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TARGETED DELIVERY OF DRUGS FOR
THE TREATMENT OF PARASITIC
INFECTIONS

CROSS REFERENCE TO RELATED
APPLICATION

This application 1s a 35 USC § 371 National Phase Entry
Application from PCT/US02/11893, filed May 16, 2002, and
designating the U.S, which claims priority benefit of U.S.
Provisional Application Nos. 60/291,017 filed May 16, 2001
and 60/291,018 filed May 16, 2001. The disclosure of the
International Application and the two U.S. Provisional
Applications are hereby incorporated by reference.

FIELD OF THE INVENTION

This invention relates generally to the field of bio-aflect-
ing materials and, more specifically to bio-atfecting mate-
rials suitable for treating cells that are infected with a
parasite.

BACKGROUND OF THE INVENTION

Protozoa are unicellular eukaryotic organisms that can
infect and multiply in mammalian hosts. They may utilize
more than one type of host, including insect hosts, during
their life cycle. Parasitic protozoa account for a significant
portion of all infectious diseases worldwide. Although the
majority of protozoan iniections occur 1in developing coun-
tries, these infections are seen increasingly 1n industrialized
countries among 1mmigrants and i1mmunosuppressed or
immunodeficient individuals. Commonly seen parasitic dis-
cases 1nclude malaria, trypanosorrnasis, and Chagas disease.
The treatment of protozoan infections 1s problematic due to
lack of eflective chemotherapeutic agents which traverse the
blood brain barrier, excessive toxicity of the therapeutic
agents and increasingly widespread resistance to the thera-
peutic agents. Well known and presently used drugs for
treating parasitic infections, caused by protozoa include the
drugs melarsopral, eflornithine, chloroquine, quinine, metlo-
quine, amodiaquine, primaquine, pyrimethamine, sulfadox-
ine, sulfadiazine, trimethoprim, pentavalent antimony, pen-
tamidine, amphotericin-B, rnfampin, metronidazole,
ketoconazole, benznidazole, nifurtimox, and halotantrinc.

Two common problems in treatments which involve drugs
are drug-toxicity, which debilitates patients, and drug-resis-
tance, which requires more drugs and thus amplifies the
problem of drug-toxicity, often resulting 1in death. One way
to solve the problem of drug-toxicity 1s to deliver drugs so
they are targeted only to the mfected cells or tissues. Many
researchers are working to develop antibodies to deliver
drugs, and this approach holds promise, but antibodies are
not without problems. For example, they often cross-react
with normal tissues, and they can damage blood vessels
(e.g., vascular leak syndrome) and cause dangerous allergic
reactions (e.g. anaphylaxis).

The treatment of specific cells by the delivery of drugs,
including drugs that are toxic to such cells, 1s not new. U.S.
Pat. Nos. 4,886,780; 4,895,714; 5,000,935; and 5,108,987 to
Faulk and U.S. Pat. No. 4,590,001 to Stjernholm et. al.,
describe cytotoxic. or radioimaging materials conjugated to
proteins, mainly to transferrin, as treatments for cancerous
cells or for imaging cancerous cells.

It 1s known that stressed cells, such as, for example,
human cells hosting a parasitic infection, call for an
increased delivery of nutrients, such as 1iron, by presenting
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an increased number of receptors for nutrient carriers, such
as transierrin in the case of 1ron. The increase 1n receptors
for nutrient carriers 1n stressed cells 1s known to be relatively
constant and orders of magnitude greater in number than 1n
unstressed cells, which are known to show receptors inter-
mittently and in relatively smaller numbers. The publica-
tions listed above, and others, disclose taking advantage of
the increased number of receptors, especially for transierrin,
presented by cancer contaiming cells to deliver imaging
materials or drugs or both to the stressed cell.

No single study has asked 11 all stressed cells have up
regulated transierrin receptors, or if all normal cells have
down regulated transferrin receptors, but data from many
quarters suggest that all normal cells have down regulated
transferrin receptors. For example, immature erythrocytes
(1.e., normoblasts and reticulocytes) have transierrin recep-
tors on their surfaces, but mature erythrocytes do not (Lesley
I, Hyman R, Schulte R and Trotter J. Expression of trans-
ferrin receptor on murine hematopoietic progenitors. Cell
Immunol 1984; 83: 14-25). Circulating monocytes also do
not have up regulated transferrin receptors (lesta U, Pelosi
E and Peschle C. The transferrin receptor. Crit Rev Oncogen
1993; 4: 241-276), and macrophages, including Kupiler
cells, acquire most of their 1ron by a transferrin-independent
method of erythrophagocytosis (Bothwell T A, Charlton R
W, Cook J D and Finch C A. Iron Metabolism in Man,
Blackwell Scientific, Oxtord, 1979). In fact, in vivo studies
indicate that virtually no 1ron enters the reticuloendothelial
system from plasma transierrin (for review, see Ponka P and
Lok C N. The transferrin receptor: role in health and disease.
Int J Biochem Cell Biol 1999; 31: 1111-1137.). Macrophage
transierrin receptors are down regulated by cytokines such
as gamma interferon (Hamilton T A, Gray P W and Adams
D O. Expression of the transierrin receptor on murine
peritoneal macrophages 1s modulated by 1n vitro treatment
with mterferon gamma Cell Immunol 1984; 89: 478—488.),
presumably as a mechanism of 1ron-restriction to kill intra-
cellular parasites (Byrd T F and Horowitz M A. Interferon
gamma-activated human monocytes downregulate transter-
rin receptors and inhibit the intracellular multiplication of
Legionella. pneumophila by limiting the availability of iron
] Clin Invest 1989; 83: 1457-1465.).

In resting lymphocytes, not only are transferrin receptors
down regulated, but the gene for transierrin receptor 1s not
measurable (Kronke M, Leonard W, Depper. ] M and Greene
W C. Sequential expression of genes mvolved in human T
lymphocyte growth and differentiation. J Exp Med 1983;
161: 1593-1598). In contrast, stimulated lymphocytes up-
regulate transferrin receptors 1n late GG, (Galbraith R M and
Galbraith G M. Expression of transierrin receptors on mito-
gen-stimulated human peripheral blood lymphocytes: rela-
tion to cellular activation and related metabolic events.
Immunology 1983; 133: 703-710). Receptor expression
occurs subsequent to expression of the ¢c-myc proto-onco-
gene and following up-regulation of IL-2 receptor (Neckers
L M and Cossman J. Transiferrin receptor induction 1in
mitogen-stimulated human T lymphocytes 1s required for
DNA synthesis and cell division and 1s regulated by inter-
leukin 2. Proc Nat Acad Sc1 USA 1983; 80: 3494-3498.),
and 1s accompanied by a measurable increase in iron-
regulatory protein binding activity (‘Testa U, Kuhn L, Petrini
M, Quaranta M T, Pelosi E and Peschle C. Diflerential
regulation of 1ron regulatory element-binding protein(s) in
cell extracts of activated lymphocytes versus monocytes-
macrophages. J Biol Chem 1991; 266: 3925-3930), which
stabilizes transierrin receptor mRNA (Seiser C, Texieira S
and Kuhn L C. Interleukin-2-dependent transcriptional and
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post-transcriptional regulation of transferrin receptor-
mRNA. J Biol Chem 1993; 268: 13,074-13,080.). This 1s

true for both T and B lymphocytes (Neckers L. M, Yenokida
G and James S P. The role of the transferrin receptor in
human B lymphocyte activation. J Immunol 1984; 133:
2437-2441), and 1s an IL-2-dependent response (Neckers L
M and Trepel I B. Transierrin-receptor expression and the

control of cell growth Cancer Invest 1986; 4: 461-470).

Malaria

Approximately 40% of the world’s population are at risk
for malaria. That 1s, 1n excess of 2000 million people 1n
about 100 countries are at risk (Gilles, 1991, World Health
Organization, Geneva). Particularly affected are children 1n
developing countries (Greenwood et al., Trans Soc Trop
Med Hyg 1987; 81:478). For example, a million children die
of malarna every year 1n sub-Saharan Africa (World Health
Organization, 1974, Technical Report Series No. 537). The
rise of travel, trade and tourism also has extended malaria
into developed countries (Greenberg & Lobel, Ann Intern
Med 1990; 113:326). These social and economic problems
are compounded by the complexities of vector control and
the problematic development of an effective malaria vaccine
(Graves & Gelband, Cochrane Database of Systematic
Reviews CD000129, 2000). Thus, anti-malarial drugs
remain the bulwark of defense against malaria, but this 1s
being eroded by the spreading emergence of drug resistant
strains of Plasmodiurn falciparurn, causing sale, widely
available and inexpensive drugs like chloroquine to be
increasingly less eflective (Clyde, Epidemiol Rev 1987;
9:219). Taken together, these observations-indicate a press-
ing need for new drug strategies 1in the war on malaria The
present mvention provides a new strategy for the design of
anti-malarial drugs.

The Plasmodium falciparum parasite reproduces rapidly
within red blood cells of its host. Red cells are invaded by
the merozoite stage of the parasite, which matures into the
trophozoite stage and sufliciently replicates 1ts DNA to
produce 32 daughter cells within 48 hours. Like all devel-
oping cells (Richardson & Ponka, Biochim Biophys Acta
1997; 1331:1), developing plasmodia require iron to pro-
mote the function of key enzymes, such as ribonucleotide
reductase for DNA synthesis (Chitambar et al., Biochem J
2000; 345:681), and 1ron-dependent enzymes for pyrimidine
synthesis, CO, fixation and mitochondrial electron transport
(Mabeza et al., Acta Haematol 1996; 95:78). The importance
of 1ron 1 plasmodial development has been demonstrated 1n
both 1n vitro Cabantchik et al., Acta Haematol 1996; 95:70)
and 1n vivo (Pollack et al., Proc Soc Exp Biol Med 1987;
184:162) models 1n which growth of parasites 1s inhibited by
iron chelation. The most widely studied 1ron chelator is

deferoximine, which 1s a siderophore or chelator that tightly
(i.e., affinity of 10°'/M) binds iron (Peto & Thompson, Br J

Haematol 1986; 63:273). Clinical studies of Zambian chil-
dren with advanced cerebral malaria (e.g., comatose) have
revealed that patients treated with a standard program of
anti-malarial therapy plus deferoxamine (100 mg/kg/day)
recovered more rapidly than patients who received the same

program ol anti-malarial therapy without deferoxarine (Gor-
deuk et al., N Engl J Med 1992; 327:1473).

In light of the key role played by iron 1n the growth and
development of plasmodia, much research has focused on
how plasmodia obtain iron, and whether the parasites can be
killed by drugs that interfere with the metabolic pathways
that are used to acquire 1ron. Conceptually, plasmodia can
obtain iron either from within the red blood cells 1n which
they reside, or from the patient’s transferrin, which 1s the
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normal protein 1n blood that carries iron (Ponka & Lok, Int
I Biochem Cell B1ol 1999; 31:1111). There 1s little doubt that

plasmodia are capable of obtaining 1ron from red blood cells
(Hershko & Peto, J Exp Med 1988; 168:375). In order to
obtain 1ron from the patient’s transierrin, there must be
transierrin receptors on red blood cells, but normal adult red
blood cells do not manifest transferrin receptors (Richardson
& Ponka, Biochim Biophys Acta 1997; 1331:1). However,
malaria infected red blood cells bind transferrin (Pollack &
Fleming, Br J] Haematol 1984; 58:289), and data have been
produced that have identified 102 kD (Haldar et al., Proc
Natl Acad Sc1 USA 1986; 83:8565) and 93 kD (Rodriguez
& Jungery, Nature 1986; 324:388) transierrin receptors in
the plasma membranes of red blood cells infected with
Plasmodium falciparum. Although these observations have
been challenged (Pollack & Schnelle, Br ] Haematol 1988;
68: 125), subsequent experiments have shown that the
receptors are functional, inasmuch as they have been used to
deliver an anti-plasmodial toxin to infected red cells, and
such delivery was inhibited by antibody to transferrin (Suro-

lia & Misquith, FEBS Letters 1996; 396:57).

Trypanosomiasis

Trypanosomiasis 1s a parasitic ifection caused by trypa-
nosomes, which are protozoans that are passed to human
beings by the bite of an infected tsetse fly (Smith et al., Brit
Med Bull 1998; 54:341). When introduced into patients,
trypanosomes proliferate 1n blood and lymphatics, which 1s
the first stage of disease; the second stage of disease devel-
ops when parasites traverse the blood-brain-barrier and
cause neurological damage and lethargy, commonly known
as sleeping sickness (Beutivoglio et al., Trends Neurosci
1994; 17:323). If untreated, trypanosomaiasis in both humans

and animals 1s a fatal disease (New York Times, May 21,
2000).

There are two clinical forms of infection that are caused
by diflerent trypanosome subspecies. First, Trypanosoma
brucei gambiense causes a chronic disease that takes several
years to reach advanced stage; second, Trypanosoma brucei
rhodesiense causes an acute disease that 1s fatal within
weeks: Both diseases are endemic in Africa, and infections
with Trypanosoma brucei gambiense currently are epidemic,
placing at risk 60 million people inhabiting 36 sub-Saharan
countries (Barrett, Lancet 1999; 353:1113). In addition,
trypanosomiasis 1s limited neither to Africa (Dissanaike,
Celyon Med J 2000; 45:40) nor to humans (Karnau et al.,
Prevent Vet Med 2000; 44:231), and the economic impact of

these diseases profoundly impact national economies (Bauer
et al., Trop. Animal Hlth & Prod 1999; 31:89).

Diagnostic approaches to trypanosomiasis have been
designed to 1dentily the stage of disease in patients, for early
infections limited to blood and lymphatics can be treated
with less toxic drugs than later infections involving the
central nervous system (Dumas & Buiteille, Med Trop 1997,
57:65). There are currently two drugs for treatment of
central nervous system infections (i.e., sleeping sickness).
The least expensive, most available and most toxic 1is
melarsopral, which 1s an arsenical drug that induces a fatal
encepholopathy 1n 5-7% of recipients (Harrison et al., Am
I Trop Med Hyg 1997; 56:632). These problems are com-
pounded by drug resistance, low response rates and relapse
rates as high as 10% (Pepin & Milard, Adv Parasitol 1994;
33:1). A less toxic, more expensive and difhicult to acquire
alternative to melarsopral 1s etlornithine, which 1s an orni-
thine decarboxylase inhibitor that impedes polyamine syn-
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thesis (Sjoerdsma & Schechter, Lancet 1999; 354:254), but
this molecule presently 1s being marketed as an expensive
anti-cancer drug.

There also currently are two drugs available for treatment
of early stage infections. One of these, pentamidine, was
developed in 1941, and the other, suramin, was developed 1n
1920. Pentamidine also 1s eflective in Preumocystis carinii
infections common 1 AIDS patients, and 1t 1s about 4-fold
more expensive than suramin, which for the moment 1s used
only in trypanosomiasis. There are other compounds with
trypanocidal activity (Enanga et al., Trop Med Int Health
1998; 3:736), but most of these do not cross the blood-brain-
barrler and thus are of limited usefulness 1n infections of the
central nervous system.

The targeted delivery of drugs has the advantage of
increasing eflicacy while using less drug, thereby decreasing
toxicity and causing less damage to normal cells, all of
which effectively decrease costs and increase the quality of
patient care. Targeted delivery also avoids drug-resistance,

which 1s activated by the non-specific entrance of drugs nto
cells (Marbeut-Gueye C, Ettor1 D, Priebe W, Kozlowski H

and Gamier-Suillerot A. Correlation between the kinetics of
anthracycline uptake and the resistance factor,in cancer cells
expressing the multidrug resistance protein or the P-glyco-
protein. Biochem Biophy Acta 1999; 1430: 374-384).
Because transferrin-drug conjugates enter cells specifically
by employing a receptor-specific pathway (Klausner R D,
vanReuswoude J, Ashwell G, Kempi C, Schechter A N,
Dean A and Brnidges K. Receptor-mediated endocytosis of
transferrin 1n K562 cells. J Biol Chem, 1983; 258:
4715-4724.; Bercz1i A,.Ruthner M, Szuts V, Fritzer M,
Schweinzer E and Goldenberg H. Influence of conjugation
of doxorubicin to transierrin on the ron uptake by K362
cells via receptor-mediated endocytosis. Euro J Biochem
1993; 213: 427-436.), they are trathicked around drug-
resistance mechanisms, such as efflux pumps in resistant
cells.

There exists an unfulfilled need for an 1nexpensive and
ellective agent for selectively targeting and eliminating cells
diseased by protozoan parasitic 1nvasion

SUMMARY OF THE

INVENTION

The present invention provides a material for treating
parasitic protozoa infections such as malaria, trypanosomia-
s1s, and Chagas disease (which can be caused by Trypano-
somo cruzi). The matenial 1s a conjugate comprising a
targeting agent such as transferrin or transcobalamin and an
anti-protozoan drug. Suitable drugs include but are not
limited to doxorubicin, deferoxamine, melarsopral, etlorni-
thine, pentamidine, quinine, mefloquine, amodiaquine, pri-
magquine, pyrimethalrnme, sulfadoxine, sulfadiazine, trime-
thoprim, pentavalent antimony, amphotericin B, rifamnpin,
metronidazole, ketoconazole, benznidazole and nifurtimox,
and suramin. The present invention also provides a method
for treating patients infected with a protozoa and a compo-
sition containing the conjugate.

DETAILED DESCRIPTION OF TH.
INVENTION

(Ll

The above discussed needs are filled by a conjugate for
treating 1nfected cells, especially cells stressed by a proto-
zoan 1nfection, that, in one embodiment includes a targeting
agent that 1s attracted to a receptor that 1s expressed 1n higher
numbers or more frequently by cells infected by a protozoa
than by normal uminfected cells, and an anti-protozoan drug.
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The targeting agent can be any material that 1s attracted to
receptors on cells that present 1n higher numbers Or more
frequently when a cell 1s stressed from a protozoan infection.
Preferably, the targeting agent 1s transierrin.

Attachment of the drug to the targeting agent may be by
any mechamsm that prevents their separation, at least until
alter the targeting agent has been positioned in the corre-
sponding receptor. Presently, the best known mechanism for
attachment for a transferrin-doxorubicin conjugate 1s a glu-
teraldehyde linker, but the linker can be any material usetul
for the targeting agent/drug combination 1n question.

Technical details of the conjugation procedure can vary,
but the requirement of any procedure 1s to prepare defined
conjugates that are (a) active 1n binding and killing experi-
ments with protozoan infected cells, and that (b) do not bind
or kill significant numbers of normal cells. In light of these
requirements, when transterrin 1s used as the targeting agent
and doxorubicin 1s used as the anti-protozoan drug, the
preferred method for preparing the conjugates according to
the present invention 1s the following process.

The synthesis of large amounts of homogeneous transier-
rin-doxorubicin conjugates with predetermined molecular
ratios was done stoichiometrically by employing the only
amino group of doxorubicin (DOX), which 1s at the 3' amino
position, to react with one of the two reactive groups on
glutaraldehyde (GLU). Thus, the first step was drop-wise
addition of a saline solution of DOX 1nto a saline solution of
GLU containing a solvent such as DMSO or another suitable
cryopreservative, to a final concentration of a 1:1 molar ratio
of DOX-to-GLU. The resulting solution of DOX-GLU was

stirred three hours at room temperature in the dark.

The molarities of DOX and GLU were the same 1n the
above reaction in order to produce a final solution of
DOX-GLU that contains neither free DOX nor free GLU.
However, there 1s the possibility of free GLU 1n solution 1f
one GLU reacts with two DOX to produce DOX-GLU-
DOX, but this possibility 1s minimized by the mass action
kinetics generated by drop-wise addition of monovalent
DOX 1into the solution of bivalent GLU. The volumes of
these reactants are not restricted, so large amounts of homo-
geneous DOX-GLU can be prepared.

The second step in the conjugation reaction was drop-
wise addition of DOX-GLU into a saline solution of trans-
ferrin (TRF). The TRF can be either iron-free (apo-trans-
ferrin) or 1ron-saturated (holo-transferrin). The desired
molar ratio of DOX to TRF was obtained by appropnately
adjusting the volume of TRF. The resulting solution of
TRF-GLU-DOX was stirred for 20 hours at room tempera-
ture 1n the dark. Unlike the reaction of DOX with GLU, the
reaction of DOX-GLU with TRF 1s not restricted to one
binding site, for the GLU component of DOX-GLU can
react with any one of several epsilon-amino lysine groups in
the TRF molecule.

The number of DOX molecules bound to TRF was
determined 1n the second step. For example, 1 the starting
ratio of DOX-GLU to TRF was 7.2:1.0, the final solution of
TRF-GLU-DOX would have contained 2.5 molecules of
DOX per molecule of TRF. However, 11 the starting ratio of
DOX-GLU to TRF was 4.0:1.0, the final solution of TRF-
GLU-DOX would have contained 1.4 molecules of DOX
per molecule of TRF. Similarly, 11 the starting ratio of
DOX-GLU to TRF was 2.5:1.0, the final solution of TRF-
GLU-DOX would have contained 0.9 molecules of DOX
per molecule of TRF. In this way, large amounts of TRF-
GLU-DOX with predetermined ratios of DOX-to-TRF can

be provided according to the need.
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One skilled 1n the art will appreciate that there may be
unreacted linker and a small amount of unintended construc-
tions, such as DOX-GLU-DOX 1n the reaction, product and
that 1t will be desirable to optimize the reaction product by
removing them. Fthanolamine or another substance suitable
for scavenging any excess linker may be added to the
reaction product, followed by centrifugation and dialysis,
may be used to remove excess GLU and such umntended
constructions. Although reactions with DOX and TRF theo-
retically consume all of the GLU, ethanolamine was added
to the final reaction mixture to bind any available GLU. This
reaction was allowed to continue for 30 minutes 1n the dark.
The final solution was centrifuged at 2000 rpm for 10
minutes, dialyzed twice for 6 hours 1n a 100-fold excess of
saline and three times in the same excess of Hepes butlered
saline, and the resulting TRF-GLU-DOX conjugates were
ready for use.

Biochemical Characterization of the Conjugates:

By using HPLC and polyacrylamide gel electrophoresis,
the homogeneity of TRF-GLU-DOX conjugates can be
determined. Also, by using spectrophotometry, the molecu-
lar ratio of DOX-to-TRF can be determined. These tech-
niques repeatedly have revealed a consistent homogeneity of
the TRF-GLU-DOX conjugates. In addition, chromatogra-
phy 1s not required in the preparation of these conjugates,
because there are no aggregates or fragments. This allows
for the preparation of large volumes of homogeneous trans-
ferrin-drug conjugates, which increases yields and decreases
COsts.

The expenses caused by losses of TRF and DOX 1n other
types of transferrin-drug conjugates have been an impedi-
ment to their use. For example, yields of DOX and TRF are
decreased by using procedures such as thiolation that alter
the drug and/or protein. Yields also-are decreased by using
solvent systems and by chromatography used to prepare
acid-stable and acid-labile linkages. The GLU bond between
DOX and TREF 1s acid-stable, and yields of useful conjugates
prepared according to this invention are high Indeed, com-
pared to other procedures, the yield for useful conjugate 1s
increased S-fold.

None of the previously known approaches to the prepa-
ration of transierrin-doxorubicin conjugates are capable of
producing large amounts of homogeneous conjugates with
predetermined ratios of the number of drug molecules per
molecule of transferrin. In addition, the known approaches
employ chromatography to eliminate aggregates and to
harvest fractions that are enriched in homogeneous conju-
gates. These procedures decrease yields, increase costs, and
lack the ability to predetermine molecular ratios.

After the conjugates are 1solated, they can optionally be
characterized by polyacrylamide gel electrophoresis to
determine their molecular weight, and the number of drug
molecules per protein molecule can be determined. Experti-
ence with drug-protein conjugates in other systems has
shown that a functional drug:protein ratio 1s 0.1-4.0 mol-
ecules of drug per molecule of protein (Berczi et al., Arch
Biochem Biophy 1993; 300:356), recent unpublished data-
suggest that lower conjugation numbers are still significantly
cytotoxic, while higher conjugation numbers (e.g., >4.0)
tend to be associated with unstable conjugates. Other steps
in the characterization of the conjugates are to (a) determine
if the conjugates bind to transierrin receptors on the surface
of mfected cells and not uninfected cells, and (b) determine
i the comjugates kill protozoan infected cells and not
uninfected cells. The binding studies can be done by using,
flow cytometry, and the killing studies can be done by using
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microculture techniques to determine the concentration of
free drug required to kill 50% of a culture of infected cells
compared to the concentration of drug in the drug-protein
conjugate required to kill the same number of infected cells.
Experience with drug-protein conjugates in other systems
indicates that approximately 10-fold more free drug com-
pared to the drug in drug-protein conjugates should be
required to kill the same number of infected cells. For
example, the dosage of a conjugate of transferrin-doxoru-
bicin 1s expected to be between 0.5-50 mg per 28 day period
for a 150 pound (68 kg) person The dosage can be admin-
istered as smaller doses at varying intervals during the 28
day period. For a conjugate to be eflicacious, preferably i1t
should kill none or only a minimum of uninfected cells.

Treatment of Malaria

Since drug resistance (World Health Org., Technical
Report Series No 692, 2000) and drug toxicity (Winstanley,
] Roy Col Phy London 1998; 32:203) are major problems 1n
the treatment of malaria, the aim of the present invention 1s
to provide a ligand-receptor method for the targeted delivery
of anti-malarial drugs designed to utilize the pathways
employed by plasmodia to acquire 1ron In one embodiment,
the ligand 1s human transferrin, the receptor 1s plasmodial
transierrin receptor, and the drug 1s either the cytotoxic drug
doxorubicin which also 1s an 1iron chelator (Myers, Seminars
Oncol 1998; 25:10); or the iron-chelating siderophore det-
croxamine (also known as desferrioxamine or Desferal).
Deferoxarmine 1s a hydroxamate-based hydrophilic chelator
of 1ron (Tsafack et al., J Lab Clin Med 1996; 127:574). The
molecule has a terminal NH, that has been derivatized with
molecules such as nitrobezyl-diazole and N-methylanthra-
nile without reducing its property of 1ron chelation

(Loyevsky et al., J Clin Invest 1993; 91:218).

Treatment of Trypanosomiasis

A carrier 1s needed that could transport trypanocidal
compounds across the blood-brain-barrier. The normal
plasma protein transierrin has been shown to accomplish
this task by means of interacting with transierrin receptors
on endothelial cells that compose the microcirculation of the
blood-brain-barrier (Broadwell et al., Exp Neurol 1996;
142:47). For example, a conjugate of transierrin with nerve
growth factor has been shown to be transported from blood
into the brain (L1 et al., J Natural Tox 2000; 9:73), and the
object of the present invention 1s to provide conjugates of
trypanocidal drugs with transferrin that can be transported
from blood across the blood-bram-barrier into the central
nervous system, thereby providing effective therapy for both
carly and late stages of trypanosomiasis.

In addition to being an eflective transporter of trypano-
cidal drugs across the blood-brain-barrier, transferrin can be
targeted to transierrin receptors present on trypanosomal
plasma membranes (Borst et al., Science 1994; 264:1872).
Like human transierrin receptors, trypanosomal receptors
are regulated post-transcriptionally by 1ron (Fast et al.,
Biochem I 1999; 342:691). Each trypanosome contains
about 3000 receptors, which are heterodimers linked by a
glycosylphosphatidylinositol anchor to the plasma mem-
brane where they concentrate in flagellar pockets, among a
sea ol variant surface glycoprotein (Borst & Fairlamb, Ann
Rev Microbiol 1998; 52:743). Trypanosomes require iron,
which they obtain from the transierrin of their host (Schell
et al., EMBO J 1991; 10:1061). Since they can thrive 1n
many different mammalian hosts, and since transferrins
differ in different mammals, trypanosomes have about 20
gene copies of transferrin receptors, which allows them to
produce a high-athnity receptor to bind and internalize host
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transierrins, whether they be in animals or human patients
(Bitter et al., Nature 1998; 391:499). Thus, mtravenously
administered trypanocidal drug conjugates of transierrin
circulate throughout the body, including the central nervous
system, where they are bound by trypanosomal transferrin
receptors and exercise their trypanocidal properties.

The present invention i1s a drug-protein conjugate which
can be used for the targeted delivery of a cytotoxic drug to
trypanosomes 1n infected patients, whether they are 1n early
or late stages of disease, and regardless of which Trypano-
soma species with which they are infected. Targeted delivery
ol drugs 1s possible 1n this invention because the preferred
protein in the drug-protein conjugate 1s transierrin, which 1s
relevant because trypanosomes have transierrin receptors on
theirr surfaces (Bitter et al., Nature 1998; 391:499). In
addition, the drug in the drug-transierrin corrugate can be a
known trypanocidal agent, or cytotoxic drug such as doxo-
rubicin. While being present on the surfaces of cancer cells
(Yeh et al., Vox Sang 1984; 46:217), transierrin receptors
usually are not present on the surface of normal, adult,
resting cells (Berczi et al., Arch Biochem Biophy 1993;
300:356). Thus, most normal cells 1 trypanosomiasis
patients will not be aflected, and the only cells to be
climinated by cytotoxic transferrin conjugates will be the
trypanosomes, whether they are i blood, lymph or the
central nervous system.

One way to 1illustrate targeted drug delivery to trypano-
somes 1n patients 1s to focus on the use of transferrin, which
carries 1ron 1n the blood. Transferrin can be obtained by
1solation from blood plasma, from commercial suppliers, or
from recombinant technology (Ali1 et al., J Biol Chem 1999;
2'74;2406 6). To form the drug-protein conjugate, transierrin
molecules must be modified in such a way as to prepare
them to be coupled with a trypanocidal or cytostatic drug.
The drug can be an arsenical such as melarsopral, a cyto-
toxic antibiotic such as doxorubicin or an inhibitor of
polyarnine synthesis such as eflomithine, but any compound
can be used, including plant toxins such as ricin, and
bacterial mutant toxins such as modified diphtheriatoxin
(Laske et al., Nature Med 1997; 41:1039).

Several coupling processes such as glutaraldehyde cou-
pling (Yeh & Faulk, Clin Immunol Immunopathol 1984;
32:1), disulfide coupling (Sasaki et al., Jap J Can Res 1993;
84: 191) or benzyl hydrazine coupling (Kratz et al., J] Pharm
Sc1 1998; 87: 338) have been used to couple transierrin with
other molecules. The wide vanety of coupling procedures
allows the conjugation of a broad range of drugs to trans-
ferrin, resulting 1n either permanent or dissociable bonding
of the drugs with the transferrin molecule (Barabas et al., ]
Biol Chem 1992; 267:9437). Following the coupling reac-
tion, drug-protein conjugates can be separated Irom
uncoupled drug and free protein, 1 necessary by using
chromatographic procedures or selective dialysis.

While the present invention has been described in relation
to transierrin being the delivery protein, 1t 1s known that
other proteins exist in the body which are capable of binding
to receptor sites on infected cells. If the receptor site 1s
activated 1n infected cells, and 1s 1nactive 1n uninfected cells,
then any protein or other compound which binds to such a
receptor site can be used to deliver the drugs used in the
present invention. One example of such a binding protein 1s
transcobalamin, which delivers vitamins, especially vitamin
B12, to transcobalamin receptors on cells 1n the human body
(Seetheram, Ann Rev Nutr 1999; 19:173). Other examples
include but are not limited to ceruloplasmin, vitamin binding
proteins, hormones, cytokines, low density lipoproteins, and
growth factors.
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The conjugates according to the present invention are
administered to an animal 1n an effective amount In treating
protozoan infections, an eflective amount 1includes an
amount eflective to reduce the amount of protozoa The
dosage for the conjugates can be determined taking into
account the age, weight and condition of the patient and the
pharmacokinetics of the anti-protozoan agent. The amount
of the conjugate required for effective treatment will be less
than the amount required using the anti-protozoan agent
alone and depends upon the anti-protozoan agent used. For
example, the dosage of a conjugate of transierrin-doxoru-
bicin 1s expected to be between 0.5-50 mg for a 150 pound
(68 kg) person. The dosage can be administered as smaller
doses at varying intervals and repeated 1f necessary.

The pharmaceutical compositions of the mnvention can be
administered by a number of routes, including but not
limited to orally, topically, rectally, ocularly, vaginally, by
pulmonary route, for instance, by use of an aerosol, or
parenterally, including but not limited to intramuscularly,
subcutaneously, intraperitoneally, intra-arterially or intrave-
nously. The compositions can be administered alone, or can
be combined with a pharmaceutically-acceptable carrier or
excipient according to standard pharmaceutical practice. For
the oral mode of administration, the compositions can be
used 1n the form of tablets, capsules, lozenges, troches,
powders, syrups, elixirs, aqueous solutions and suspensions,
and the like. For parenteral administration, sterile solutions
of the conjugate are usually prepared, and the pHs of the
solutions are suitably adjusted and buflered. For intravenous
use, the total concentration of solutes should be controlled to
render the preparation 1sotonic. For ocular administration,
omtments or droppable liquids may be delivered by ocular
delivery systems known to the art such as applicators or eye
droppers. For pulmonary administration, diluents and/or
carriers will be selected to be appropniate to allow the
formation of an aerosol. It 1s preferred that the conjugate of
the present invention be administered parenterally, 1.e. intra-
venously or intraperitoneally, by infusion or injection.

As used 1n the present document, the term “substantially
homogeneous conjugates™ means that the conjugates can be
used without turther purification to remove protein dimers,
polymers or aggregates. In other words, little or no protein
dimers, polymers or aggregates are present.

Preferred embodiments of the present invention are
described below. It will be apparent to those of ordinary skill
in the art after reading the following description that modi-
fications and varnations are possible, all of which are
intended to fall within the scope of the claims.

EXAMPLE 1

Preparation of Conjugates

The synthesis of large amounts of homogeneous transier-
rin-doxorubicin conjugates with predetermined molecular
ratios was done stoichiometrically by employing the only
amino group of doxorubicin (DOX), which 1s at the 3' amino
position, to react with one of the two reactive groups on
glutaraldehyde (GLU). The first step was to add GLU
drop-wise to DMSO 1n an ice cold water bath. Next was the
drop-wise addition of a saline solution of DOX 1nto a saline
solution of GLU+DMSO to a final concentration of a 1:1
molar ratio of DOX-to-GLU. The resulting solution of
DOX-GLU was stirred three hours at room temperature 1n

the dark.

The molarities of DOX and GLU were the same 1n the
above reaction in order to produce a final solution of
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DOX-GLU that contains neither free DOX nor free GLU.
However, there 1s the possibility of free GLU 1n solution 1f
one GLU reacts with two DOX to produce DOX-GLU-
DOX, but this possibility 1s minimized by the mass action
kinetics generated by drop-wise addition of monovalent
DOX mto the solution of bivalent GLU. The volumes of
these reactants are not restricted, so large amounts of homo-
geneous DOX-GLU can be prepared.

The second step in the conjugation reaction was drop-
wise addition of DOX-GLU into a saline solution of trans-
ferrin (TRF). The TRF can be either iron-free (apo-trans-
ferrin) or 1ron-saturated (holo-transferrin). The desired
molar ratio of DOX to TRF was obtained by appropriately
adjusting the volume of TRF. The resulting solution of
TRF-GLU-DOX was stirred for 20 hours at room tempera-
ture 1n the dark. Unlike the reaction of DOX with GLU, the
reaction of DOX-GLU with TRF 1s not restricted to one
binding site, for the GLU component of DOX-GLU can
react with any one of several epsilon-amino lysine groups in
the TRF molecule.

The number of DOX molecules bound to TRF was
determined 1n the second step. For example, 1f the starting
ratio of DOX-GLU to TRF was 7.2:1.0, the final solution of
TRF-GLU-DOX would have contained 2.5 molecules of
DOX per molecule of TRF. However, 11 the starting ratio of
DOX-GLU to TRF was 4.0:1.0, the final solution of TRF-
GLU-DOX would have contained 1.4 molecules of DOX
per molecule of TRF. Similarly, 11 the starting ratio of
DOX-GLU to TRF was 2.5:1.0, the final solution of TRF-
GLU-DOX would have contained 0.9 molecules of DOX
per molecule of TRF. In this way, large amounts of TRF-
GLU-DOX with predetermined ratios of DOX-to-TRF can
be provided according to the need.

In an optimization of the production of the conjugate,
cthanolamnine 1s added, followed by centrifugation and
dialysis. Although reactions with DOX and TRF theoreti-
cally consume all of the GLU, ethanolamine was added to
the final reaction mixture to bind any available GLU. This
reaction was allowed to continue for 30 minutes 1n the dark.
The final solution was centrifuged at 2000 rpm for 10
minutes, dialyzed twice for 6 hours 1n a 100-fold excess of
saline and three times in the same excess of Hepes butlered
saline, and the resulting TRF-GLU-DOX conjugates were
ready for use.

The 1nvention claimed 1s:

1. A method for selectively treating a cell infected with a
protozoa, comprising

administering to said cell an anti-protozoan eflective
amount of a conjugate containing a protozoan infected
cell targeting agent and an anti-protozoan drug,
wherein said anti-protozoan drug 1s selected from the
group consisting of an apoptosis inducing compound, a
cytotoxic antibiotic, an alkylating agent, a plant toxin,
and a bacterial mutant toxin, and wherein said proto-
zoan 1nfected cell targeting agent 1s selected from the
group consisting of transferrin and transcobalamin.

2. The method according to claim 1, wherein said anti-

protozoan drug 1s selected from the group consisting of

doxorubicin, deferoxamine, melarsopral, eflornithine, pen-
tamidine, quinine, mefloquine, amodiaquine, primaquine,
pyrimethamine, sulfadoxine, sulfadiazine, trimethop rim,
pentavalent antimony, amphotericin B, rifampin, metronida-
zole, ketoconazole, benznidazole, nifurtimox, suramin,
ricin, and choloroquine.

3. The method according to claim 1, wherein said proto-
zoan 1nfected cell targeting agent 1s transferrin.
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4. The method according to claim 2, wherein said proto-
zoa 1s selected from the group consisting of Plasmodia
species and trypanosomes.

5. A method for treating a patient infected with a protozoa,
comprising administering to said patient an effective amount
ol a conjugate containing a protozoan infected cell targeting
agent and an anti-protozoan drug, wherein said anti-proto-
zoan drug 1s selected from the group consisting of an
apotosis inducing compound, a cytotoxic antibiotic, an
alkyating agent, a plant toxin, and a bacterial mutant toxin,
and wherein said protozoan infected cell targeting agent 1s
selected from the group consisting of transferrin and
transcobalamin.

6. The method according to claim 5, wherein said proto-
zoa 1s selected from the group consisting of Plasmodia
species and trypanosomes.

7. A pharmaceutical composition suitable for treating
protozoan infections comprising a conjugate and a carrier,
wherein said conjugate comprises a protozoan infected cell
targeting agent and an anti-protozoan drug selected from the
group consisting ol melarsopral, eflornithine, pentamidine,
quinine, metloquine, amodiaquine, primaquine,
pyrimethamine sulfadoxine, sulfadiazine, trimethoprim,
pentavalent antimony, metronidazole, ketoconazole, ben-
znmdazole, nifurtimox, suramin, ricin, and choloroquine, and
wherein said protozoan infected cell targeting agent 1s
selected from the group consisting of transferrin and
transcobalamin.

8. The composition according to claim 7, further com-
prising an unconjugated anti-protozoan drug.

9. The composition according to claim 7, wherein said
targeting agent 1s transferrin.

10. A substantially homogeneous conjugate comprising a
targeting agent and an anti-protozoan drug wherein said
anti-protozoan drug is selected from the group consisting of
melarsopral, eflornithine, pentamidine, quinine, mefloquine,
amodiaquine, primaquine, pyrimethamine, sulfadoxine, sul-
fadiazine, trimethoprim, pentavalent antimony, metronida-
zole, ketoconazole, benznidazole, nifurtimox, suramin, ricin
and choloroquine, and wherein said targeting agent 1is
selected from the group consisting of transferrin and
transcobalamin.

11. The conjugate according to claim 10, wherein said
targeting agent 1s transferrin.

12. A reagent kit for determining the susceptibility of
protozoan infected cells to anti-protozoan drugs, comprising
two or more conjugates each containing a protein targeting
agent and an anti-protozoan drug, wherein said conjugates
have diflerent anti-protozoan drugs, and wherein at least one
anti-protozoan drug is selected from the group consisting of
melarsopral, eflornithine, pentamidine, quinine, mefloquine,
amodiaquine, primaquine, pyrimethamine, sulfadoxine, sul-
fadiazine, trimethoprim, pentavalent antimony, amphoteri-
cin B, rifampin, metronidazole, ketoconazole, benznidazole,
nifurtimox, suramin, ricin, and choloroquine, and wherein
said protein targeting agent 1s selected from the group
consisting of transferrin and transcobalamin.

13. A method for making a conjugate having a predeter-
mined anti-protozoan drug: protein ratio, comprising

a) adding a solution of an anti-protozoan drug dropwise to

a linker molecule solution to link each anti-protozoan
drug molecule to one linker molecule 1n a drug/linker
combination; and

b) reacting the drug/linker combination with a protein to

produce a conjugate having a predetermined anti-pro-
tozoan drug: protein ratio, wherein said protein 1s
selected from the group consisting of transferrin and
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amin and wherein said anti-protozoan drug 1s

selected

rom the group consisting ol melarsopral,

etlornithine, pentamidine, quinine, mefloquine, amodi-
aquine, primaquine, pyrimethamine, sulfadoxine, sul-

fadiazine,
1dazole,

trimethoprim, pentavalent antimony, metron-
ketoconazole, benznidazole, nifurtimox,

suramin, ricin, choloroquine, and deferoxamine.

14

14. The method according to claim 13, further comprising
scavenging any excess linker.

15. The method according to claim 13, wherein said linker

1s selected from the group consisting of glutaraldehyde,

5 benzoyl hydrazone, maleimmide and N-hydroxysuccinim-

1de.
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