US007093073B2
a2 United States Patent (10) Patent No.: US 7,093,073 B2
Truty 45) Date of Patent: Aug. 15, 2006
(54) SYSTEMS AND METHODS FOR ADJUSTING 2002/0156979 Al* 10/2002 Rodriguez 711/129
CACHING POLICIES FOR WEB SERVICE 2004/0054860 Al1* 3/2004 Dixit et al.cc........ 711/160
REQUESTS * cited by examiner
(75) Inventor: Gregory Louis Truty, Austin, TX (US) Primary Examiner—Mano Padmanabhan
_ _ _ _ Assistant Examiner—Duc 1 Doan
(73) Assignee: Internatu‘mal Business Machines (74) Attorney, Agent, or Firm—Winstead Sechrest & Minick
Corporation, Armonk, NY (US) P.C.: Herman Rodriguez
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 (57) ABSTRACT
U.S.C. 1534(b) by 329 days.
(21) Appl. No.: 10/607,463 A mechanism for caching Web services requests and
(22) Filed: Tun. 26. 2003 responses, including testing an incoming request against the
’ cached requests and associated responses 1s provided. The
(65) Prior Publication Data requests are selectively tested against the cached data in
US 2004/0267906 A1 Dec. 30, 2004 :flccordance with a set of poh.mes. If a request selected hits
in the cache, the response 1s served up from the cache.
(51) Int. CL Otherwise, the request 1s passed to the corresponding Web-
GOGE 12/00 (2006.01) services server/application. Additionally, a set of predeter-
GO6l 15/16 (2006.01) mined cache specifications for generating request 1dentifiers
(52) US.CLcooeeeeen, 711/118; 711/129; 711/160; may be provided. The 1dentifier specification may be auto-
709/219 nomically adjusted by determining cache hit/cache miss
(58) Field of‘Cla'ssiﬁcation Search None ratios over the set of identifier Speciﬁcations and over a set
See application file for complete search history. of sample requests. The set of specifications may then be
(56) References Cited sorted to retlect the performance of the respective cache

U.S. PATENT DOCUMENTS
6,772,203 B1* 8/2004 Feiertag et al. 709/219

REQUEST 300

SERVICE/CACHING
PROCESS

302

RECEIVE
REQUEST

SELECT FOR NO

SAMPLE
?

YES

CALCULATE [P
IDENTIFIER

YES

INCREMENT |-370
CODE HIT
COUNT

SERVE UP
RESPONSE
FROM CACHE

312

specification algorithms for the current mix of requests.

20 Claims, 4 Drawing Sheets

ISSUE REQUEST>4?

TO SERVER

INCREMENT |-3714
CACHE MISS
COUNT
ISSUE REQUEST
TO SERVER

CACHE
RESPONSE

U.S. Patent Aug. 15, 2006 Sheet 1 of 4 US 7,093,073 B2

RECEIVE 102
INCOMING
REQUEST

104 Fiq. 1
CALCULATE g

IDENTIFIER

NO SSUE 110
REQUEST TO
SERVER

IDENTIFIER IN

CACHE
?

YES

SERVE UP 108 112

CACHE

RESPONSE IN RESPONSE

CACHE

/‘200

USER MACHINE |NT2E;{(I)\IET WEB SER\Q%ES SERVER
202 SERVICES ¢
REQUEST RESPONSE
206 220
RESPONSE
212
216
SERVICES
204 REQUEST 218
CLIENT BROWSER WER SERVICES
508 APPLICATION
PAGE SERVER

Fig. 2

U.S. Patent Aug. 15, 2006 Sheet 2 of 4 US 7,093,073 B2

REQUEST 200
SERVICE/CACHING
PROCESS
302 F|g. 3

RECEIVE
REQUEST

SELECT FOR 320

SAMPLE
?

NO |ISSUE REQUEST
TO SERVER

YES
CALCULATE [~%°
IDENTIFIER
308
NO | INCREMENT |374

CACHE MISS

COUNT

YES

INCREMENT 370
CODE HIT
COUNT

ISSUE REQUEST
TO SERVER

SERVEUP [3712
RESPONSE
FROM CACHE

CACHE
RESPONSE

U.S. Patent

Aug. 15, 2006 Sheet 3 of 4

AUTOMATIC 400
REQUEST
IDENTIFIER
SPECIFICATION

FOR EACH 40?2
CACHE
IDENTIFIER
SPECIFICATION

404
UNTIL
NUMBER SAMPLES

>

MAXIMUM

NO.
Ié

GENERATE | 406

HIT/MISS
RATIO

LAST

SPECIFICATION
?

NO

YES

sorT SeTof [¥77

SPECIFICATIONS

US 7,093,073 B2

Fig. 4

US 7,093,073 B2

Sheet 4 of 4

Aug. 15, 2006

U.S. Patent

9¢6
¥3Ldvay
AV1dSId

veS y3ldvay

SNOILLVOINNNINOD

AJOMLIN

s
JOV4YILNI

g1 —
F1S
¥31dVaV O/ AV

T

dd14vdV

o [

(LS
916 LS
WOY NdO

00%

Us 7,093,073 B2

1

SYSTEMS AND METHODS FOR ADJUSTING
CACHING POLICIES FOR WEB SERVICE
REQUESTS

TECHNICAL FIELD

The present invention relates 1n general to data processing,
systems, and particularly to data processing systems for
providing web services and mechanisms for autonomically
selecting caching policies and specifications for web service
requests.

BACKGROUND INFORMATION

The advent of networked data processing systems, and
particularly the network of networks referred to as the
Internet, has spurred the introduction of distributed data
processing services. In such systems, a client, typically
remotely connected to the service provider via one or more
networks, accesses data processing services which are
implemented on the remote data processing system which
then returns the results of the data processing activity to the
client.

It has become common to use the services represented by
the World Wide Web (WWW) with 1t’s graphical user
interface (GUI) orientation to provide the interface to such
distributed data processing services. Typically, in such data
processing systems, the client sends a request to a server. On
the server side, the system builds a Web page for returning,
the response to the requesting client. The Web page includes
code that may be interpreted on a Web browser running on
the client machine which, 1n response to the code, displays
the page on a conventional display such as a CRT or LCD
monitor connected to the client machine. The Web page may
include dynamic data, that 1s, data that 1s changing 1n time,
indeed, may be continuously changing 1n time; stock quo-
tations are an example. This dynamic data may be generated
by server-side application software. This application soft-
ware need not reside on the same hardware as the page
server, but may be deployed on other systems that may be
remote from both the client and the page server. Such
distributed, application-to-application data processing
implementations, which are typically XML-based request
responses may, generically, be referred to as web services.

The dynamic data 1s generated in response to a Web
services request 1ssued by the client application based on
information included in the code for the web page being
executed. Typically, Web services requests are XML-based
(XML refers to the eXtensible Markup language) requests
encoded 1n SOAP (Simple Object Access Protocol) and use
HTTP (HyperText Transport Protocol) as the transport
mechanism. However, Web services requests are not
required to use either XML, SOAP or HT'TP.

To reduce traflic on the network, caching of Web service
requests responses may be used. In this way, subsequent
requests for the same web service may be served up from the
cache. To associate cached mformation with an mmcoming
request, an 1dentifier 1s generated from the information in the
incoming request to uniquely identity it.

The servicing of such a request may be understood by
referring to FIG. 1 illustrating an exemplary process 100 for
responding to a Web service request. In step 102, the
incoming request 1s received. From the information 1n the
request, an 1dentifier 1s calculated i1n accordance with a
predetermined algorithm.

It the identifier 1s in the cache, the associated response
stored 1n the cache 1s served up, step 108. Otherwise, the

10

15

20

25

30

35

40

45

50

55

60

65

2

request 1s 1ssued to the Web services server. The response
may then be cached along with the identifier from the
original request, step 112.

The selection of information used to formulate an 1den-
tifier affects the performance of a system in responding to
end-user requests. The system may expend a significant
fraction of its resources calculating identifiers and, 11 the
selection criteria are poor, the hit rate will be low. Conse-
quently, system resources are expended 1n fruitless calcula-
tions of 1dentifiers and, particularly during peak periods, the
response time to end-users may be adversely impacted.

Consequently, there 1s a need 1n the art for mechanisms to
automatically adjust to caching utilization and, to autonomi-
cally adjust cache 1dentifier specifications.

SUMMARY OF THE INVENTION

The atorementioned needs are addressed by the present
invention. Accordingly, there 1s provided 1n one embodiment
a computer program product embodied 1n a tangible storage
medium. The computer program product includes a program
ol instructions for sampling received web services requests
using a predetermined policy. A cache identifier 1s generated
from the request information using a cache identifier speci-
fication. I1 said cache 1dentifier hits 1n a request cache, a first
counter 1s incremented. Otherwise, 11 the cache identifier
does not hit mn said request cache, a second counter is
incremented.

The foregoing has outlined rather broadly the features and
technical advantages of one or more embodiments of the
present invention in order that the detailed description of the
invention that follows may be better understood. Additional
features and advantages of the invention will be described
heremafter which form the subject of the claims of the
invention.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present mnven-
tion, and the advantages thereof, reference 1s now made to
the following descriptions taken in conjunction with the
accompanying drawings, in which:

FIG. 1 1illustrates, in flowchart form, a methodology for
responding to Web services requests which may be used in
conjunction with the present invention;

FIG. 2 1illustrates, 1n block diagram form, an exemplary
architecture for accessing web services which May be used
in conjunction with the present ivention;

FIG. 3 illustrates, in flowchart form, a methodology for
servicing Web service requests in accordance with an
embodiment of the present invention;

FIG. 4 illustrates, 1n flowchart form, a methodology for
autonomically adjusting a cache 1dentifier specification; and

FIG. § illustrates, 1n block diagram form, a data process-
ing system which may be used in conjunction with the
methodologies of FIGS. 2 and 3 i an alternative embodi-
ment of the present invention.

DETAILED DESCRIPTION

A mechanism for caching Web services requests and
responses, and serving cached responses i1s provided. In
particular, caching operations, 1include testing an imcoming
request against the cached requests and associated
responses. The requests are selectively tested against the
cached data 1n accordance with a set of policies. If a request
selected hits 1n the cache, the response 1s served up from the

Us 7,093,073 B2

3

cache. Otherwise, the request 1s passed to the corresponding
Web-services server/application. Additionally, a set of pre-
determined cache specifications for generating request 1den-
tifiers may be provided. The identifier specification may be
autonomically adjusted by determining cache hit/cache miss
ratios over the set of 1dentifier specifications and over a set
of sample requests. The set of specifications may then be
sorted to reflect the performance of the respective cache
specification algorithms for the current mix of requests.

In the following description, numerous specific details are
set forth to provide a thorough understanding of the present
invention. For example, particular policies and specifica-
tions may be described, however, 1t would be recognized by
those of ordinary skill in the art that the present invention
may be practiced without such specific details, and 1n other
mstances, well-known circuits have been shown in block
diagram form in order not to obscure the present mnvention
in unnecessary detail. Refer now to the drawings wherein
depicted elements are not necessarily shown to scale and

wherein like or similar elements are designated by the same
reference numeral for the several views.

Referring to FIG. 2, there 1s illustrated a distributed data
processing system architecture 200 which may be used for
accessing web services 1 accordance with the present
inventive principles. (Architecture 200 may be understood
as a logical view of the architecture of a distributed data
processing system. In other words, web services server 214
may be viewed as a logically distinct component, whether
physically deployed on the same, or, alternatively, different
hardware as page server 208.) Currently, a web service 1s
accessed when a request for a web document, or page, 1s
received from a user machine, such as user machine 202,
running a client web browser 204. Client browser 204
initiates a request 206, which 1s transmitted to the targeted
web server, illustrated by page server 208, 1n FIG. 2, via a
network, shown in FIG. 2 as Internet 210.

Page server 208 responds to the request by returning the
requested page in response 212. The requested page may
include data that 1s to be generated dynamically. Such
dynamic data may be generated locally on the user machine
in response to client browser 204 executing the script
defining the page returned in response 212. Additionally,
dynamic data may be generated by a remote process. This
may further be 1n response to code in the page returned by
page server 208 1n response 212 via a request to a remote
server, such as web services server 214. On execution of the
page recerved in response 212, the corresponding code 1n the
page generates service request 216 which 1s directed to web
services server 214. Web services 214 may execute a web
service 218 1n a response that generates the dynamic data.
The data 1s returned 1n a services response 220 to page server
208, which displays the data in accordance with the code
defining the page, which may be, for example, an HITML
(Hypertext Markup Language) script.

To request the web service for generating the dynamic
data, the page sent to client browser 204 in response 212
must have the appropriate code to access the web service.
For example, the request may be embedded in a SOAP
message. SOAP 1s a protocol for the exchange of informa-
tion 1 a distributed environment. SOAP 1s a proposed
standard, promulgated by the W3C (World Wide Web Con-
sortium). (The draft specifications for SOAP 1.2 may be
found 1 Simple Object Access Protocol 1.2, hittp://
www.w3.org/ TR/SOAP12.)

Refer now to FIG. 3 illustrating, in flowchart form, a
request service/cachung process 300 1n accordance with the
principles of the present mnvention. Note that the flowcharts

10

15

20

25

30

35

40

45

50

55

60

65

4

provided herein are not necessarily indicative of the serial-
1zation of operations being performed 1n an embodiment of
the present invention. Steps disclosed within these tlow-
charts may be performed in parallel. The flowcharts are
indicative of those considerations that may be performed to
produce the operation available for responding to the Web
services requests, caching of responses and autonomically
adjusting request identifier specifications. It 1s further noted
that the order presented 1s 1llustrative and does not neces-
sarily 1mply that the steps must be performed in the order
shown.

In step 302, a Web services request 1s recerved. If, in step
304 the request recerved 1n step 302 1s selected as a sample
for testing against the cache, 1n step 306, the i1dentifier 1s
calculated from the information 1n the request in accordance
with a preselected algorithm which defines the rules for
generating the cache identifier. Note that requests may be
sampled 1n accordance with a policy setting out the sampling
criteria. Such policies may include, for example, central
processing umt (CPU) availability. That 1s, i CPU usage 1s
under a threshold, which may be preselected, then select the
incoming request as a sample. Another policy which may be
used 1n accordance with the present mnventive principles 1s to
sample every nth request. The value of n may itself be
selectable. Another policy which may be used 1s random
selection of incoming requests as samples. Another alterna-
tive may be time-based sampling in which all requests
received during particular time intervals within a select
period, daily for example, may be sampled. The particular
time 1ntervals may be preselected as part of the policy. Such
a policy may be useful to reflect the situation in which
certain workloads typically come 1n at certain times of the
day. It would be recognized by those of ordinary skill 1n the
art that the foregoing list of policies 1s non-exclusive, and
the present inventive principles may be applied using other
policies, and such embodiments would fall within the spirt
and scope of the present invention. Note to that a combina-
tion of policies may also be used to determine the sampled
requests. For example, one policy may be applied for a
selected period of time and a second policy used for another
time interval. Such combination of sampling policies may be
used to mitigate against inconsistencies in the performance
measures. Thus, for example, in a CPU-type policy, the
cache identifiers are only calculated when CPU activity 1s
low, 1s that the workload may be low (perhaps during late
night hours). However, 1t may be more useful to leverage
caching during the day, when the system 1s being battered by
outside requests. These requests may “look™ different that
those recerved during the lulls in CPU activity night, and
yield a different set of data. In this case, sampling the
requests over a spectrum (such as every 10th request) for
example, may more accurately capture the type of workload
that 1s being recerved. Another alternative to more accurately
capture the received workloads may be to break the policies
into groups (1n which, for example, an algorithm that you 1s
used use for nmighttime hours, and another for daytime
hours).

In step 308 1s determined if there 1s a hit 1n the cache of
Web services requests. The determination of the cache hit (or
conversely a miss) 1s made using the 1dentifier calculated 1n
step 306. If 1n step 308 a cache hit occurs, 1n step 310 a cache
hit count 1s incremented and the response 1s served up from
the cached response.

If, however, 1n step 308 the request misses 1n the cache,
a cache miss count 1s incremented i1n step 314, and the

Us 7,093,073 B2

S

request 1s 1ssued to the web services server, for example,
Web services server 214, FIG. 2. In step 318, the response
1s cached.

Returming to step 304, 1f the request received 1n step 302
1s not selected for the sample, the request 1s 1ssued to the
server 1n step 320. In an embodiment of a data processing
system such as system 200 1n FIG. 2, this request may for
example be services request 216.

Refer now to FIG. 4 illustrating, in flowchart form, an
autonomic request identifier specification methodology 400
in accordance with the principles of the present imnvention.
Recall, as discussed hereinabove, that the effectiveness of
the caching of Web services responses depends on the rules
specilying the determination of the cache identifier. A set of
cache identifier specifications may be provided, each defin-
ing a rule, or algorithm, for generating a cache identifier
from the information 1n a corresponding request. Algorithms
for calculating cache i1dentifiers may use various pieces of
information (from information within the HT'TP Header, and
information in the SOAP request (which may be the SOAP
header or SOAP envelope). Information in the HT'TP header
includes the IP address from which the request came,
user/password tokens, HI'TP session 1dentifier tokens, URL
request string, etc. Information in the SOAP header can
include business data (security or information specific to an
enterprise), security mformation, application data (such as,
in the stockquote example, the requested stock quote sym-
bol). Alternative algorithms may use diflerent selections of
these elements of the request to calculate the cache identifier.
Another alternative may hash the bytestream of the request.
It would be recognized by those of ordinary skill in the art
that the use of one alternative or another may trade ofl
performance with respect to cache hits and computational
cost. In step 402, methodology 400 enters a loop over cache
identifier specifications. In step 404, the process loops until
a number of samples using the current cache identifier
specification from the set 1s accumulated, 1n accordance with
the methodology described 1n conjunction with FIG. 3. Note
that the number of threshold samples may be selected such
that a statistically meaningtul set of samples 1s accumulated.
The number of samples may be chosen such that, for
example, the relative error in the average number of hits for
the particular algorithm 1s less than a preselected value. It
would be appreciated by those of ordinary skill 1n the art that
the relative error diminishes with sample size, in particular
1s 1nversely proportional to the square root of the sample
S1ZE.

When the threshold number of samples 1s exceeded,
methodology 400 breaks out of the loop 1n step 404 and, 1n
step 406 generates a cache hit/miss value. This may be
obtained using the cache hit count and cache miss count
from a request services/caching process in accordance with
an embodiment of the methodology 1n FIG. 3.

In step 408, methodology 400 returns to step 404 to repeat
the process for a next cache 1dentifier specification in the set,
and steps 404—408 are repeated until all specifications in the
set have been evaluated. Then, in step 410, the set of cache
identifier specifications may be ordered 1n accordance with
the value of the corresponding hit/miss ratios generated in
step 406. In this way, the system may be autonomically
adjusted to improve the probability of a cache hit based on
an algorithm that 1s empirically determined to generate
cache 1dentifiers that more accurately represent the requests
themselves. In other words, cache identifiers that are recog-
nized as representing requests for the same data, whereby
the data can be supplied from a cached response.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 5 illustrates an exemplary hardware configuration of
data processing system 300 in accordance with the subject
invention. The system 1n conjunction with the methodolo-
gies 1llustrated mm FIGS. 3 and 4 may be used, for web
service request responses and caching operations, and auto-
nomically adapting cache identifier specifications in accor-
dance with the present inventive principles. Data processing
system 500 includes central processing unit (CPU) 510, such

as a conventional microprocessor, and a number of other
units interconnected via system bus 512. Data processing
system 500 also includes random access memory (RAM)
514, read only memory (ROM) 516 and input/output (I/0)
adapter 518 for connecting peripheral devices such as disk
unmts 520 to bus 512, user interface adapter 522 for con-
necting keyboard 524, mouse 526, trackball 532 and/or other
user interface devices such as a touch screen device (not
shown) to bus 512. System 3500 also includes communica-
tion adapter 534 for connecting data processing system 500
to a data processing network, enabling the system to com-
municate with other systems, and display adapter 536 for
connecting bus 512 to display device 338. CPU 3510 may
include other circuitry not shown herein, which will include
circuitry commonly found within a microprocessor, €.g.
execution units, bus mntertace units, arithmetic logic unaits,
etc. CPU 3510 may also reside on a single integrated circuat.

Preferred implementations of the invention include imple-
mentations as a computer system programmed to execute the
method or methods described herein, and as a computer
program product. According to the computer system 1mple-
mentation, sets of instructions for executing the method or
methods are resident 1n the random access memory 514 of
one or more computer systems configured generally as
described above. These sets of instructions, 1n conjunction
with system components that execute them may perform
web services response caching operations and autonomic
adaptation of cache identifier specifications as described
hereinabove. Until required by the computer system, the set
of instructions may be stored as a computer program product
in another computer memory, for example, 1n disk drive 520
(which may include a removable memory such as an optical
disk or tloppy disk for eventual use 1n the disk drive 520).
Further, the computer program product can also be stored at
another computer and transmitted to the users work station
by a network or by an external network such as the Internet.
One skilled 1n the art would appreciate that the physical
storage of the sets of instructions physically changes the
medium upon which 1s the stored so that the medium carries
computer readable information. The change may be electri-
cal, magnetic, chemical, biological, or some other physical
change. While it 1s convenient to describe the invention 1n
terms of instructions, symbols, characters, or the like, the
reader should remember that all of these 1n similar terms
should be associated with the appropriate physical elements.

Note that the mvention may describe terms such as
comparing, validating, selecting, identifying, or other terms
that could be associated with a human operator. However,
for at least a number of the operations described herein
which form part of at least one of the embodiments, no
action by a human operator i1s desirable. The operations
described are, 1n large part, machine operations processing
clectrical signals to generate other electrical signals.

Although the present invention and 1ts advantages have
been described in detail, 1t should be understood that various
changes, substitutions and alterations can be made herein
without departing from the spirit and scope of the invention
as defined by the appended claims.

Us 7,093,073 B2

7

What 1s claimed 1s:

1. A computer program product embodied 1n a tangible
storage medium, the program product including program-
ming instructions for:

sampling recerved Web requests using a predetermined

policy;

generating a cache 1dentifier from information 1n sampled

Web requests using a cache identifier specification;

if said cache identifier hits 1n a request cache, increment-

ing a first counter; and

if said cache identifier does not hit 1n said request cache,

incrementing a second counter.

2. The computer program product of claim 1 further
comprising programming instructions for:

serving a cached response 1f said cache i1dentifier hits 1n

said request cache; and

passing said request to a Web request server 11 said cache

identifier does not hit 1n said request cache.

3. The computer program product of claim 1 wherein said
predetermined policy comprises a member of a set of request
sampling policies, and wherein each policy of said set of
request sampling policies 1s selectable 1n response to statis-
tical characteristics of said Web requests.

4. The computer program product of claim 1 wherein said
cache identifier specification comprises a member ol a
predetermined set of cache identifier specifications, and
wherein each member of said set of cache identifier speci-
fications 1s selectable 1n response to a performance measure
derived from values 1n said first and second counters.

5. The computer program product of claim 4 further
comprising programming instructions for sorting said set of
cache identifier specifications 1n accordance with corre-
sponding values of said performance measure.

6. The program product of claim 4 further comprising
programming instructions for accumulating a statistical
sample for each member of said set of cache identifier
specifications, and wherein said value of said measure of
performance comprises a ratio of cache hits to cache misses
accumulated over said statistical sample.

7. The program product of claim 1 wherein said prede-
termined policy comprises one of a central processing unit
(CPU) availability policy, every nth request policy, random
selection policy and time-based policy.

8. A method for Web request caching operations compris-
ng:

sampling recerved Web requests using a predetermined

policy;

generating a cache 1dentifier from information 1n sampled

Web requests using a cache identifier specification;

i said cache identifier hits 1n a request cache, increment-

ing a first counter; and

if said cache identifier does not hit 1n said request cache,

incrementing a second counter.

9. The method of claim 8 further comprising:

serving a cached response 1f said cache i1dentifier hits 1n

said request cache; and

passing said request to a Web request server if said cache

identifier does not hit 1n said request cache.

10. The method of claim 8 wherein said predetermined
policy comprises a member of a set of request sampling
policies, and wherein each policy of said set of request

10

15

20

25

30

35

40

45

50

55

60

8

sampling policies 1s selectable 1n response to statistical
characteristics of said Web requests.

11. The method of claim 8 wherein said cache identifier
specification comprises a member of a predetermined set of
cache 1dentifier specifications, and wherein each member of
said set of cache identifier specifications 1s selectable 1n
response to a performance measure derived from values 1n
said first and second counters.

12. The method of claim 11 further comprising sorting
said set of cache 1dentifier specifications 1n accordance with
corresponding values of said performance measure.

13. The method of claim 11 further comprising accumu-
lating a statistical sample for each member of said set of
cache identifier specifications, and wherein said value of
said measure of performance comprises a ratio of cache hits
to cache misses accumulated over said statistical sample.

14. The method of claim 8 wherein said predetermined
policy comprises one of a central processing unit (CPU)
availability policy, every nth request policy, random selec-
tion policy and time-based policy.

15. A data processing system for Web request caching
operations comprising;:

circuitry operable for sampling received Web requests

using a predetermined policy;

circuitry operable for generating a cache identifier from

information 1n sampled Web requests using a predeter-
mined policy;

circuitry operable for, if said cache identifier hits 1n a

request cache, incrementing a first counter; and
circuitry operable for, if said cache 1dentifier does not hit
in said request cache, incrementing a second counter.
16. The data processing system of claim 135 further
comprising;
circuitry operable for serving a cached response 11 said
cache 1dentifier hits 1n said request cache; and

circuitry operable for passing said request to a Web
request server 1f said cache 1dentifier does not hit 1n said
request cache.

17. The data processing system of claim 15 wherein said
predetermined policy comprises a member of a set of request
sampling policies, and wherein each policy of said set of
request sampling policies 1s selectable 1n response to statis-
tical characteristics of said Web requests.

18. The data processing system of claim 15 wherein said
cache 1dentifier specification comprises a member ol a
predetermined set of cache identifier specifications, and
wherein each member of said set of cache i1dentifier speci-
fications 1s selectable 1n response to a performance measure
derived from values in said first and second counters.

19. The data processing system of claim 18 further
comprising circuitry operable for sorting said set of cache
identifier specifications 1 accordance with corresponding
values of said performance measure.

20. The data processing system of claim 18 further
comprising circuitry operable for accumulating a statistical
sample for each member of said set of cache identifier
specifications, and wherein said value of said measure of
performance comprises a ratio of cache hits to cache misses
accumulated over said statistical sample.

	Front Page
	Drawings
	Specification
	Claims

