12 United States Patent
Choy et al.

US007080085B1

(10) Patent No.:
45) Date of Patent:

US 7,080,085 B1

(54) SYSTEM AND METHOD FOR ENSURING
REFERENTIAL INTEGRITY FOR
HETEROGENEOUSLY SCOPED
REFERENCES IN AN INFORMATION
MANAGEMENT SYSTEM

(75)

(73)

(%)

(21)
(22)

(1)
(52)

(58)

(56)

Inventors: David Mun-Hien Choy, Los Altos, CA

(US); Sriram Raghavan, San Jose, CA

(US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35

5,820,208
5,937,402
5,978,811
5,991,776
6,012,067
0,029,160
0,038,563
6,067,542
6,085,031
6,085,191
0,088,094
0,112,209
0,144,959
6,151,623
0,154,741
0,189,010
6,192,405
6,249,873
0,275,824
0,308,173
0,385,730
6,473,748

el T g e g g gl g S g g g

10/1998
8/1999
11/1999
11/1999
1/2000
2/2000
3/2000
5/2000
7/2000
7/2000
7/2000
8/2000
11/2000
11/2000
11/2000
2/2001
2/2001
6/2001
8/2001
10/2001
5/2002
10/2002

* cited by examiner

U.S.C. 154(b) by 971 days.

Appl. No.: 09/614,369

Filed: Jul. 12, 2000

Int. CIL.

GO6l 17700 (2006.01)

US.ClL 707/101; 707/102; 707/103 R;
7077/201

Field of Classification Search 707/501.1,

707/500.1, 1-10, 100-104.1, 200-206; 715/500-510

(57)

See application file for complete search history.

U.S. PATENT DOCUMENTS

Jul. 18, 2006
Schaefer et al. 707/9
Pandit ...cooovvvviniiiiniannn.n.. 707/4
Smiley ... 707/103
Bennett et al. 707/205
Sarkaroooeevviinnnnns 707/103 R
Cabrera et al. 707/1
Bapat et al. 707/10
Carino, Jr. .ooevvivniiininnnn. 707/4
Johnson et al. 345/727
Fisher et al. 707/9
Burns et al.c............. 707/2
Gusack ..oooeviiiiniiinnnen. 707/101
Anderson et al. 707/10
Harrison et al. 709/206
Feldmancccoevenennnen.. 707/9
Isip, Jr. oo, 707/100
Bunnelloooeeaee. 709/202
Richard et al. 713/156
O’Flaherty et al. 707/10
(glasser et al. 707/103 R
GAITISON .everriereinnneenen. 713/202
Archeroovviviiiiini... 706/45

Primary Examiner—IJean M. Corrielus
Assistant Examiner—Isaac M. Woo
(74) Attorney, Agent, or Firm—IJohn L. Rogitz

ABSTRACT

A system and method are provided for an information

References Cited

management system (IMS) to manage heterogenous refer-

ences 1n the system, to ensure “referential integrity™, without

RI TABLES

changing the underlying relational database management

5,483,596 A 1/1996 Rosenow et al. 380/277 system (RDBMS) of the IMS. One or more system tables are
5,511,186 A * 4/1996 Carhart et al.cc......... 707/2 kept that are not visible to system users. In one embodiment,
5,553,218 A 9/1996 Lietalccoouvennnnnne 707/102 the RDBMS’ mechanisms to ensure referential integrity for
5,560,005 A * 9/1996 Hoover etal. 707/10 homogenous references is used in conjunction with the
5,015,112 A 3/1997 Sheng et al. 707/104 system table to extend referential integrity to heterogenous
g ’gjg’ ;% i ;;igg; E/Ioire e;t;l. """""""" ;(E; 22 references. In another embodiment, the triggers of the
644, urkeetal. ..o.covvnnen.n.. 1 : : - -
5,734,899 A 3/1998 Yoshizawa et al. 707203 RPBMS, in conjunction with the system table, are used to
5745806 A * 4/1998 Vijaykumar 707/1 ensure referential integrity of heterogenous references.
5,787,428 A 7/1998 Hart ..oovevvvviiiiininnne, 707/9
5,809,317 A * 9/1998 Kogan et al. 707/501.1 6 Claims, 4 Drawing Sheets
34
REFERENCING TUPLE 36 / 42
e REFERENCED TUPLE
o
35 UNSCOPEDLINK | | . IARY KEV
. 40
' i
(IF REFERENTIAL . REFERENTIAL CONGSTRAINT
CONSTRAINT IS " MAINTAINED BY RDBMS
|
]

REQUESTED])

RI TABLE

FOREIGN KEYS TO DATA TABLES

— 44

48

US 7,080,085 B1

Sheet 1 of 4

Jul. 18, 2006

U.S. Patent

S318V1 VIVA OL SADI NOIRIOA

] F18V1]

al-r |

o | d e Ol
- . 'A%
yp—oyi | I e Y S _
SINEAY Ad QINIVINIVWN | 5 INIVAISNOD
INIVAUISNOD TIINT3T VINERENENEY
— \ 4 “)
—\\\ %NIT Q3dOISNN A
zy 3L EIONIdEEA PRz 31dNL ONIDNIZHT
SR OIEL: A" vt
¢ Ol
1IN OFLHONN

TavL VIva 13OWL | - L O
ONIDONTI4RI NWNIOD | 28 o ARG
AN NOIIOA - \ -~ _
318V 14 OL A0 P | swgawNowR |
i 7 ¥3INdNOD [0¢ |
oY MIAYIS TNAON |
SNIAB Q35N 8O | 08 "
AAIVIRO NayL — NTISAS INFWIDVYNVIN NOIIYINLOANI .\\

HOV3 404 | sidy 13ATTHOIH I
|||||||| bttt ———-- g1
Z¢ e L " 1NdINO
Tavt | b| — 1 NOIVONddY
NEINENe _ |

_
“ ol
A3LNdWOD ¥3SN “ LNdNI

gpleils. seessss sl ks Sl . A S S DS N

US 7,080,085 B1

Sheet 2 of 4

Jul. 18, 2006

U.S. Patent

NOLIVe/HddO F18V1 12/
vy v Ol
mmw_xn_u/_%mwzow_ _ JONFUIHRIINAN |27
MAHIO TV 13S dt ANSCINN FIOLS
31dNL NSIFYOA ;
Q3DNRIF4TY OL AN Q31SINCIY 10N 23S0 NO
aNv dl INSINA INIVRIISNOD qasve) IONINIIT

IVHNddd44d

NI JAIZO3

ONINIVINOD 31gvL 1t | S3A
NI MO [¥3SNI

/

ON
S e

85

95

US 7,080,085 B1

Sheet 3 of 4

Jul. 18, 2006

U.S. Patent

uojidioseg

SIOQUINN ©jAg oN_m _o_m_u_ Piel4 ey} JO SWDN

/ Ol
8 O SAIdVdIVNAINOF
1, ol and SANAALITINDYA SdRIHDAL
L Ol and SENJINIANIS | SAIARINS
NIS1EA | QI3dODS | INVNTIOONNMNA | JAWNITEVL SUIdVdINOD
— — — - S3ISIHL
7 " INVNTIEVL | Q134008
N 9/
N3IS | 0L 318vl] 3FANVN | IAVYNNANMOD| INVN T8YL |) o .
1A | 1S3a | FAvLISIa| 3DUN0S | 30dNOS | 3DMNOS 9 Ol
vl
UOISUDAXS PUD 8sn ainin} JO4 69 Ol 99 v Umw:c:
068Ul payIoads-158[GO O} 29 7 oadADUIN
SSIMIBUIO 0, MU} SIU} 10} PAUIDIUIDU _
9Q 0} spasu AIBBIU| [oyuUSIBISI J 1, 19 _ IOJOIPUIRIPSSN
QYISO Selpdlpul ¢,
1DRIIST S2I0PUL 1, 09 _ souuUDWaseleleQ
a|dn} |8bi0} 8y} Jo Asy Alpuuiy 6G 0L 2G ® qilebipy
=llole]l BQE OUlJOSWDN | |SOIvE _ 8l sWwIpNalaplebipg
SPISD (|IM AUl SIUL
IO} ALUB YOIym Ul S|qORUI B4 JO BUIDN e¢ O} 9| S SUWIDNaIgORUN
yul) pedodsun ay} 1o} Jeljijuep! enbiun GL O} 0 apur

U.S. Patent Jul. 18, 2006 Sheet 4 of 4 US 7,080,085 B1

Initially, define ICMULINK
data type and associated UDFs;

80 create link, scope, and column tables 84

_ .

Create DELETE |
For each data rable _
in the database, DO and UPDAIE triggers

on the data table

82
88

-

Inser a row INto the
column table, and one
Or more rows into the
scope fable if a new
scope is also defined

For each heterogeneously
scoped link column defined
86 usingthe ICMULINK data
tvpe, DO

92

d

For each fuple Invoke relevant

inserr/delgge/ modity, RDBMS stored procedure

70

FIG. ¢
ALTERNATE LOGIC

US 7,080,085 Bl

1

SYSTEM AND METHOD FOR ENSURING
REFERENTIAL INTEGRITY FOR
HETEROGENEOUSLY SCOPED
REFERENCES IN AN INFORMATION
MANAGEMENT SYSTEM

FIELD OF THE INVENTION

The present invention relates to methods and systems for
ensuring referential integrity (“no dangling pointers”) in
databases containing heterogeneously scoped references.

BACKGROUND OF THE INVENTION

Information management systems (IMS) such as digital
library servers typically use a relational database manage-
ment system (RDBMS) to manage data records in a data-
base. As an example, an IMS might manage document data,
with the desire that the RDBMS maintain so-called “refer-
ential integrity” for elements in the database. What 1s meant
by “referential integrity™ 1s that 11 a row of a table (referred
to as a “target” table) that 1s referenced by a row 1n another
table (referred to as a “source” table) by means of a foreign
key (referred to as a “pointer”) 1s sought to be deleted or
changed, either the deletion or change 1s disallowed or the
pointer 1s removed from the source table, so that no “dan-
gling pointers” (1.e., links to nonexistent database elements)
remain.

This 1s but one example of what 1s meant by “referential
integrity”. In general, when one entity refers to another, a
dependency relationship 1s created that represents a refer-
ential constraint the integrity of which might be desirable to
maintain. As recognized herein, not all such constraints need
have their integrity maintained; rather, deciding which con-
straints to maintain 1s a balance between application require-
ments and what can be maintained efliciently.

In existing RDBMS systems such as the system known as
“DB2” and marketed by the present assignee, maintaining
referential integrity assumes homogenous linking, 1.e., that
all links from a column of a source table point to tuples 1n
a single predetermined target table. As recognized herein,
however, 1n some cases, such as, for example, digital librar-
1ies, a column of links can exist in a table that do not all point
to a single common target table. This 1s because different
data types can exist 1n these cases, so that, for example, one
link 1n a column of a source table might point to a target
table representing a particular type of document, another
link 1n the column might point to a target table representing
another particular type of document, while yet a third link
might point to an 1mage, all of them nonetheless being
interrelated. Such links are referred to as “heterogeneously
scoped” links, whereby the scope (or target) of these links
consists of multiple pre-determined tables. A special case 1s
“unscoped” links, whereby the target tuple of a link can be
in any table.

Accordingly, “heterogenous scoping” refers to the ability
to create and manage a column of links whose targets are not
restricted to being tuples of a single table. It will readily be
appreciated by the skilled artisan that heterogenous scoping
would provide a flexible and generic linking ability that can
be exploited by, e.g., a digital library system to support a
relatively more complex data model.

One way to provide heterogenous linking referential
integrity 1s to modity the RDBMS. This 1s not a trivial task.
Accordingly, the present invention 1s directed to a system
and method for providing heterogenous linking referential
integrity without modifying the RDBMS, but rather by

10

15

20

25

30

35

40

45

50

55

60

65

2

providing a transparent soitware layer within the IMS or
between the RDBMS and IMS that exploits existing
RDBMS functionality to extend referential integrity to het-
erogeneously scoped links.

SUMMARY OF THE INVENTION

The mvention 1s a general purpose computer programmed
according to the mventive steps herein. The invention can
also be embodied as an article of manufacture—a machine
component—that 1s used by a digital processing apparatus
and which tangibly embodies a program of instructions that
are executable by the digital processing apparatus to under-
take the present immvention. This mvention 1s realized 1n a
critical machine component that causes a digital processing
apparatus to perform the inventive method steps herein. The
invention 1s also a computer-implemented method for under-
taking the acts disclosed below.

Accordingly, a system 1s disclosed for providing referen-
tial integrity for heterogenous links. The system includes an
RDBMS that provides referential integrity for homogenous
links, and an IMS communicates with the RDBMS. A
soltware layer 1s within the IMS or between the RDBMS and
IMS for causing the RDBMS to provide referential integrity
for heterogenous links.

In a preferred embodiment, the software layer includes at
least one table that 1s maintained by the software layer. The
table 1s accessed upon an attempted deletion or updating of
a link, and the attempted deletion or updating 1s selectively
disallowed by the software layer, based on the table. If
desired, the software layer can establish at least one trigger,
such as an update trigger or delete trigger, that 1s useful 1n
selectively disallowing operations. Also, 1f desired the pre-
terred software layer can include at least one stored proce-
dure accessible by an application to insert or delete a tuple
while ensuring referential integrity in heterogenous links
associated with the tuple.

In another aspect, a computer-implemented method for
preventing dangling pointers in heterogeneously scoped
links includes providing at least one heterogeneously scoped
link (HSL) table that i1s separate from an RDBMS having
stored therein plural tuples arranged in tables. At least one
table has a heterogeneously scoped link column, and the
table 1s associated with the heterogeneously scoped link
column. The method envisions accessing the HSL table to
ensure referential integrity in the RDBMS.

In still another aspect, a computer program product
includes computer usable code means that are programmed
with logic for ensuring referential integrity in an RDBMS.
The RDBMS has at least one table with at least one column
of heterogeneously scoped links. The program product
includes computer readable code means for accessing a table
that 1s not part of the RDBMS, e.g., that 1s maintained by the
program product. Computer readable code means use the
table to ensure that operations on tuples do not result in a
heterogeneously scoped link pointing to no tuple.

The details of the present invention, both as to its structure
and operation, can best be understood 1n reference to the
accompanying drawings, in which like reference numerals
refer to like parts, and 1n which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of the present system:;

FIG. 2 1s a flow chart of the logic for creating an RI table;
FIG. 3 1s a schematic representation of an RI table;
FIG. 4 1s a flow chart of the logic for using the RI table;

US 7,080,085 Bl

3

FIG. 5 1s a schematic representation of a user-defined type
for a heterogeneously scoped or unscoped link;

FIG. 6 1s a schematic representation of a Link table;
FIG. 7 1s a schematic representation of a Scope table;

FIG. 8 1s a schematic representation of a Column table;
and

FI1G. 9 15 a flow chart of alternate logic for using the tables
shown 1n FIGS. 6-8 to ensure referential mtegrity of het-
cerogeneously scoped links.

DETAILED DESCRIPTION OF TH.
PREFERRED EMBODIMENT

(L]

Referring initially to FIG. 1, a system 1s shown, generally
designated 10. To give the present invention context, an
exemplary system 10 having an information management
system (IMS) such as a digital library that cooperates with
an underlying relational database management system
(RDBMS) 1s described herein, 1t being understood that the
present principles for ensuring referential integrity of
unscoped or heterogeneously scoped links (sometimes col-
lectively referred to herein for convenience as “heteroge-
neously scoped links”, or simply “heterogenous links™)
applies to system architectures other than the one shown.

Accordingly, the system 10 includes at least one user
computer 12 having a software-implemented application 14
that generates queries. Input to the user computer 12 1s via
one or more mput devices 16, and query results can be
output on an output device 18. The mput device 16 can be
any suitable device, such as a keyboard, keypad, mouse,
joystick, trackball, voice-recognition soiftware, and so on.
The output device 18 can be a monitor, a speaker, another
computer or computer network, a printer, and so on.

As shown 1n FIG. 1, the user computer 12 communicates
with an information management system (IMS) 20, such as
a digital library server, via an IMS commumnication path 22
using high-level application programming interfaces (API).
The IMS 20 communicates with a relational database system
(RDBMS) 24, such as the present assignee’s DB2, that
stores records of documents managed by the IMS 20. One or

both of the IMS 20 and RDBMS 24 can be hosted on a server
computer 28, or each can have its own associated computer.

As intended herein, either or both of the user computer
12/server computer 28 can be a server computer made by
International Business Machines Corporation (IBM) of
Armonk, N.Y. Other digital processors, however, may be
used, such as personal computers, laptop computers, main-
frame computers, palmtop computers, personal assistants, or
any other suitable processing apparatus can be used.

In any case, the processor of the computers access appro-
priate software to undertake the logic of the present inven-
tion, which may be executed by a processor as a series of
computer-executable instructions. In the preferred embodi-
ment shown in FIG. 1, the software 1s contained 1n a
soltware layer or module 30 that 1s between the IMS 20 and
RDBMS 24 1n the architecture shown or alternately that 1s
inside the IMS 20, and that 1s accessed by the IMS 20 and/or
RDBMS 24. The instructions contained in the module 30
may be stored on a data storage device with a computer
readable medium, such as a computer diskette having a
computer usable medium with a program of instructions
stored thereon. Or, the 1nstructions may be stored on random
access memory (RAM) of a computer, on a DASD array, or
on magnetic tape, conventional hard disk drive, electronic
read-only memory, optical storage device, or other appro-
priate data storage device. In an illustrative embodiment of

10

15

20

25

30

35

40

45

50

55

60

65

4

the 1nvention, the computer-executable instructions may be
lines of C or C++ or Java code.

Indeed, the flow charts herein illustrate the structure of the
logic of the present invention as embodied in computer
program soltware. Those skilled 1n the art will appreciate
that the flow charts illustrate the structures of computer
program code elements including logic circuits on an inte-
grated circuit, that function according to this invention.
Manifestly, the invention 1s practiced 1n its essential embodi-
ment by a machine component that renders the program
code elements 1 a form that instructs a digital processing
apparatus (that 1s, a computer) to perform a sequence of
function steps corresponding to those shown.

Commencing at block 32 1n FIG. 2, in one embodiment a
referential integrity (RI) table 1s created containing a unique
identification column. Such a table 1s shown in FIG. 3 and
designated 34, containing 1D column 46. Multiple RI tables
34 can be used in IMS 20 partitions, 11 desired.

As shown 1 FIG. 3, an unscoped or heterogeneously
scoped link 36 from an RDBMS table 38 (“the referencing
tuple”) maintains a direct link 41 to a target tuple 1n a target
RDBMS table 42 (*“the referenced tuple”). In the present
invention, when referential constraint 1s requested, the link
36 15 also related to a row 44 of the RI table 34 by means of
a umque identification 1n the ID column 46. Other rows 48
of the RI table 34 represent other unscoped or heteroge-
neously scoped links. As indicated at blocks 50 and 52 of
FIG. 2, for each data table created or used by the IMS 20,
a null-able RDBMS foreign key with a RESTRICT delete
rule and referencing the corresponding data table, 1s added
to a foreign key column 54 of the RI table 34.

FIG. 4 shows that at run time, a link reference (1., to a
referred-to table) 1s received based on a user mput at block
56. For instance, a user might insert or update a tuple to
create an mstance of a heterogeneously scoped or unscoped
link to a referenced tuple. The scoping constraint, 1f any, 1s
checked. At decision diamond 38 it 1s determined whether
referential constraint has been requested, and 1f not the
process ends at state 60. Thus, the present invention provides
for optionally not maintaining referential integrity for a
particular link.

On the other hand, when referential constraint 1s requested

the logic moves to block 62 to insert a row 1nto the RI table
34, containing a umique ID 1dentifying the row and a foreign
key pointing to the referred-to tuple. Moving to block 64, all
other foreign key fields are set to NULL. Proceeding to
block 66, the unique 1s stored in the link reference to refer
to the inserted RI table 34 row. For retrieval and traversal
operations mvolving the link, the direct reference 41 (FIG.
3) 1s used, thereby avoiding the overhead of indirection. To
unlink, such as to nullify the link 36 or to delete the
referencing tuple 38 from 1ts RDBMS table, the correspond-
ing row 44 of the RI table 34 1s also deleted using the 1D
stored 1n the link at block 66. To change the target of a link
to a different referenced tuple, the steps are the same as those
of unlinking followed by those of linking.
To support SET NULL and CASCADE delete rules 1n
addition to the RESTRICT rule, an inverse reference can be
added to the RI tables, 1identitying the source unscoped link
instance. Triggers can be defined on the RI tables to change
a propagated deletion or update on the RI table to a deletion
of the respective RI row, and either an update of the source
unscoped link to NULL, or a deletion of the respective
referencing tuple.

Now referring to FIGS. 59, an alternate means for
ensuring referential 1integrity for non-homogeneously
scoped links can be seen. Commencing at block 80 1n FIG.

US 7,080,085 Bl

~
9, an ICMULINK user defined type (UDT) 1s defined for
columns that contain heterogeneously scoped links. In addi-
tion, at least one link table 1s created, as are a Scope table
and a Column table.

Specifically, FIG. 5 illustrates the details of the
ICMULINK UDT. As shown, the UDT uses a fixed-length
character string (preferably a CHAR(70) SQL data type) as
the base data type, and suflicient information 1s encoded in
the string to undertake the logic below. The module 30
interprets the string as consisting of a number of fields laid
out 1n a predefined format, but this format 1s hidden from the
application 14, which only uses well-defined user-defined

tfunctions (UDFs) to query and operate on the data in the
RDBMS 24.

As shown 1n the particularly preferred ICMULINK UDT
shown 1n FIG. §, a LinkID field 1s a 16 byte field that 1s a
unique 1dentifier for an unscoped (or heterogeneously-

scoped) link. An 18 byte LinkTableName fi

field contains the

name of the link table 1n which the link resides. Also, an 18

byte TargetTableName filed contains the name of the target
table associated with the link.

Still considering FIG. 5, the primary key of the target
tuple 1n the target table 1s contained 1n an eight byte TargetID
field. The TargetlD field contains a 64-bit integer (corre-
sponding to the BIGINT SQL data type). Further, a single
byte field represents delete semantics associated with the
link. In one preferred embodiment, “1” indicates

RESTRICT delete rule, “2” indicates SET NULL, and “3”
indicates CASCADE delete. A one-byte field indicating
whether referential integrity 1s to be maintained follows, and
then a 4-byte field indicating a user-specified link type.
Finally, an unused field 1s provided for expansion.

In FIG. 6, the link table 74 contains one row for each
heterogeneously scoped or unscoped link for which refer-

ential integrity 1s to be maintained. The schema-definition of
the Link table 74 1n SQL 1s:

CREATE TABLE ICMSTLINKTABLEO001(
LINKID CHAR(16) NOT NULL,
SRCTBLNM CHAR(18),

SRCID BIGINT,
SRCCOLNM VARCHAR(18),
DSTTBLNM CHAR(18),
DSTID BIGINT,

DELSEM CHAR(1),
PRIMARY KEY(LINKID)

In the above schema the 16-byte link identifier 1s the
primary key for the table. Columns 2, 3, and 4 together
locate the heterogeneously scoped link column, whereas
columns 5 and 6 uniquely identily the referenced tuple. To
improve the performance of the below-described triggers,

the following index 1s defined on the Link table 74:

CREATE INDEX ICMDESTIDX ON ICMSTLINK-
TABLEOOOI(DSTTBLNM, DSTID);

Having described the Link table, FIG. 7 shows an exem-
plary Scope table 76. Essentially, the Scope table 76 groups
a collection of tables 1nto a “scope” by correlating a scope
ID with the names of the tables 1n the scope. A table may
participate in multiple scopes. The schema-definition in SQL
for the Scope Table 1s:

10

15

20

25

30

35

40

45

50

55

60

65

CREATE TABLE ICMSTSCOPEDEFN(
SCOPEID INTEGER NOT NULL,
TABLENAME VARCHAR(18) NOT NULL

)
CREATE INDEX ICMSTSCOPEDEFNINDX ON

ICMSTSCOPEDEFN(SCOPEID)

Now considering FIG. 8, an exemplary Column table 78
can be seen. For each heterogeneously scoped or unscoped
link column defined 1n the database, a row 1s maintained i1n
the Column table. The Column table 78 contains both the
name of the column (ULINKCOLNAME) and name of the
table containing the column (TABLENAME), along with
the scope ID for the link column and a delete semantics byte
that 1s set according to the above principles. The Column
table 78 has the following schema definition:

CREATE TABLE ICMSTULCOLINFO(
TABLENAME VARCHAR(18) NOT NULL,
UNLINKCOLNAME VARCHAR(18) NOT NULL,
SCOPEID INTEGER NOT NULL,
DELSEM CHAR(1) NOT NULL,
PRIMARY KEY(TABLENAME, ULINKCOLNAME)

At block 82 1n FIG. 9, for each table that could potentially
be the target of a heterogeneously scoped link, a DO loop 1s
entered 1n which UPDATE and DELFETE triggers are created
on the table at block 84. The appropriate one of the triggers
1s respectively activated only when an update operation
changes the primary key of an affected tuple or when a
delete operation 1s executed on one or more tuples. The Link
table 74 (and, for column-level operation, the Column table
78) 1s checked to determine whether a tuple sought to be
updated 1s a target tuple of a heterogeneously-scoped link,
and 1f so the update operation 1s disallowed. In the case of
a delete, the delete trigger checks the Link table to determine
whether the tuple 1s listed as a target tuple of a link with
RESTRICT delete semantics associated with 1t. If so, the
delete 1s disallowed at block 88. Otherwise, the delete 1s
allowed.

Exemplary respective outlines for the update and delete
triggers are as follows:

CREATE TRIGGER ICMUPDATE000000123
NO CASCADE BEFORE UPDATE OF ID ON T
REFERENCING OLD AS O
FOR EACH ROW MODE DB2SQL
WHEN (EXISTS (SELECT*FROM ICMSTLINKTABLE0001
WHERE DSTTABLENAME = T’ AND DSTID = O.ID))
SIGNAL SQLSTATE 85001’ (CANNOT UPDATE TARGET OF
UNSCOPED LINK)
CREATE TRIGGER ICMDELETE000000124
NO CASCADE BEFORE UPDATE OF ID ON T
REFERENCING OLD AS O
FOR EACH ROW MODE DB2SQL
WHEN (EXISTS (SELECT*FROM ICMSTLINKTABLE0001
WHERE DSTTABLENAME = T’ AND DSTID = O.ID AND
DELSEM="1"))
SIGNAL SQLSTATE 85002’ (CANNOT DELETE TARGET OF
UNSCOPED LINK)

The present mvention recognizes that information stored
in the ICMULINK attribute might be packaged 1n a propri-
ctary format with internally meaningtul identifiers and

US 7,080,085 Bl

7

codes, an application-friendly interface 1s desirable. These
are provided in the preterred embodiment by a set of UDFs
that operate on the ICMULINK attributes. A UDF can be
provided to parse the internal structure of an ICMULINK
attribute to provide applications with individual field values.
Also, a UDF can be provided to determine whether two link
attributes passed as input point to the same tuple. Moreover,
a UDF can be provided to generate ICMULINK attributes
according to the above format using, as input, the target and
linktype mnformation, as well as the other parameters shown
in FIG. 5. Additionally, a UDF can be provided to retarget
an unscoped link, in the event that an application finds 1t
uselul to change the target of a link without changing any of
its properties.

At block 86 1n FIG. 9, for each heterogeneously scoped or
unscoped link column defined in the database using the
ICMULINK data type, a DO loop 1s entered in which a row
1s 1nserted into the Column table at block 88, and one or
more rows are also iserted into the Scope table 1f a new
scope 1s defined. When applications create or delete tables 1n
the RDBMS 24 and insert or delete or modily tuples
according to allowed operations as provided for in FIG. 9
above, the module 30 preferably modifies the tables shown
in FIGS. 6-8 accordingly. To do this, the module 30 includes
a set of RDBMS-stored procedures that are provided to IMS
20 and applications 14 so that an application can invoke the
relevant stored procedure in conjunction with update, delete,
and insert operations, as indicated at blocks 90 and 92 1n
FI1G. 9. It 1s to be understood that, as an alternative, the same
logic can be implemented natively in the module 30 instead
of a RDBMS stored procedures.

When an application creates a new table, 1t calls a
prepareTarget stored procedure, passing 1t the name of the
table being created and the name of the primary key column.
The stored procedure generates and executes the necessary
triggers discussed previously at blocks 82 and 84. In C code,
this stored procedure can be represented by:

void ICMPrepareTarget (char*tableName,

char*pkeyColumnName)

When a new link column 1s added as discussed at blocks
86 and 88, a stored procedure 1s called with the following
input parameters to create a new entry in the Column table
78: name of table containing new column, name of column,
scopelD associated with the column (0O by default), and
column-level delete semantics to be applied (0 by default).

In C code, this stored procedure can be represented by:
vo1dICMRegisterULinkColumn (char*tableName,

char*LinkColumnName, long scopelD), char delSem)
For dropping a table, an application 1s provided with the
following stored procedure, using the table name as sole

parameter:
vold ICMDropTable (char*tableName)

The above procedure first checks the Link table 74 for
links pointing to tuples in the table to be dropped, and 1f any
exist, the table 1s prevented from being dropped. Otherwise,
all system entries pertaining to the table are deleted.

In contrast, to insert a tuple 1n a table, the name of the
table, primary key of the tuple, link being inserted as part of
the tuple insertion, and column name of the link are passed
to the following stored procedure, which 1s mvoked by an
application:

vold ICMULinkInsert (char*tableName, sqlint64 prima-

ryKey, char*Link, char *LinkColName)

The above procedure first determines whether the target
table referenced by the link to be inserted 1s part of the scope
that 1s associated with the link column, using the Scope table

76 and Column table 78. I the check fails the procedure

10

15

20

25

30

35

40

45

50

55

60

65

8

returns an exception. Otherwise, the procedure next deter-
mines whether referential integrity 1s to be maintained for
the new link, and 1f not returns and ends. When referential
integrity 1s to be maintained, however, the procedure
accesses the target table to determine whether the tuple
referenced by the new link exists, and 11 not an exception 1s
returned, but if the tuple 1s found the procedure creates a new
entry 1n the Link table 74.

For deleting a tuple containing a link attribute, a proce-
dure 1s called to determine whether referential integrity 1s to
be maintained for the link, and 11 so the corresponding entry
in the Link table 74 1s deleted. The procedure 1s called by an
application using the link attribute being deleted as input,
and the procedure can accordingly be represented as void
ICMULinkDelete (char*link).

When an application wishes to update a link attribute of
a tuple, 1t passes the name of the relevant table, primary key
of the tuple, old and new values of the link attribute, and
name ol the link value being modified to the following

stored procedure:
voild ICMUL1nkModity(char*tableName, sqlint64 prima-

ryKey, char®* OldLink, char* NewLink, char* col-
Name).

The procedure combines the above operations of the
delete and insert procedures to undertake the update.

To update the primary key of a tuple containing a link
attribute, an application sends the new primary key value
and link attribute of the tuple to a procedure which, when
referential integrity 1s being maintained, extracts the link 1D
and locates and modifies the corresponding entry in the Link
table 74. The procedure can be represented as:

void ICMPkeyModily (char®* primaryKey, char* ulLink)

The above stored procedure first handles the change to the
link attribute by mvoking the ICMULinkModily stored
procedure, passing the “old” primary key to support this
update, and then the new primary key 1s passed to complete
the procedure.

Completing the description of the stored procedures, an
expected common operation 1n digital libraries 1s the migra-
tion of a tuple from one table to another. Accordingly, an
application wishing to do this can invoke an ICMMaigrateTa-
rget stored procedure by passing to it the old and new table
names and primary key of the tuple. The procedure first
determines, from the Link table 74, whether a link exists
having the tuple as a target, and for each such link the new
location of the tuple and corresponding link attributes of
source tuples are changed in the Link table. This procedure,
in C code, can be expressed as void IcMMigrateTarget
(char*origTable, char*newTable, sqlint64 primaryKey).

Preferably, an application using the above procedures
ensures that the SQL statement and procedure calls are
executed together 1n one atomic statement, so that 11 the call
to the stored procedure does not succeed, the SQL statement
can be rolled back.

While the particular SYSTEM AND METHOD FOR

—

ENSURING REFERENTIAL INTEGRITY FOR HET-
EROGENEOUSLY SCOPED REFERENCES IN AN
INFORMATION MANAGEMENT SYSTEM as herein
shown and described 1n detail 1s fully capable of attaining
the above-described objects of the mmvention, 1t 1s to be
understood that it 1s the presently preferred embodiment of
the present invention and 1s thus representative of the subject
matter which 1s broadly contemplated by the present inven-
tion, that the scope of the present invention fully encom-
passes other embodiments which may become obvious to
those skilled in the art, and that the scope of the present
invention 1s accordingly to be limited by nothing other than

US 7,080,085 Bl

9

the appended claims, 1n which reference to an element 1n the
singular 1s not intended to mean “one and only one” unless
explicitly so stated, but rather “one or more”. All structural
and functional equivalents to the elements of the above-
described preferred embodiment that are known or later
come to be known to those of ordinary skill 1n the art are
expressly incorporated herein by reference and are intended
to be encompassed by the present claims. Moreover, 1t 1s not
necessary for a device or method to address each and every
problem sought to be solved by the present invention, for it
to be encompassed by the present claims. Furthermore, no
clement, component, or method step 1n the present disclo-
sure 1s intended to be dedicated to the public regardless of
whether the element, component, or method step 1s explic-
itly recited in the claims. No claim element herein 1s to be
construed under the provisions of 35 U.S.C. § 112, sixth
paragraph, unless the element 1s expressly recited using the
phrase “means for” or, i the case of a method claim, the
clement 1s recited as a “step” 1nstead of an *“‘act”.

We claim:

1. A computer-implemented method for preventing dan-

gling pointers in heterogeneously scoped links, comprising
the acts of:

10

15

20

10

providing at least one heterogeneously scoped link (HSL)
table 1n a non-RDBMS element communicating with at
least one RDBMS, at least one table having a hetero-
geneously scoped link column, the HSL table being
associated with the heterogeneously scoped link col-
umn; and

accessing the HSL table to ensure referential integrity in
an RDBMS.

2. The method of claim 1, wherein the HSL table 1s
accessed when a link attribute 1s sought to be changed.

3. The method of claim 1, wherein the HSL table 1s
accessed when a tuple 1s sought to be changed or deleted.

4. The method of claim 1, wherein the HSL table 1s
established by an RI table.

5. The method of claim 1, further comprising providing at
least one trigger useful in selectively disallowing operations.

6. The method of claim 1, further comprising providing at
least one stored procedure accessible by an application to
isert, update, or delete a tuple while ensuring referential
integrity 1n heterogenous links associated with the tuple.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

