12 United States Patent

US007106323B2

(10) Patent No.:
45) Date of Patent:

US 7,106,323 B2
Sep. 12, 2006

(54)

(75)

(73)

(%)

(21)
(22)

(65)

(60)

(1)

(52)
(58)

(56)

-
+1dy | +1dx+1dy|+2dx+1dy -2dx+1dy
ey [oo [zaxiay [octdy | gy [sibetay

Laws et al.
RASTERIZER EDGE FUNCTION
OPTIMIZATIONS
Inventors: Philip R. Laws, Staines (GB); Jon
Worthington, Bournemouth (GB)
Assignee: 3DLabs, LTD, Surrey (GB)
Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 134(b) by 103 days.
Appl. No.: 10/071,895
Filed: Feb. 8, 2002
Prior Publication Data
US 2003/0128204 Al Jul. 10, 2003
Related U.S. Application Data
Provisional application No. 60/267,263, filed on Feb.
8, 2001.
Int. CI.
Goo6T 15/00 (2006.01)
US.CL e, 345/420
Field of Classification Search 345/419,
345/420, 426, 582, 587
See application file for complete search history.
References Cited
U.S. PATENT DOCUMENTS
6,344,852 Bl 2/2002 Zhu

OTHER PUBLICATTIONS

Watt et al., * Advanced Animation and Rendering Techniques™
1992, ACM Press, pp. 22-27.*

Pineda, A Parallel Algorithm for Polygon Rasterization, ACM,
Computer Graphics, vol. 22, No. 4, Aug. 1988, pp. 17-20.%
Apgar et al, A Display System for the Stellar Graphics
Supercomputer Model GS1000, ACM, Computer Graphics, vol. 22,
No. 4, Aug. 1988, pp. 255-262.%

* cited by examiner

Primary Examiner—Almis R. Jankus
(74) Attorney, Agent, or Firm—Groover & Holmes

(57) ABSTRACT

A set of techniques for rapidly computing a half-plane
membership test for successive patches of pixels. By using
an inheritance relation to carry forward values already
computed at patch boundaries, the computational load for
cach successive patch 1s minimized. In a sample embodi-
ment, just one interior point and one new boundary point are
computed for each new patch of 64 pixels. Each of the 64
pixels can be described by an offset from one of the 5
reference points (1.e. the one interior point, the one newly
computed boundary point, and 3 previously computed
boundary points). By exploiting shift and complement rela-
tions, only a small number of offsets need to be indepen-
dently computed (only 10 1n this example). Since member-
ship 1s determined merely by the sign of the relevant
half-plane functions being computed, a simple compare
between the half-plane function at the reference point and
the half-plane function for the relevant oflset suflices to
evaluate the function’s sign for that particular pixel.

17 Claims, 5 Drawing Sheets

-1dx
-1dx+1d
-1dx+2d

+3dx-1dy

2dx

-2dx+2dy
+2dx-1dy

8L

5
BL

US 7,106,323 B2

Sheet 1 of 5

Sep. 12, 2006

U.S. Patent

Vi Ol

¥ 1|8
xper | e | oxpe | AN | - | x| oxee | ke
Apyaxpy-[Apyxpe- [Apyrxpe-| Ape- [ApLxpes|Apyexpas|ApLaxpis] Apy+
e | oo | owe | e | Aew | oxeer] ez | eis |

US 7,106,323 B2

Sheet 2 of §

Sep. 12, 2006

U.S. Patent

L | oww) e e] fope] xper

gl Ol

KN N

foy-xpi] Apyxp®] Api-xpd] Ape+ | Api-xpe+] ApL-xpzs®| ApL-xpL+] Apy- °
fpi-xp (- §Apz+Xpz+ [Apzexpie| AP+ | Apz-xpi- | Apg-xpz- | Apz-xpu+] Apz- "
ApLexpee | ApL+xpz+|ApaxpL+| Apv+ | ApLaxpl-| ApLexpz-[ApLexpe-| Apg-
o [v Lowve [o | e | we [| or
Apyxpe+ | Apyxpz+ | Apixpra] ApL- [ApL-xpi- | Apyxpz- | ApL-xpe- | Apgs
Apzexp)| Apgexpz] Apzxpi+] APz | Apzxp)- JApzexpz
Apy+xp)?| Apy+xpz®] Api+xpe®l A JApi+xpes] Ap+xpzs

XPe+)

——

US 7,106,323 B2

Sheet 3 of 5

Sep. 12, 2006

U.S. Patent

737 N O A A N
- L

) -
HEEEEEEEEEEEEENE

Tile D

FIG. 2

]

an

X £ O

£

~

= 10J38UU0Y) $NG dOV/IDd

@oELSI| SNG dOV/IOd

009 L VWA | [2Wna |

\f,
N 3100 YA
2 YA

_ Z Wod 03pIA
- AL
= E , Hod 09pIA
o OSIN _ -
W SNY wwcn::n_ IHENELY £HINGZC -
¥ 9,

NOH
SQI8 HUN aoeLsju) AJOWSI

WYHOS/AVEDS

U.S. Patent

U.S. Patent Sep. 12, 2006 Sheet 5 of 5 US 7,106,323 B2

SYSTEM BUS

BRIDGE/MEM
CONTROLLER MICROPROCESSOR

del
/F MANAGER

435 A
440 — [2 CACHE

FLASH/NV MEMORY
439
DISPLAY
445 HDD
470
DISK I/F
CD-ROM
ROM - BIOS
453
PCMCIA AUDIO I/F SPEAKER

FIG. 4

Us 7,106,323 B2

1

RASTERIZER EDGE FUNCTION
OPTIMIZATIONS

CROSS-REFERENCE

10O OTHER APPLICATION

This application claims priority from 60/267,265 filed
Feb. 8, 2001, which 1s hereby incorporated by reference.

BACKGROUND AND SUMMARY OF TH.
INVENTION

T

The present mnvention relates to 3D graphics processing,
and particularly to rasterization.

BACKGROUND

3D Computer Graphics

One of the driving features in the performance of most
single-user computers 1s computer graphics. This 1s particu-
larly important in computer games and workstations, but 1s
generally very important across the personal computer mar-

ket.

For some years the most critical area of graphics devel-
opment has been in three-dimensional (*“3D7") graphics. The
peculiar demands of 3D graphics are driven by the need to
present a realistic view, on a computer monitor, of a three-
dimensional scene. The pattern written onto the two-dimen-
sional screen must therefore be denved from the three-
dimensional geometries 1n such a way that the user can
casily “see” the three-dimensional scene (as 1f the screen
were merely a window 1nto a real three-dimensional scene).
This requires extensive computation to obtain the correct
image for display, taking account of surface textures, light-
ing, shadowing, and other characteristics.

The starting point (for the aspects of computer graphics
considered 1n the present application) 1s a three-dimensional
scene, with specified viewpoint and lighting (etc.). The
clements of a 3D scene are normally defined by sets of
polygons (typically triangles), each having attributes such as
color, reflectivity, and spatial location. (For example, a
walking human, at a given instant, might be translated into
a few hundred triangles which map out the surface of the
human’s body.) Textures are “applied” onto the polygons, to
provide detail 1n the scene. (For example, a flat carpeted
tfloor will look far more realistic if a simple repeating texture
pattern 1s applied onto 1t.) Designers use specialized mod-
elling software tools, such as 3D Studio, to build textured
polygonal models.

The 3D graphics pipeline consists of two major stages, or
subsystems, referred to as geometry and rendering. The
geometry stage 1s responsible for managing all polygon
activities and for converting three-dimensional spatial data
into a two-dimensional representation of the viewed scene,
with properly-transiformed polygons. The polygons in the
three-dimensional scene, with their applied textures, must
then be transformed to obtain their correct appearance from
the viewpoint of the moment; this transformation requires
calculation of lighting (and apparent brightness), foreshort-
ening, obstruction, eftc.

However, even after these transformations and extensive
calculations have been done, there 1s still a large amount of
data manipulation to be done: the correct values for EACH
PIXEL of the transformed polygons must be derived from
the two-dimensional representation. (This requires not only
interpolation of pixel values within a polygon, but also
correct application of properly oriented texture maps.) The

10

15

20

25

30

35

40

45

50

55

60

65

2

rendering stage 1s responsible for these activities: 1t “ren-
ders” the two-dimensional data from the geometry stage to
produce correct values for all pixels of each frame of the
Image sequence.

The most challenging 3D graphics applications are
dynamic rather than static. In addition to changing objects 1n
the scene, many applications also seek to convey an 1llusion
of movement by changing the scene 1n response to the user’s
input. Whenever a change in the orientation or position of
the camera 1s desired, every object mn a scene must be
recalculated relative to the new view. As can be 1imagined, a
fast-paced game needing to maintain a high frame rate will
require many calculations and many memory accesses.

FIG. 2 shows a high-level overview of the processes
performed 1n the overall 3D graphics pipeline. However, this
1s a very general overview, which 1gnores the crucial 1ssues
of what hardware performs which operations.

Texturing

There are different ways to add complexity to a 3D scene.
Creating more and more detailed models, consisting of a
greater number of polygons, 1s one way to add visual interest
to a scene. However, adding polygons necessitates paying
the price of having to manipulate more geometry. 3D
systems have what 1s known as a “polygon budget,” an
approximate number of polygons that can be manipulated
without unacceptable performance degradation. In general,
tewer polygons vield higher frame rates.

The wvisual appeal of computer graphics rendering 1s
greatly enhanced by the use of “textures.” A texture 1s a
two-dimensional 1image which 1s mapped 1nto the data to be
rendered. Textures provide a very eflicient way to generate
the level of minor surface detaill which makes synthetic
images realistic, without requiring transfer of 1mmense
amounts of data. Texture patterns provide realistic detail at
the sub-polygon level, so the higher-level tasks of polygon-
processing are not overloaded. See Foley et al., Computer
Graphics: Principles and Practice (2.ed. 1990, corr. 1995),
especially at pages 741-744; Paul S. Heckbert, “Fundamen-

tals of Texture Mapping and Image Warping,” .

T'hesis sub-
mitted to Dept. of EE and Computer Science, University of
Califormia, Berkeley, Jun. 17, 1994; Heckbert, “Survey of
Computer Graphics,” IEEE Computer Graphics, November
1986, pp.56; all of which are hereby incorporated by refer-
ence. Game programmers have also found that texture
mapping 1s generally a very eflicient way to achieve very
dynamic i1mages without requiring a hugely increased
memory bandwidth for data handling.

A typical graphics system reads data from a texture map,
processes 1t, and writes color data to display memory. The
processing may include mipmap filtering which requires
access 1o several maps. The texture map need not be limited
to colors, but can hold other information that can be applied
to a surface to aflect 1ts appearance; this could include height
perturbation to give the efiect of roughness. The 1individual
clements of a texture map are called “texels.”

Awkward side-eflects of texture mapping occur unless the
renderer can apply texture maps with correct perspective.
Perspective-corrected texture mapping involves an algo-
rithm that translates “texels” (pixels from the bitmap texture
image) into display pixels i accordance with the spatial
orientation of the surface. Since the surfaces are transformed
(by the host or geometry engine) to produce a 2D view, the
textures will need to be similarly transformed by a linear
transiform (normally projective or “afline”). (In conventional
terminology, the coordinates of the object surface, 1.e. the
primitive being rendered, are referred to as an (s,t) coordi-
nate space, and the map of the stored texture 1s referred to

Us 7,106,323 B2

3

a (u,v) coordinate space.) The transtormation in the resulting
mapping means that a horizontal line in the (x,y) display
space 15 very likely to correspond to a slanted line in the
(u,v) space of the texture map, and hence many additional
reads will occur, due to the texturing operation, as rendering,
walks along a horizontal line of pixels.

One of the requirements of many 3-D graphics applica-
tions (especially gaming applications) 1s fill and texturing
rates. Gaming and DCC (digital content creation) applica-
tions use complex textures, and may oiten use multiple
textures with a single primitive. (CAD and similar worksta-
tion applications, by contrast, make much less use of tex-
tures, and typically use smaller polygons but more of them.)
Achieving an adequately high rate of texturing and fill
operations requires a very large memory bandwidth.

Rasterizer Edge Function Optimizations

The present application describes a set of techniques for
rapidly computing a function (such as a half-plane mem-
bership test) for patches of pixels (more generally, for points
on a grid). By using an mheritance relation to carry forward
values already computed at patch boundaries, and by using,
symmetry relations to shift and/or complement offset value
for pixels within a patch, the computational load for each
successive patch 1s minimized. This 1s particularly advan-
tageous for rapidly testing primitive membership of succes-
sive patches of pixels.

Thus the present application advantageously provides a
hardware-eflicient method of evaluating the solutions to a
plane equation for points within a grnid (e.g. pixels within a
tile), by use of distance from calculated reference points.

The present application also advantageously provides a
software architecture which 1s very suitable to parallelized
computing.

BRIEF DESCRIPTION OF THE DRAWING

The disclosed inventions will be described with reference
to the accompanying drawings, which show important
sample embodiments of the mnvention and which are incor-
porated 1n the specification hereofl by reference, wherein:

FIG. 1A shows how computation of only one new bound-
ary pixel and one interior pixel, 1n combination with pixel
oflset values, permits evaluation of boundary functions for
all pixels 1n a patch.

FIG. 1B shows how a reduced set of offset values are
combined with incremental reference points, 1n a sample
embodiment, to permit rapid calculation of an edge function
for all pixels 1n a patch.

FI1G. 2 shows how the single patch of FIG. 1A (or that of
1B) can use values computed for spatially adjacent patches.

FIG. 3 shows a block diagram of a 3D graphics accel-
erator subsystem.

FIG. 4 15 a block diagram of a computer which includes
the 3D graphics accelerator subsystem of FIG. 3.

DETAILED DESCRIPTION OF TH.
PREFERRED EMBODIMENTS

(Ll

The numerous 1nnovative teachings of the present appli-
cation will be described with particular reference to the
presently preferred embodiment (by way of example, and
not of limitation).

High performance graphics devices need to work on
multiple pixels i1n parallel. A fundamental requirement of
this 1s to be able to test whether the set of candidate pixels
are 1nside the primitive or not. The well-known method of

10

15

20

25

30

35

40

45

50

55

60

65

4

doing this 1s to encode the primitive description as a col-
lection of half plane functions. If testing a pixel’s position
against the set of half plane functions shows that 1t 1s on the
‘inside’ of all the half planes then the pixel i1s in the
primitive. This test can be done incrementally or in parallel
for an arbitrary set of pixels. However, the set of pixels
chosen to apply this test to 1s typically not arbitrary, but 1s
arranged 1 a grid—an 8x8 tile i our case. There are
well-documented short cuts to evaluating the edge function
by making use of coherence between adjacent pixels, but
extending these over a large patch of pixels (e.g. an 8x8 tile)
still gives a more expensive solution than 1s desired.

During the tile seeking stage (in the presently preferred
embodiment), the edge function 1s evaluated fully at the top
left of the candidate tile (pixel TL, in FIG. 1B), and
(depending on the tile sequencing) will already have been
evaluated at the top left corner of three adjacent tiles (to the
right and down, 1n the orientation shown, at points TR, BL,
and BR). An additional pixel position MP 1s also calculated
in the middle of the candidate tile. Each pixel within the tile
1s then referenced against one of these 5 reference point
values.

FIG. 1B also shows how each pixel’s position can be
stated as an oflset from the nearest one of the five reference
points. Thus 1t can be seen that only two reference points
need to be newly calculated, along with the offset values, to
be able to reach correct values for every pixel.

TL, TR, BL, BR are the previously calculated value at the
top leit of the candidate tile and the butting tiles. MP 1s the
calculated value at the mid-point of these. The pixels are
shaded according to their closest calculated reference point,
and the value in the box i1s the difference between the
calculated value and the value at the pixel.

FIG. 2 shows how the single patch of FIG. 1A (or that of

1B) can use values computed for spatially adjacent patches.
In this 1llustration the tile shown 1n FIG. 1A 1s Tile A at the

top left of FIG. 2, and:

pixel TR of FIG. 1A 1s pixel TL, , of tile B;
pixel BL of FIG. 1A 1s pixel TL, , of tile C; and
pixel BR of FIG. 1A 1s pixel TL, | of tile D.

To calculate whether the pixel 1s inside or outside the
edge, the ofiset for that pixel 1s added to the applicable
reference point, and 1f the result 1s negative, then the pixel
1s outside, otherwise it 1s inside. Since the full numerical
result 1s not important, 1t 1s not necessary to calculate these
values, but instead a comparison can be done between the
reference value and the offset to the given pixel.

As can be seen from FIG. 1B, the use of the middle point
as a reference means that many of the offsets are not unique,
and so each calculation can be re-used multiple times. Two
further methods are used to reduce the number of calcula-
tions required.

FIG. 1A shows how a reduced set of offset values are
combined with incremental reference points, 1n a sample
embodiment, to permit rapid calculation of an edge function
for all pixels 1n a patch.

Since all calculations are done using binary arithmetic,
scaling by 2 or by 4 1s done by shifting the number, so for
example, the calculation of +2dx+2dy 1s not necessary, as
this 1s simply the result of (+1dx+1dy) * 2.

Many of the remaining calculations required are simply
the negative of another calculation (e.g. —1dx-1dy=—(+1dx+
1dy)). As 2’s complement arithmetic 1s being used, to
calculate the negative of a number, the bits are inverted and
1 1s added to this new number. However, as this number 1s
then used 1n a comparison, mnstead of incrementing the

Us 7,106,323 B2

S

number, the type of comparison done can be changed, to get
the increment for free since the expressions (A<(B+1)) 1s
equivalent to (A<=B).

By applying both of these methods for decimation, only

the offset values shown 1n the dotted and shaded squares 1n
FIG. 1A need to be calculated.

Overall Architectural Context

The 1nnovations described above have been implemented
in a graphics accelerator module which 1s different from
conventional 3-D computer graphics architectures 1n several
ways. While this preferred implementation context does not
necessarily limit the claimed inventions, 1t does help to show
the particular advantages of the mventions in this context.

This architecture described 1n the present application
provides numerous features which satisty both the demands
of gaming-type and CAD-type applications. In addition to
features which provide very high polygon rates (as 1n the
GLINT™ architecture), many other features have been
added which provide very high bandwidth for textures and
similar applied data, as well as extremely high programma-
bility.

Byte-Tiled Memory Organization

Bandwidth 1s an overrniding concern 1n graphics accelera-
tor design. The present application discloses an architecture
in which memory bandwidth 1s optimized by a memory
architecture where the memory 1s organized 1n tiles. Several
important architectural features relate to the use of byte-deep
tile-organized memory. One architectural choice 1s that the
tile boundaries fall on fixed address boundaries 1n screen
space (1.e. relative to the screen edge rather than to a window
or to the primitive being rendered). The relation to screen
space 1s surprisingly advantageous, since the relationship to
screen space must eventually be obtained 1n any case.

Each tile of data, in this implementation, is only one byte
deep. Thus, for example, with 32-bit color, one tile might
consist of the red color data only for each of 64 pixels, and
the next tile 1n memory would be the blue data only for the
same 64 pixels. This implies that, while the tiles are con-
strained by fixed boundaries 1n the screen space, there 1s not
any Ilixed mapping from screen location to physical or
logical address 1n memory.

The use of tile organization for memory 1s implemented
with a tile-seeking rasterization scheme. In order to 1dentify
the fragments within a primitive, without unnecessarily
reading any tiles which will not be used 1n processing the
primitive, the tile seeking processes reliably finds all tiles
within which a given primitive wholly or partially falls.

Subtiles and supertiles can be used for some purposes. For
example, parallelism among graphics processors 1s prefer-
ably implemented by allocation of supertiles. For another
example, load-balancing among the parallel texture-process-
ing pipelines 1s implemented by monitoring the number of
active subtiles fetched for rendering.

Programmability

Programmability 1s an important requirement of current
3-D graphics accelerators. This 1s increasingly desired by
game authors and other DCC (digital content creation)
applications. Increased provision for programmability gives
game and DCC authors the capability to create much more
complex texturing and other eflects. The disclosed architec-
ture includes a very high degree of programmability at
several stages of the graphics pipeline.

Plane-Equation Membership Testing

Primitive definitions are translated into plane equations,
which require some changes in pixel membership tests. The

10

15

20

25

30

35

40

45

50

55

60

65

6

cached memory architecture which was chosen to 1mple-
ment a tiled memory organization provides excellent scal-
ability.

The use of plane equations for membership testing does
not necessarily require full computation of the floating-point
equation: membership 1s determined merely by sign and
zero testing, so calculations can sometimes be truncated. A
particularly advantageous implementation of this [TD-164]
combines inheritance ol membership with the process of
finding which tiles are relevant to a particular primitive.

Scalability

Another aspect of scalability 1s parallelism: the 3D graph-
ics accelerator disclosed herein can easily be paralleled to
speed up graphics processing. Note that the use of multiple
accelerators 1s particularly advantageous for applications,
such as CAD, where throughput of small primitives 1s highly
desirable.

Message-Passing Architecture with Data Bypass

A message-passing architecture 1s used for most control
interactions, as in the GLINT™ architecture described e.g.
in U.S. Pat. No. 5,594,854. As described 1n that patent, the
message-passing architecture has important benefits for
design, testing, and design modifications. However, the
present architecture transmits pixel data through a diflerent
high-bandwidth bus path, which provides for much greater
overall fill rate. The combination of message-passing control
architecture with extremely high-bandwidth to memory pro-
vides a further improvement over the GLINT™ architecture.

Interrupt-Driven Capability

As 3D graphics accelerators have become more powertul,
the rate and richness of their screen outputs has become fully
comparable to video. An attractive line of development 1s to
combine video functions with graphics capabilities. How-
ever, this requires an important capability which many
graphics accelerators do not have, namely real-time syn-
chronization to the frame rate of the video.

The disclosed architecture includes capability for inter-
rupt-driven context-switching, which allows reliable syn-
chronization to the real-time demands of a video interface.

Other Implementation choices

The transform and lighting stages are included in the
graphics accelerator of the presently preferred implementa-
tion.

In the presently preferred embodiment the memory 1s
entirely virtual.

In the presently preferred embodiment, the chip contains
a scan chain to permit functional testing.

Graphics Accelerator Embodiment

FIG. 3 shows a graphics processor 600 incorporating the
disclosed texture filter. A PCI/AGP Interface accepts data
from a PCI/AGP Bus Connector. Commands and data des-
tined for Graphics Core pass in through DMA1, and graph-
ics data bound for memory passes in through DMA2.
Further details of the preferred pipeline architecture can be
found 1n U.S. Pat. No. 3,798,770, which 1s hereby incorpo-

rated by reference.

Computer Embodiment

FIG. 4 shows a complete computer system, incorporating
the graphics accelerator of FIG. 3, and including 1n this
example: user input devices (e.g. keyboard 435 and mouse
440); at least one microprocessor 425 which is operatively
connected to receive mputs from the input devices, across
¢.g. a system bus 431, through an interface manager chip
430 which provides an interface to the various ports and
registers. The microprocessor interfaces to the system bus

Us 7,106,323 B2

7

through e.g. a bridge controller 427. Memory (e.g. flash or
non-volatile memory 455, RAM 460, and BIOS 453) 1s
accessible by the microprocessor. a data output device (e.g.
display 450 and video display adapter card 445, which
includes a graphics accelerator subsystem 451) which 1s
connected to output data generated by the microprocessor
425; and a mass storage disk drive 470 which 1s read-write
accessible, through an interface unit 465, by the micropro-
cessor 425. Optionally, of course, many other components
can be included, and this configuration is not definitive by
any means. For example, the computer may also include a
CD-ROM drive 480 and tloppy disk drive (“FDD™) 475
which may interface to the disk interface controller 465.
Additionally, L2 cache 485 may be added to speed data
access 1from the disk dnives to the microprocessor 425, and
a PCMCIA 490 slot accommodates peripheral enhance-
ments. The computer may also accommodate an audio

system for multimedia capability comprising a sound card
476 and a speaker(s) 477.

According to a disclosed class of mnovative embodi-
ments, there 1s provided: A method for calculating edge
functions for a patch of pixels, comprising the actions of:
computing edge function values for at least one interior
point within said patch; and computing edge function values
for multiple other points within said patch, using an arith-
metic combination of said edge function values for said
interior point, together with previously computed values of

said edge functions for points on the border of said patch,
together with a reduced set of offset vectors.

According to another disclosed class of 1nnovative
embodiments, there i1s provided: A method for calculating
edge functions for a patch of points, comprising the actions
of: computing the value of an edge function at an interior
reference point within said patch, and at a boundary refer-
ence point on the edge of said patch; and assessing the value
of said edge function at multiple other points within said
patch, by comparing the value of said edge function at a
respective reference point, which may be said interior ref-
erence point or said boundary reference point or a previously
computed reference point, with the delta value of said edge
function for a respective one of a reduced set of offset
vectors; wherein said reduced set of oflset vectors does not
include vectors which are complements or shiits of each
other.

Modifications and Variations

As will be recognized by those skilled in the art, the
inovative concepts described 1n the present application can
be modified and varied over a tremendous range of appli-
cations, and accordingly the scope of patented subject matter
1s not limited by any of the specific exemplary teachings
given.

For example, the disclosed immnovations can also be
adapted to larger patches of pixels; one example of this
(though certainly not the only one) can be constructed by
combining four of the patches illustrated to construct a
16x16 patch (256 pixels); 1n this case 5 interior points, one
new corner point, and 2 new edge points would be computed
for each patch.

For another example, the particular assignments of refer-
ence point and oflset vector 1n the 1llustrated example are not
necessarlly umique, and other assignments can be made in
accordance with the above teachings on using inheritance of
computed reference point values and/or a reduced set of
offsets.

10

15

20

25

30

35

40

45

50

55

60

65

8

For another example, the inheritance of corner reference
points would of course be adjusted appropnately if the
stepping direction during tile seek 1s different.

For fully parallelized computation, the core set of offset
values can be calculated only once for any (linear) edge
function. For each patch, the value of the function at the
additional reference points in that patch needs to be calcu-
lated only once per patch, and each membership can then be
computed 1n parallel for all pixels 1n the patch. However, of
course other parallelization techniques can used 11 preferred.

Additional general background, which helps to show
variations and implementations, may be found in the fol-
lowing publications, all of which are hereby incorporated by
reference: Advances 1 Computer Graphics (ed. Enderle
1990); Angel, Interactive Computer Graphics: A Top-Down
Approach with OpenGL; Angell, High-Resolution Com-
puter Graphics Using C (1990); the several books of “Jim
Blinn’s Corner” columns; Computer Graphics Hardware
(ed. Reghbati and Lee 1988); Computer Graphics: Image
Synthesis (ed. Joy et al.); Eberly: 3D Game Engine Design
(2000); Ebert: Texturing and Modelling 2.ed. (1998); Foley
¢t al., Fundamentals of Interactive Computer Graphics (2.ed.
1984); Foley, Computer Graphics Principles & Practice
(2.ed. 1990); Foley, Introduction to Computer Graphics
(1994); Glidden: Graphics Programming With Direct3D
(1997); Hearn and Baker, Computer Graphics (2.ed. 1994);
Hill: Computer Graphics Using OpenGL; Latham, Dictio-
nary ol Computer Graphics (1991); Tomas Moeller and Eric
Haines, Real-Time Rendering (1999); Michael O’Rourke,
Principles of Three-Dimensional Computer Animation; Pro-
sise, How Computer Graphics Work (1994); Rimmer, Bit
Mapped Graphics (2.ed. 1993); Rogers et al., Mathematical
Elements for Computer Graphics (2.ed. 1990); Rogers,
Procedural Elements For Computer Graphics (1997);
Salmon, Computer Graphics Systems & Concepts (1987);
Schachter, Computer Image Generation (1990); Watt, Three-
Dimensional Computer Graphics (2.ed. 1994, 3.ed. 2000);
Watt and Watt, Advanced Animation and Rendering Tech-
niques: Theory and Practice; Scott Whitman, Multiprocessor
Methods For Computer Graphics Rendering; the SIG-
GRAPH Proceedings for the years 1980 to date; and the
IEEE Computer Graphics and Applications magazine for the
years 1990 to date. These publications (all of which are
hereby incorporated by reference) also illustrate the knowl-
edge of those skilled i the art regarding possible modifi-
cations and variations of the disclosed concepts and embodi-
ments, and regarding the predictable results of such
modifications.

None of the description in the present application should
be read as implying that any particular element, step, or
function 1s an essential element which must be included 1n

the claim scope: THE SCOPE OF PATENTED SUBIECT
MATTER IS DEFINED ONLY BY THE ALLOWED
CLAIMS. Moreover, none of these claims are intended to
invoke paragraph six o1 35 USC section 112 unless the exact
words “means for” are followed by a participle.

What 1s claimed 1s:
1. A method of performing a half-plane membership test
for a pixel, comprising the steps of:
calculating an edge function for a first pixel of a patch, the
first pixel having a first offset and being in the hali-
plane;
calculating a second offset for a second pixel of the patch;

comparing the first ofset and the second offset to deter-
mine 1f the second pixel 1s in the half-plane.

Us 7,106,323 B2

9

2. The method of claim 1, wherein 1f the second offset 1s
greater than the first ofiset, the second pixel i1s in the
half-plane.

3. The method of claim 1, wherein the position of a third
pixel of the patch 1s stated as an offset from a nearest one of
a plurality of reference points.

4. The method of claim 3, wherein at least one of the
plurality of reference points 1s in an adjacent patch.

5. The method of claim 3, wherein a first reference point
of the plurality 1s the first pixel.

6. The method of claim 1, wherein the second offset 1s the
negative of the first offset, and wherein the second oflset 1s
calculated using 2’s complement arithmetic by inverting the
bits of the first offset and adding one.

7. A method of performing a half-plane membership test
for a pixel, comprising the steps of:

calculating an edge function for a first pixel of a patch, the

first pixel having a first offset and being in the hali-
plane;

calculating a second oflset for a second pixel of the patch;

wherein the second offset 1s the negative of the first oflset,

and wherein the second offset 1s calculated using 2’s
complement arithmetic by mverting the bits of the first
offset and adding one.

8. The method of claim 7, wherein if the second offset plus
one 1s greater than the value of the first offset, the second
pixel 1s 1n the half-plane.

9. The method of claim 7, wherein the position of a third
pixel of the patch 1s stated as an offset {from a nearest one of
a plurality of reference points.

10. The method of claim 9, wherein at least one of the
plurality of reference points 1s 1n an adjacent patch.

5

10

15

20

25

30

10

11. The method of claim 9, wherein a first reference point
of the plurality 1s the first pixel.

12. The method of claim 7, wherein the second oflset is
the negative of the first oilset, and wherein the second oflset
1s calculated using 2°s complement arithmetic by inverting
the bits of the first oflset and adding one.

13. A method of performing a half-plane membership test
for a pixel, comprising the steps of:

calculating an edge function for a first pixel of a patch, the

first pixel having a first offset and being in the hali-
plane;

calculating a second offset for a second pixel of the patch;

wherein the second oflset 1s the negative of the first ofiset,

and wherein the second oflset 1s calculated using 2’s
complement arithmetic by inverting the bits of the first
offset; and
comparing the first offset with the second offset, wherein
if the second oflset 1s greater than or equal to the first
oifset, the second pixel 1s 1n the halt-plane.

14. The method of claim 13, wherein the position of a
third pixel of the patch 1s stated as an offset from a nearest
one of a plurality of reference points.

15. The method of claim 14, wherein at least one of the
plurality of reference points 1s in an adjacent patch.

16. The method of claim 14, wherein a first reference
point of the plurality 1s the first pixel.

17. The method of claim 13, wherein the second oflset 1s
the negative of the first oilset, and wherein the second oflset
1s calculated using 2’s complement arithmetic by inverting
the bits of the first oflset and adding one.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

