bit variables per
row, and up to 4 rows. The generated pixel packets may also
include 4 high-precision and 4 low-precision perspective-
corrected iterated values per row.

The raster module 215 interpolates the LOD of the pixels
from the calculated LOD interpolant values of the primitive
vertices 605-615. However, a straight interpolation across
the primitive (e.g., triangle) will provide relatively poor
image quality. Accordingly, the final LOD (final_LOD(1))
for each pixel 1s interpolated according to Equation 3:

final_ LOD()=Log,(LOD__interp(n))* W?) (3)
where final_LOD(1) are iterpolated values of LOD for a
respective pixel, 1, of the pixels. Equation 3 may be evalu-
ated for each texture to be applied to the pixels of the
primitive. Assuming that a fast approximation of the loga-
rithm base two 1s available, Equation 3 can be simplified as
given by Equation 4:

final LOD(i)=approx_Log,(LOD interp)+Log,(w*2) (4)

The final LOD of each pixel 1s clamped between zero and
Log, (N), where N 1s the maximum dimension of the largest
texture supported by the device. The LOD value has an
integer portion and a fractional portion. In one 1implemen-
tation, an eight-bit value representing the LOD of each pixel,
where four iteger bits indicate which of a plurality of
mip-map levels to use and four factional bits are utilized to
interpolate the mip-map level.

It 1s appreciate that 1f there are many texels (texture
clements) in a given pixel, than an average texel (e.g.,
filtered-value) may be determined. In mip-mapping the
texture 1s pre-filtered 1nto a plurality of resolutions. For
example, a first file of the texture has a first resolution, a
second file has a quarter of the resolution of the primary
texture, a third file has a sixteenth of the resolution, and so
on until a last file contains a single value (e.g., the overall
average value) for the texture. The LOD value for each pixel

US 7,106,336 Bl

9

1s utilized to determine an appropriate mip-map level such
that the texel corresponds one-to-one with the screen space
pixel.

The LOD filtering provided by mip-mapping 1s config-
ured to prevent moire interference patterns, aliasing, and
rendering artifacts by scaling and filtering a full resolution
texture map into multiple lower resolution versions. The
integer portion of the computed LOD value 1s used to select
the correct mip-map level corresponding to the primitive’s
distance from the viewpoint. For example, a 4-bit LOD
value may be utilized to access one of O through 15 mip-map
levels. The fractional portion of the computed LOD value 1s
used to configure a blending operation performed on corre-
sponding texels i1n corresponding mip-map levels. For
example, the fractional portion i1s used to assign different
weilghts to texels of corresponding mip-map levels.

The shader operations do not utilize LOD parameter
values that are outside of the range of zero to Log,(N). Thus,
the raster module 215 1s configurable to clamp the LOD
value to a maximum value 1 a computed LOD value 1s
greater than a predetermined range. Similarly, the LOD may
be clamped to a minimum value if a computed LOD value
1s less than the predetermined range. In other words, when
the computed LOD parameter corresponds to a texel:pixel
ratio, for the primitive, that i1s larger than the coarsest
(smallest) mip-map level, the LOD value may be clamped to
the maximum range value. When the computed LOD param-
eter corresponds to a texel:pixel ratio that 1s smaller than the
finest (largest) mip-map level, the LOD value may be
clamped to this minimum range value. In one implementa-
tion, once the LOD value 1s clamped to the mimimum or
maximum range value, the fractional portion may also be
clamped. Alternatively the fractional portion may be dis-
carded. For example, 1n a case where the maximum LOD
parameter value has been exceeded (e.g., mip-map level 15),
the lowest resolution version will be fetched by the data
fetch module 220. The fractional portion would be insig-
nificant with respect to any blending process.

The gatekeeper module 220 may be communicatively
coupled to the raster module 215. The gatekeeper module
220 may also be communicatively coupled to the scoreboard
245. The gatekeeper module 220 provides data tlow control
(e.g., regulates the flow of pixels through the pipeline). The
gatekeeper module 220 attempts to keep the pipeline as tull
as possible, such that the modules operate on substantially
every clock. To facilitate data tlow control, the scoreboard
245 tracks the entry and retirement of pixels 1n the pipeline.
In one implementation, a corresponding bit in the score-
board 245 1s set when a pixel packet 1s received from the
raster module 215 by the gatekeeper module 220. The
corresponding bit in the scoreboard 245 1s reset as the pixel
packet drains out of the graphic processor 200.

The scoreboard 245 1s utilized by the gatekeeper module
220 for scheduling, load balancing, resource allocation and
hazard avoidance of pixel packets. The gatekeeper module
220 also utilizes the scoreboard 245 to ensure cache coher-
ency for the data fetch 225 and data-write modules 235. By
tracking the entry and retirement of pixel packet utilizing the
scoreboard 243, the gatekeeper module 220 prevents coin-
cident pixels from entering the micro-shader module 230.
The gatekeeper module 220 also utilizes the scoreboard 2435
to support recirculation of pixel packets for complex shader
operations. The gatekeeper module 220 may also detects
micro-shader 230 1dle conditions. The gatekeeper module
220 may also handle debug register reads.

The data fetch module 225 may be communicatively
coupled to the gatekeeper module 220 and a memory
controller 265. The data fetch module 225 may also be
communicatively coupled to the fetch cache 250. The data
tetch module 225 performs color, texture and depth data

10

15

20

25

30

35

40

45

50

55

60

65

10

reads from memory (not shown) for each pixel packet
flowing through the pipeline. The data fetch module 225
reads data from memory and buflers the data in the fetch
cache 250. In one implementation, the data fetch module
225 reads data from memory 1 128 bit chunks (e.g., the
width of the communication channel between the graphics
processor and the memory controller). In one implementa-
tion the fetch cache 250 may be partitioned 1nto a color
cache, texture cache and depth cache. Alternatively the fetch
cache 250 may be composed of separate caches for storing
color, texture and depth information. The data fetch module
225 1nserts the appropriate color, texture and depth infor-
mation into each pixel packet prior to sending the pixel
packet onto the micro-shader module 230.

It 1s appreciated that because previous and subsequent
pixels are spatially related to each other, such that there 1s a
reasonable probability that the color, texture and/or depth
data builered 1n the fetch cache 250 may be utilized from
subsequent pixel packets. Therefore, the bandwidth utiliza-
tion ol the communication channel between the graphics
processor 200 and the memory controller 265 may be
reduced, 1 a subsequent pixel packets can utilize color,
texture and/or depth data buflered in the fetch cache 250,
which were retrieved for a previous pixel packet.

The micro-shader module 230 may be communicatively
coupled to the data fetch module 325. The micro-shader
module 230, 1n one implementation, includes one or more
arithmetic logic units (ALU). Each arithmetic logic unit
implements a unified arithmetic function. In one implemen-
tation, each ALU performs a plurality of scalar arithmetic
logic operations 1n the form of [a*b “op” c¢*d] on a set of
input parameters, where “op” represents a programmable
operation and * 1s a multiplication operation. The mput
parameters may be one or more parameters from a given
pixel packet, one or more previous result values and/or one
or more constants. The arithmetic logic operation may
implement functions such as a fog algorithm, alpha blend
algorithm, alpha test algorithm and/or a texture combine
operation. The ALU may simultaneously perform difierent
operations, thereby improving the functionality of the ALU
and decreasing power consumption, as compared to con-
ventional graphics processors. The output of the micro-
shader module 230 1s a color and depth value for a given
pixel of the display.

The data write module 235 may be communicatively
coupled to the ALU modules 230 and the memory controller
270. The data write module 235 may also be communica-
tively coupled to a write buller 260 and/or the gatekeeper
module 220. The data write module 235 send the resultant
pixel data, calculated by the ALU module, out to memory
controller 265. In one 1implementation, the communication
channel between the graphics processor 200 and the memory
controller 270 1s 128-bits wide and the pixel data 1s 16-baits.
Therefore, the resultant pixel data 1s buflered in the write
bufler until 128 bits are accumulated. The accumulated
resultant pixel data 1s output to the memory controller 270
for storage 1n memory. By buflering the resultant pixel data,
cilicient use of the communication channel bandwidth may
be achieved.

The data write module 235 may also indicate retired
writes to the scoreboard 245, thereby keeping data consis-
tent. The data write module 235 may also recirculate pixel
packets for further processing. In one implementation, the
data write module 2335 may optionally dither to 565 colors.

Each module 210-235 of the graphics processor 200 1s
sub-block clocked. Sub-block clocking enables disabling of
the clock tree for a given sub-block which 1s i1dle (e.g.,
command and/or data path). Furthermore, the logic 1is
designed to minimize active regions of the logic cone. For
example, the logic cone 1s optimized such that power 1is

US 7,106,336 Bl

11

consumed when an operation i1s performed as opposed to
every clock cycle. Thus, 1f an operation 1s not performed on
a pixel packet in a block of a given module 210-235 during
a clock cycle, power savings propagate down the logic tree
of the pipeline.

Referring now to FIGS. 3A and 3B, a flow diagram of an
exemplary method of deferred transform evaluation, 1n
accordance with one embodiment of the present invention,

1s shown. As depicted i FIGS. 3A and 3B, 1n conjunction
with FIGS. 4A and 4B, the method of deferred transform

evaluation includes recerving vertex data of a geometric
primitive from a host interface, at 310. At 3135, it 1s deter-

mined by an mterlocking mechamism 11 the new vertex data
will overwrite vertex data currently being utilized. If the new
vertex data received from the host interface will overwrite
vertex data currently mvolving a draw command, the host
interface 1s held ofl from loading the new vertex data into the
vertex bufler 400, at 320. If the new vertex data will not
overwrite vertex data currently involving a draw command,
the host interface loads the new vertex data (e.g., 440, 450,
460) 1nto the vertex bufler 400 and clears the an associated
transform indicator bit (e.g., 435, 445, 455) 1n the vertex
bufter 400, at 325.

The method of deferred transtform evaluation further
includes receiving a draw command from the host interface,
at 340. At 345, the vertex data corresponding to the draw
command 1s retrieved from the vertex bufler 400. At 350, 1t
1s determined, from the state of transform indicator bit, 1f the
retrieved vertex data has been transformed. If the vertex data
(c.g.,440) 1s three-dimensional data of a graphics primitives,
as indicated by the corresponding transform indicator bits
(c.g., 435), the vertex data i1s transformed into a two-
dimensional representation, at 355. At 360, the transformed
vertex data (e.g., 440") 1s written back to the vertex bufler
400" and the corresponding transform indicator bit (e.g.,
435" 1s set. If the retrieved vertex data (e.g., 430) has already
been transformed into a two-dimensional representation, the
transiorm process 355 and corresponding write back process
360 are not performed.

Accordingly, transforms are not automatically performed
when vertex data i1s loaded into the vertex bufler 400. In
addition, 11 a given vertex data has already been transformed
as a result of a previous draw command of a primitive that
shared the given vertex datum, the repeated transform of the
given vertex data may be advantageously eliminated. Elimi-
nating the repeated transform of vertex data currently stored
in the vertex builer 400 reduces power consumed by the
graphics processor. Furthermore, it 1s appreciated that the
transform 1indicator bit enables storage of pre-transform
vertex data and post-transform vertex data in a single vertex
bufler 400. Hence, the hardware (e.g., transistors imple-
menting the registers utilized to store vertex data) of the
graphics processor may be reduced. In addition, the sharing
of a single vertex buller allows the same underlying hard-
ware units (multipliers, adders and the like) to be utilized by
both the transformation and setup calculations by virtue of
the inherent arbitration between said calculations, further
reducing cost and complexity.

Referring now to FIG. 5, a flow diagram of a method of
interpolating level-of-detail, i1 accordance with one
embodiment of the present invention, 1s shown. As depicted
in FIG. 5, the method of interpolating the level-of-detail
begins with receipt of parameters for each vertex of a given
geometric primitive, at 510. Each vertex 1s specified by a
plurality of parameters, such as a primitive X coordinate
value, a Y coordinate value, and a W coordinate value (e.g.,
view distance). At 515, the level-of-detail (LOD) 1s calcu-
lated at each vertex. The LOD of each vertex may be
calculated according to Equation 2 for each texture. In one

10

15

20

25

30

35

40

45

50

55

60

65

12

implementation, the LOD of each vertex varies across the
triangle as a function of 1/W?=.

At 515, the LOD of the pixels of the primitive may be
interpolated from the LOD values of the primitive vertices
according to Equation 4. The LOD value 1s between zero and
Log,(IN), where N 1s the maximum texture dimension sup-
ported by the device. The LOD value includes an integer
portion and a fractional portion. In one implementation, the
LOD value 1s encoded as an eight-bit representation. Four
bits (e.g., integer portion) indicate which of a plurality of
mip-map levels to fetch and four bits (e.g., fractional por-
tion) are utilized to interpolate the texel in the specified
mip-map level.

At optional process 523, the integer portion and/or the
fractional portion of the LOD value may be clamped. For
example, 1f the calculated LOD 1s less than a zero, than the
integer portion of the LOD value 1s clamped to zero and the
fractional portion may be discarded. If the calculated LOD
1s greater than Log,(N), than the integer portion of the LOD
value 1s clamped to maximum resolution and the fractional
portion may be discarded. Alternatively, 11 the calculated
L.OD 1s less than a zero, than the integer portion of the LOD
value 1s clamped to zero and the fractional portion may also
be clamped. It the calculated LOD 1s greater than Log,(IN),
than the integer portion of the LOD value 1s clamped to
maximum resolution and the fractional portion may also be
clamped. The clamped LOD value may then be output, at
530.

In the conventional art, the LOD 1s calculated for each
pixel 1n a given primitive based on the pixel’s other param-
cters. In embodiments of the present invention, the level-
of-detail (LOD) 1s calculated once per vertex of a given
primitive. It 1s appreciated that a given triangle has only
three vertexes, but typically has hundreds of pixels. Hence,
the computational workload of graphics processors, in
accordance with embodiments of the present invention, 1s
advantageously reduced as compared to conventional graph-
ICs processors because interpolation 1s more eflicient than
computation of the LOD values according to the conven-
tional technique. The reduction 1 computation workload
reduces power consumption by the graphics processors.

The foregoing descriptions of specific embodiments of the
present 1nvention have been presented for purposes of
illustration and description. They are not intended to be
exhaustive or to limit the invention to the precise forms
disclosed, and obviously many modifications and varnations
are possible 1n light of the above teaching. The embodiments
were chosen and described 1n order to best explain the
principles of the invention and its practical application, to
thereby enable others skilled in the art to best utilize the
invention and various embodiments with various modifica-
tions as are suited to the particular use contemplated. It 1s
intended that the scope of the imnvention be defined by the
claims appended hereto and their equivalents.

What 1s claimed 1s:

1. A method of performing transformations on a geomet-
ric primitive comprising:

storing a non-transformed first geometric primitive 1nto a
first slot of a vertex bufler, wherein said vertex bufler
comprises a plurality of discrete slots, each slot for
storing vertex data associated with a particular geomet-
ric primitive and a respective transformation indicator
bit;

responsive to said storing, clearing a first transformation
indicator bit associated with said first slot, wherein a
second slot of said vertex bufler stores a transformed

second geometric primitive and wherein a second trans-
formation indicator bit associated with said second slot

1S set;

US 7,106,336 Bl

13

in response to a draw command involving said first
non-transformed geometric primitive, transforming
said non-transformed first geometric primitive to pro-
duce a transiformed first geometric primitive;

storing said transformed {first geometric primitive 1n said
first slots wherein said transformed {first geometric
primitive overwrites said non-transformed geometric
primitive; and

setting said first transformation indicator bit 1n response to
said transforming said non-transformed first graphic
primitive.

2. The method as described in claim 1, wherein said
storing said non-transformed first geometric primitive 1s
performed under software control via a host interface.

3. The method as described in claim 2, wherein said
storing said non-transformed {irst geometric primitive 1nto
said first slot 1s prevented while a draw command 1volving
said first slot 1s pending.

4. The method as described in claim 1, wherein said
transformation comprises transforming three dimensional
vertex position of said non-transformed {first geometric
primitive to two dimensional vertex position.

5. The method as described in claim 4, wherein said
vertex buller comprises data of transformed geometric
primitives and data of non-transformed geometric primitives
within said plurality of slots.

6. The method as described 1in claim 1, wherein said
transforming 1s performed by a setup module of a graphics
pipeline and wherein further said setup module 1s coupled to
said vertex bufler and coupled to supply transformed vertex
data to a raster module.

7. A vertex bufler for a graphics pipeline, said vertex
builer comprising:

a plurality of slots, each slot for storing vertex data
associated with a particular geometric primitive and
cach slot comprising a respective transiformation indi-
cator bit indicating a transformation state of said par-
ticular geometric primitive;

wherein a transformation indicator bit associated with a
non-transformed geometric primitive 1s cleared 1n
response to said non-transformed geometric primitive
having been loaded into a slot of said vertex buller
under control of a host interface; and

wherein said transformation indicator bit 1s set in response
to said non-transformed geometric primitive having
been transformed by a setup module to produce a
transformed geometric primitive that 1s stored 1n said
vertex buller.

8. The vertex bufler as described 1n claim 7, further
comprising an interlock mechanism preventing said a slot of
said vertex bufler from being overwritten while a draw
command 1s pending that involves vertex data stored 1n said
slot.

9. The vertex bufler as described 1n claim 7, wherein said
plurality of slots comprises data of transformed geometric
primitives and data of non-transformed geometric primi-
tives.

10. A graphics processor comprising:

a vertex buller for storing a plurality of vertex data and a
plurality of transform indicator bits, wherein each
transform indictor bit 1s associated with a respective
one of said vertex data;

a setup module communicatively coupled to said vertex
bufler, for receiving a draw command and for trans-
forming given non-transformed vertex data to trans-
formed vertex data in response to said draw command

10

15

20

25

30

35

40

45

50

55

60

65

14

when a corresponding one of said transform indicator
bits 1s 1n a first state and for saving said transformed
vertex data back to said vertex bufler and for setting
said one of said transform indicator bits to a second
state; and

a raster module communicatively coupled to said setup

module for receiving a pixel packet comprising said
transformed vertex data and an 1nstruction correspond-
ing to said draw command.
11. The graphics processor as described 1 claim 10,
wherein said given non-transformed vertex data comprises a
three-dimensional primitive position.
12. The graphics processor as described in claim 10,
wherein said transformed vertex data comprises a two-
dimensional primitive position.
13. The graphics processor as described 1in claim 10,
wherein said one of said transform indicator bits 1s set to said
first state in response to said non-transformed vertex data
having been loaded into said vertex builer under control of
a host interface.
14. The graphics processor as described in claim 13,
wherein said setup module holds off said host interface from
loading said non-transformed vertex data into said vertex
bufler when a previous vertex data to be overwritten 1n said
vertex bufler 1s being operated on by a pending draw
command.
15. A method of deferring evaluation of a transform
comprising:
builering a plurality of vertex data;
recerving a draw command;
accessing a given vertex data, corresponding to said draw
command, and an associated transform indicator bit;

transforming said given vertex data to produce trans-
formed vertex data 11 said associated transform indica-
tor bit 1s cleared indicating said given vertex data
comprises non-transformed data; and

overwriting said given vertex data with said transtormed

vertex data and setting said associated transform indi-
cator bit to indicate that said given vertex data has been
transformed.

16. The method as described 1n claim 15, further com-
prising;:

receiving new vertex data; and

overwriting a particular vertex data with said new vertex

data and clearing a transform indicator bit associated
with said new vertex data.

17. The method as described 1n claim 16, further com-
prising:

determining if said particular vertex data i1s currently

being processed as a result of a previous draw com-
mand; and

holding off said overwriting said particular vertex data

with said new vertex data until said processing of said
particular vertex data 1s completed.

18. The method as described 1n claim 15, wherein said
transforming said given vertex data comprises transforming
a three-dimensional primitive position to a two-dimensional
primitive position.

19. The vertex bufler as described 1n claim 7, wherein said
transformed geometric primitive 1s stored 1n said slot over-
writing said non-transformed geometric primitive.

20. The graphics processor as described i claim 10,
wherein said transformed vertex data overwrites said non-
transiformed vertex data.

	Front Page
	Drawings
	Specification
	Claims

