US007080287B2
a2 United States Patent (10) Patent No.: US 7,080,287 B2
Salem 45) Date of Patent: Jul. 18, 2006
(54) FIRST FAILURE DATA CAPTURE 6,249,755 B1 ~ 6/2001 Yemini et al.
6,343,236 Bl 1/2002 Gibson et al.
(75) Inventor: Hany A. Salem, Pflugerville, TX (US) 6,363,497 Bl 3/2002 Chrabaszcz
6,615,367 B1* 9/2003 Unkle et al. 714/26
(73) Assignee: International Business Machines gﬂggéﬂggg g) ;gggj ﬁndfew 1496
: 738, | 11031 1 T
Corporation, Armonk, NY (US) 6,742,141 Bl 5/2004 Miller
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 655 days. WO WO00068793 Al 11/2000

OTHER PUBLICATIONS

(21) Appl. No.: 10/195,181
Horstmann, et al., Core Java 2, vol. 1, Ch. 11, pp. 635-691

(22) Filed: Jul. 11, 2002 (2001).
(65) Prior Publication Data * cited by examiner
S 2004/0024726 Al Feb. 5 2004 Primary Examiner—Robert Beausoliel
j Assistant Examiner—Joseph D Manoskey
(51) Int. CL (74) Attorney, Agent, or Firm—Stephen J. Walder, Jr.; David
GO6F 11/36 (2006.01) A. Mims, Jr.
52) US.CL ..., 714/38; 714/25;714/26;
(>2) j ’ 706/45 (57) ABSTRACT
(58) Field of Classification Search 714/25,

An example of a solution provided here comprises: selecting
an incident that requires further processing, capturing data
associated with said incident, outputting captured data, and

714/26, 30, 38; 706/45
See application file for complete search history.

(56) References Cited outputting a .desc‘:ription for said captured data, wheyeby
problem-solving 1s promoted. Another example comprises:
U.S. PATENT DOCUMENTS providing runtime features for data capture, selecting an
5.107.500 A 4/1099 Wakarmoto ef al incident that requires fur‘Fhfe:r p}*ocessing, Capturipg data on a
5,127,005 A * 6/1992 Oda et al. wovveveeereen.. 714/26 ~ thread that encounters said incident, and outputting captured
5,161,158 A * 11/1992 Chakravarty et al. T14/76 data. In some cases, such a solution might include compar-
5.170.480 A 12/1992 Moran et al. ing a current incident to known incidents, and 11 a match 1s
5,331,476 A 7/1994 Fry et al. found, retrieving information that is relevant to said current
5,423,025 A 6/1995 Goldman et al. incident. In some cases, such a solution might include taking
5,539,877 A 7/1996 Winokur et al. recovery action or corrective action in response to said
3,956,714 A 9/1999 Condon incident. Methods for handling errors, systems for executing
0,978,594 A . 1171999 Bonnell et al. such methods, and instructions on a computer-usable
g:ggg:ggi i : égggg Eztr:;osh etal e, 714725 medium, for executing such methods, are provided.
6,170,067 Bl 1/2001 Liu et al.
6,182,086 Bl 1/2001 Lomet et al. 39 Claims, 4 Drawing Sheets

——/\

225 Diagnostic
S 275 engine

215 EQS 230U

™~ Mo SN is |
Runtime > Filter Aénnagl?fnsés-: 235@

210 Ja
220”7 250
il Diagnostic
265{; modute(s)

.7 9 \
. Knowledge:
260/ base 4 240~

Il
L]

o
'''''''

Data capture 245 —~

US 7,080,287 B2

Sheet 1 of 4

Jul. 18, 2006

U.S. Patent

et [- @@UA

=
43 g3 L uL
1dvay | |-idvavy -
AV1dSIa N b
e’ 3T zz1”
_ _ _ Nz A4
A AN ...,Jﬂ.N:\ /N
N VA N \
43ldvay | [g3ldvav
'WOD 0l m HOSS3D
1 ~— /7~ | WoH NVH -OHd
pel 311 @ I_
é SIa bl oLl o:\J‘
WW fl.l,q
ovL

0G1

4!

US 7,080,287 B2

Sheet 2 of 4

Jul. 18, 2006

U.S. Patent

¢ 9ld

lllll
] -

|||||
- -~
- -

' abpajmouy
(s)ainpow =
olisoubeiq J =96
\omm
GEZ ' ouibus L.t
SIsAjeuy f
0€c ” . GG¢
aulbus G.C
olsoubel(q | oz

G ainided eleQ

0cc
4 Olc

1Blld < |

GlLe

)
B e
o0
N 012
—
% ajnpow
~ onsoubelp AlINo8S Gy7¢ ain1ded ele(

w 052

W ve 1€ "dde sjueg
< ﬁ Ot
m n am_,_r% mc\mmcm p
S m sisAjeuy 01¢€ uonoun ALnoes
2 .
£ aulbus 1 '

onsoubelq)7 GG¢e
= cog
oS UOI}O8UUOD
m G9C
| ‘ oSeq ’
£ Ol abpa|Mmouy

U.S. Patent

U.S. Patent Jul. 18, 2006 Sheet 4 of 4 US 7,080,287 B2

Select incident 410
FIG 4 (filter)

Yes No

Yes

Return information
for current incident

440

Respond to incident Respond to incident
(customized) (basic)

450 460

Output data 470
and description

UsS 7,080,287 B2

1
FIRST FAILURE DATA CAPTURE

CROSS-REFERENCES TO RELATED
APPLICATIONS, AND COPYRIGHT NOTIC.

L1l

The present application 1s related to co-pending applica-
tions entitled Error Analysis Fed from a Knowledge Base,
filed on even date herewith. These co-pending applications
are assigned to the assignee of the present application, and
herein incorporated by reference. A portion of the disclosure
of this patent document contains material which 1s subject to
copyright protection. The copyright owner has no objection
to the facsimile reproduction by anyone of the patent docu-
ment or the patent disclosure, as 1t appears in the Patent and
Trademark Oflice patent file or records, but otherwise
reserves all copyright rights whatsoever.

FIELD OF THE INVENTION

The present mvention relates generally to information
handling, and more particularly to error handling, recovery,
and problem solving, for software and information-handling
systems.

BACKGROUND OF THE INVENTION

Various approaches have been proposed for handling
errors or failures 1n computers. Examples mnclude U.S. Pat
No. 6,170,067, System for Automatically Reporting a Sys-
tem Failure 1n a Server (Liu et al., Jan. 2, 2001); it involves
monitoring functions such as cooling fan speed, processor
operating temperature, and power supply. However, this
example does not address software errors. Another example
1s U.S. Pat. No. 5,423,025 (Goldman et al., Jun. 6, 1995); 1t
involves an error-handling mechanism for a controller, 1n a
large-scale computer using the IBM ESA/390 architecture.
In the above-mentioned examples, error-handling 1s not
flexible; error-handling 1s not separated from hardware, and
there 1s no dynamic tuning.

Unfortunately, conventional problem-solving for software
often 1nvolves prolonged data-gathering and debugging.
Collection of diagnostic data, if done 1n conventional ways,
may 1mpact software performance in unacceptable ways,
and may have to be repeated several times until a problem’s
cause 1s revealed. Thus there i1s a need for automated
solutions that provide useful diagnostic data, leading to a
uselul response; at the same time, the burdens of reproduc-
ing problems and tracing problems need to be reduced, and
the destabilizing eflects of major code revisions need to be
avoided.

SUMMARY OF THE INVENTION

An example of a solution to problems mentioned above
comprises: selecting an incident that requires further pro-
cessing, capturing data associated with said incident, out-
putting captured data, and outputting a description for said
captured data, whereby problem-solving 1s promoted.
Another example comprises: providing runtime features for
data capture, selecting an incident that requires further
processing, capturing data on a thread that encounters said
incident, and outputting captured data.

In some cases, such a solution might include comparing
a current incident to known incidents, and if a match 1s
found, retrieving information that is relevant to said current
incident. In some cases, such a solution might include taking
recovery action or corrective action in response to said
incident.

10

15

20

25

30

35

40

45

50

55

60

65

2
BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present mvention can be
obtained when the following detailed description 1s consid-
ered 1n conjunction with the following drawings. The use of
the same reference symbols 1n different drawings indicates
similar or identical items.

FIG. 1 illustrates a simplified example of a computer
system capable of performing the present invention.

FIG. 2 1s a block diagram illustrating an example of a
method and system for handling errors according to the
present 1nvention.

FIG. 3 1s a block diagram 1illustrating a method and system
for handling errors, with a hypothetical online banking
example.

FIG. 4 1s a tlow chart 1llustrating an example of a method
for handling errors according to the present invention.

DETAILED DESCRIPTION

The examples that follow involve the use of one or more
computers and may involve the use of one or more com-
munications networks. The present invention 1s not limited
as to the type of computer on which 1t runs, and not limited
as to the type of network used. Some of the examples that
follow have been implemented by using object-oriented
programming with the JAVA programming language; how-
ever, the mmvention could be implemented with another
programming language. Some of the examples that follow
have been implemented for handling errors in web applica-
tion server software; however, the mnvention could be 1imple-
mented for handling errors 1n any kind of software product
or software component.

The following are definitions of terms used 1n the descrip-
tion of the present imnvention and 1n the claims:

“Comparing” means bringing together for the purpose of
finding any likeness or diflerence, including a quantitative or
qualitative likeness or difference. “Comparing” may involve
answering questions including but not limited to: “Does a
given item match any element of a set of known items?” Or
“Is a measured value greater than a threshold value?”

“Component” means any element or part, and may
include elements consisting of hardware or software or both.

“Computer-usable medium” means any carrier wave, sig-
nal or transmission facility for communication with com-
puters, and any kind of computer memory, such as tloppy

disks, hard disks, Random Access Memory (RAM), Read
Only Memory (ROM), CD-ROM, flash ROM, non-volatile
ROM, and non-volatile memory.

“Customize” means to adapt, adjust or tune.

“Frror’ means any event that may be unexpected, unde-
sirable, or incorrect.

“First failure data capture” (FFDC) refers to automated
solutions that are typically “on” and ready to work the first
time an error or failure occurs; 1t also refers to reducing the
burdens of problem reproduction and repetitive data capture.

“Incident” means any event that may be perceived as a
cause of past, present, or future trouble.

“Outputting” means producing, transmitting, or turning
out 1n some manner, including but not limited to writing to
disk, printing on paper, or displaying on a screen, or using
an audio device.

“Storing” data or information, using a computer, means
placing the data or information, for any length of time, in
any kind of computer memory, such as tloppy disks, hard

UsS 7,080,287 B2

3

disks, Random Access Memory (RAM), Read Only
Memory (ROM), CD-ROM, tlash ROM, non-volatile ROM,
and non-volatile memory.

FIG. 1 illustrates a simplified example of an information
handling system that may be used to practice the present
invention. The invention may be implemented on a vanety
of hardware platforms, including embedded systems, per-
sonal computers, workstations, servers, and mainirames.
The computer system of FIG. 1 has at least one processor
110. Processor 110 1s mterconnected via system bus 112 to
random access memory (RAM) 116, read only memory
(ROM) 114, and input/output (I/0) adapter 118 for connect-
ing peripheral devices such as disk unit 120 and tape drive
140 to bus 112. The system has user interface adapter 122 for
connecting keyboard 124, mouse 126, or other user interface
devices such as audio output device 166 and audio input
device 168 to bus 112. The system has communication
adapter 134 for connecting the information handling system
to a data processing network 150, and display adapter 136
for connecting bus 112 to display device 138. Communica-
tion adapter 134 may link the system depicted in FIG. 1 with
hundreds or even thousands of similar systems, or other
devices, such as remote printers, remote servers, or remote
storage units. The system depicted in FIG. 1 may be linked
to both local area networks (sometimes referred to as
intranets) and wide area networks, such as the Internet.

While the computer system described in FIG. 1 1s capable
ol executing the processes described herein, this computer
system 1s simply one example of a computer system. Those
skilled 1n the art will appreciate that many other computer
system designs are capable of performing the processes
described herein.

FIG. 2 1s a block diagram illustrating an example of a
method and system for handling errors according to the
present invention. To begin with an overview, FIG. 2 shows
filter 220 selecting an 1incident that requires further process-
ing, and one or more diagnostic modules at 240 capturing
data on a thread that encounters said incident, from runtime
210. Features for data capture were provided 1n runtime 210.
An example like this may also involve outputting captured
data (not shown 1n FIG. 2; see FIGS. 3 and 4). Arrows 225
and 255 symbolize flow of selected incidents 1n FIG. 2.

To begin a more detailed description of the example in
FIG. 2, consider how an application or software component
(symbolized by runtime 210) might utilize such a method
and system for handling errors. One or more diagnostic
modules 240 per soitware component were provided. Data
was made available to diagnostic modules 240, at key places
in the code, to help collect volatile data 1f an incident
occurred. An example implementation mvolved providing
runtime features (in runtime 210) for data capture. These
teatures included transferring control to at least one data-
capture engine when an incident occurred, creating diagnos-
tic module(s) 240 (one or more diagnostic modules per
component), registering diagnostic module(s) 240 with a
diagnostic engine 230 (one diagnostic engine per thread),
and making data available to diagnostic module(s) 240. An
example implementation imnvolved minimizing in-line code
for data capture, or keeping code for data capture substan-
tially separate from in-line paths, symbolized by showing
one or more diagnostic modules at 240 separate from
runtime 210 1n FIG. 2.

Data capture (symbolized by double-headed arrow 2435)
involved bundling an incident 1 a persistent form that
gathered data from multiple components. Data capture 243
comprised at least one action chosen from: producing a
thread dump; producing a process dump; and producing a

10

15

20

25

30

35

40

45

50

55

60

65

4

core dump. Data capture 245 in some cases comprised
parsing exceptions (arrow 215 symbolizes exceptions,
errors, or events), and based on said parsing exceptions,
selecting data for capture. This was one way of accomplish-
ing customized data capture, 1n addition to basic, general-
1zed data capture.

There was another way 1n which data capture was cus-
tomized. This customization was implemented by using
analysis engine 250 and knowledge base 260. These two
components, along with arrows 235, 265, and 275 (arrows
showing communication with other components), are drawn
in broken lines 1n FI1G. 2, to symbolize that these are optional
features. Using these optional features was a way of cus-
tomizing data capture, based on a particular incident’s
characteristics. In an example implementation, analysis
engine 250 compared a current incident to known incidents
in knowledge base 260. If a match was found 1n knowledge
base 260, information that was relevant to the current
incident was retrieved from knowledge base 260. This
retrieved information was used to customize data capture
245. Arrow 2635 shows communication between analysis
engine 250 and knowledge base 260.

An example implementation isolated one or more FFDC
entities (such as analysis engine 250) from the specific
teatures of any particular computing platform or product. On
the other hand, some functions were associated with a
specific computing platform or product, to utilize First
Failure Data Capture 1n that platform or product. A platform-
specific diagnostic engine 230 was utilized. A “Utils™ class
or interface represented platform-specific functions. Plat-
form-specific functions comprised:

imitiating boundaries for an incident;

capturing general data for said incident;

logging data from components that were imvolved with
said incident; and

bundling output when processing was complete.

Initiating boundaries further comprised actions such as
associating an incident with an output stream, or creating an
output stream for said incident. Capturing general data
further comprised capturing items such as date, timestamp,
classpath, class loader, and configuration settings.

An example implementation suppressed data capture dur-
ing certain states. Our prototype demonstrated that many
benign errors could occur before steady state operation was
attained. For that reason, suppressing data capture during
certain states may be desirable. Some of these states may be:
process 1nitialization, process termination or shutdown,
application 1nitalization and others. It was the responsibility
of the Utils implementation to define states where data
capture could be suppressed.

In an example implementation, the Utils class provided a
service to facilitate temporarily logging data that could be
retrieved later 11 an incident occurred. The programming
model was such that the data was logged during normal
runtime processing, and the data was retrieved by the
diagnostic module 240 that was terested. This facility
allowed for automatic stack data capture.

Filter 220 was a first recipient of incidents, errors, or
events; 1t was a means for selecting incidents that required
further processing. Filtering was done according to criteria
such as the severity of an error, or the type of exception. An
Incident object was created by the filter and passed to other
core FFDC entities. In an example implementation, filter
220 was also known as a “High Performance Filter” (HPF).
Since all errors were routed to this filter, the filtration
process was considered a high performance path. Functions
of filter 220 included maintaining a list of incident types that

UsS 7,080,287 B2

S

required further processing, and preventing multiple 1nvo-
cation of data capture for the same incident. Filter 220 had
an associated configuration file to list incidents that required
turther processing. It was also responsible for preventing
multiple invocation of the remaiming FFDC engines for the
same 1ncident by accessing the list of recent incidents
processed by the diagnostic engine 230. Since filter 220 was

the first FFDC engine that was called for incidents, it was the
gate for FFDC. Disabling filter 220 essentially disabled

FEDC.

Filter 220 filtered errors based on configuration settings.
The filter 220 could be tuned, enabled, and disabled dynami-
cally by updating 1its configuration settings. With rapid
parsing techniques, mcidents could be checked against the
configuration settings for filtering. A simple implementation
could be used for a tactical solution. Additionally, the
diagnostic engine (DE) 230 was responsible for providing a
set of previously handled incidents so that cascaded inci-
dents were not subject to further processing. Cascaded
incident analysis could be enabled for severe conditions.
This option could be specified in the configuration settings.
FFDC could be disabled at server initialization or during
other states (e.g. shutdown, etc.). If a server would not start
or encountered start up problems, the persistent form of the
configuration setting could be updated prior to server star-
tup, to enable processing of all incidents.

Calls from the runtime 210 were made to a method to
forward exceptions to the filter 220. This was a method that
was 1njected into runtime code of various components to
participate in FFDC. These calls were made on error paths
that were candidates for FFDC.

The filter 220 located a diagnostic engine 230 (DE) for the
thread. The DE 230 provided a cache of recent incidents that
played a role in the decision for continuing FFDC process-
ing, or simply returning control to the runtime 210 without
turther processing. If FFDC processing was to be continued,
an Incident object was created. An analysis engine (AE) 250
was located, 11 one was configured. A method to analyze the
incident (e.g. AE.analyze(lncident)) was called and direc-
tives might be found. These along with the Incident and the
object pointer were passed to the DE 230.

Analysis engine 250 was a means for comparing a current
incident to known incidents, and a means for customizing
responses. In an example implementation, analysis engine
250 was also known as a “Log Analysis Engine.” Analysis
engine 250, an optional component, helped provide dynamic
tuning information for incident handling. This information
was referred to as “directives.” For increased tlexibility, a
diagnostic module 240 could be implemented to follow
directives when available. Directives were stored in knowl-
edge base 260. Analysis engine 250 matched an incident
against a set of known incidents and provided additional
information, directive(s), that could assist a diagnostic mod-
ule 240 1n customizing the data that was captured and
logged.

A knowledge base 260 was a repository of information
such as symptoms, directives, suggested workarounds and
explanations. A knowledge base 260 provided input to
analysis engine 250. When an Incident was sent to analysis
engine 250 [via a method call to analyze the 1ncident, e.g.
AE.analyze(Incident)], this incident was compared to the
repository, and 1i a match was found the associated direc-
tives were returned as a string array. The last entry in the
array was the message or associated text that was normally
displayed by the analysis engine 250. If no match 1s found,
a null was returned.

10

15

20

25

30

35

40

45

50

55

60

65

6

An example implementation provided access to a knowl-
edge base 260 via a web site. Knowledge base 260 was
updated, and updated information was provided to users,
utilizing familiar techniques for providing dynamic content
through a web site. Thus any user could obtain updated
information and benefit from other users” experience.
Knowledge base 260 could be implemented by using IBM’s

DB2 technology, or other database management soiftware
could be used, such as ORACLE, INFORMIX, SYBASE,

MY SQL, Microsoit Corporation’s SQL SERVER, or similar
soltware.

Control tlow for incidents was orchestrated by the diag-
nostic engine 230 (DE). The diagnostic engine 230 was
responsible for the distribution of an incident to the corre-
sponding component. The DE 230 controlled the flow
among diagnostic modules 240 for data collection. The
diagnostic engine 230 was a dynamic class loader, parent,
and 1mvoker of diagnostic modules 240. The diagnostic
engine 230 also provided platform-specific utilities for diag-
nostic modules 240, such as thread dump, core dump, etc.,
that diagnostic modules 240 could call for global data
collection. The diagnostic engine 230 provided common
methods for diagnostic modules 240. One instance of a
diagnostic engine 230 was created per thread.

Diagnostic module(s) 240 (DM) were a means for cap-
turing data; they were a data-gathering class for a compo-
nent or sub-component. Diagnostic module(s) 240 were
organized mto a single class, rather than implementing
disparate routines in various places of component code to
handle incidents. DM 240 code was kept separate from
in-line paths. Diagnostic module(s) 240 were developed and
maintained by components participating in FFDC. Diagnos-
tic module(s) 240 provided data that was beneficial to
dlagnose a problem. Diagnostic module(s) 240 assisted the
DE 230 1n control flow for the current Incident.

Here 15 a list of some functions performed by diagnostic
module(s) 240: calling DE 230’s services when appropriate
to request thread dumps, core dumps etc.; parsing and
processing directives specified by symptom ﬁles (supplied
by DE 230); pulling and logging stacked data that was
pushed for a component; performing generic data capture in
the absence of directives (this would be a typical or common
set of data that was gathered when diagnosing a problem 1n
an area); parsing exceptions and collecting specific data that
pertained to the situation; providing descriptions for the data
that was dumped, so that data was easy for service personnel
to understand.

FIG. 3 1s a block diagram illustrating a method and system
for handling errors, with a hypothetical online banking
example. To begin with an overview of this example, a set
ol applications such as security function 310, bank applica-
tion 311, and bank application 312 are designed to allow
bank customers to conduct financial transactions via the
Internet. Normally, a customer would be authenticated
before completing a transaction. Successiul authentication
requires security function 310 to communicate with direc-
tory 300. However, 1n this example broken connection 305
prevents authentication. FIG. 3 shows analysis engine 250
receiving an incident (arrow 255). In this example, the
incident mvolves broken connection 305 to directory 300.
FIG. 3 shows security diagnostic module 340 capturing data
associated with said incident, from security function 310.
For example, security diagnostic module 340 may probe the
state of security function 310. The example in FIG. 3 also
involves outputting captured data, and outputting a descrip-
tion for said captured data (arrow 313) whereby problem-
solving 1s promoted. FIG. 3 1s a simplified diagram that

UsS 7,080,287 B2

7

(unlike FIG. 2) does not show filter 220, selecting an
incident that requires further processing.

As indicated by the dashed line, the components analysis
engine 250 and knowledge base 260 may be incorporated
into one computer system 302, or these components may be
incorporated 1into separate computer systems independent of,
but accessible to, one another. Arrow 265 shows communi-
cation between analysis engine 250 and knowledge base
260.

For example, analysis engine 250 may get directives,
appropriate for this incident, from knowledge base 260.
Directives from knowledge base 260 may provide a means
for customizing data capture, based on an incident’s char-
acteristics. For example, a directive from knowledge base
260 may 1nstruct security diagnostic module 340 to probe
for network status at the time of the incident.

Diagnostic modules (e.g. security diagnostic module 340)
would be a means for providing output 315. Providing
output at 315 may comprise providing a noftification mes-
sage (e.g. via an administration console or other forms of
centralized monitoring) to indicate that data capture for an
Incident has occurred, and that data 1s available at that time.
Providing output at 315 may comprise describing captured
data, and describing a context for said captured data,
whereby problem-solving 1s promoted. For example, output
at 315 may include a message to an operator, such as: “User
cannot be authenticated. Security function 310 cannot con-
nect to directory 300.” The following i1s another security-
related example of output at 315:

Security Component FFDC Data:

Unexpected Exception:

<exception name:>

<call stack>

A Secunity Exception was caught during com.ibm.web-
sphere.security.password Verify(©* ****%”) for user “j0e”.

The credentials of the user appear to have expired. The
captured data shows:

Current Time: 12:21 pm, Credentials creation time: 12:01,
credential expiration interval:

20 minutes.

Query 1ssued to retrieve user from LTPA on dum-
my.ldap.server.com:389 1s: “‘cn=. "LDAP Specific
error=. . .

Cache value of data from Security Vault 1s: . . .

Dump of active user data from SecurityL TPACache:

John Smith, cn=, , , ou=, , , cred created at: 11:17 am,
expiration 11:37 am, efc.

The above example 1s hypothetical; however, 1t demon-
strates how 1ncident data can be made easier to comprehend,
whereby problem-solving 1s promoted.

An example like the one 1n FIG. 3 may mvolve tempo-
rarily logging data that could be retrieved later 11 an incident
occurred. The following 1s another security-related example:
i a login 1s occurring, the security runtime (security function
310) may opt to push the user name or CN in case an
exception happens. In security diagnostic module 340, the
user 1dentity can be retrieved and logged. The data can also
be used to capture artifacts that are related to 1t (e.g.
uid=*j0¢€’). Security diagnostic module 340 may choose to
extract cache state for this user (e.g. credential timeout,
expiration, age).

An example like the one 1 FIG. 3 may mnvolve taking
corrective action, or recovery action, 1n response to an
incident Corrective action could be automatic, or could
involve some human intervention. In the example of FIG. 3,
involving a broken connection 305 to directory 300, a
directive such as “try to reconnect to directory 300” might

10

15

20

25

30

35

40

45

50

55

60

65

8

be retrieved from knowledge base 260. Thus, by automati-
cally following this directive, security function 310 could be
reconnected to directory 300. Obtaiming a proper directive
and taking corrective action could be accomplished through
security diagnostic module 340. Consider other examples of
corrective action: 1ssuing a warning to the Java virtual
machine or operating system about a condition (e.g. resource
shortage) that contributed to the incident, or 1ssuing an
action message to the operator.

In another example of corrective acton or self-healing, a
DM (e.g. security diagnostic module 340) may request an
automated download and application of a fix, that could be
made eflective instantly or at the next restart. Self tuming,
could also be performed using this conduit. For example, 1f
a value exceeds a certain threshold, an intentional Incident
could be created and handed to the filter (FIG. 3 1s a
simplified diagram that, unlike FIG. 2, does not show filter
220). The Diagnostic Module that handles the incident could
analyze the Incident and perform seli-tuning (e.g. increase
or decrease a thread pool size). A set of known conditions
may only occur 1 some environments and 1mpact system
throughput. Feeding some of these conditions, 11 they occur,
to the FFDC engines and providing tuning parameters
through directives would be another example of corrective
action.

An example like the one 1n FIG. 3 may involve perform-
ing operations on multiple servers. FIG. 3 1s a simplified
diagram; electronic banking or other electronic transactions
may actually involve at least one network and two or more
servers. In an example of multiple servers, a first transaction
diagnostic module on a {first server may determine that an
error originated on a second server. The first transaction
diagnostic module may send a request to ivoke a second,
remote, transaction diagnostic module for data capture on a
second server.

FIG. 4 1s a tlow chart 1llustrating an example of a method
for handling errors according to the present invention. This
example begins at block 410, selecting an incident that
requires further processing. At this point, for example, calls
from the runtime are made to a method to forward excep-
tions to a filter. With rapid parsing techniques, errors can be
checked against configuration settings for filtering. Filtering
may be done according to criteria such as the severity of an
error, or the type of exception. The DE provides a cache of
recent 1incidents that play a role 1n the decision to continue
processing, or simply returning control to the runtime with-
out further processing. If processing 1s to be continued, an
Incident object 1s created.

At decision 420, the path depends on whether an analysis
function or analysis engine 1s enabled. In the example of
FIG. 2, optional analysis engine 250 and knowledge base
260 were described. Table 1 summarizes options that may be
utilized for analysis and diagnostics. Also see FIG. 2 and the

description of analysis engine 250 and diagnostic engine
230.

TABLE 1

SETTINGS FOR ANALYSIS ENGINE (AE)
AND DIAGNOSTIC ENGINE (DE)

DE
AL OFF ON
OFF No problem Non-customized,
analysis. No data basic data
capture. capture.

UsS 7,080,287 B2

9

TABLE 1-continued

SETTINGS FOR ANALYSIS ENGINE (AE)
AND DIAGNOSTIC ENGINE (DE)

DE

ALl OFF ON

ON Problem analysis

and customized
data capture (full
FEFDC function).

Problem analysis.
No data capture.
Good for software

development.

If analysis 1s not enabled, the “No” branch 1s taken at
decision 420, and the next action 1s at block 460, basic
response. Non-customized, basic data capture 1s an example
of a basic response. On the other hand, 11 analysis 1s enabled,
the “Yes” branch 1s taken at decision 420. For example, an
AE 1s located, if one 1s configured. The next action 1s
comparing a current incident to known incidents, at decision
430: does the current incident match a known incident? A
method to analyze the incident [e.g. AE.analyze(Incident)] 1s
called and directives may be found. If the current incident
does not match a known incident, the “No” branch 1s taken
at decision 430, and the next action 1s at block 460, a basic
response. On the other hand, 11 the current incident matches
a known incident, the “Yes” branch 1s taken at decision 430,
and the next action 1s at block 440, returning or retrieving
information that 1s relevant to the current incident. For
example, this may involve returning or retrieving one or
more 1items such as directives, solutions, work-arounds, and
explanations.

This leads to a customized response at block 450. For
example, this may mmvolve one or more responses such as
taking corrective action, providing a message, and capturing,
data. Consider data capture as a response. An incident may
be bundled mto a single persistent form that gathers data
from multiple components. For efliciency, the data can be
persisted as i1ts size grows or at the completion of data
gathering. Consider customized data capture as an example:
a DM for a connection manager may be implemented to
handle the directive strings: “dump_sqgl_statement”, “dum-
p_result_set”, etc. Assuming that the default action for an
SQL error 972 results 1n capturing the SQL statement but not
the result set, a directive to dump the result set 1n the case
of SQL error 972 could be easily added. The preceding
example shows directives in the form of string arrays. To
extend the example, consider how directives could give a
troubleshooter the flexibility to request additional data under
certain conditions. This could be achieved with no code
changes 1n a DM operating 1n a production environment.
Directive strings could be added to a knowledge base.

The last action 1n this example 1s outputting captured data,
at block 460. The 1incident may be post processed to produce
output that 1s easy to comprehend. Diagnostic Modules
(DM’s) may provide output data that 1s as self descriptive as
possible to eliminate post processing, or provide tools for
post processing. The diagnostic engine may request addi-
tional data to be provided by several components, through
their respective DM’s, to form a complete state or snapshot
at the time of the incident. The additional components may
be those present on the call stack or those called directly. The
captured data should be written 1n a format that permits easy
navigation.

One example 1s making the incident data readable by a
servlet that 1s provided for FFDC. Customers could then
grant service personnel and developers secure online access

10

15

20

25

30

35

40

45

50

55

60

65

10

to FFDC data via this servlet. The servlet would allow
development and support teams to browse and search 1nci-
dent data. Utilizing this servlet and granting access to
service personnel would enable instant, remote, problem
ivestigation.

A convention could be established for naming incident
data files. An incident would generate a separate persistent
file with a unique name. The following 1s an example:

<log
location>%i1ncident%<processid>%<threadid>%<timestamp>
where “%” may be a /7, *\7, “.” etc.

Those skilled in the art will recognize that blocks 1n the
above-mentioned flow chart could be arranged in a some-
what different order, but still describe the invention. Blocks
could be added to the above-mentioned flow chart to
describe details, or optional features; some blocks could be
subtracted to show a simplified example.

In conclusion, we have shown examples of solutions for
error-handling, recovery, and problem-solving.

One of the possible implementations of the invention 1s an
application, namely a set of instructions (program code)
executed by a processor ol a computer from a computer-
usable medium such as a memory of a computer. Until
required by the computer, the set of istructions may be
stored 1n another computer memory, for example, 1n a hard
disk drive, or 1n a removable memory such as an optical disk
(for eventual use 1n a CD ROM) or floppy disk (for eventual
use 1n a floppy disk drive), or downloaded via the Internet
or other computer network. Thus, the present invention may
be implemented as a computer-usable medium having com-
puter-executable 1instructions for use 1 a computer. In
addition, although the various methods described are con-
veniently implemented 1n a general-purpose computer selec-
tively activated or reconfigured by software, one of ordinary
skill 1n the art would also recognize that such methods may
be carried out 1n hardware, 1n firmware, or 1n more special-
1zed apparatus constructed to perform the required method
steps.

While the mvention has been shown and described with
reference to particular embodiments thereof, 1t will be
understood by those skilled in the art that the foregoing and
other changes 1n form and detaill may be made therein
without departing from the spirit and scope of the invention.
The appended claims are to encompass within their scope all
such changes and modifications as are within the true spirit
and scope of this invention. Furthermore, 1t 1s to be under-
stood that the mvention is solely defined by the appended
claims. It will be understood by those with skill in the art that
i a specific number of an introduced claim element 1is
intended, such intent will be explicitly recited in the claim,
and 1n the absence of such recitation no such limitation 1s
present. For non-limiting example, as an aid to understand-
ing, the appended claims may contain the introductory
phrases “at least one” or “one or more” to introduce claim
clements. However, the use of such phrases should not be
construed to imply that the introduction of a claim element
by indefinite articles such as “a” or “an” limits any particular
claim containing such introduced claim element to 1nven-
tions containing only one such element, even when the same
claim includes the introductory phrases “at least one™ or
“one or more” and 1indefinite articles such as “a” or “an;” the
same holds true for the use in the claims of definite articles.

I claim:

1. A method for handling errors, said method comprising:

detecting an occurrence of an incident 1n a thread execut-

ing 1 a runtime environment of a data processing
system:

UsS 7,080,287 B2

11

providing incident information regarding the incident to
an incident filter, wherein the incident information

identifies an 1ncident type;

comparing, 1n the incident filter, the mncident type of the
incident to a list of incident types requiring further
processing;

selecting the incident for turther processing i the incident
has an incident type that matches an incident type 1n the
list of incident types requiring further processing;

identifying a diagnostic engine associated with the thread,
wherein each thread 1n the runtime environment has a
separate associated diagnostic engine; and

determining if data capture for the incident 1s to be
performed based on a list of recent incidents processed
by the identified diagnostic engine, wheremn if the
incident 1s selected for further processing and data
capture for the incident 1s to be performed, the method
further comprises:

capturing data associated with said incident;
outputting captured data; and

outputting a description for said captured data, whereby
problem-solving 1s promoted.

2. The method of claim 1, further comprising:

keeping code for said capturing substantially separate
from 1n-line paths.

3. The method of claim 1, wherein the list of incident
types that require further processing is maintained in the
identified diagnostic engine.

4. The method of claim 1, wherein determining 11 data
capture for the mcident 1s to be performed based on a list of
recent 1ncidents processed by the identified diagnostic
engine further comprises:

preventing multiple invocation of said capturing data for
a same incident based on the list of recent incidents
processed by the identified diagnostic engine.

5. The method of claim 1, wherein said capturing further
comprises at least one action chosen from:

producing a thread dump;
producing a process dump; and
producing a core dump.

6. The method of claim 1, wherein said capturing further
COmMprises:

parsing exceptions; and
based on said parsing, selecting data for capture.

7. The method of claim 1, wherein said capturing further
COmMprises:

performing operations on multiple servers.
8. The method of claim 1, further comprising:

customizing said capturing based on said incident’s char-
acteristics.

9. The method of claim 1, further comprising;:
comparing a current incident to known incidents; and

if a match 1s found, retrieving information that 1s relevant
to said current incident.

10. The method of claim 1, further comprising:

taking corrective action in response to said incident.

11. The method of claim 1 further comprising:

creating a diagnostic module;

registering said diagnostic module with the identified
diagnostic engine; and

making data available to said diagnostic module.

12. The method of claim 1, further comprising;:

bundling said incident in a persistent form that gathers
data from multiple components.

10

15

20

25

30

35

40

45

50

55

60

65

12

13. The method of claim 1, wherein said capturing further
COmMprises:

inmitiating boundaries for an 1ncident;

capturing general data for said incident,

logging data from components that are mnvolved with said

incident; and

bundling output when processing 1s complete.

14. The method of claam 13, wherein said nitiating
boundaries further comprises at least one action chosen
from:

associating an incident with an output stream; and

creating an output stream for said incident.

15. The method of claim 13, wherein said capturing
general data further comprises capturing at least one item
chosen from:

date;

timestamp;

classpath;

class loader; and

configuration settings.

16. The method of claim 1, further comprising:

suppressing said capturing during certain states.

17. The method of claim 1, further comprising:

temporarily logging data that can be retrieved later if an

incident occurs.

18. The method of claim 1, further comprising;:

comparing a current incident to known incidents; and

11 a match 1s found, retrieving information that 1s relevant

to said current 1incident.

19. The method of claim 1, further comprising:

taking corrective action 1n response to said incident.

20. A system for handling errors, said system comprising:

means for detecting an occurrence of an incident 1n a

thread executing 1n a runtime environment of a data
processing system;

means for providing incident information regarding the

incident to an 1incident filter, wherein the incident
information identifies an incident type;

means for comparing, in the incident filter, the imncident

type of the incident to a list of incident types requiring
further processing;

means for selecting the incident for further processing 1f

the incident has an incident type that matches an
incident type in the list of incident types requiring
further processing;

means for identifying a diagnostic engine associated with

the thread, wherein each thread in the runtime envi-
ronment has a separate associated diagnostic engine;
means for determining 11 data capture for the incident 1s
to be performed based on a list of recent incidents
processed by the i1dentified diagnostic engine;

means for capturing data associated with said incident;

means for outputting captured data; and

means for outputting a description for said captured data,

wherein said means for capturing data, means for
outputting captured data, and means for outputting a
description of said captured data operate 11 the incident
1s selected for further processing and data capture for
the incident 1s to be performed.

21. The system of claim 20, wherein said means for
capturing further comprises:

code that 1s substantially separate from 1n-line paths.

22. The system of claim 20, wherein the list of incident
types that require further processing is maintained in the
identified diagnostic engine.

23. The system of claim 20, wherein said means for
determining 1f data capture for the incident 1s to be per-

UsS 7,080,287 B2

13

formed based on a list of recent incidents processed by the
identified diagnostic engine further comprises:
means for preventing multiple invocation of said means
for capturing data, for a same incident based on the list
of recent incidents processed by the 1dentified diagnos- 5
tic engine.
24. The system of claim 20, wherein said means for

capturing further comprises means for performing at least
one action chosen from:

producing a thread dump; 10

producing a process dump; and

producing a core dump.

25. The system of claim 20, wherein said means for
capturing further comprises:

means for parsing exceptions; and 15

means responsive to said parsing, for selecting data for

capture.

26. The system of claim 20, wherein said means for
capturing further comprises:

means for performing operations on multiple servers.

27. The system of claim 20, further comprising:

means for customizing said means for capturing, based on

said incident’s characteristics.

28. The system of claim 20, further comprising:

means for comparing a current incident to known inci-

dents; and means for retrieving information that 1s
relevant to said current incident, 11 a match 1s found.

29. The system of claim 20, further comprising:

means for taking corrective action in response to said

incident.

30. A computer readable storage medium having com-
puter-executable instructions for handling errors, said com-
puter-executable instructions comprising:

means for detecting an occurrence of an incident in a ;s

thread executing 1n a runtime environment of a data
processing system;
means for providing incident information regarding the
incident to an incident filter, wherein the incident
information identifies an incident type; 40

means for comparing, in the incident filter, the incident
type of the incident to a list of incident types requiring
further processing;

means for selecting the incident for further processing 1f

the incident has an incident type that matches an 45
incident type in the list of incident types requiring
further processing;

means for identifying a diagnostic engine associated with

the thread, wherein each thread in the runtime envi-

ronment has a separate associated diagnostic engine; 50
means for determining i1f data capture for the incident 1s

to be performed based on a list of recent incidents

processed by the 1dentified diagnostic engine;

20

25

30

14

means for capturing data associated with said incident;

means for outputting captured data; and

means for outputting a description for said captured data,

wherein said means for capturing data, means for
outputting captured data, and means for outputting a
description of said captured data operate 11 the incident
1s selected for further processing and data capture for
the 1incident 1s to be performed.

31. The computer readable storage medium of claim 30,
wherein said means for capturing further comprises:

code that 1s substantially separate from 1n-line paths.

32. The computer readable storage medium of claim 30,
wherein the list of incident types that require further pro-
cessing 1s maintained 1n the identified diagnostic engine.

33. The computer readable storage medium of claim 30,
wherein said means for determining 1f data capture for the
incident 1s to be performed based on a list of recent incidents
processed by the i1dentified diagnostic engine further com-
Prises:

means for preventing multiple mnvocation of said means

for capturing data, for a same incident based on the list
of recent incidents processed by the 1dentified diagnos-
tic engine.

34. The computer readable storage medium of claim 30,
wherein said means for capturing further comprises means
for performing at least one action chosen from:

producing a thread dump;

producing a process dump; and

producing a core dump.

35. The computer readable storage medium of claim 30,
wherein said means for capturing further comprises:

means for parsing exceptions; and

means responsive to said parsing, for selecting data for

capture.

36. The computer readable storage medium of claim 30,
wherein said means for capturing further comprises:

means for performing operations on multiple servers.

37. The computer readable storage medium of claim 30,
further comprising:

means for customizing said means for capturing, based on

said incident’s characteristics.

38. The computer readable storage medium of claim 30,
further comprising:

means for comparing a current incident to known 1nci-

dents; and

means for retrieving information that 1s relevant to said

current incident, 1t a match 1s found.

39. The computer readable storage medium of claim 30,
turther comprising;:

means for taking corrective action in response to said

incident.

	Front Page
	Drawings
	Specification
	Claims

