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FIG. 5

REQUEST | LOW | HIGH | COMMENTS

0 0 | INITIAL VALUE
WI'HE1 1 1
write Z Z
read ; 2 2 READ DOES NOT CHANGE THE LOW AND HIGH COUNTERS
wrife 2 2 | WRITE IGNORED (A DUPLICATE)
WFiTE} R 3 ]
writeg | 3 0 |DETECTED A WRITE GAP; ONLY HIGH IS CHANGED
ready | 3 5 | READ FAILS SINCE SOME WRITES ARE MISSING
write ¢ 3 6 | ONLY HIGH IS CHANGED SINCE SOME WRITES ARE MISSING
write 4 5 O | WRITE IS IGNORED AND GAP NOT CLOSED
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FIG. 10

REQUEST # | DATA ITEM #| NEW VALUE | DATA CONTENTS | LAST_MODIFIED

1121311213

INITIAL -l -1 -10]01|o0

1 | A Al -1 =] 110] 0

. . 3 Al Bl -] 1210

3 3 C Al Bl Cl 1213

4 2 D Al D|C| 1] 4] 3

5 3 3 Al D|E| 1| 4]5

6 3 F Al D|F | 1] 4]6

7 . ¢ Al G| F | 1]7]6

FIG. 11
ACTIVITY RECOVERING REPLICA (R) CURRENT REPLICA (C)
DATA ITEMS/  COUNTERS | DATA ITEMS/  COUNTERS
LAST_MODIFIED LAST_MODIFIED
o | | 1,2, 3 |LOWHIGH| 1, 2, 3 |LOW HIGH POS
RECOVERY STARTS A/11B/21C/3| 3 | 3 [A/11D/4lE/5] 5 | 5 | 0
R SENDS LOW=3 TO C A/11B/2|C/3| 3 | 3 |A/t|D/4|E/5| 5 | 5| 0
C SENDS HIGH=5 TO R A/11B/2|C/3| 3 | 5 [A/1|D/4]E/5] 5 | 5 | 0
C GETS WRITEg FROM S [ A/11B/2|C/3| 3 | 5 |[A/1|D/4|F/6| 6 | 6 | 0
C SENDS WRITEg TO R A/1IB/2|F/6| 3 | 6 [A/1|D/4|F/61 6 | 6 | 0
C SENDS DATA ITEM 2 TO R| A/11D/4|F/6| 3 | 6 |A/1|D/4|F/6| 6 | 6 | 2
C GETS WRITE7 FROM S | A/1|D/4|F/6| 3 | 6 |A/1|C/7|F/6| 7 | 7 | 2
C SENDS WRITE7TO R | A/1/G/7|F/6| 3 | 7 [A/1|G/7|F/6| 7 | 7 | 2
C SENDS DATA ITEM 3 TO R| A/11G/7 1 F/6| 3 | 7 |A/1|G/7IF/6| 7 | 7 | 3
" (R IGNORES ITEM 3)
C COMPLETES DATA SCAN | A/1\G/7|F/6| 3 | 7 |A/1|G/71F/6| 7 | 7 | 3
C SENDS SCAN COMPLETE | A/1(G/7|F/6| 7 | 7 |A/1|G/7{F/6| 7 | 7 | 3
MESSAGE TO R K
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FIG. 13
CLUSTERS: 1 i 3 ] 4 5
DATA ITEMS: + 1 213+ 4,56 7189110
- A ]
WRITE ITEM WRITE ITEMS WRITE 1TEMS
! 4 & 5 9 & 10
FIG. 14
B | H________J_]MJOJ
1401 LAST_iMODiFIED 1407
| 1 14031
— = e
] ]
14110y — 1403-6
1408
(!
TR 1404
1405
oW |
(1807 1406
RECOVERY_LOW HIGH |
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FIG. 17
C ACTIVITY 'RECOVERING REPLICA (R) |  CURRENT REPLICA (C)
DATA ITEMS| LAST_MODIFIED (DATA ITEMS| LAST_MODIFIED
| 2
NITIAL A ; c [ D 10
C RECEIVES WRITE¢ 4 A 5 C | E 1
TO ITEM 2 FROM S
C SENDS WRITEy;TO R A 1 C |k 11
C SENDS CLUSTER 1 TO R A (1 C | E 11
WITH LAST_MODIFIED =11
R IGNORES CLUSTER 1 A m o lclE 11
FIG. 18
R A
SENT  LAST_MODIFIED
1802, ]
[ _
| PROCESSOR
] I | I —
]
POS

RECOVERY_LOW
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1

METHOD FOR MAINTAINING
CONSISTENCY AND PERFORMING
RECOVERY IN A REPLICATED DATA
STORAGE SYSTEM

TECHNICAL FIELD

This mvention relates to information storage systems that
include multiple replicas of the information and, more
particularly, to maintaining data consistency between the
replicas during normal operation and upon recovery from a
failure.

BACKGROUND OF THE INVENTION

Information 1s the most crucial asset of many businesses,
and any disruption to the access of this information may
cause extensive damage. Some businesses, such as banks,
airlines (with e-tickets), auction sites, and on-line mer-
chants, may actually stop functioning without access to their
information. No matter how reliable a data center 1s, there
can still be site failures—tloods, earthquakes, fires, etc.—
that can destroy the data stored on a storage device and any
co-located backup media.

Geographic replication 1s the only way to avoid service
disruptions. Geographic replication has challenges: perfor-
mance needs to be maintained; different sites might run at
different speeds, and have different latencies. Having mul-
tiple remote copies may increase reliability, but for most
purposes the replicas need to be kept in sync, 1n real time.
If a site fails and comes back on-line, i1ts data need to be
recovered without an excessive impact on the rest of the
system. Generally, when a failure occurs, a replica that does
not contain up-to-date data needs to recover from another
site that does contain up-to-date data.

In a replicated storage system, 1t 1s desirable to keep a
plurality of replicas of data consistent 1n spite of failures.
The data consists of plural data items, which may be disk
blocks or any other information. In a replicated storage
system, a source, such as a host computer, 1ssues a sequence
of requests, which may be either read or write requests to a
particular data item or to a group of data items. A data item
1s the smallest unit that can be read or written in one request.
Read and write requests are atomic 1n the sense that they are
either executed completely or not at all. In other words, there
1s no possibility that a data item will contain a mixture of old
and new information after a write request of this data item
1s executed.

Generally, a replicated storage system consists of a source
and a plurality of replicas connected with a communication
network, as for example, an IP network such as the Internet.
The source, such as a host computer, receives the requests
from the outside world, and/or generates them internally.
The source sends write requests to all of the replicas 1n the
system, and sends read requests to one or more of the
replicas. The replicas keep the data 1n a non-volatile storage
device, such as a magnetic disk or a non-volatile memory
(e.g., a non-volatile random access memory [NVRAM]), so
that the data 1s not lost when the replica fails. Requests are
sent to all replicas 1n the same order.

The source commumnicates with the replicas using a reli-
able communication protocol, such as TCP/IP, which
ensures that the information sent by the source 1s received by
the replicas without reordering or corruption. In case of a
tull or partial network failure, the affected replicas are
disconnected from the source and do not receive any further
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communication from 1t. When a replica fails, 1t stops updat-
ing 1ts data (a fail-stop assumption).

A system contaiming multiple replicas 1s said to be con-
sistent 11 all of the replicas contain the same data after the
source stops sending write requests and all outstanding write
requests have been processed by all of the replicas. In other
words, a defimition of consistency is that each replica con-
tains the identical data after all of the replicas have finished
processing the same sequence of write requests.

A replicated storage system needs to keep the data con-
sistent after a failure. A failure can be of the source, the
network, or one or more of the replicas. The system thus
needs to recover any missed changes to the data 1n a replica
due to failures. It the source failed, no data was changed
during the failure. Thus, after the source recovers, no
additional operation needs be performed with respect to any
of the replicas to maintain consistency. Similarly, a complete
network failure requires no additional operation with respect
to the replicas since no data was changed during the network
failure, because all write requests must pass through the
network in order to reach the replicas. A replica failure
causes the aflected replica to miss some write requests that
the other replicas performed; the failed replica needs to
recover these requests 1 order to become consistent again.
A partial network failure prevents communication between
the source and some of the replicas. Since the afiected
replicas fail to receive some write requests, recovery of the
aflected replicas needs to be handled in the same way as a
replica failure.

A recovery process 1s needed to ensure that by the end of
the recovery the aflected replica will contain the same data
as the other replicas that did not fail. In other words, a
recovery process 1s used to achieve consistency after a
replica failure or a partial network failure by allowing the
allected replica to recover the changes to the data that 1t
missed during the failure. A problem arises, however, 1n that
during recovery period, new write requests to the data are
likely made from the source.

In some prior art systems (see, €.g., Sun Microsystems,
“Sun StoreEdge™ Network Data Replicator Software
Boosts Data Center Resilience”, White Paper, http://www-
.sun.com/storage/white-papers/sndr.html), only two replicas
(primary and remote copies) are possible since the replicas
use a scoreboard of bit values to track data changes during
a single failure. This prior art system does not specify 11 the
source can 1ssue write requests while the recovery 1s 1n
progress. In other prior art methods (see, e.g., Richard P.
King, Nagui1 Halim, Hector Garcia-Molina, and Christos A.
Polyzo1s, “Management of a Remote Backup Copy for
Disaster Recovery”, ACM Transactions on Database Sys-
tems, Volume 16, Number 2, June 1991, pp. 338-368), the
source 1s allowed to continue making write requests while
the recovery 1s in progress, but requires that the entire
contents of the current replica to be copied to the affected
replica. This may cause the current replica to transfer more
data than necessary, which lengthens the duration of the
recovery. A longer recovery reduces the reliability of the
entire system, since a replica that 1s not operational cannot
protect the system from further failures. In prior art database
recovery (see, €.g., Abraham Silberschatz, Henry F. Korth,
and S. Sudarshan, “Database System Concepts (3" Edition)
7, McGraw-Hill, 1997, Chapter 15, pp. 511-531), a single
copy of the data 1s recovered from the transactions log. Also,
the source 1s prohibited from making write requests while
the recovery 1s 1n progress.

An ethicient recovery process 1s needed for a replicated
data storage system, therefore, that does not require the
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source to stop generating write requests while recovery 1s
taking place, and minimizes the amount of information that
1s transierred to the recovering replica 1 order to make 1t
consistent with the other replicas 1n the system.

SUMMARY OF THE INVENTION

The recovery process of the present mvention achieves
consistency after a replica or a partial network failure. As
previously noted, there 1s no need to perform recovery after
a complete network failure. The recovery process allows the
recovering replica to recover the changes to the data that it
has missed during the failure while, at the same time, the
system 1s processing new requests 1ssued by the source. As
noted, it 1s important that the recovering replica be capable
ol accepting new requests during the recovery period since
the recovery of missed changes to the data may be slower
than the arrival rate of new requests. Thus, 1f the recovering
replica fails to process new write requests while recovering
the changes 1t previously missed, 1t may never be able to fill
the gap of missed write requests.

In accordance with the recovery process of the present
invention, a recovering replica ignores all new requests
received directly from the source and only processes new
requests that are forwarded to 1t by the current replica. It
receives from the current replica updates to data items that
it missed and replaces values of those data items 11 the values
received from the current replica are more recent than the
values already at the recovering replica. The current replica
receives the identity of the last consecutive write request
sent by the source that the recovering replica received before
missing a write request. The current replica sends to the
recovering replica the values of those data items that were
updated by write requests later than the aforementioned last
consecutive write request received from the recovering
replica. In addition, the current replica receives new write
requests from the source, processes them, and forwards them
to the recovering replica.

The disclosed embodiments of the recovery process of the
present mvention use sequence numbers to determine when
a replica 1s not up-to-date and requires recovery. The up-to-
date property 1s defined below. Sequence numbers are inte-
gers, which are assigned by the source 1n increasing order,
preferably 1n increments of one without gaps, to read and
write requests. Separate consecutive sequences are assigned
to read requests and write requests. The assigned sequence
number of a write request 1s sent to each replica, and it 1s
stored by the replica in association with the data item that
was modified by the write request. In other words, the
sequence number associated with a particular data item 1s
the sequence number of the last write request that modified
that data item. That 1s why the sequence number associated
with the data item 1s hereinatter referred to as last modified.
The last_modified counter 1s stored 1n a non-volatile storage
device, which 1s non-volatile memory in the preferred
embodiment, to prevent 1ts loss upon a replica failure. Each
replica also maintains a high counter 1n non-volatile memory
that contains the sequence number of the highest write
request ever processed by the replica. Fach replica also
maintains a low counter in non-volatile memory that con-
tains the sequence number of the highest write request for
which all write requests from the first ever request to this
low count have been processed by the replica, 1.e., there are
no gaps in the sequence numbers of requests processed by
the replica through the sequence number stored 1n the low
counter. When a replica’s low counter equals its high
counter, the replica 1s considered up-to-date, and eirther 1t did
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not miss any write request ever or 1t recovered successiully
and did not miss any write request since that recovery. When
the replica’s low counter 1s less than 1ts high counter, the
replica 1s considered to be not up-to-date, indicating that the
replica has missed some write requests and needs to recover.

The preferred embodiment stores the low counter, high
counter and last_modified counters 1n non-volatile memory
and not in slower non-volatile storage devices, such as
magnetic disks. The reason 1s that these counters are
accessed frequently during normal operation and during
recovery. Placing them on a magnetic disk will slow the
system considerably, since access to a disk 1s much slower
than access to non-volatile memory. The disadvantages of
non-volatile memory are its high cost and smaller size
relative to a magnetic disk.

The recovery process enables new write requests 1ssued
by the source to be processed while a replica 1s recovering
from a current replica 1n the system, and minimizes the data
that needs to be copied from and transierred from a current
replica to the recovering replica. A current replica 1s an
up-to-date replica that has receirved the latest write request
from the source or the latest write 1s 1n transit to this replica.
Using the low and high counters of the recovering replica,
and the last_modified sequence numbers associated with
cach data item stored in the recovering replica and the
current replica, the current replica sends to the recovering
replica only those data items (and associated sequence
numbers) that have a sequence number greater than the
recovering replica’s low counter. Also, during the recovery
period, the current replica sends to the recovering replica
any new current write requests received from the source.

From the standpoint of the recovering replica during the
recovery period, the recovering replica 1gnores all requests
(read and write) directly received from the source, and
replaces the contents of a data item with the data recerved
from the current replica only if the newly received data 1tem
has a higher sequence number than the corresponding
sequence number of the data item already stored in the
recovering replica. It also updates data items 1n response to
new write requests that were forwarded to 1t by the current
replica.

From the standpoint of the current replica from which the
recovering replica 1s recovering, the current replica contin-
ues to receive requests from the source, processes those
requests (1.e., modifies one or more data 1tems 11 1t receives
a write request), and forwards those write requests to the
recovering replica. It also scans its data 1tems and sends to
the recovering replica those data items and associated
sequence numbers that have a sequence number higher than
the recovering replica’s low counter.

In a second embodiment of the recovery process, during
the scan, rather than sending each data item that has a
sequence number higher than the recovering replica’s low
counter, those data items that have been modified by a write
request and already forwarded from the current replica to the
recovery replica during the recovery period are eliminated
from the transfer.

In a third embodiment, the data items are divided into
clusters containing multiple data items. During the data
scan, clusters of data items rather than single data 1tems are
transierred from the current replica to the recovering replica.
In this embodiment, the last_modified sequence numbers
relate to clusters rather than data items. Advantageously, the
amount ol non-volatile memory required in each replica to
store these last_modified sequence numbers 1s reduced since
the last_modified counter needs to be stored only per cluster
and not per 1item. Communication efliciency 1s also
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improved by transferring clusters and not data items
between the current replica and the recovering replica.
Reading and writing multiple data items as clusters rather
than as individual data items also reduces storage device
access time.

In a fourth embodiment, the amount of data sent from the
current replica to the recovering replica 1s further reduced.
In this embodiment, as 1n the second embodiment, every
cluster 1s sent at most once during the recovery period. It a
cluster was already sent during either the data scan or by
tforwarding a received request, the cluster 1s not sent again
during the recovery period.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 1s a block diagram of a replicated storage system;

FIG. 2 1s a block diagram of the source 1n the system of
FIG. 1;

FIG. 3 1s a block diagram of a replica in the system of
FIG. 1 1n accordance with first and second embodiments of
the invention;

FIG. 4 1s a flowchart illustrating the steps that a replica
performs 1n processing requests;

FIG. 5 1s a table that 1llustrates the processing of requests
by a replica;

FIG. 6 1s a table that illustrates the processing of write
requests by a replica;

FIG. 7 1s a flowchart that illustrates the operation of a
replica;
FIG. 8 1s a flowchart that details the recovery process at

a current replica 1 accordance with a first embodiment of
the present mnvention;

FIG. 9 15 a flowchart that details the recovery process at
the recovering replica in accordance with a first embodiment
of the present invention;

FIG. 10 1s a table that illustrates the processing of write
requests and shows data contents over time;

FIG. 11 1s a table that illustrates the operation of the first
embodiment of the present invention;

FIG. 12 1s a flowchart that details the recovery process at
the recovering replica 1n accordance with a second embodi-
ment of the present invention, which eliminates the transier
of data i1tems from the current replica that were previously
sent to the recovering replica;

FIG. 13 shows data items grouped into clusters;

FI1G. 14 1s a block diagram of a replica in accordance with
a third embodiment of the present invention in which data
items are grouped into clusters;

FIG. 15 15 a flowchart that details the recovery process at
the current replica 1n accordance with the third embodiment
of the present invention;

FIG. 16 15 a flowchart that details the recovery process at
the recovering replica 1n accordance with the third embodi-
ment of the present invention;

FIG. 17 1s a table showing how data can be corrupted by
an icorrect clustered recovery;

FIG. 18 1s a block diagram of a replica in accordance with
a fourth embodiment of the present invention i which
clusters are sent at most once during the recovery process;
and

FI1G. 19 15 a flowchart that details the recovery process at
the recovering replica in accordance with the fourth embodi-
ment.
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0
DETAILED DESCRIPTION

FIG. 1 shows the architecture of a replicated storage
system 1ncluding a source 101 and N replicas 102-1-102-N,
which are interconnected through a communication network
103. Each of the replicas 102 includes a non-volatile storage
device 104, such as a magnetic disk or any other preferably
non-volatile storage device (e.g., NVRAM). The advantage
of a non-volatile memory 1s that the data stored on the
storage device 104 1s not lost should the replica fail. During
normal operations, the multiple replicas 102 each contain
the same data and provide backup for one another in the
event of the failure of one or more of the replicas. The source
101 sends write requests to all of the replicas 102 and sends
read request to one or more of the replicas. Requests 1ssued
by the source 101 are sent to all the replicas 102 1n the same
order. The source 101 communicates with the replicas using
a reliable communication protocol, such as TCP/IP, which
ensures that the information sent by the source 1s received by

the replicas without reordering or corruption.

In the event of a full or partial network failure, the aflected
replicas are disconnected from the source and do not further
communicate with it. When one or more of the replicas 102
fails, 1t stops updating its data (a fail-stop assumption). A
system containing N replicas 1s generally said to be consis-
tent 1t all N replicas 102-1-102-N contain the same data
alter the source stops sending write requests and all out-
standing write requests have been processed by all of the
replicas, or that all N replicas contain the same data atter all
of the replicas have processed the same sequence of write
requests. A more accurate definition of consistency will be
given heremnafter. The recovery process assumes that the
source 101 assigns consecutive sequence numbers to the
requests.

FIG. 2 1s a block diagram of a source 200. It includes a
host computer 201 and a controller 202. The host computer
generates requests internally or recerves them from an
external entity. The controller includes a processor 203,
which keeps track which replicas 1n the system are current,
attaches sequence number to each write request, and broad-
casts each request to all replicas (for write requests) or to one
or more replicas (for read requests) over individual TCP/IP
sockets or using an appropriate multicast protocol. Processor
203 also tells a replica that requires recovery from which
current replica 1t should recover. The sequence numbers
associated with each request are preferably integers and are
assigned by processor 203 1n imncrements of one, without
gaps, with separate sequences for read and write requests.
Thus, 1f the request stream 1s read, write, write, read, write,
then the source assigns the following sequence number to
these request: read,, write,, write,, read,, write,, where the
subscripts are indicative of the assigned sequence number.

Read requests are processed by a replica only when 1t 1s
“up-to-date”, to be explained below. The sequence number
assigned to the first request ever 1s 1. Controller 202 keeps
the latest assigned write sequence number, source write-
_seq, 1 a counter 204. It 1s assumed that sequence numbers
never overtlow, which 1s a valid assumption 1f 64-bit
unsigned integers are used to contain sequence numbers, and
the request rate of the system 1s 1n the order of one million
requests per second. The system will then be operative for
approximately 580,000 years before the sequence numbers
overflow. If the source should fail, a gap 1n sequence
numbers 1s prevented from occurring in a manner to be
described hereinaiter.

FIG. 3 1s a block diagram of a replica 300. It includes a
processor 301, which processes read and write requests
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received from the source, and non-volatile data storage
device 302. The storage device 302 1s a magnetic disk 1n the
preferred embodiment. Data storage 1s illustratively shown
storing M data 1items in data storage positions 303-1-303-M.
Processor 301 processes a write request to a particular data
item by sending the value of the updated data item over bus
304 to the particular storage position 303 at which that item,
identified by its position, 1s stored and rewriting the previ-
ously stored data item with 1ts new value. Processor 301
processes a read request for a particular data item by
requesting the value of that data item from its storage
position 303, recerving the value of that data item over bus
304, and outputting that data item over the data network to
the requesting source over a TCP/IP socket or another
suitable protocol.

Replica 300 includes counters 305 and 306, in non-
volatile memory (NVRAM), each connected to processor
301 via bus 304. Counter 305 stores the high count, which
1s the sequence number of the highest write request that has
so far been processed by this particular replica. Counter 306
stores the low count, which 1s the sequence number of the
highest write request for which all write requests from the
first request (sequence number 1) to the request with this low
count sequence number have been processed by this replica,
or all requests from the last successiul recovery to this low
count request have been processed by this replica. In other
words, there are no gaps in the sequence numbers of write
requests processed by this replica for sequence number less
than low. Processor 301 updates the counters 305 and 306 as
the replica processes write requests. The initial values of
both counters 305 and 306 are zero. When low equals high,
the replica 1s considered to be up-to-date. In other words, the
replica did not miss any request ever or 1t recovered suc-
cessiully and did not miss any write request since that
recovery. When low 1s less than high, the replica i1s consid-
ered to be not up-to-date. In other words, the replica missed
some requests and it needs to recover. Low can never exceed
high.

Replica 300 also includes non-volatile storage device 310,
connected to processor 301 via bus 304. The non-volatile
storage device 310 1s non-volatile memory (NVRAM) 1n the
preferred embodiment. Storage device 310 stores an M-el-
ement vector, last_modified. Each element of the vector 1s
associated with one of the M storage locations 303 of storage
device 302 and contains the sequence number, as previously
discussed, of the most recent write request that modified the
data 1tem 1n that storage location. The initial value of each
of the M entries of last modified 1s zero. Whenever a write
request modifies a data i1tem, the sequence number of that
write request 1s stored 1n a corresponding entry of last_modi-
fied. As will be described, low, high, and last_modified are
used in performing recovery in both the current and recov-
ering replicas and therefore need be kept 1in non-volatile
storage devices to ensure that they are not lost after a replica
failure.

The processing of requests by a replica 1s shown in the
flowchart of FIG. 4. At step 401, the replica receives a
request from the source. At step 402, it determines whether
the request 1s a read or a write request. If 1t 1s a write request,
at step 403, details of that request are determined, specifi-
cally, which data item 1 the write request 1s for and what the
sequence number s of the write request 1s. At step 404, a
determination 1s made whether s 1s less than or equal to high.
IT 1t 1s, then the request 1s considered to be a duplicate and
1s silently ignored. If s 1s determined to be greater than high,
then, at step 406, data 1tem 1 1s modified with 1ts new value.
Also, at step 406, element 1 of the last_modified vector 1s set
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to s. The assignment of a new value to a data item or to a
counter 1s represented with the symbol <. FIG. 4 and the
following figures use this symbol.

At step 407, a determination 1s made whether the
sequence number s of the write request exactly follows the
previous write sequence number (1.e., whether s equals
low+1). If 1t does, then the replica 1s up-to-date (1t did not
miss any write) and, at step 408, low and high are both set
to s. Since 1t 1s assumed that the network never re-orders
requests (requests eitther arrive 1n the correct order or they
fail to arrive), 1t 1s suflicient to detect a gap in the write
request stream when a write request has a sequence number
which 1s larger than the previous write sequence number
plus 1. If the missed write request arrives 1n the future, it 1s
ignored and the gap 1s not closed since a request 1s not
expected to arrive out of order. Thus, at step 407, if s does
not equal low+1, then the replica 1s not up-to-date and, at
step 409, only high 1s set to s to indicate that the gap exists.
Once the replica 1s considered not up-to-date, 1t can become
up-to-date again only after a successiul recovery. Further
gaps cause only high to grow, since there 1s not distinction
between a gap caused by missing one request, a gap caused
by missing multiple requests, or multiple gaps. After either
step 404, 408 or 409, an acknowledgment of the write
request 1s sent to the source at step 405.

If, at step 402, the request received from the source 1s
determined to be a read request, then at step 410, an
identification of which data item 1 the read request relates to
1s made. If, at step 411, a determination 1s made that low
does not equal high, then the replica 1s not up-to-date. At
step 412, a failure indication 1s sent to the source, since the
replica processes read requests only when it 1s up-to-date.
This ensures that the replica never gives an incorrect answer
to a read request due to missed write requests. The recovery
algorithm thus does not handle read requests, but safely
ignores them. If, at step 411, low and high are equal, then the
replica 1s up-to-date and, at step 413, data item 1 1s read from
data location 303-1 of data storage 302 and i1s sent to the
source.

The table mn FIG. 5 illustrates the request processing
operation as the replica processes a sequence of requests.
The subscripts of the requests indicate each read or write
request’s sequence number. Initially low and high are O.
When write request write,, 1s received, low and high are
both increased to 1. When the next write request arrives,
write,, 1ts sequence number 1s equal to low+1 so low and
high are both set to 2. The next request 1s a read request,
read,, which does not change the values of low and high.
The next request 1s write,, which 1s a duplicate of the
previous request, and 1t 1s ignored. The sequence number of
the next request, write,, 1s equal to low+1, so low and high
are both set to 3. The sequence number of the next received
request, write., 1s not equal to low+1, so a gap 1s detected.
Thus only high 1s set to 5, with low remaining at 3. The next
request 1s a read request, read,. Since the replica 1s not
up-do-date and some writes are missing, the read request
fails. The next request 1s a write request again, write.. Since
a gap has previously been detected, only high 1s changed to
6. The final request 1s a write request, write,. This write
request 1s 1gnored and the gap 1s not closed.

The table 1n FIG. 6 shows two examples of processing of
write requests and the handling of the low and high counters.
In the first example, there 1s no gap 1n the processing of write
requests W,, W,, W,, W_, W.. The final value of both low
and high 1s thus 5. In the second example, there 1s a gap 1n
the recerved write requests W,, W,, W, so that the final
value of low 1s 2 and the final value of high 1s 5.
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A current replica 1s an up-to-date replica that received the
latest write request from the source or the latest write request
1s 1n transit to this replica. In other words, low=high and
either high=source_write_seq or all request from high+1 to
source_write_seq are 1n transit to this replica. This condition
1s equivalent to an up-to-date replica that has an open
communication channel to the source. Assuming that the
communication channel 1s reliable (no data 1s lost 1n transit)
and the absence of bugs in the source and replicas, all
requests from high+1 to source_write_seq that are 1n transit
will eventually be processed by the replica without causing,
any gaps. It should be noted that an up-to-date replica 1s not
necessarily current since the replica may be disconnected
from the source.

A consistent system 1s a system in which all replicas are
current. In other words, 11 the source stops sending new write
requests, all  replicas will  eventually  have
low=high=source_write_seq.

The up-to-date condition 1s different than the current and
consistent conditions. The up-to-date condition 1s local to
the replica, and can be checked without knowing the state of
the source or any other replica. The current condition
requires information from the replica and from the source.
The consistent condition depends on the state of the entire
system. Every replica may be up-to-date even when the
system itsell 1s not consistent, for example 11 some replicas
were disconnected from the source and missed the last few
write requests.

The overall operation of a replica 1s shown 1n FIG. 7. This
operation includes the processing of requests of FIG. 4. At
step 701, the replica starts by connecting to the source, and,
at step 702, sending the source i1ts low and high values.
Using the received low and high values, and the value
source_write_seq, at step 703, the source sends the replica a
response. This response can be either that the replica 1s
up-to-date or that the replica has to recover. The source tells
the  replica  to recover 1I  low<high, or
high<source_write_seq, which means that the replica missed
some write requests that were sent to the other replicas. If the
response determined at step 704, 1s that the replica 1s
up-to-date, then the replica starts processing requests at step
705 as per the steps 1n FIG. 4. The replica processes all
requests until 1t either detects a gap (low<high at step 706),
or the connection to the source fails, at step 707. The
connection to the source may fail due to source or network
failures. After such a failure, the replica re-establishes the
connection to the source at step 701. If, at step 704, the
response 1s for the replica to recover, then the replica, at step
708, connects to a current replica that the source has chosen
and specified. At step 709, the recovering replica’s low and
high values are sent to that current replica. At step 710, the
recovering replica recovers from the current replica using a
recovery process to be described in detail below. Once
recovery 1s completed, at step 711, the connection between
the now recovered replica and the current replica 1s closed.

If the source should fail, the source needs to recover only
the highest sequence number that it previously used for write
requests before 1ts failure (the last value of source_write_seq
in counter 204). This 1s needed to avoid a gap 1n the write
request stream and to ensure that the replicas will not ignore
new write requests. A first method to recover the highest
sequence number 1s to keep counter 204 in non-volatile
memory or in another non-volatile storage device. When the
source restarts, it recovers source_write_seq irom this stor-
age device. This method does not require any communica-
tion, but 1t assumes that the source hardware does not
completely fail, so that the contents of the storage device can
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be accessed. This assumption 1s incorrect if the entire site
that holds the source fails or 1s not accessible, for example
after a natural disaster. In a second method, the source does
not keep source_write_seq 1n any storage device. When the
source restarts, 1t requests all replicas to send 1t their high
sequence number, and the source picks the maximal
received value of huigh as 1ts source_write_seq. This method
1s applicable when the source hardware fails and the source
1s restarted on different hardware (e.g., a backup computer).
It 1s assumed, however, that the set of replicas that the source
communicates with aiter its recovery contains a replica that
holds the correct highest write sequence number. If the
source failure coincides with a network failure, there could
be some replicas that did not receive the last write requests
that the source sent before 1ts own failure. If the source can
communicate only with those replicas, the source will com-
pute the wrong highest sequence number.

Several embodiments of the replica recovery process are
described herein below. The recovery process handles new
write requests that are sent from the source while the
recovery 1s being performed. Since only write requests
modily the data stored in the replicas, the recovery algorithm
handles only write requests and, as previously discussed, the
replica does not process read requests when 1t 1s not up-to-
date. The recovery process performs what 1s designated as
“delta recovery” in that only data items that were changed by
write requests that were performed after the recovery rep-
lica’s low counter are transierred from a current replica to
the recovery replica. For example, 1f the recovery replica
processed requests write,, write, and write,, while the cur-
rent replica processed requests write,, write,, write,, write,
and write., then the current replica sends only the data 1tems
changed by write, and write.. If write, and write, changed
the same data 1tem, it 1s sent only once.

FIGS. 8 and 9 show the operation of the recovery pro-
cesses performed by the current replica and the recovering
replica, respectively. The current and recovering replicas
execute these processes concurrently. With reference to FIG.
8, at step 801, the current replica receives the low sequence
from the recovering replica and stores that value, designated
recovery_low, 1n a register 307 (in FIG. 3). This value 1s
needed for sending the recovering replica only those data
items that were changed atfter this sequence number. At step
802, the current replica’s high sequence number 1s sent to
the recovering replica, where 1ts use will be described below
in conjunction with the discussion of the process taking
place at the recovering replica. Register 308 (see FIG. 3)
stores a pos 1ndex count that 1s used to keep the position of
the last data item that the current replica has sent the
recovering replica. At step 803, pos 1s 1imitialized to 0.

At step 804, a determination 1s made whether the current
replica 1s connected to the source and the current replica’s
low equals its high, indicating that it 1s capable of receiving
new requests from the source and that 1t 1s up-to-date. If no,
at step 803, recovery has failed and the connection to the
recovering replica 1s closed. If yes, then at step 806, a
determination 1s made whether the current replica has gotten
a request from the source. I it has not, then a sequential scan
begins to send to the recovering replica those data items that
were changed after the recovery replica’s low, which 1s
stored 1n recovery_low. Thus, at step 807, a search 1s made
to find a data 1tem 1, with 1 greater than the current pos value
such that the sequence number of the request that last
modified that data item, last_modified[i], 1s greater than
recovery_low. Thus, mitially when pos 1s set to O at step 803,
at step 807, the lowest numbered data item 1n which last-
_modified[1] 1s greater than recovery_low 1s determined. At
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step 808, a determination 1s made whether such a data item
has been found. If yes, then, at step 809, pos 1s set to 1, the
position of the last found data 1tem. That data 1tem 1 and its
associated sequence number, last_modified[1] are sent to the
recovering replica. The process then returns to step 804.

If the current replica remains connected to the source and
its low equals 1ts high, and no new request has been received
from the source, then, at step 807 again, the next data 1tem
1s Tound such that 1ts position 1 1s greater than the newly set
pos, the position of the last data item just sent to the
recovering replica. Scanning of data 1items continues, 1tem-
by-item, until when, at step 806, a determination 1s made
that a request has been recetved from the source. When that
request 1s received, at step 810, the current replica 1imme-
diately processes 1t locally. If at step 811, the request is
determined to be a read request, it 1s not forwarded to the
recovering replica and processing returns to step 804. If 1t 1s
determined to be a write request, then, at step 812, the
identity 1 and the sequence number s of the data item
associated with the write request are determined. Last-
_modified[1] 1s then set to s and the write request 1s for-
warded to the recovering replica before processing returns to
step 804.

After processing a write request received from the source
and passing that request on to the recovering replica, scan-
ning of data items continues at step 807 with the next data
item 1 that 1s greater than the last processed data item, pos,
with last_modified[1] greater than recovery_low. Scanning
continues until, at step 808, no such data item remains to be
processed. At that point, at step 813, recovery has succeeded
and a scan-complete-message 1s sent to the recovering
replica.

The condition at step 806 ensures that the current replica
processes requests from the source at a higher priority than
scanning 1ts data and sending it to the recovering replica. In
this way, normal request processing of the current replica 1s
not slowed down by the recovery. Otherwise, the current
replica may eventually miss some requests from the source
and may need to recover itself.

The current replica may terminate recovery in three
conditions: the source closed the connection, the recovering
replica closed the connection, or the current replica 1s no
longer up-to-date. All these conditions may happen during
the recovery period. The recovering replica may decide to
fail the recovery (to be discussed below), the recovering
replica itself may fail, the network may fail, or the current
replica 1tsell may become not up-to-date due to other
failures 1n the system.

The operation of the recovering replica 1s more involved,
since the recovering replica has to combine the information
1s recerved from the current replica with its own data 1tems.
With reference to FIG. 9, the recovering replica begins by
receiving, at step 901, the current replica’s high counter 1nto
current_high. At step 902, current_high 1s compared with the
recovering replica’s own high count. This 1s critical, since
the recovering replica may have a gap. For example, 1t
received write requests numbers 1, 2, 3 and 6, while the
current replica received only write requests 1, 2, 3 and 4.
This may occur when there 1s a network delay between the
source and the current replica. The current replica 1s still
up-to-date, and 1t will eventually catch up and receive the
missing write requests. However, if the current replica
performs the recovery with its present state, the recovering,
replica will still miss write request number 5. Thus, if, at step
902, current_high 1s less than the recovering replica’s high
count, then the recovery 1s failed at step 903. In that case the
recovering replica will try to recover again. The current
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replica should eventually catch up with the recovering
replica, since the recovering replica stops processing new
write requests from the source while 1t tries to establish the
connection with the current replica.

If current_high 1s not less than the recovering replica’s
high count, then, at step 917, the recovering replica sets its
high counter to the current replica’s high, current_high,
which 1s safe to do since the recovering replica will get all
updates to and including current_high by the end of the
recovery period.

At step 904, a determination 1s made whether the recov-
ering replica 1s connected to the current replica. If not,
recovery 1s failed at step 903. If yes, then, at step 905, the
recovering replica gets a request. At step 906, a determina-
tion 1s made whether the origin of that request 1s from the
current replica or from the source. I the origin of the request
1s directly from the source, then, at step 907, the request 1s
ignored since, as previously discussed, all new write
requests are received by the recovering replica only through
the current replica. If the origin of the request 1s the current
replica, then, at step 908, the type of the request 1s deter-
mined. The request can be a write request, which must arrive
without a gap, a data item, or a scan-complete-message.

Write requests are applied 1n the order they are received.
These are new write requests that were processed by the
current replica and forwarded to the recovering replica. They
are guaranteed to be more recent than the data items they
replace since the current replica’s high was greater than or
equal to the recovering replica’s high at the beginning of the
recovery process. If the request type 1s a write request, then,
at step 909, the details of the request are determined,
specifically the particular data item 1 that 1s modified by the
request s and its sequence number s. At step 910, a deter-
mination 1s made whether s 1s equal to high+1. If the request
1s the first write request received from the current replica 1n
the recovery process, 1t should properly have a sequence
number that directly follows the previous high count of the
current replica, since 1t was set at step 917 to current_high.
Alternately, this request must follow a previous request sent
by the current replica. If, at step 910, s doesn’t equal high+1,
then the current replica 1s not up-to-date and the recovery 1s
failed at step 903. If s 1s equal to high+1, then, at step 911,
data 1item 1 1s updated to 1ts new value as specified by the
write request, last_modified[1] 1s set to s, and high 1s set to
s. Thus, the next time a write request 1s recetved from the
current replica, at step 910, 1t should have a sequence

number that 1s 1 greater than the newly set high.

If, at step 908, the request type 1s a data item from a
sequential scan of data items at the current replica, then the
recovering replica must verily that the data item 1t receives
from this scan 1s indeed more recent than the data item 1t
currently has, since that data item may have already been
updated by a more recent write request that was sent from
the current replica. At step 912, details of that data item are
determined, specifically the identity 1 of that data item and
its sequence number s. At step 913, a determination 1s made
whether the sequence number s of this received data item 1s
larger than the sequence number already stored in the
recovering replica’s last_modified vector for this data 1tem,
last_modified[1]. IT s 1s not greater, then recovering replica
already has a more recent vallue of that data item, so this
data 1tem 1s 1gnored. On the other hand, if s 1s greater than
last_modified[1], then the scan contains the most recent
value of that data item. At step 914, therefore, that data item
11s updated with 1ts new value and last_modified[1] 1s set to
the sequence number s associated with that value.
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The recovering replica should not accept writes from the
source while doing a recovery to avoid the creation of new
gaps. For example, the recovering replica may initially
receive write requests 1, 2 and 3 and the current replica
receives request 1, 2, 3, 4 and 5. If there 1s a big delay 1n the
communication between the source and the current replica,
write requests 6 and 7 may be on their way to the current
replica, while the source sends write request 8 to the
recovering replica. If the current replica 1s quick, it may
complete the recovery belfore receiving requests 6 and 7
from the source. However, the recovering replica already
received request 8, which creates a new gap.

In order to avoid race conditions on access to the last-
_modified vector, the current replica must not scan the data
items and modily them at the same time. In other words, the
current replica may either scan the data items or apply write
requests, but not both at the same time. This 1s shown 1n FIG.
8, 1n which the current replica either processes requests
received from the source, or scans 1ts last modified vector.

If the request type, at step 908, 1s determined to be a
scan-complete-message, then all data items have been
scanned and forwarded to the recovering replica. At step
915, low 1s set to high, and, at step 916, recovery 1s complete
and successiul.

An example of the recovery process at the current replica
and at the recovering replica 1s described in conjunction with
the examples shown 1n the tables of FIGS. 10 and 11. The
table 1in FIG. 10 illustrates a sequence of write requests that
are sent by the source and the contents of the data 1tems after
applying each request in turn. Each replica keeps three data
items numbered 1 to 3. This table shows how the contents of
these data items change as the requests are processed,
assuming normal operation and no request 1s lost. Initially,
the content of each data item 1s undefined and the last modi-
fied vector contains 0’s 1n each element. The sequence of
seven write requests progressively modifies the data items.
Write request 1 (sequence number 1) changes data item 1 to
the value A and last_modified[1] 1s set to sequence number
1. Data 1item 1 1s never rewritten by the following six
requests so that its value remains A and its associated
last_modified|1] remains 1. On the other hand, data i1tem 2
1s 1nitially set by request 2 to value B and its last_modi-
fied[2] then set to 2. However, it 1s modified by request 4,
and finally by request 7 to the value G. Thus, last_modi-
fied| 2] changes from 2 to 4, and finally to 7. Data 1tem 3 1s
similarly modified multiple times.

The table 1n FIG. 11 illustrates the recovery operation
alter the recovering replica (R) has recerved requests 1-3,
inclusive, and the current replica (C) has received requests
1-5, inclusive. The table shows the initial values of data
items 1-3, the associated last modified vector and the low
and high counters 1n the recovering replica R, and the 1nitial
values of data items 1-3 the associated last_modified vector,
the low and high counters, and the pos counter in the current
replica C. In the table and 1n the following text, S refers to
the source. The situation illustrated could have arisen 11 the
recovering replica disconnected from the source and then
reconnected. After reconnection, the source discovered that
the reconnected replica missed a few requests and needed to
recover from the current replica. Specifically, upon recon-
necting to the source, R sends 1ts high and low counters to
S, which sends a response that R needs to recover. Although
R did not have a gap since high=low=3, it has lost requests
that the other replica had received due to the disconnection.
Thus, upon reconnection S’s source_write_request 1s greater
than the R’s high counter and thus S knows that R needs to
recover.
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When recovery starts, R has low=high=3, and C has
low=high=5. These iitial values correspond to the data
contents after processing the third and fifth requests, respec-
tively, in FIG. 10. R then sends low=3 to C, saying it missed
everything after the third request and needs request 4 and
higher. C then sends high=5 to R because from hereon
forward during the recovery period, C will forward write
requests from S to R, and those write requests will have a
sequence number starting at high+1 of C. Because R has a
high counter which 1s less than the high counter of C, R
changes 1ts high counter to this number 5, so that R will not
detect a gap when 1t gets the next forwarded request from C.
This 1s done to prepare R for properly processing a for-
warded request from C. In FIG. 9, the recovering replica
starts by getting the current replica’s high. It verifies that the
high value of the current replica 1s indeed larger than 1ts own
high counter. If, in the example 1n FIG. 11, R had a high=6,
then 1t would have received one more request than C, with
a gap 1n the middle, which caused it to recover. There would
then be a potential for an incomplete recovery, which needs
to be avoided. Thus, recovery does not proceed in the
situation where current_high 1s less than R’s high.

Returning to the example 1 FIG. 11, after R changes 1ts
high to 5, C receives write, from S, thereby updating data
item 3 to value F, last_modified[3] to 6 and C’s high and low
counters to 6. C then forwards write, to R, thereby updating
its data 1tem 3 to value F, 1ts last_modified[3] to 6, and 1ts
high counter to 6. R’s low counter, however, remains at 3,
since there 1s still a gap. Scanning of data items at the current
replica then begins. C first sends data item 2 to R because its
last_modified[2], equal to 4, 1s higher than R’s low, equal to
3. The pos counter at C 1s then set to 2, so that scanning will
recommence aiter item 2. At R, data item 2 1s updated to the
value D and its last_modified|2] 1s changed to 4. C then gets
write, from S, and changes data item 2 to the value G,
last_modified[2] to 7, and its low and high counters to 7. C
then sends write, to R, where data item 2 1s changed to the
value G, last_modified[2] to 7, and the high to 7. Scanming
now continues, beginning where the previous scan ended
and continuing forward. Thus C next sends data item 3 to R,
since 1ts last_modified|[3], equal to 6, 1s higher than R’s low,
which 1s equal to 3. C then updates its pos counter to 3. Since
the value of last_modified[3] at R 1s also 6, R 1gnores this
update to data item 3, since 1t never overwrites data with
other data which has a lower or equal sequence number. C
now finds that 1t does not have any further data items to scan
which have a last_ modified element that 1s higher than
recovery_low. It then sends a scan-complete-message to R,
telling 1t that the data scan 1s complete. R then sets 1ts low
counter to the value of 1ts high counter to indicate that no
data 1s missing. Recovery 1s then complete.

A second embodiment of the recovery process reduces the
number of data items sent by the sequential scan by elimi-
nating the transfer of data items that were previously modi-
fied by a write request that have already been forwarded
from the current replica to the recovering replica. In other
words, the corresponding data item 1n the recovering replica
already has the most recent value and its associated last-
_modified element contains the correct sequence number.

In the second embodiment, the current replica, and thus
cach replica 1n the system, includes an additional counter
309 (in FIG. 3) that stores a count start_high, which 1s the
value of the current replica’s high counter when recovery
starts. During the sequential scan, the current replica for-
wards a data i1tem to the recovering replica only 11 1t was
modified more recently than the recovering replica’s low but
betore or at start_high. Since all of the write requests that the
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current replica performs and forwards to the recovering
replica have a sequence number higher than start_high, this
condition ensures that the sequential scan does not send any
data i1tem that was previously modified by a write request
which was already forwarded.

FIG. 12 depicts the operation of this embodiment of the
recovery process in the current replica. Steps 1201-1213
correspond one-by-one to the steps 801-813, respectively, 1n
FIG. 8 described above. Each mdividual common step will
therefore not be described in detaill since the similarity
between the processes 1n FIGS. 8 and 12 1s readily apparent
to one skilled in the art. The steps that are diflerent are
described as follows. At step 1203, start_high 1s 1nitialized
by setting 1t to the current replica’s high value. Then, during
the sequential scan of data items, at step 1207, a test 1s made
on each data item 1 to determine that the sequence number
associated with the last update of that data item, last_modi-
fied[1], 1s both higher than the recovering replica’s low,
recovery_low and less than or equal to start_high. This
prevents the sending of a data item that has been modified
by a previously forwarded write request. On the recovering,
replica side, the process remains the same as that at the
recovering replica in the first embodiment that was previ-
ously discussed in association with FIG. 9.

In the first and second embodiments described above, the
last modified vector needs to be maintained in a non-
volatile storage device, such as non-volatile memory or a
disk. If the system i1s intended to handle a high load of
requests, the last_modified vector should preferably be kept
in a non-volatile memory such as NVRAM, since this vector
1s accessed frequently during recovery. This i1s especially
true when the data 1tems are stored on a hard disk since the
access to the last modified vector determines whether the
disk access should or should not be performed. NVRAM 1s
expensive, costing much more than a regular memory of the
same size. Cost becomes a major 1ssue since the first and
second embodiments require one last_modified vector ele-
ment for each data item.

In a third embodiment, the M data items are divided into
clusters in which every data item belongs to one and only
one cluster. Preferably, the M data items are divided into
[M/k] equal-sized (to make it simpler) non-overlapping
clusters of k elements each, where the symbol [z | means the
smallest integer that 1s larger than the the value of z. As an
example, FIG. 13 depicts the mapping of 10 data items into
S5 clusters of two data 1tems each. This figure also depicts the
mapping of write requests to clusters. A write request may
modily a portion of a cluster, such as write to data item 1.
Some requests may modily several clusters, such as the
request to write data items 4 and 5. Some write requests may
modily a whole cluster, such as the request to write data
items 9 and 10. The descriptions of the first and second
embodiments above have shown how to handle requests that
access a single data item. A discussion 1s included herein
below that explains how the recovery operations can be
modified to handle requests that access several data items.
Before that discussion, however, the third and {fourth
embodiment of the recovery procedures will be described.

In the third embodiment, as noted above, the M data items
are mapped 1nto clusters. The recovery processes are similar
to those described above for the first and second embodi-
ments. The current and recovering replicas, however, main-
tain an entry in the last_modified vector for each cluster of
data 1tems rather than for each data item. FIG. 14 1s a block
diagram of a replica 1n accordance with the third embodi-
ment, which 1s similar to the replica in FIG. 3. Replica 1400
includes processor 1401, non-volatile storage device 1402,
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bus 1404, low and high registers 1405 and 1406, respec-
tively, pos register 1408, and a non-volatile storage device
1410 containing the last_modified vector. Non-volatile data
storage device 1402 1s shown containing six storage loca-
tions 1403-1-1403-6 for six data items. There are two data
items 1n each of three clusters, 1411-1-1411-3. There are
three storage locations in storage device 1410, one for each
of the three elements of the last modified vector, each
clement being associated with one of the clusters 1dentified
by the numeral ¢. Each element of the last_modified vector,
last_modified[c], contains the sequence number of the latest
write request that modified any of the data items in the
cluster ¢. Thus, in the example shown i FIG. 7 1n which
each cluster contains two data items, the last modified
clement for each cluster ¢ contains the sequence number of
the latest write request that modified either of the two data
items 1n 1ts associated cluster. Also, 1n accordance with this
embodiment, clusters of data items are transferred from the
current replica to the recovering replica during the data scan
rather than single data items.

FIG. 15 shows the recovery process at the current replica
for this third, clustered, embodiment. Each of the steps 1n
FIG. 15, 1501-1513, parallels a corresponding step,
801-813, respectively, 1n the recovery process at the current
replica 1 the first embodiment previously described. As
noted above, however, the entries for the last modified
vector contain the sequence number of the last write request
that modified any data item 1n the corresponding cluster, and
data scanning sends clusters and not data items to the
recovering replica. Thus, the pos counter used for scannming
represents the identity of the cluster in data storage 1402
being scanned rather than the identity of a data 1item being
scanned.

The steps 1 FIG. 15 that differ from the corresponding
steps 1n FI1G. 8 are described as follows. When a request for
a data 1tem 1s received from the source, at step 1506, and 1s
determined, at step 1511, to be a write request, the details of
that request are determined at step 1512. Specifically, the
cluster ¢ to which the data item belongs 1s determined as
well as the sequence number s of that request. The element
last_modified|[c] 1s then set to s since the write request has
modified a data 1item within cluster c. The write request 1s
then forwarded to the recovering replica. During the data
scan, clusters and not individual data items are sent to the
recovering replica. Thus, at step 1507, a cluster 1s found
whose position ¢ 1s greater than the pos count such that
last_modified[c] 1s higher than the recovering replica’s low
count, recovery_low. I1, at step 1508, such a data cluster 1s
found, then, at step 1509, pos 1s set to ¢ and the entire data
cluster ¢ and last_modified|c] are sent to the recovering
replica.

FIG. 16 shows the recovery process of the recovering
replica during the recovery period for this third, clustered,
embodiment. Each of the steps 1601-1617 corresponds,
one-by-one, with the steps 901-917, respectively, 1n FIG. 9,
which, as described above, shows the recovery process of
the recovering replica for the first embodiment. The overall
process and each of the steps i FIG. 16 1s essentially the
same as the process and corresponding steps i FIG. 9.
Again, only those step of the recovery process that relate
specifically to the clustered recovery process shown in FIG.

16 are discussed as follows. Firstly, as noted, the last_modi-
fied vector contains entries that relate to clusters and not to

data items. The steps 1605-1610 are identical to steps

905-910 1n FIG. 9. At step 1611, as in step 911, data item 1
1s updated. Since, however, the last_modified vector has
entries for clusters and not for data items, a function 1s
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needed to determine in which cluster number a given data
item belongs. The function 1tem2cluster(.) 1s used to com-
pute the cluster number of a given data item. Thus, at step
1611, the cluster i1dentifier ¢ 1s set to 1tem2cluster(1), the
cluster from which 1tem 1 originated, last_modified|c] 1s set
to s, and the high counter 1s set to s..

If the request type recerved from the current replica 1s
determined, at step 1608, to be a cluster, then, at step 1612,
the details of that cluster are determined, specifically, the
identification the cluster ¢ and 1ts sequence number s. The
sequence number s of the cluster 1s the highest sequence
number associated with any element 1n that cluster, which 1s
equivalent to the last_modified element of that cluster from
the standpoint of the current replica. At step 1613, a deter-
mination 1s made whether s 1s greater than or equal to
last_modified|c] of the corresponding cluster c¢ stored at the
recovering replica. It 1t 1s, then cluster ¢ 1s updated to the
values 1n the received cluster and last_modified[c] 1s set to
S.

It should be noted that unlike the embodiment in FIG. 9
in which, at step 914, a data i1tem 1s updated only 11 the
sequence number of the received data item 1s greater than the
last_modified[i1] stored by the recovering replica, in the
clustered recovery process, the contents of the cluster at the
recovering replica are replaced by the received cluster even
i the received cluster has the same sequence number. This
1s done to avoid the potential for data corruption as described
below.

The table 1n FIG. 17 depicts a situation 1n which data
corruption could occur. Herein and in this table, C represents
the current replica, R the recovering replica, and S the
source. For this example, for simplicity, it 1s assumed that
there are only two data items and one cluster. Initially 1t 1s
assumed that R has recerved all requests up to and including
request write; and C has recetved all requests up to and
including request write, 5. If the next request to C 1s write,
to a single 1tem 1n the cluster, 1.e., to change data item 2 to
a value E, then C changes the value of the second data 1tem
to E and changes the value of last_modified to 11. C then
forwards write,, to R, which, upon receiving it, changes the
value of the second data item to FE and last modified to 11.
As part of a scan, C sends this cluster 1 to R with last-
_modified equal to 11. If R would require the received
cluster to have a higher sequence number than 1ts last_modi-
fied value before it replaces the cluster, then R will 1gnore
this cluster. As a result, the stale value, A, of the first data
item remains in the recovering replica and not the value C,
which 1s the correct most current value 1n the current replica.
This situation 1s avoided by allowing a new cluster received
from C during a scan to overwrite an existing cluster in R
even 1f C’s new cluster has the same last modified value as
that cluster’s last_modified value 1n R. Thus, 1n the table, R
would accept the cluster 1n which the first data 1item has a
value C and the second data 1tem a value E, thereby ensuring,
consistency between the recovering and current replicas.

For a correct implementation of the clustered recovery
process, two requirements should be met. The first require-
ment 1s that the current replica should send the clusters and
forwarded requests to the recovering replica using the same
communication channel in order to maintain the temporal
relationship between the clusters and the write requests. This
prevents data corruption when the current replica sends a
cluster to the recovering replica on one communication
channel, and then forwards a write request that modifies a
data element 1n the same cluster on a second channel. The
sequence number of the write request 1s higher than the
last_modified value of the cluster, since the cluster was sent
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first. However, 1f the write request 1s received first by the
recovering replica, then the recovering replica will 1gnore
the cluster, since 1ts sequence number 1s now less than the
recovering replica’s last_modified wvalue. The second
requirement that should be met 1s that the current replica
should not scan the clusters and modily them at the same
time 1n order to avoid race conditions on access to the
last_modified vector. In other words, the current replica may
either scan the clusters or apply request, but not both at the
same time.

As previously noted, the clustered recovery process has
advantages over the first two embodiments described above.
Firstly, the amount of required non-volatile memory 1is
reduced by allocating an element in the last_modified vector
for a cluster and not for every data item. Secondly, the
storage device access overhead 1s reduced by reading and
writing clusters. On the negative side, however, the clustered
recovery process may in fact transfer more data than the
second embodiment described above since not all of the data
items 1n a particular cluster have to be transferred.

A Tourth embodiment of the recovery process improves
upon the above-described third embodiment by reducing the
amount of data sent from the current replica to the recov-
ering replica. In accordance with the fourth embodiment of
the recovery process, every cluster 1s sent at most once
during the recovery period. It a cluster has already been sent
by either the data scan or by forwarding the request, the
cluster 1s not sent again during the recovery period. An
additional vector, the sent vector, 1s maintained in the current
replica (and thus 1n each replica) that indicates whether each
cluster was or was not already sent. The replica 1801 1n FIG.
18 1s similar to the replica 1n FIG. 14 with the addition of
data storage 1802 for the sent vector, which has an element
associated with each cluster that contains a flag indicating
whether the associated cluster was sent. The sent vector
contains |M/k]| elements, one for each cluster. The sent
vector may be stored in volatile memory, such as RAM,
since 1t can be recomputed after a replica failure. Further, 1n
this fourth embodiment, when a write request to a cluster
that has not been sent already to the recovering replica 1s
received, the current replica sends the entire cluster to the
recovering replica and does not just forward the write
request. If the cluster was already sent, the current replica
forwards just the write request.

The scenario depicted 1n the table 1n FIG. 17 1s avoided
by sending the whole cluster when the first write request to
any of the data 1tems 1n a cluster 1s received. In this way, the
recovering replica receives the correct contents of the entire
cluster, including other data items which were changed
betore and missed by the recovering replica. For this
embodiment, the recovery process at the recovering replica
1s the same as that for the clustered embodiment as shown
in FIG. 16. The recovery process at the current replica 1s
shown 1 FIG. 19, and 1s similar to the recovery process for
the current replica shown in FIG. 15 for the clustered
embodiment. Steps 1901-1912 parallel steps 1501-1512,
respectively, 1n FIG. 15. The differences are described as
follows. At step 1903, after the current replica’s high has
been sent, at step 1902, to the recovering replica, the current
replica sets 1ts pos count to 0 and sets every element of the
sent vector to FALSE. The scanning of clusters, at step 1907,
finds the next data cluster ¢ for which ¢ 1s greater than the
pos count, which was not sent (sent[c]=FALSE), and for
which last_modified[c] 1s higher than the recovering repli-
ca’s low count, recovery_low. If such a cluster 1s found,
then, at step 1909, pos 1s set to ¢, cluster ¢ and last_modi-
fied|c] are sent to the recovering replica, and sent[c] 1s set to
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TRUE. By setting sent[] to TRUE, that cluster ¢ 1s then
precluded from being sent to the recovering replica again
during the current recovery period. I, at step 1907, a cluster
1s determined during the data scan to have been sent (sent
[c]=TRUE), 1t must have been sent to the recovering replica
in response to a write request, so 1t 1s not sent again during
the scan.

When the current replica gets a request from the source
(step 1906), scanning stops and the current replica processes
the request (at step 1910). If the request 1s a write request
(step 1911), at step 1912, the request details are determined,
specifically, the cluster ¢ to which the request pertains and
the sequence s of the request. Also at this step, last_modi-
fied[c] 1s set to s. Then, at step 1914, a determination 1s made
whether or not this cluster has previously been sent (during
the scan or by a previous write request) based on the value
of sent[c]. If sent[c] 1s TRUE, then, at step 1915, only the
individual write request to the data item 1s sent to the
recovering replica. It sent[c] 1s determined to be FALSE,
then, at step 1916, the entire cluster ¢ 1s sent to the
recovering replica and sent|c] 1s set to TRUE to prevent that
cluster from being sent again to the recovering replica
during the current recovery period.

Although the read and write requests have been assumed
in above-described embodiments to access a single data
item, 1n fact the read and write requests may access several
data 1tems. This invention 1s therefore intended to include
the access by read and write requests of multiple data 1tems,
which 1n the case of the clustered embodiments may span
more than one cluster. In the claims, therefore, a request 1s
intended to include the access of both single data items as
well as multiple data items. Requests that access several
consecutive data 1tems are common when the data items are
stored on a disk, and the source generates requests which are
derived from SCSI read and write requests to the data.

Each of the above-described recovery processes can
handle multi-item requests by modifying the corresponding,
data items and updating the last_modified and sent vectors
in an atomic operation. For example, if the request 1s to write
three consecutive data items, all data items and the last-
_modified vector, will be modified belore the next operation
starts. For example, FIG. 4 shows the processing of a request
that refers to a single data item. The same process can be
used to process requests that refer to multiple data items. The
only changes would be to step 406 which modifies data 1tem
1 and sets last_modified[1] to s, and to step 413, which reads
data item 1. In all cases, the process simply performs the
request operation on all of the requested data 1tems 1nstead
ol a single data item.

Although the above-described embodiments use sequence
numbers to determine which data items have been more
recently updated than others, to determine whether a data
item has been updated by a more recent write request than
a given write request, to detect when a replica 1s not
up-to-date, and to determine which write requests have been
missed, other methods could be devised by those skilled 1n
the art without departing from the spirit and scope of the
invention. The foregoing, therefore, merely illustrates the
principles of the invention. It will thus be appreciated that
those skilled 1n the art will be able to devise various other
arrangements, which, although not explicitly described or
shown herein, embody the principles of the mvention and
are 1cluded within 1ts spirit and scope. Furthermore, all
examples and conditional language recited herein are prin-
cipally intended expressly to be only for pedagogical pur-
poses to aid the reader 1n understanding the principles of the
invention and the concepts contributed by the inventors to

10

15

20

25

30

35

40

45

50

55

60

65

20

furthering the art, and are to be construed as being without
limitation to such specifically recited examples and condi-
tions. Moreover, all statements herein reciting principles,
aspects, and embodiments of the invention, as well as
specific examples thereotf, are mtended to encompass both
structural and functional equivalents thereof. Additionally, it
1s 1ntended that such equivalents include both currently
known equivalents as well as equivalents developed 1n the
future, 1.e., any elements developed that perform the same
function, regardless of structure.

It will be further appreciated by those skilled 1n the art that
the block diagrams herein represent conceptual views
embodying the principles of the invention. Similarly, 1t will
be appreciated that the flowchart represents various pro-
cesses that may be substantially represented in computer
readable medium and so executed by a computer or proces-
sor, whether or not such computer or processor 1s explicitly
shown.

In the claims hereof, any element expressed as a means
for performing a specified function 1s intended to encompass
any way of performing that function including, for example,
a) a combination of circuit elements which performs that
function or b) software in any form, including, therefore,
firmware, microcode or the like, combined with appropriate
circuitry for executing that software to perform the function.
The mvention as defined by such claims resides 1n the fact
that the functionalities provided by the various recited
means are combined and brought together 1n the manner
which the claims call for. Applicants thus regard any means
which can provide those functionalities as equivalent to
those shown herein.

The mnvention claimed 1s:

1. In a replicated data storage system in which a source
sends read and write requests to a plurality of replicas, each
replica comprising a storage device that stores a plurality of
data i1tems, each replica storing the same data items, each
write request being associated with a write sequence number
consecutively assigned by the source, a method for achiev-
ing consistency between a recovering replica that has been
determined to be not up-to-date and one of the replicas that
1s current as a result of a failure in the system that has caused
the recovering replica to miss receiving at least one write
request that updates at least one data item, the method at the
recovering replica comprising:

ignoring all new read and write requests directly received
from the source during a recovery period 1n which the
recovering replica recovers from a specified current
replica;

11 the source sends a new write request during the recov-
ery period, then replacing a stored value of a data item
and 1ts associated write sequence number with an
updated value of the data item and 1ts associated write
sequence number 1n response to the new write request
that 1s forwarded to the recovering replica by the
current replica, the write sequence number associated
with the updated value of the data item being the write
sequence number of the write request that last modified
that data item;

recerving from the current replica at least the data i1tems
that were updated by write requests that were missed by
the recovering replica, each data item being recerved
with 1ts associated write sequence number, the write
sequence number associated with a data item received
from the current replica being the write sequence
number of the write request that last modified that data
item at the current replica; and
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replacing a value of at least one data i1tem and its asso-
ciated write sequence number that are stored by the
recovering replica with a value of the recerved current
replica’s corresponding data item and its associated
write sequence number, respectively, only 1 the write
sequence number associated with the data item
received from the current replica 1s higher than the
recovering replica’ stored write sequence number of the
corresponding data 1tem.

2. The method of claim 1 wherein the data items and their
associated write sequence numbers are stored by the recov-
ering replica in at least one non-volatile storage device.

3. The method of claim 1 wherein a write request updates
one or more data items, the write sequence number associ-
ated with the one or more data items being the write
sequence number of the write request.

4. In a replicated data storage system 1n which a source
sends read and write requests to a plurality of replicas, each
replica comprising a storage device that stores a plurality of
data items, each replica storing the same data items, each
write request being associated with a write sequence number
consecutively assigned by the source, a method for achiev-
ing consistency between a recovering replica that has been
determined to be not up-to-date and one of the replicas that
1s current as a result of a failure 1n the system that has caused
the recovering replica to miss receiving at least one write
request that updates at least one data 1tem, the method at a
current replica that has been specified to the recovering
replica to recover from comprising:

receiving from the recovering replica a low count that 1s
the highest write sequence number for which all con-
secutive write requests from the source up to a request
with a write sequence number equal to this low count
have been received and processed by the recovering
replica;

if, during a recovery period i which the recovering
replica recovers from the specified current replica, a
write request 1s recerved from the source that updates a

value of at least one data 1tem, the write request having
an associated write sequence number, then

updating a stored value of the data item and a stored
associated write sequence number with the received
updated value of the data item and 1ts associated
write sequence number, respectively, the write
sequence number associated with the updated value
of the data 1tem being the write sequence number of
the write request that last modified this data 1tem at
the recovering replica;

forwarding the write request with 1ts associated write
sequence number to the recovering replica; and

scanning data items stored by the current replica and
sending to the recovering replica during the recovery
period the value of each stored data item and its
associated stored write sequence number if the write
sequence number associated with the stored data item
1s higher than the low count received from the recov-
ering replica.

5. The method of claim 4 wherein 1f a write request that
updates the value of a particular data 1tem 1s recerved from
the source and 1s forwarded to the recovering replica, then
a stored value of that particular data 1tem and its associated
write sequence number are not sent to the recovering replica
while scanning and sending stored data items even 1f the
write sequence number associated with that particular stored
data item 1s higher than the low count.
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6. The method of claim 4 wherein the last-modified data
items, their associated write sequence numbers, and the low
count are stored in at least one non-volatile storage device.

7. The method of claim 4 wherein a write request updates
one or more data 1tems, the write sequence number associ-
ated with the one or more data items being the write
sequence number of the write request.

8. In a replicated data storage system in which a source
sends read and write requests to a plurality of replicas, each
replica comprising a storage device that stores a plurality of
data 1tems, each replica storing the same data items, each
write request being associated with a write sequence number
consecutively assigned by the source, a method for achiev-
ing consistency between a recovering replica that has been
determined to be not up-to-date and one of the replicas that
1s current as a result of a failure in the system that has caused
the recovering replica to miss receiving at least one write
request that updates at least one data 1tem, the method at the
recovering replica comprising:

ignoring all requests directly received from the source

during a recovery period i which the recovering
replica recovers from a specified current replica;

if the source sends a new write request to a data item

during the recovery period, each data item belonging to
a cluster of one or more data 1tems and each cluster
having an associated cluster sequence number that is
equal to a write sequence number of a write request that
last modified any of the data items 1n the cluster, then
replacing a stored value of the data item and the cluster
sequence number of the cluster containing the data item
with an updated value of the data 1item and 1ts associ-
ated write sequence number, respectively, 1n response
to the new write request that i1s forwarded to the
recovering replica by the current replica;

recerving from the current replica at least the clusters

containing the data items that were updated by write
requests that were missed by the recovering replica,
cach cluster being recerved with 1ts associated cluster
sequence number, the cluster sequence number associ-
ated with a cluster received from the current replica
being the write sequence number of the write request
that last modified any data item in that cluster at the
current replica; and

replacing values of the data items 1n at least one cluster

and its associated cluster sequence number that are
stored by the recovering replica with values of the data
items in the received current replica’s corresponding
cluster and 1ts associated cluster sequence number,
respectively, only if the cluster sequence number asso-
ciated with the cluster received from the current replica
1s higher than or equal to the recovering replica’s stored
cluster sequence number of the corresponding cluster.

9. The method of claim 8 wherein the data 1tems and their
cluster sequence numbers are stored by the recovering
replica 1n at least one non-volatile storage device.

10. The method of claim 8 wherein a write request updates
one or more data items, the write sequence number associ-
ated with the one or more data items being the write
sequence number of the write request.

11. In a replicated data storage system in which a source
sends read and write requests to a plurality of replicas, each
replica comprising a storage device that stores a plurality of
data 1tems, each replica storing the same data items, each
write request being associated with a write sequence number
consecutively assigned by the source, a method for achiev-
ing consistency between a recovering replica that has been
determined to be not up-to-date and one of the replicas that




UsS 7,103,884 B2

23

1s current as a result of a failure 1n the system that has caused
the recovering replica to miss receiving at least one write
request that updates at least one data 1tem, the method at a
current replica that has been specified to the recovering
replica to recover from comprising:
receiving from the recovering replica a low count that 1s
the highest write sequence number for which all con-
secutive write requests from the source up to the
request a write sequence number equal to this low
count have been received and processed by the recov-
ering replica; i, during a recovery period in which the
recovering replica recovers from the specified current
replica, a write request 1s received from the source that
updates a value of at least one data item, the write
request having an associated write sequence number
and wherein each data item belongs to a cluster of one
or more data i1tems and each cluster has an associated
cluster sequence number, the cluster sequence number
being the write sequence number of the write request
that last modified any of the data i1tems 1n the cluster,
then
updating a stored value of the data item and a stored
associated cluster sequence number with the
recetved updated value of the data item and 1ts
associated write sequence number, respectively; and
forwarding the write request with 1ts associated write
sequence number to the recovering replica; and
scanning clusters stored by the current replica and sending
to the recovering replica during the recovery period the
value of each stored data 1tem within a cluster and the
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cluster’s associated cluster sequence number i1f the
cluster sequence number associated with the cluster 1s
higher than the low count recerved from the recovering
replica.

12. The method of claim 11 wherein if a write request that
updates the value of at least one data item 1s recerved from
the source, and the cluster to which that data item belongs
has already been sent to the recovering replica during the
recovery period, then only the write request and 1ts associ-
ated write sequence number are forwarded to the recovering
replica, but 11 the cluster to which that data item belongs has
not already been sent to the recovering replica, then each of
the data i1tems in the cluster to which that data item belongs
and the cluster sequence number 1s forwarded to the recov-
ering replica, the cluster already being updated by the write
request.

13. The method of claim 12 wherein 11 during the scan-
ning of clusters a cluster 1s determined to have already been
sent to the recovering replica during the recovery period,
then that cluster 1s not sent to recovering replica even 1f that
cluster’s sequence number 1s higher than the low count.

14. The method of claim 11 wherein the data items, the
cluster sequence numbers, and the low count are stored by
the current replica 1n at least one non-volatile storage device.

15. The method of claim 11 wherein a write request
updates one or more data i1tems, the write sequence number
associated with the one or more data items being the write
sequence number of the write request.
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