12 United States Patent

US007089413B2

(10) Patent No.: US 7.089.413 B2

Erickson et al. 45) Date of Patent: Aug. 8, 2006
(54) DYNAMIC COMPUTER SYSTEM RESET 5,870,602 A * 2/1999 Miller et al. 713/1
ARCHITECTURE 6,012,154 A 1/2000 Poisner
6,697,973 Bl1* 2/2004 Baumeister et al. 714/55
(75) Inventors: Michael John Erickson, Loveland, CO gggg 8};‘;3??} i: L éj 3883 glkoli?lka ett 311 ********** ; ;(1)?3/ ;’;‘
. . : 1 AWKINS CL dl.
E%S)(EU];T’S L. lTl:,m%’.’l rort S ‘11,[1”18’ 2003/0204708 Al* 10/2003 Hulme et al. +.o.vven......... 713/1
Colline. €O "E‘[‘J‘g) » £AIAVY, 1O 2004/0139259 Al* 7/2004 Mantey et al. 710/113
FOREIGN PATENT DOCUMENTS
(73) Assignee: Hewlett-Packard Development
EP 1195689 A2 10/2002
Company, L.P., Houston, TX (US) P $9477% (1/1991
: : : : : JP 2001265468 9/2001
(*) Notice: Subject. to any dlsclalmer{ the term of this WO WO02/17088 A2 2/200
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 481 days. * cited by examiner
Primary Examiner—ILynne H. Browne
21) Appl. No.: 10/382,346 Y JILe
(21) Appl. No Assistant Examiner—Fahmida Rahman
22) Filed: Mar. 5, 2003
(22) file - (57) ABSTRACT
(65) Prior Publication Data Techniques are disclosed for resetting agents in a computer
US 2004/0177242 A1 Sep. 9, 2004 system without requiring the computer system, or partitions
j thereol, to be reset. In one embodiment, each agent 1n the
system 1s associated with a corresponding partition. A reset
(51) Int. CL Y : TTESpo 2P
GO6F 157177 (2006.01) signal directed to an agent 1s redirected to a reset type
(52) U8 Cle coooveveeeeeececose e 713/2; 7131 selector which determines whether the partition associated
(58) Field of Classification Search j713 n with the agent 1s 1n a run state (an “unsafe run state™) in
"""""""" 7 '1'3 71 06 which resetting the agent will cause the partition to crash. If
See application file for complete search history.ﬂ the partition 1s 1 an unsafe run state, a solt reset 1s
performed on the agent. Otherwise, a hard reset 1s performed
(56) References Cited on the agent. If performing a soit reset does not solve the

U.S. PATENT DOCUMENTS

5,068,780 A * 11/1991 Bruckert et al. 713/2
5,379,437 A 1/1995 Celi, Jr. et al.
5717942 A * 2/1998 Haupt et al. 712/13

START

RECEIVE
RESET SIGNAL
402

404

1S
PARTITION

problem that was the impetus for the reset signal, the
partition may be brought into a safe run state before per-
forming a hard reset on 1t.

39 Claims, 7 Drawing Sheets

/—- 400

YES

IN A SAFE RUN _g#
STATE
?

NO

, _

OUTPUT INTERRUPT
SIGNAL (SOFT RESET)
408

B I

OUTPUT RESET
SIGNAL (HARD RESET)
406

END

US 7,089,413 B2

Sheet 1 of 7

Aug. 8, 2006

U.S. Patent

(LHV HOIHJ)
vl ‘Ol

901 NIVINOQ H3aMOd ABVITXNY

30T 13534 gsor 13534 Eg0 1 13534
¢ LNIOV F ANJDV 0 LNJDV

00} aot! €0t

AN gzt __-BZLl
NI MNIT MNIT
SNOILYOINNWNOD SNOILYOINNWINOD SNOILYOINNWINOD

Ovil qrit
NJLSAS WA1LSAS

Ebl}

WILSAS

ONILVH3dO |] ONILYHIHO ONILVHId0

oJo]! qvor ev0T
¢ NOILILAVYd I NOILILAVd O ZO_._._._(I,qn_

¢0lL NIVINOQ HaMOd NIVIA

oo_.l\

dai Old

"]

0} NIVNOQ Jd3aMOd AHVINTIIXNV

AN LN| A NI
38G1 3291 dssi Qg9 egsi eZol
¢ LINJOV 13834 I INTFOV 13534 0 IN3OV 13S3H

US 7,089,413 B2

A—

~ 509 Q09| €09l
-~
&
gl
k>
2 SYAR| achl 1ZFAR!
& MNIT MNIT MNIT
SNOLLYOINNWINOD SNOLLYOINNWWOD SNOILYDINNNWNOD

\&
~
~
gl
oqn.,s IPLL arii erlL
M NALSAS | WNZLSAS NJISAS

ONILYHIJO HNILYHILO SNILYH3dO

70T avot Z27e)
2 NOILilHvd | NOILILHYd 0 NOILILHYd

eeeeslees el

OF NIVINOQ d3MOd NIV

om_.r\

U.S. Patent

US 7,089,413 B2

Sheet 3 of 7

Aug. 8, 2006

U.S. Patent

(1HVY HOlidd)
A E
80¢

P02
0le
eg801L

INTOY BOLI Q02

903

I% Bv02
00¢

0c¢0c

d3aiNlL
D0dHOLVM

cOc¢
d3SN

©ec0c

HOLINOW
H3dMOd

U.S. Patent Aug. 8, 2006

POWER
MONITOR

2024

USER
202D

WATCHDOG
TIMER

202C

112a

PARTITION-
AGENT
INTERFACE

316

204D

204C

PARTITIONO
1043

OPERATING
SYSTEM

1144

RUN STATE
IDENTIFIER
312

BACKUP

INTERFACE
CONTROLLER

318

PROCESSOR
310

FIG. 3

Sheet 4 of 7 US 7,089,413 B2

[300

308

206

RESET TYPE
SELECTOR
302

SELECT
CONTROL
304

314

162a

INT
306D
RESET

306a

160a

AGENT 1 158a

U.S. Patent Aug. 8, 2006 Sheet 5 of 7 US 7,089,413 B2

[\ 400
START

" RECEIVE
RESET SIGNAL

402

404

1S

PARTITION
IN A SAFE RUN

STATE
7

YES

NO

OUTPUT INTERRUPT QUTPUT RESET
SIGNAL (SOFT RESET) SIGNAL (HARD RESET)
408 406

FIG. 4

U.S. Patent

PARTITION-AGENT INTERFACE TO
BACKUP INTERFACE CONTROLLER

Sheet 6 of 7

f‘ 500

Aug. 8, 2006

START

RECEIVE
“SOFT RESET”
INTERRUPT
202

RESET
PROCESSOR

504

TRANSFER CONTROL OF

506

WAIT UINTIL PROCESSOR
HAS FINISHED RESETTING
208

TRANSFER CONTROL OF
PARTITION-AGENT INTERFACE

TO PROCESSOR
210

END

FIG. 5

US 7,089,413 B2

U.S. Patent Aug. 8, 2006 Sheet 7 of 7 US 7,089,413 B2

f\ 600

START

RECEIVE
- RESET SIGNAL

602

PERFORM SOFT

RESET ON AGENT
604

606

AGENT
OPERATING

NORMALLY
7

NO

YES

BRING PARTITION TO
A SAFE RUN STATE
608

PERFORM HARD RESET
ON AGENT AND PARTITION
610

END

FIG. 6

UsS 7,089,413 B2

1

DYNAMIC COMPUTER SYSTEM RESET
ARCHITECTURE

BACKGROUND

1. Field of the Invention

The present mvention relates to techniques for resetting,
components ol a computer system and, more particularly, to
techniques for resetting agents in a computer system without
disrupting the operation of the computer system.

2. Related Art

All computer systems include a reset architecture of some
kind. A computer system’s reset architecture 1s responsible
for resetting some or all of the components of the system to
an 1nitial state. A reset may be 1nitiated, for example, when
a computer system 1s booted up, in response to a user
pressing a hardware reset button, or in response to an
automated or user-invoked software reset instruction. If the
computer system crashes, for example, 1t may be necessary
for the user to ivoke a hard reset by pressing a hardware
reset button, thereby causing the computer system’s memory
and other components to be re-1nitialized and again become
usable. Frequently, many or all components within a com-
puter system are reset from the same reset signal, thereby
ensuring that the overall system starts up 1n a defined state.
The reset architecture 1n a standalone desktop computer, for
example, typically uses a single reset signal to 1nitiate a reset
of all necessary components.

More complex computer systems may include multiple
autonomous devices, such as embedded microcontrollers,
system processors, or sets of complex logic. Each of these
devices—relerred to herein as “agents”—may have a dis-
tinct reset source. The term “multi-agent system” 1s used
herein to refer to any computer system that includes multiple
agents.

One example of a multi-agent computer system 1s a
partitionable server, also referred to as a “consolidation
server’ or a “multi-partition computer.” Referring to FIG.
1A, for example, a functional block diagram 1s shown of a
prior art partitionable server 100. The partitionable server
100 1s a single physical computer system that 1s logically
subdivided into multiple partitions 104a—c, each of which 1s
allocated a portion of the server’s hardware and/or software
resources. Each of the partitions 104a—c may execute its
own operating system and soltware applications. For
example, as shown 1n FIG. 1A, partitions 104a—c execute
operating systems 114a—c, respectively.

More generally, each of the partitions 104a—c 1s intended
to be functionally equivalent to, and therefore externally
indistinguishable from, a distinct standalone computer. Par-
titionable servers are sometimes referred to as “consolida-
tion servers” because they may be used to consolidate
several physical servers into one physical server having
multiple partitions, each of which performs the functions of
the physical server that 1t replaces. A conventional desktop
or laptop computer may be considered to be a special case
of a multi-partition computer, in which the number of
partitions 1s one.

In the particular example shown in FIG. 1A, the parti-
tionable server 100 also includes a plurality of agents
108a—c. The partitions 104a—c run ofl of main system power
in a main power domain 102, while the agents 108a—c run
ofl of auxiliary power in an auxiliary power domain 106,
meaning that the agents 108a—c can continue to receive
power even when the main power domain 102 i1s not
providing power. In the example 1llustrated 1n FIG. 1A, each
of the agents 108a—c monitors and supports a corresponding

10

15

20

25

30

35

40

45

50

55

60

65

2

one of the partitions 104a—c. Partitions 104a—c and agents
108a—c communicate with each other over communications
links 112a—c, respectively.

Each of the agents 108a—c includes 1ts own reset circuitry,
and agents 108a—c are capable of being independently reset
by reset signals transmitted on reset lines 110a—c, respec-
tively. As a result, it 1s possible for some of the agents
108a— to be 1n the process of resetting while corresponding
ones of the partitions 104a—c are still running. In some cases,
one of the agents 108a—c and a corresponding one of the
partitions 104a—c may be communicating with each other
when the agent goes into reset unexpectedly (e.g., as the
result of a watchdog timer triggering a reset or a user forcing,
a reset).

In multi-partition computers, such as the partitionable
server 100 shown 1n FIG. 1A, 1t 1s highly desirable that the
partitions 104a—c be 1solated and independent, so that a
failure (such as an operating system crash) in one of the
partitions 104a—c does not cause a failure 1n other ones of
the partitions 104a—c. Achieving this goal can be challeng-
ing for the system designer in many ways. In particular, 1t
can be challenging to design the system 100 so that the act
of resetting one of the agents 108a—¢ does not require the
corresponding one of the partitions 104a—c, or the entire
server 100, to be reset.

In most cases, the unexpected reset of one of the agents
108a—c will not disrupt the operation of either the corre-
sponding partition or other ones of the partitions 104a—c 1n
the server 100. In fact, partitionable servers and other
multi-agent systems are typically designed to handle such an
event gracefully. In certain circumstances, however, the
unexpected reset of one of the agents 108a—c may cause
undesirable eflects, such as causing the corresponding one of
the partitions 104a—c, or even the entire server 100, to crash.
Typically, the server 100 may only be brought back into an
operational state after such a crash by powering down the
entire server 100 and then powering 1t back up again. This
1s one example of a “hard reset.” A complete system crash
and reboot 1s extremely undesirable, particularly 1n cases 1n
which the server 100 1s relied upon for constant connectivity
by hundreds or even thousands of other computer systems
and peripherals.

Consider, for purposes of example, the agent 108a and the
corresponding partition 104a. One set of circumstances
under which an unexpected reset of the agent 108a may
cause the corresponding partition 104a (or the entire server
100) to crash 1s when the partition 104q 1s 1n a run state 1n
which the operating system 114a executing on the partition
104a assumes that the agent 108a will always be available
for communication over the communications link 112a.
Examples of agents that may be relied upon for such
constant availability include, for example, input/output (1/0)
controllers, hard disk drive controllers, local area network
(LAN) controllers, manageability processors, crossbar cir-
cuitry, bus bridges, and circuits for monitoring and/or con-
trolling components such as cooling fans. If the operating
system 114a attempts to communicate with the agent 1084
over the communications link 112a and the agent 108a does
not respond (e.g., because the agent 108a 1s in the process
of resetting), the operating system 114aq may crash, thereby
making the partition 104a moperable until 1t 1s reset.

Therefore, under such conditions it 1s unsatfe to reset the
agent 108a because doing so may cause the corresponding
partition 104a to crash. Any run state of a partition 1n which
resetting the corresponding agent 1s likely or certain to cause
the partition to crash will be referred to herein as an “unsate
run state.” Any run state of a partition in which resetting the

UsS 7,089,413 B2

3

corresponding agent 1s not likely or certain to cause the
partition to crash will be referred to herein as a *“safe run
state.”

When the partition 104a, for example, 1s 1n a safe run
state, conventional techniques may be employed to reset the
agent 108a because resetting the agent 108a will not cause
the partition 104a or the other partitions 104H6—¢ to crash.
When the partition 104¢q 1s in an unsaie run state, however,
a different reset scheme must be used to avoid the undesir-
able effects described above.

What 1s needed, therefore, are improved techniques for
resetting agents 1n computer systems.

SUMMARY

Techniques are disclosed for resetting agents in a com-
puter system without requiring the computer system, or
partitions thereof, to be reset. In one embodiment, each
agent 1n the system 1s associated with a corresponding
partition. A reset signal directed to an agent 1s redirected to
a reset type selector which determines whether the partition
associated with the agent 1s 1n a run state (an “unsafe run
state”) 1n which resetting the agent will cause the partition
to crash. If the partition 1s 1n an unsafe run state, a soft reset
1s performed on the agent. Otherwise, a hard reset 1s per-
formed on the agent. If performing a soit reset does not solve
the problem that was the impetus for the reset signal, the
partition may be brought into a safe run state before per-
forming a hard reset on 1t.

In one aspect of the present mvention, a method 1s
provided for use 1n a computer system including a first agent
and a second agent. The method includes steps of: (A)
receiving a first reset signal directed to the first agent; (B)
determining whether the second agent 1s 1 a run state in a
predetermined class of run states in which a hard reset may
be performed on the first agent without requiring the second
agent to be reset; (C) performing a hard reset on the first
agent 11 1t 1s determined that the second agent 1s 1n a run state
in the predetermined class of run states; and (D) performing
a soit reset on the first agent 1f 1t 1s determined that the
second agent 1s not 1n a run state 1n the predetermined class
of run states. The computer system may, for example,
include a plurality of partitions, and the second agent may,
for example, be one of the plurality of partitions.

In another aspect of the present imnvention, a method 1s
provided for use 1n a computer system including an agent
and a partition associated with the agent. The method
includes steps of: (A) receiving a first reset signal directed
to the agent; (B) determining whether the partition 1s 1n a run
state 1n a predetermined class of run states in which a hard
reset may be performed on the agent without requiring the
partition to be reset; (C) performing a hard reset on the agent
by transmitting a second reset signal to the agent if 1t 1s
determined that the partition 1s 1n a run state in the prede-
termined class of run states; and (D) resetting fewer than all
of a plurality of components of the agent by transmitting an
interrupt to the agent if 1t 1s determined that the partition 1s
not 1 a run state 1n the predetermined class of run states.
Step (D) may, for example, be performed without resetting
the partition.

In yet another aspect of the present invention, a device 1s
provided for use 1n a computer system including a first agent
and a second agent. The device includes: receiving means
for receiving a first reset signal directed to the first agent;
determining means for determining whether the second
agent 1s 1n a run state 1n a predetermined class of run states
in which a hard reset may be performed on the first agent

10

15

20

25

30

35

40

45

50

55

60

65

4

without requiring the second agent to be reset; hard reset
means for performing a hard reset on the first agent 11 1t 1s
determined that the second agent 1s 1n a run state in the
predetermined class of run states; and soift reset means
performing a soit reset on the first agent 11 1t 1s determined
that the second agent 1s not 1n a run state 1n the predeter-
mined class of run states.

In yet a further embodiment of the present invention, a
reset architecture 1s provided for use 1n a computer system
including a first agent and a second agent. The reset archi-
tecture 1includes: a run state identifier coupled to the second
agent and comprising an output providing a run state signal
indicative of a run state of the second agent; a demultiplexer
comprising a data mput coupled to at least one reset source,
a selection mmput coupled to the output of the run state
identifier, an interrupt output coupled to an interrupt input of
the first agent, and a reset output coupled to a reset mput of
the first agent; wherein the first agent comprises means for
performing a hard reset in response to receipt of a reset
signal on the reset mput and means for performing a soft
reset 1n response to receipt of an interrupt signal on the
interrupt input.

In another aspect of the present mvention, a method 1s
provided for use 1n a computer system including a partition
and an agent associated with the partition. The method
includes steps of: (A) receiving a first reset signal directed
to the agent; (B) in response to the first reset signal,
performing a soft reset on the agent while the partition 1s in
a first run state in a first predetermined class of run states 1n
which a hard reset may not be performed on the agent
without requiring the partition to be reset; and (C) perform-
ing a hard reset on the agent while the partition 1s 1n a second
run state 1 a second predetermined class of run states in
which a hard reset may be performed on the agent without
requiring the partition to be reset.

In yet another aspect of the present invention, a method 1s
provided for use 1n a computer system including a partition
and an agent associated with the partition. The method
includes steps of: (A) recerving a first reset signal directed
to the agent; (B) in response to the first reset signal,
performing a soft reset on the agent without resetting the
partition by transmitting an interrupt signal to the agent
while the partition 1s 1n a first run state 1n a first predeter-
mined class of run states 1n which a hard reset may not be
performed on the agent without requiring the partition to be
reset; (C) determining that the partition 1s 1 a second run
state 1n a second predetermined class of run states 1n which
a hard reset may be performed on the agent without requir-
ing the partition to be reset; and (D) performing a hard reset
on the agent by transmitting a second reset signal to the
agent while the partition 1s 1n the second run state.

In a further aspect of the present invention, a device 1s
provided for use 1n a computer system including a partition
and an agent associated with the partition. The device
includes: receiving means for receiving a first reset signal
directed to the agent; soft reset means for performing a soft
reset on the agent while the partition 1s 1n a first run state in
a first predetermined class of run states 1n which a hard reset
may not be performed on the agent without requiring the
partition to be reset; and hard reset means for performing a
hard reset on the agent while the partition 1s 1n a second run
state 1n a second predetermined class of run states 1n which
a hard reset may be performed on the agent without requir-
ing the partition to be reset.

Other features and advantages of various aspects and
embodiments of the present invention will become apparent
from the following description and from the claims.

UsS 7,089,413 B2

d
BRIEF DESCRIPTION OF THE

DRAWINGS

FIG. 1A 1s a functional block diagram of a prior art
partitionable server;

FIG. 1B 1s a functional block diagram of a partitionable
server according to one embodiment of the present mnven-
tion;

FIG. 2 1s a functional block diagram of a prior art reset
architecture for use 1n the server of FIG. 1A;

FI1G. 3 1s a functional block diagram of a reset architecture
for use 1n the server of FIG. 1B according to one embodi-
ment of the present invention;

FIG. 4 1s a flowchart of a method for resetting the agent
of FIG. 3 according to a first embodiment of the present
imnvention;

FIG. 5 1s a flowchart of a method for performing a soft
reset on the agent of FIG. 3 according to one embodiment of
the present invention; and

FIG. 6 15 a flowchart of a method for resetting the agent

of FIG. 3 according to a second embodiment of the present
invention.

DETAILED DESCRIPTION

Techniques are disclosed for resetting agents 1n a com-
puter system without requiring the computer system, or
partitions thereof, to be reset. In one embodiment, each
agent 1 the system 1s associated with a corresponding
partition. A reset signal directed to an agent 1s redirected to
a reset type selector which determines whether the partition
associated with the agent 1s 1n a run state (an “unsafe run
state””) 1n which resetting the agent will cause the partition
to crash. If the partition i1s 1n an unsaie run state, a soft reset
1s performed on the agent. Otherwise, a hard reset 1s per-
formed on the agent. If performing a soft reset does not solve
the problem that was the impetus for the reset signal, the
partition may be brought mto a safe run state before per-
forming a hard reset on 1t.

In one aspect of the present invention, techniques are
provided for resetting an agent in a computer system without
requiring the computer system to be rebooted. In particular,
techniques are provided for resetting an agent in a multi-
agent, multi-partition computer system without requiring a
partition associated with the agent to be rebooted.

Before describing particular embodiments of the present
invention, prior art techniques for resetting agents 1 com-
puter systems will be described. Referring to FIG. 2, a prior
art reset architecture 200 1s shown for use in the prior art
server 100 of FIG. 1A. The reset architecture 200 1s used to
control the resetting of agent 108a. The same reset archi-
tecture may be used 1n conjunction with the other agents

1085—c¢ of the server 100.

Three reset sources 202a—c are shown in FIG. 2 for
purposes of example. Power monitor 202a monitors the
power being provided to the agent 108a in the auxiliary
power domain 106. If the power monitor 202a senses a
discontinuity in the supplied power or a dip 1n the level of
supplied power below a predetermined threshold level, the
power monitor 202aq may generate a reset signal on reset line
204a. Techniques for implementing power monitors are well
known to those of ordinary skill 1n the art.

User 2025 may generate a reset signal on reset line 2045
by, for example, pressing a hardware reset button (not
shown) on the server 100. The user 2025 may, for example,
press the reset button upon determining that the operating
system 114q executing 1n the partition 104a has crashed. The
user 2025 may also generate the reset signal 2045 indirectly

10

15

20

25

30

35

40

45

50

55

60

65

6

by 1ssuing a software reset command to the operating system
114a. In response, the operating system 114a may perform
a soltware shutdown sequence (e.g., by terminating all
soltware application programs executing in the partition
104a) and then generate a reset signal on the reset line 2045.

Watchdog timer 202¢ generates a reset signal on reset line
204¢ 11 the agent 108a has been inactive for more than a
predetermined threshold period of time. Although the watch-
dog timer 202¢ may be implemented 1n many ways, in one
implementation the watchdog timer 202¢ 1s a timer that 1s
initialized to a zero value and which 1s incremented each
clock cycle. Agent 108aq may include a processor 210 which
periodically resets the watchdog timer 202¢ to zero by 208.
The frequency at which the processor 210 resets the watch-
dog timer 202c¢ 1s chosen so that the value of the watchdog
timer 202¢ will never reach a particular predetermined
threshold value if the agent 108a 1s behaving normally. If the
value of the watchdog timer 202¢ reaches the predetermined
threshold value, then 1t 1s likely that the processor 210 has
crashed or that the agent 108a 1s otherwise malfunctioning.
In the event that the timer 202¢ reaches the predetermined
threshold value, the watchdog timer 202¢ generates a reset
signal on reset line 204c.

Reset lines 204a—c are coupled to the inputs of an OR gate
206, the output of which 1s coupled to reset line 110a. The
agent 108a 1ncludes reset circuitry (not shown) which resets
the agent 108a 11 a high logical value 1s detected on the reset
line 110a. As a result, the agent 108a will be reset if any of
the reset sources 202a—c generates a reset signal on any of
the reset lines 204a—c. The particular internal circuitry
required to reset the agent 108a may vary from agent to
agent, and techniques for implementing such reset circuitry
are well known to those of ordinary skill in the art.

One problem with the reset architecture 200 shown 1n
FIG. 2 1s that it causes the agent 108a to be reset automati-
cally 1n response to a reset signal generated by any of the
reset sources 202a—c, even 1f the corresponding partition
104a 1s 1 an unsaie run state (1.e., a run state 1n which
resetting the agent 108a 1s likely or certain to cause the
partition 104q to crash). As a result, a reset initiated by one
of the reset sources 202a—c may cause the partition 104a, or
even the entire server 100, to crash, without providing the
user 20256 with any warning that such a crash might occur or
any opportunity to prepare for such a crash.

Referring to FI1G. 1B, a functional block diagram 1s shown
ol a partitionable server 150 according to one embodiment
of the present invention. Like the prior art partitionable
server 100, the partitionable server 150 includes partitions
104a— operating in main power domain 102. Partitionable
server 150 also includes agents 138a—c, which communicate
with partitions 104a—c over communications links 112a—c,
respectively. Agents 158a—c, like agents 108a— (FIG. 1A),
are reset by signals on reset lines 160a—c. In addition, agents
158a—c may also receive interrupts on interrupt lines
162a—, respectively. As described i more detail below,
hard resets may be performed on agents 158a—¢ by trans-
mitting reset signals on reset lines 160a—c, while “soit”
resets may be performed on agents 158a—¢ by transmitting
appropriate interrupt signals on interrupt lines 162a—c.

Referring to FIG. 3, for example, a block diagram 1s
shown of a reset architecture 300 for resetting the agent 1584
according to one embodiment of the present mnvention. The
reset archutecture 300 1s equally applicable to the other
agents 158b—c. As 1 the prior art reset architecture 200
(F1G. 2), the reset architecture 300 includes reset sources
202a— coupled to OR gate 206. The output 308 of OR gate

206, however, 1s coupled to reset type selector 302 rather

UsS 7,089,413 B2

7

than directly to the agent 158a. As will now be described in
more detail, when reset type selector 302 receives a reset
signal from the output 308 of OR gate 206, reset type
selector 302 determines whether agent 158a should perform
a hard reset or a soft reset based on characteristics of the
current run state of the corresponding partition 104a.

Referring to FIG. 4, a flowchart 1s shown of a method 400
that 1s performed by the reset type selector 302 1n one
embodiment of the present invention to control the actions
performed by the agent 158a 1n response to the transmission

ol a reset signal on the output 308 of the OR gate 206.

-

The method 400 operates as follows. The reset type
selector 302 receives a reset signal 402 on the output 308 of
the OR gate 206 (step 402). In response to recerving the reset
signal, the reset type selector 302 determines whether the
partition 104a 1s 1n a safe run state (step 404).

The reset type selector 302 may determine whether the
partition 104q 1s 1n a safe run state in any of a variety of
ways. For example, 1n one embodiment, the reset architec-
ture 300 includes a run state identifier 312 which 1s coupled
to the partition 104a and which determines whether the
partition 104q 1s 1n a safe run state or an unsafe run state. The
run state identifier 312 outputs a run state signal on line 314.
The run state signal may be a binary signal, 1n which case
a first binary value on the run state signal line 314 may
indicate that the partition 1044 1s 1n a safe run state, while
a second binary value on the run state signal line 314 may
indicate that the partition 104 1s not 1n a safe run state. The
run state signal 314 may be provided to a select control input
304 of the reset type selector 302. The reset type selector 302
may, therefore, either include or otherwise perform the
functions of a demultiplexer, in which line 308 1s the data

input, line 314 1s the selection (address) input, and lines
160a and 162a are the data outputs.

The run state identifier 312 may determine whether the
partition 104aq 1s 1n a safe run state 1n any of a varniety of
ways. For example, 1n one embodiment, the run state iden-
tifier 312 determines whether the operating system 114a 1s
executing on the partition 104q. I the operating system 114a
1s executing on the partition 104q the run state identifier 312
determines that the partition 1044 1s not 1n a safe run state.
Conversely, 11 the operating system 114a 1s not executing on
the partition 104¢a the run state identifier determines that the
partition 104a 1s 1n a safe run state. The run state 1dentifier
312 may determine whether the partition 104a 1s 1n a safe
run state based on other criteria, such as whether any
soltware application programs are executing on the partition
104a, whether there are any open network connections in the
partition 104a, or whether the partition 104q 1s 1n the process

of communicating with the agent 158a over the communi-
cations link 112a.

If the reset type selector 302 determines (in step 404) that
the partition 1044 1s 1n a safe run state, the reset type selector
302 outputs a reset signal on reset line 160a (step 406).
Agent 158a receives the reset signal at a reset mput 3064
and, 1n response, performs a conventional reset, also referred
to as a “hard reset,” as described above with respect to FIG.
2. The agent 158a includes a processor 310 which may
perform functions including periodically resetting the
watchdog timer 202¢. A hard reset on the agent 158a may,
for example, reset the processor 310 and other necessary
components of the agent 158a. Because the partition 104q 1s
in a safe run state, performing a hard reset on the agent 158a
does not disrupt the operation of either the partition 104a or
the remaining partitions 1045—c. When the agent 1584 has

10

15

20

25

30

35

40

45

50

55

60

65

8

completed 1ts reset, 1t may resume normal operation and
communications with the partition 104a over the commu-
nications link 112a.

If the reset type selector 302 determines (in step 404) that
the partition 104a 1s not 1n a safe run state, the reset type
selector 302 outputs an interrupt signal on interrupt line
162a to mitiate a “soft reset” of the agent 158a (step 408).
Referring to FIG. 5, a flowchart 1s shown of a method 500
that 1s performed by the agent 158a to perform a soit reset
in one embodiment of the present mnvention. The method
500 may, for example, implement step 408 of the method
400 1illustrated 1n FIG. 4.

The agent 158a receives an interrupt from reset type
selector 302 on interrupt line 162a (step 502). This interrupt
1s referred to herein as a “soft reset” interrupt because it
instructs the agent 158a to perform a soit reset. As shown 1n
FIG. 3, in one embodiment the agent 158a includes an
interrupt input 30656 at which 1t may receive the soit reset
interrupt on line 162a.

The agent 158a services the soit reset iterrupt by per-
forming a soft reset. As used herein, the term “soft reset”
refers to resetting fewer than all of the resources of the agent
158a. The term “resources” 1includes both hardware
resources such as processors and memory, and software
resources such as operating systems and application pro-
grams. Examples of techniques for performing soit resets
will be described 1n more detail below.

In one embodiment, the agent 158a 1s configured to
service 1mterrupts having priorities ranging from a predeter-
mined minimum priority to a predetermined maximum
priority. The interrupt generated by the reset type selector
302 on the iterrupt line 1624 may have the maximum
interrupt priority. As a result, the mterrupt generated by the
reset type selector 302 1s guaranteed to override any other
interrupts being serviced by the agent 1538a and any other
activities being performed by the agent 1538a, so long as the
agent 158a 1s not so completely disabled that 1t 1s unable to
service interrupts.

In one embodiment of the present invention the agent
158a includes an agent-partition interface 316 and a backup
interface controller 318. The agent-partition interface 316
mediates communication between the partition 104q and the
agent 158a. During normal operation of the agent 158a, the
processor 310 performs the functions of an interface con-
troller to communicate with the partition 104a through the
agent-partition interface 316, while the backup interface
controller 318 1s dormant. The backup interface controller
318 may, for example, be implemented 1n soitware, firm-
ware, custom-designed circuitry, or any combination
thereof.

In one embodiment, the backup interface controller 318 1s
capable of performing basic communications functions to
communicate with the partition 104a through the agent-
partition interface 316. In one embodiment, when the agent
158a recerves a soft reset interrupt from the reset type
selector 302 at interrupt input 3064, the agent 158a services
the interrupt by resetting the processor 310 (step 504). The
agent 158a does not, however, reset other internal compo-
nents such as the backup interface controller 318. Rather, the
backup interface controller 318 takes over control of the
partition-agent interface 316 to control commumnication
between the agent 158a and the partition 104a when the
processor 310 goes 1nto reset (step 506).

In one embodiment of the present mnvention, the backup
interface controller 318 1s capable of performing minimal
communications functions necessary to keep the partition
104a from crashing. For example, 1 the partition 104aq

UsS 7,089,413 B2

9

initiates communication with the agent 158a over the com-
munications link 112a by transmitting a message to the
agent 158a while the processor 310 1s 1n the process of
resetting, the backup interface controller 318 may respond
with an acknowledgment message (ACK) and/or a message
indicating that the partition 104a should wait a predeter-
mined amount of time and then attempt to re-initiate com-
munication with the agent 158a. Those of ordinary skill in
the art will appreciate how to implement such communica-
tions according to the particular communications protocol
that 1s used to communicate over the communications link
112a.

By responding to communications initiated by the parti-
tion 104a, the backup interface controller 318 may comply
with the requirements of the applicable communications
protocol and thereby prevent a fault from occurring. As
described above, the operating system 114a¢ may, for
example, be designed to expect that the agent 158a will
always be available for communication over the communi-
cations link 112q. If a communication initiated by the
partition 104a 1s not answered by the agent 158a within a
predetermined amount of time, the operating system 114a
may crash. The backup interface controller 318 may avert
such a crash by responding to the operating system 114q
with messages which indicate that the agent 158a 1s still
physically connected to the communications link 112a and
has not crashed, but without engaging 1n any substantive
communication on behalf of the agent 158a.

When the processor 310 finishes resetting (step 508), the
processor 310 may retake control of the interface 316 from
the backup iterface controller 318 (step 510). Assuming
that the process of resetting the processor 310 has solved the
problem that caused the generation of the reset signal
received 1n step 602, the processor 310 may resume control
of communication with the partition 104a over the commu-
nications link 112a.

In summary, 1n one embodiment of the present invention,
any reset signal that 1s transmitted to the reset type selector
302 while the partition 104q 1s 1n an unsafe run state may be
replaced by a high-level interrupt. This interrupt, rather than
a reset signal, 1s transmitted to the agent 158a. In response,
the agent 158a may perform a “soft” reset, in which the
agent 158a reboots or restarts certain tasks or components
(such as the processor 310), but in such a way that 1s
invisible to any other components (such as the partition
104a) trying to communicate with the agent 158a.

Furthermore, using the techniques just described with
respect to FIG. 3 and FIG. 4, the agent 158a may be reset
(using a “soit” reset) without crashing any of the partitions
104a—c and without requiring that any of the individual
partitions 104a—c or the entire computer system 150 be reset.

In some circumstances, a soit reset may not be suflicient
to bring the agent 158a out of an undesirable state into a
normal operating state. An example of such a state 1s one 1n
which the agent’s internal processor 310 1s unable to com-
municate with the agent-partition interface 316 for some
reason. In such a situation, the agent 15384 may require a
hard reset. Examples of techniques will now be disclosed for
enabling a user of the server 150 to imitiate such a hard reset
aiter the user has had the opportunity to prepare for the reset,
such as by saving data and transferring executing software
applications from the partition 104a to another one of the
partitions 104H—c. The agent 1584, and potentially the entire
partition 104a, may then have a hard reset performed on 1t
(1.e., power down and power up) to allow the agent 1584 to
restart 1n a correct mnitial state. Although such a hard reset
will terminate any solftware processes executing in the

10

15

20

25

30

35

40

45

50

55

60

65

10

partition, this need not be problematic because at the time of
the hard reset the user has had the opportunity to terminate
or transier any necessary soltware processes to another
partition or take other approprate action.

Referring to FIG. 6, a flowchart 1s shown of a method 600
that 1s performed by the server 150 to perform a hard reset
on the agent 158a and the partition 1044 1n one embodiment
of the present invention. The method 600 i1s intended to
illustrate both a sequence of events which may lead to a set
of circumstances 1 which a hard reset 1s required and the

actions taken to perform such a hard reset.

The reset architecture 300 receives a reset signal (step
602). Assume, for purposes ol example, that the reset
architecture 300 receives the reset signal from the user 2025
(FIG. 2) on reset line 2045 when the user presses a hardware
reset button on the server 150 after noticing that the agent
158a has apparently crashed or 1s otherwise non-responsive
or behaving suboptimally. For example, the user 2026 may
notice that the partition 1044 1s unable to communicate with
agent 158a. The user 2025, upon noticing such conditions,
may have no readily available way to determine whether the
partition 1044 1s 1n a safe run state or an unsaie run state.
Rather, the user 202 may simply ascertain the need to reset
the agent 158a and push the hardware reset button in
response.

In the prior art systems described above with respect to
FIG. 1A, such an action may cause the partition 104a or the
entire server 100 to crash it the partition 104a 1s 1n an unsafe
run state. In various embodiments of the present invention,
however, such a crash 1s avoided by performing a soit reset
on the agent 158a 11 the partition 104q 1s 1n an unsafe run
state, as described above with respect to FIG. 4. Assume for
purposes ol example that the partition 1044 1s 1n an unsafe
run state and that a soft reset 1s therefore performed on the

agent 158a (step 604).

Upon completion of the soft reset, a determination 1s
made of whether the agent 158a 1s 1n a normal operating
state (step 606). This determination may, for example, be
made automatically by circuitry and/or software which
monitors the agent 158a. In one embodiment of the present
invention, however, the user 20256 makes the determination
performed 1n step 606. If, for example, upon completion of
the agent’s soft reset, the partition 104a continues to exhibit
the same or other suboptimal behavior that 1t exhibited prior
to the soit reset, the user 2025 may determine that the agent
158a 1s not 1n a normal operating state.

If the agent 1584 1s determined to be 1n a normal operating,
state (step 606), the method 600 terminates and the user
2025 continues to use the partition 104a without performing
any additional reset.

I, however, the agent 1584 1s determined not to be 1n a
normal operating state, the partition 104a may be brought
into a safe run state (step 608). As described above, one
example of a safe run state 1s a run state 1n which no software
programs are executing on the partition 104a. The partition
104a may be brought into a safe run state either automati-
cally (e.g., by the 1ssuance of a software shutdown command
to the operating system 114a) or by the user 20256. The user
202H may, for example, transfer software programs that are
executing in the partition 1044 to other ones of the partitions
104H6—. Performing such a transier enables such software
programs to continue executing without interruption. The
user 2026 may then terminate the operating system 114a by
issuing a soiftware shutdown command to the operating
system 114a, thereby bringing the partition 1044 1nto a safe
run state.

UsS 7,089,413 B2

11

The user 2026 may then generate another reset signal on
reset line 2045 by, for example, pressing the hardware reset
button. When this reset signal 1s received by the reset type
selector 302 (FIG. 4, step 402), the reset type selector 302
will determine that the partition 104q 1s 1n a safe run state
(step 404) and output a reset signal on reset line 160a (step
406), thereby causing the agent 158a to perform a hard reset
(FIG. 6, step 610). Such a hard reset will not cause the
partition 104a to crash because the partition 1044 1s 1n a safe
run state.

Among the advantages of the mnvention are one or more
of the following.

Using the techniques described above, an agent in a
computer system may be reset without causing a corre-
sponding partition in the computer system to crash. This
ability 1s crucial for high-availability systems, such as serv-
ers, that are expected and relied upon never to crash. This
ability 1s particularly crucial for partitionable servers, 1n
which the crash of one partition may cause other partitions
to crash, thereby eflectively causing multiple servers to
crash at once.

A related advantage of the techniques described above 1s
that they enable an agent to be reset even while a corre-
sponding partition 1s in a run state 1 which resetting the
agent would normally cause the partition to crash. This
ability 1s enabled by using a soit reset, rather than a hard
reset, to reset the agent. This feature 1s useful because an
agent may become disabled or otherwise require a reset
under circumstances 1n which the corresponding partition 1s
in an unsaie run state, and 1n which it 1s not possible for the
user to bring the partition into a safe run state. The partition
may, for example, be executing critical software applications
(such as server software) that cannot be terminated or
otherwise mterrupted. The ability to reset the agent using a
soit reset without causing the partition to crash enables the
agent to be brought back to a normal operating condition
without interrupting the operation of the partition.

Another advantage of the techniques disclosed above 1s
that they reflect a recognition that a soit reset may not
always be suflicient to bring an agent back to a normal
operation condition, and thereby allow a hard reset to be
performed on the agent 1n such circumstances. Even when a
hard reset 1s performed on an agent, however, the techniques
disclosed herein enable the user to first bring the correspond-
ing partition nto a safe run state before performing the hard
reset, thereby averting a crash of the partition and the other
problems described herein.

One advantage of the reset architecture 300 disclosed
herein 1s that 1t may be implemented by making internal
changes to the prior art reset architecture 200 1n such a
manner that such changes are not visible either to the user
202b or to other components of the server 150. For example,
as shown 1n FIG. 3, the reset sources 202a—c are coupled to
the OR gate 206 in the same manner in both the reset
architecture 300 and the prior art reset architecture 200 (FIG.
2). Stmilarly, the partition 104a 1s coupled to the agent 158a
over the communications link 112a 1n the same manner 1n
both the reset architecture 300 and the prior art reset
architecture 200. As a result, features of the embodiments
described herein may be implemented solely within the reset
architecture 300, 1.e., without requiring changes to the rest of
the server 150. This both simplifies the design and 1mple-
mentation of the reset architecture 300 and enables the reset
sources 202a—c (including the user 2025) to interact with the
reset architecture 300 in the same manner as they interact
with the prior art reset architecture 200. For example, when
the user 2026 notices that the agent 1538a has crashed or

10

15

20

25

30

35

40

45

50

55

60

65

12

otherwise requires a reset, the user 2026 may press a
hardware reset button on the server 150 1n the same manner
as 1n the prior art. Unbeknownst to the user 2025, however,
the reset architecture 300 may automatically perform a soft
reset on the agent 1584 rather than a hard reset. Configuring
the reset archutecture 300 1n this way simplifies the operation
of the server 150 from the user’s point of view and reduces
the amount of re-training the user 20256 may need to undergo
to utilize the modified server 150.

It 1s to be understood that although the invention has been
described above in terms of particular embodiments, the
foregoing embodiments are provided as 1llustrative only, and
do not limit or define the scope of the invention. Various
other embodiments, including but not limited to the follow-
ing, are also within the scope of the claims.

The term “agent™ 1s used herein to refer to any component
(or set of components) of a computer system that 1s capable
of being reset. Multiple agents 1n a computer system may be
reset from a single reset source or from multiple reset
sources. An agent may, for example, include a processor, a
management processor that monitors a corresponding par-
tition and provides data back to the partition about 1ts state,
or other circuitry. The term “agent” may be used to describe
a set of hardware, firmware, software, or any combination
thereof. Although the terms “agent” and “partition” are used
in the examples above 1n contrast with each other, a partition
itself could be considered to be an agent. Therefore, a
multi-partition computer system 1s an example of a multi-
agent computer system.

Although the server 150 shown 1n FIG. 1B includes three
partitions 104a—c and three agents 158a—c arranged 1n a
one-to-one correspondence, this 1s not a limitation of the
present invention. Rather, the techniques disclosed herein
are applicable to systems including any number of agents
and/or partitions in any configuration. For example, the
techniques disclosed herein are applicable to computer sys-
tems having only a single partition. Furthermore, the tech-
niques disclosed herein are not limited to computer systems
in which partitions and agents communicate with each other
over a communications link. Rather, other configurations are
within the scope of the present invention. For example, the
techniques disclosed herein may be applied to systems in
which the agents are included within the partitions, or to
systems 1n which multiple agents are coupled to and com-
municate with each other. Furthermore, the techniques dis-
closed herein are not limited to computing systems 1n which
all agents reside within a single physical housing. Rather, the
techniques disclosed herein may be applied to computing
systems 1n which one or more agents are coupled to the
computing system by a serial/parallel cable, network con-
nection, or other coupling.

Although the system 150 1s described herein as a ““server,”
the techmiques disclosed herein are not limited to use with
computing systems that are used 1n a client-server architec-
ture or that otherwise quality as servers. Rather, the tech-
niques disclosed herein may be applied to any kind of
computing system.

Although 1n the examples described above, a soit reset 1s
performed on the agent 158a by resetting the agent’s pro-
cessor 310, soft resets may be performed 1n accordance with
the present invention in other ways. In general, a soit reset
involves resetting any subset of an agent’s components. A
component of an agent may be reset in any of a variety of
ways, and the term “reset” 1s not limited to performing a
hardware reset on a component by supplying 1t with a
hardware reset signal. Rather, the term “reset” refers more
generally to bringing a component to a predefined 1nitial

UsS 7,089,413 B2

13

state. A digital memory, for example, may be reset by
clearing its contents even 1 doing so does not mmvolve
providing a particular hardware reset signal to the memory
or activating particular reset circuitry within the memory.

Although three reset sources 202a—c are described above,
this 1s not a limitation of the present invention. Rather, there
may be any kind and number of reset sources in any
combination. Furthermore, the OR gate 206 1s disclosed
merely for purposes of example. More generally, reset
sources may be combined and/or selected 1n any manner.

Elements and components described herein may be fur-
ther divided 1nto additional components or joined together to
form fewer components for performing the same functions.
For example, the OR gate, reset type selector 302, and run
state 1dentifier 312, or any subset thereof, may be further
combined together to form a lesser number of components
for performing the same functions. Similarly, the partition-
agent 1mterface 316 and the backup interface controller 318
may be combined 1nto a single component.

The techniques described above may be implemented, for
example, 1n hardware, software, firmware, or any combina-
tion thereof. For example, the reset type selector 302, run
state 1dentifier 312, backup interface controller 318, and
partition-agent interface 316 may be implemented 1n hard-
ware, software, firmware, or any combination thereof. The
techniques described above may be implemented 1n one or
more computer programs executing on a programmable
computer including a processor, a storage medium readable
by the processor (including, for example, volatile and non-
volatile memory and/or storage elements), at least one input
device, and at least one output device. Program code may be
applied to input entered using the input device to perform the
functions described and to generate output. The output may
be provided to one or more output devices.

Each computer program within the scope of the claims
below may be implemented 1n any programming language,
such as assembly language, machine language, a high-level
procedural programming language, or an object-oriented
programming language. The programming language may,
for example, be a compiled or interpreted programming
language.

Each such computer program may be implemented in a
computer program product tangibly embodied 1n a machine-
readable storage device for execution by a computer pro-
cessor. Method steps of the invention may be performed by
a computer processor executing a program tangibly embod-
ied on a computer-readable medium to perform functions of
the 1nvention by operating on 1mput and generating output.
Suitable processors include, by way of example, both gen-
eral and special purpose microprocessors. Generally, the
processor receives instructions and data from a read-only
memory and/or a random access memory. Storage devices
suitable for tangibly embodying computer program instruc-
tions 1include, for example, all forms of non-volatile
memory, such as semiconductor memory devices, including,
EPROM, EEPROM, and flash memory devices; magnetic
disks such as internal hard disks and removable disks;
magneto-optical disks; and CD-ROMs. Any of the foregoing
may be supplemented by, or incorporated in, specially-
designed ASICs (application-specific itegrated circuits). A
computer can generally also receive programs and data from
a storage medium such as an internal disk (not shown) or a
removable disk. These elements will also be found 1n a
conventional desktop or workstation computer as well as
other computers suitable for executing computer programs
implementing the methods described herein, which may be
used 1 conjunction with any digital print engine or marking,

10

15

20

25

30

35

40

45

50

55

60

65

14

engine, display momnitor, or other raster output device
capable of producing color or gray scale pixels on paper,
film, display screen, or other output medium.

What 15 claimed 1s:

1. In a computer system including a first agent and a
second agent, a computer-implemented method comprising
steps of:

(A) receiving a first reset signal directed to the first agent;

(B) determining whether the second agent 1s 1n a first run
state 1n a predetermined class of run states 1n which a
hard reset can be performed on the first agent without
requiring the second agent to be reset;

(C) performing the hard reset on the first agent 1t 1t 1s
determined that the second agent 1s 1n the first run state
in the predetermined class of run states; and

(D) performing a soft reset on the first agent if 1t 1s
determined that the second agent 1s 1n a second run state
in the predetermined class of run states 1n which a hard
reset cannot be performed without requiring the second
agent to be reset.

2. The method of claim 1, wherein the second agent

comprises a partition 1n the computer system.

3. The method of claim 2, wherein the step (B) comprises
steps of:

(B)(1) determining whether an operating system 1s

executing in the partition; and

(B)(2) determining that the partition 1s 1n the first run state
in the predetermined class of run states if 1t 1s deter-
mined that no operating system 1s executing in the
partition.

4. The method of claim 1, wherein the step (A) comprises

a step of recerving the first reset signal from a power monitor
that monitors power supplied to the first agent.

5. The method of claim 1, wherein the step (A) comprises
a step of receiving the first reset signal from a user of the
computer system.

6. The method of claim 1, wherein the step (A) comprises
a step of receiving the first reset signal from a watchdog
timer coupled to the first agent.

7. The method of claim 1, wherein the step (B) comprises
steps of:

(B)(1) determiming whether the second agent 1s 1n a

powered-down state; and

(B)(2) determining that the second agent 1s 1n the first
run state in the predetermined class of run states 1f 1t
1s determined that the second agent 1s 1n the pow-
ered-down state.

8. The method of claim 1, wherein the step (C) comprises
a step of transmitting a second reset signal to the first agent.

9. The method of claim 1, wherein the step (D) comprises
a step of transmitting an interrupt signal to the first agent.

10. The method of claim 9, wherein the first agent 1s
configured to service interrupt signals having priorities
ranging from a minimum priority to a maximum priority,
and wherein the step (D) comprises a step of transmitting to
the first agent the iterrupt signal, the interrupt signal having
the maximum prionty.

11. The method of claim 1, wherein the first agent
comprises a plurality of components, and wherein the step
(D) comprises a step of:

(D)(1) resetting fewer than all of the plurality of compo-

nents.

12. The method of claam 11, wheremn the plurality of
components comprises a processor, and wherein the step
(D)(1) comprises a step of resetting the processor.

13. The method of claim 11, wherein the computer system
further comprises an interface for facilitating communica-

UsS 7,089,413 B2

15

tion between the first and second agents, wherein the first
agent controls the interface, and wherein the step (D) further
comprises steps of:

(D)(2) transierring control of the interface to a backup

interface controller; and

(D)(3) after step (D)(1) has completed, transferring con-

trol of the interface back to at least one of the plurality
of components reset 1 step (D)(1).

14. The method of claim 11, wherein the computer system
turther comprises an interface for facilitating communica-
tion between the first and second agents, and wherein the
step (D) 1s performed without disabling the interface.

15. The method of claim 11, wherein the step (D) 1s
performed while the second agent communicates with the
interface.

16. The method of claim 11, wherein the step (D) 1s
performed without resetting the second agent.

17. The method of claim 11, wherein the step (D) 1s
performed without resetting the computer system.

18. The method of claim 17, wherein the computer system
comprises a plurality of partitions, wherein the second agent
comprises one of the plurality of partitions, and wherein the
step (D) 1s performed without resetting the plurality of
partitions.

19. The method of claim 1, wherein the first agent
comprises an input/output controller.

20. The method of claam 1, wherein the first agent
comprises a manageability processor.

21. In a computer system including an agent and a
partition associated with the agent, a computer-implemented
method comprising steps of:

(A) recerving a first reset signal directed to the agent;

(B) determining whether the partition 1s 1n a first run state
in a predetermined class of run states 1n which a hard
reset can be performed on the agent without requiring
the partition to be reset;

(C) performing a hard reset on the agent by transmitting
a second reset signal to the agent 11 1t 1s determined that
the partition 1s 1n the first run state 1n the predetermined
class of run states; and

(D) resetting fewer than all of a plurality of components
of the agent by transmitting an interrupt to the agent 1f
it 1s determined that the partition 1s 1n a second run state
in the predetermined class of run states 1n which a hard
reset cannot be performed without requiring the parti-
tion to be reset.

22. The method of claim 21, wherein the step (D) 1s
performed without resetting the partition.

23. In a computer system 1including a first agent and a
second agent, a device comprising;:

receiving means for recerving a first reset signal directed
to the first agent;

determining means for determiming whether the second
agent 1s 1n a run state 1n a predetermined class of {first
run states in which a hard reset can be performed on the
first agent without requiring the second agent to be
reset;

hard reset means for performing the hard reset on the first
agent 11 1t 1s determined that the second agent is in the
first run state in the predetermined class of run states;
and

solt reset means performing a soit reset on the first agent
if 1t 1s determined that the second agent 1s 1 a second
run state 1n the predetermined class of run states in
which a hard reset cannot be performed without requir-
ing the second agent to be reset.

10

15

20

25

30

35

40

45

50

55

60

65

16

24. The device of claam 23, wherein the second agent
comprises a partition 1n the computer system.

25. The device of claim 23, wherein the hard reset means
comprises means for transmitting a second reset signal to the
first agent.

26. The device of claim 23, wherein the soft reset means
comprises means for transmitting an interrupt signal to the
first agent.

27. The device of claim 26, wherein the first agent 1s
configured to service interrupt signals having priorities
ranging from a minimum priority to a maximum priority,
and wherein the soft reset means comprises means for
transmitting to the first agent the interrupt signal, the inter-
rupt signal having the maximum priority.

28. The device of claim 23, wherein the first agent
comprises a plurality of components, and wherein the soft
reset means comprises means for resetting fewer than all of
the plurality of components.

29. The device of claim 28, wherein the plurality of
components comprises a processor, and wherein the soft
reset means comprises means for resetting the processor.

30. The device of claim 23, wherein the soit reset means
comprises means for performing the soit reset on the first
agent without resetting the second agent.

31. A reset architecture for use 1 a computer system
including a first agent and a second agent, the reset archi-
tecture comprising:

a run state identifier coupled to the second agent, the run

state 1dentifier comprising:

means for determining whether the second agent 1s 1n
a first run state 1n a predetermined class of run states
in which a hard reset can be performed on the first
agent without requiring the second agent to be reset;
and

an output providing a run state signal indicative of
whether the second agent 1s 1n the first run state 1n the
predetermined class of run states; and

a demultiplexer comprising:

a data input coupled to at least one reset source;

a selection mput coupled to the output of the run state
identifier:;

an terrupt output coupled to an mterrupt iput of the
first agent; and

a reset output coupled to a reset input of the first agent;

wherein the first agent comprises means for performing a

hard reset 1n response to receipt of a reset signal on the

reset input and means for performing a soft reset in

response to receipt of an interrupt signal on the inter-

rupt input while the second agent 1s 1n a second run

state 1n the predetermined class of run states 1n which

a hard reset cannot be performed without requiring the

second agent to be reset.

32. In a computer system including a partition and an
agent associated with the partition, a computer-implemented
method comprising steps of:

(A) receiving a first reset signal directed to the agent;

(B) 1in response to the first reset signal, performing a soft

reset on the agent while the partition 1s 1n a first run
state 1n a first predetermined class of run states 1n which
a hard reset cannot be performed on the agent without
requiring the partition to be reset; and

(C) performing the hard reset on the agent while the

partition 1s 1 a second run state in a second predeter-
mined class of run states in which the hard reset can be
performed on the agent without requiring the partition
to be reset.

UsS 7,089,413 B2

17

33. The method of claim 32, further comprising a step of:

(D) prior to the step (C), determining whether the partition
1s 1n the second run state in the second predetermined
class of run states; and

wherein the step (C) 1s performed only 11 1t 15 determined

in step (D) that the partition 1s 1n the second run state
in the second predetermined class of run states.

34. The method of claim 33, wherein the step (D) com-
prises a step of determining whether at least one software
program executing in the partition has been terminated.

35. The method of claim 34, wherein the at least one
soltware program comprises an operating system.

36. The method of claim 33, wherein the step (D) com-
prises a step of determining whether the partition 1s 1 a
powered-down state.

37. The method of claim 32, further comprising a step of:

(D) prior to the step (C), determining that the partition 1s

in the second run state 1n the second predetermined
class of run states; and

wherein the step (C) 1s performed in response to the

performance of the step (D).

38. The method of claim 32, wherein the step (A) com-
prises a step of recerving the first reset signal from a user of
the computer system.

39. The method of claim 32, wherein an operating system
executes 1n the partition 1n the first run state in the second
predetermined class of run states.

40. The method of claim 32, wherein the agent comprises
a plurality of components, and wherein the step (B) com-
prises a step of resetting fewer than all of the plurality of
components.

41. The method of claim 40, wherein the plurality of
components comprises a processor, and wherein the step (B)
comprises a step of resetting the processor.

42. The method of claim 40, wherein the agent further
comprises an interface for commumicating with the partition,
and wherein the step (B) 1s performed without disabling the
interface.

43. The method of claim 40, wherein the step (B) 1s
performed without resetting the partition.

44. The method of claim 40, wherein the step (B) 1s
performed without resetting the computer system.

45. The method of claim 44, wherein the computer system
comprises a plurality of partitions including the partition
associated with the agent, and wherein the step (B) 1is
performed without resetting the plurality of partitions.

46. The method of claim 32, wherein the step (D) com-
prises a step of transmitting a second reset signal to the
agent.

47. The method of claim 32, wherein the step (B) com-
prises a step of transmitting an mterrupt signal to the agent.

48. The method of claim 47, wherein the agent 1s con-
figured to service interrupt signals having priorities ranging
from a minimum priority to a maximum priority, and
wherein the step (B) comprises a step of transmitting the
interrupt signal, the interrupt signal having the maximum
priority to the agent.

49. The method of claim 32, further comprising a step of:

(D) prior to the step (C), receiving a second reset signal

from a user of the computer system; and

wherein the step (C) 1s performed 1n response to perior-

mance of the step (D).

5

10

15

20

25

30

35

40

45

50

55

60

18

50. The method of claim 32, further comprising a step of:

(D) prior to the step (C), bringing the partition into the
second run state 1n the second predetermined class of
run states.

51. In a computer system including a partition and an
agent associated with the partition, a computer-implemented
method comprising steps of:

(A) receiving a first reset signal directed to the agent;

(B) 1in response to the first reset signal, performing a soft
reset on the agent without resetting the partition by
transmitting an interrupt signal to the agent while the
partition 1s 1n a first run state in a first predetermined
class of run states 1n which a hard reset cannot be
performed on the agent without requiring the partition
to be reset;

(C) determining that the partition 1s 1n a second run state
in a second predetermined class of run states 1n which
the hard reset can be performed on the agent without
requiring the partition to be reset; and

(D) performing the hard reset on the agent by transmuitting
a second reset signal to the agent while the partition 1s
in the second run state in the second predetermined
class of run states.

52. The method of claim 51, wherein the agent comprises

a plurality of components, and wherein the step (B) com-
prises a step of resetting fewer than all of the plurality of
components.

53. In a computer system 1including a partition and an
agent associated with the partition, a device comprising;:

recerving means for receiving a first reset signal directed
to the agent;

soit reset means for performing a soft reset on the agent
while the partition 1s 1 a first run state i a first
predetermined class of run states in which a hard reset
cannot be performed on the agent without requiring the
partition to be reset; and

hard reset means for performing the hard reset on the
agent while the partition 1s 1n a second run state 1n a
second predetermined class of run states 1n which the
hard reset can be performed on the agent without
requiring the partition to be reset.

54. The device of claim 53, wherein no operating system
executes 1n the partition in the second run state in the second
predetermined class of run states.

55. The device of claim 53, wherein the agent comprises
a plurality of components, and wherein the soit reset means
comprises means for resetting fewer than all of the plurality
of components.

56. The device of claim 55, wherein the plurality of
components comprises a processor, and wherein the soft
reset means comprises means for resetting the processor.

57. The device of claim 55, wherein the soft reset means
comprises means for performing the soft reset on the agent
without resetting the partition.

58. The device of claim 53, wherein the hard reset means
comprises means for transmitting a second reset signal to the
agent.

59. The device of claim 53, wherein the soit reset means
comprises means for transmitting an interrupt signal to the
agent.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,089,413 B2 Page 1 of 1
APPLICATION NO. : 10/382346

DATED . August &, 2006

INVENTORC(S) : Michael John Erickson et al.

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

In column 15, Iine 55, in Claim 23, insert -- first -- before “run state”.
In column 15, line 55, in Claim 23, after “class of” delete ““first™.

In column 17, Iine 26, in Claim 39, after “state in the™ delete “second™ and insert
-- first --, therefor.

Signed and Sealed this

Third Day of February, 2009

), . (.20

JOHN DOLL
Acting Director of the United States Patent and Trademark Olffice

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

