12 United States Patent

US007069324B1

(10) Patent No.: US 7,069.324 B1

Tiwana et al. 45) Date of Patent: Jun. 27, 2006
(54) METHODS AND APPARATUS 5,687,369 A * 11/1997 Li cooveeeiiiriiiiieeeeeniinnn. 707/203
SLOW-STARTING A WEB CACHE SYSTEM RE35,774 E 4/1998 Moura et al.
5,818,845 A 10/1998 Moura et al.
(75) Inventors: Gurumukh S. Tiwana, Cupertino, CA 5,819,083 A * 10/1998 Chen et al. 707/10
U5 Danny Kok 03 s Ca Sz A 10 Mo
(US); James A. Aviani, Jr., Santa RS |
Barbara, CA (US); Martin Cieslak, (Continued)
Fremont, CA (US); Martin A. Kagan,
Burlingame, CA (US); Stewart L. FOREIGN PATENT DOCUMENTS
Forster, Bentleigh (AU) WO WO098/31107 7/1998
(73) Assignee: Cisco Technology, Inc., San Jose, CA OTHER PUBLICATTONS
(US) Cisco Systems, Inc., Release Notes for Cisco Cache Engine
(*) Notice: Subject to any disclaimer, the term of this >0 Senes, Software Version 2.1.0.%
patent 1s extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 732 days.
Primary Examiner—Jason Cardone
(21) Appl. No.: 09/608,549 Assistant Examiner—Thomas Duong
(74) Attorney, Agent, or Firm—Bever Weaver & Thomas
(22) Filed: Jun. 30, 2000 LLP
(51) Int. CL (57) ABSTRACT
GO6F 15/16 (2006.01)
GO6L” 15/167 (2006.01) Methods and apparatus are described for intelligently
(32) US.CL i, 709/226; 709/215 assigning a portion of a cluster’s traflic (e.g., buckets) to a
(58) Field of Classification Search 700/215, cache system to minimize overloading of such cache system.
709/217, 218, 219, 231, 203, 226, 232, 233, In general terms, when a new cache system enters a cache
709/234, 235, 711/170, 171, 172, 173, 133, cluster and/or starts up, the new cache system’s full bucket
711/135, 136, 159, 160 allocation 1s not immediately assigned to the new cache
See application file for complete search history. system. Instead, only a portion of the full bucket allocation
1s 1mitially assigned to the new cache system. In one embodi-
(56) References Cited ment, the new cache system’s bucket assignment 1s gradu-

5,014,265
5,210,829
5,414,704
5,488,412
5,500,987
5,581,736
5,580,121
5,634,125

U.S. PATENT DOCUMENTS

>

5/1991
5/1993
5/1995
1/1996
4/1996

* 12/1996
12/1996

¥ 5/1997

Hahne et al.
Bitner
Spinney

Majeti et al.
Abramson et al.
Smith
Moura et al.

| Y ST

............... 370/236

302 |

Exit
alow-
start

ally increased until the cache system 1s handling it’s full
bucket allocation or 1t becomes overloaded. The cache

praviously shad
buckets to Now £8

system’s load 1s also checked periodically to determine
710/57 whether i1t has become overloaded. When the cache system
becomes overloaded, buckets are immediately shed from the
cache system. In sum, the new cache system’s load 1is
11170 adjusted until 1t 1s handling an optimum number of buckets.
707/203 34 Claims, 6 Drawing Sheets
Slow-
Slart o210
Asgign hall of full
buckel allocalion t&
New CS
Shed half of [as
06| shad hom New 0%
predetg:':ltnaad time f 2
309
| New TS Y
overleadad?
5 full allpcation
agsigned to New G
{.316
Assign half of
remaining buckels to
New G5
Assign hall of J"”d

US 7,069,324 Bl
Page 2

5,872,773
5,892,903
5,946,047
5,946,048
5,950,205
5,953,335
5,956,346
5,959,660
5,959,968
5,959,997
5,989,060
0,006,266
0,016,388
6,052,718
0,345,294
0,570,614
0,385,642
6,405,256
6,442,661
0,463,454
0,463,509

Eager et al.,

Engineering, vol. Se-12, No. 5, May 1986, pp. 662-675.

U.S. PATENT DOCUMENTS

2/1999
4/1999
8/1999
8/1999
9/1999
9/1999
9/1999
9/1999
9/1999
9/1999
11/1999
12/1999
1/2000
4/2000
2/2002
4/2002
5/2002
6/2002
8/2002
10/2002
10/2002

o Rl G g G g g S i

* ¥ % % F *

Katzela et al.
Klaus

Levan

L.evan
Aviani, Jr.
Erimli et al.
Levan

L.evan

Chin et al.
Moura et al.
Coile et al.
Murphy et al.
Dillon
Gifford
O’Toole et al.
Teoman et al.
Chlan et al.
[.in et al.
Dreszer
Lumelsky et al.

Teoman et al. ...

OTHER PUBLICATIONS

............. 711/113
................ 709/203
.................... 709/231
711/1
.......... 709/1
.......... 711/1

70
05
37

“Adaptive Load Sharing in Homogeneous
Distributed Systems ” IEEE, Transactions

on Software

Akamai Technologies, Inc. -Global Internet Content Deliv-

ery-“How FreeFlow Works,”

1999-2000.

webmaster(@akamai.com

Digital Island, Inc. -e-Business Without Limits-, “Enabling
Technologies,” http://www.digisle.net. No date.
Internap, “Preferred Collocation Services,” http://www.
internap.com Copyright © 2001 Internap Network Services

Corporation.

Meyer, et al., Request For Comments No. 2026, entitled,
“Generic Routing Encapsulation (GRE),” Jan., 2000,
Internet Engineering Task Force, 9 pages.

Mockapetris, P., Request For Comments No. 1034, entitled,
“Domaimn Names—Concepts and Facilities,” Nov., 1987,
Internet Engineering Task Force, 31 pages.

Information Sciences Institute, Request for Comments No.
793, entitled, “Transmission Control Protocol—DARPA

Internet Program—Protocol Specification,” Sep., 1981,
Internet Engineering Task Force, 49 pages.

David M. Gifford, “Replica Routing,” U.S. Appl. No.
09/472,964, filed Dec. 28, 1999, 3’7 Pages.

Johnson et al., “Dynamic Server Organization,” U.S. Appl.
No. 09/294,837, filed Apr. 19, 1999, 42 Pages.

Lu et al., “Automatic Network Addresses Assignment and
Translation Interference,” U.S. Appl. No. 60/160,535, filed
Oct. 20, 1999, 127 Pages.

Lu et al., “Method and Apparatus for Automatic Network
Address Assignment,” U.S. Appl. No. 60/178,063, filed Jan.
24, 2000, 74 Pages.

Johnson et al., “Method and Apparatus for Determining a
Network Topology in the Presence of Network Address
Translation,” U.S. Appl. No. 60/178,062, filed Jan. 24, 2000,
32 Pages.

Toole et al., “Fast-Changing Network Status and Load
Monitoring and Feedback,” U.S. Appl. No. 60/177,985, filed
Jan. 25, 2000, 20 Pages.

Kirk Johnson, “A Method and Apparatus for Minimalist

Approach to Implementing Server Selection,” U.S. Appl.
No. 60/177,415, filed Jan. 21, 2000, 39 Pages.

* cited by examiner

IE

US 7,069,324 B1

wiojjeld uoneuwsaq

cel
0Ll

 re—re—- | ——
—ac
——
3
—— —a
—
| s— | s—

T

Sheet 1 of 6

Ll

Jun. 27, 2006

SUliojie|d Jui|d

9¢01 qc0} ecll

U.S. Patent

U.S. Patent Jun. 27, 2006 Sheet 2 of 6

214

Assign full full
bucket allocation to
each cluster CS

CS joins

cluster

New CS
announces

presence

02

204

Determine full
bucket allocation
for each CS

208

s cluster at max load

210

Assign buckets to
New CS using a
Slow-start technique

Assign load to each 12

cluster CS using a
Tracking technique

Fig. 2

US 7,069,324 B1

’/—200

U.S. Patent

Fig. 3

Exit
slow-
start

302

Jun. 27, 2006

Slow-

Start
Mode

Assign half of full

bucket allocation to
New CS

304

{0 17

N

Wait a
predetermined time

308

s New CS
overloaded?

10

Is full allocation
gssigned to New C

12

Were buckets shed?

Assign halt of

previously shed
buckets to New CS

#17ent bucket count assigire
shed equals is less than or equal

Sheet 3 of 6

306

US 7,069,324 B1

’/—210

Shed half of last

buckets previously
shed from New CS

309

remaining buckets to
New CS

14

Assign half of

16

U.S. Patent

Jun. 27, 2006 Sheet 4 of 6

Tracking
Mode

US 7,069,324 B1

Wait a
predetermined time

404

s any cluster C
overloaded?

s any cluster C
underloaded?
Y
underloaded
Y

assigned full bucket
allocation?

Fig. 4

402

4006

4038

| Add1bucketto | [4'°
underloaded CS

Shed 1 bucket from

overloaded cluster

CS

U.S. Patent Jun. 27, 2006 Sheet 5 of 6 US 7,069,324 B1

/—500
502
Determine a
new full bucket
allocation for
each CS
04

Assign buckets
to each
remaining CS
using Tracking
technique

US 7,069,324 B1

Sheet 6 of 6

Jun. 27, 2006

U.S. Patent

61

0 In31y

c _ AdONHN

SHIVJdYHdLNI

S\ A JOSSHD0Ud _

AdOWHNN

—

\

[9

39

Ol

US 7,009,324 Bl

1

METHODS AND APPARATUS
SLOW-STARTING A WEB CACHE SYSTEM

BACKGROUND OF THE INVENTION

The present invention relates to transmission of data in a
network environment. More specifically, the present inven-
tion relates to methods and apparatus for redirecting network
traflic. Still more specifically, techniques are described
herein for redirecting packet flows from a device that does
not own the tlows.

Generally speaking, when a client platform communicates
with some remote server, whether via the Internet or an
intranet, 1t craits a data packet which defines a TCP con-
nection between the two hosts, 1.e., the client platform and
the destination server. More specifically, the data packet has
headers which include the destination IP address, the desti-
nation port, the source IP address, the source port, and the
protocol type. The destination IP address might be the
address of a well known World Wide Web (WWW) search
engine such as, for example, Yahoo, in which case, the
protocol would be TCP and the destination port would be
port 80, a well known port for http and the WWW. The
source 1P address would, of course, be the IP address for the
client platform and the source port would be one of the TCP
ports selected by the client. These five pieces ol information
define the TCP connection.

(Given the 1ncrease of tratlic on the World Wide Web and
the growing bandwidth demands of ever more sophisticated
multimedia content, there has been constant pressure to find
more ellicient ways to service data requests than opening
direct TCP connections between a requesting client and the
primary repository for the desired data. Interestingly, one
technique for increasing the ethciency with which data
requests are serviced came about as the result of the devel-
opment of network firewalls 1n response to security con-
cerns. In the early development of such security measures,
proxy servers were employed as firewalls to protect net-
works and their client machines from corruption by unde-
sirable content and unauthorized access from the outside
world. Proxy servers were originally based on Unix
machines because that was the prevalent technology at the
time. This model was generalized with the advent of SOCKS
which was essentially a daemon on a Unix machine. Soft-
ware on a client platform on the network protected by the
firewall was specially configured to communicate with the
resident demon which then made the connection to a desti-
nation platform at the client’s request. The demon then
passed information back and forth between the client and
destination platiorms acting as an intermediary or “proxy”.

Not only did this model provide the desired protection for
the client’s network, it gave the entire network the IP address
of the proxy server, therefore simplifying the problem of
addressing of data packets to an increasing number of users.
Moreover, because of the storage capability of the proxy
server, information retrieved from remote servers could be
stored rather than simply passed through to the requesting
platform. This storage capability was quickly recogmized as
a means by which access to the World Wide Web could be
accelerated. That 1s, by storing frequently requested data,
subsequent requests for the same data could be serviced
without having to retrieve the requested data from its
original remote source. Currently, most Internet service
providers (ISPs) accelerate access to their web sites using,
Proxy servers.

Unfortunately, interaction with such proxy servers is not
transparent, requiring each end user to select the approprate

10

15

20

25

30

35

40

45

50

55

60

65

2

proxy configuration in his or her browser to allow the
browser to communicate with the proxy server. For the large
ISPs with millions of customers there 1s significant overhead
associated with handling tech support calls from customers
who have no 1dea what a proxy configuration 1s. Additional
overhead 1s associated with the fact that different proxy
configurations must be provided for different customer oper-
ating systems. The considerable economic expense repre-
sented by this overhead oflsets the benefits derived from
providing accelerated access to the World Wide Web.
Another problem arises as the number of WWW users
increases. That 1s, as the number of customers for each ISP
increases, the number of proxy servers required to service
the growing customer base also increases. This, 1n turn,
presents the problem of allocating packet trathic among
multiple proxy servers.

Network caching represents an improvement over the
proxy server model. Network caching 1s transparent to end
users, high performance, and fault tolerant. By altering the
operating system code of an existing router, the router i1s
enabled to recognize and redirect data trathic having particu-
lar characteristics such as, for example, a particular protocol
intended for a specified port (e.g., TCP with port 80), to one
or more network caches connected to the router via an
interface having suflicient bandwidth. If there are multiple
caches connected to the cache-enabled router, the router
selects from among the available caches for a particular
request based on the destination IP address specified in the
packet.

The network cache to which the request 1s re-routed
“spools” the requested destination platform and accepts the
request on 1ts behalf via a standard TCP connection estab-
lished by the cache-enabled router. If the requested infor-
mation 1s already stored in the cache it 1s transmitted to the
requesting platform with a header indicating its source as the
destination platform. If the requested information 1s not 1n
the cache, the cache opens a direct TCP connection with the
destination platform, downloads the information, stores it
for future use, and transmuts it to the requesting platform. All
of this 1s transparent to the user at the requesting platiorm
which operates exactly as 1f 1t were communicating with the
destination platform. Thus, the need for configuring the
requesting platform to suit a particular proxy configuration
1s eliminated along with the associated overhead. An
example of such a network caching technique 1s embodied
in the Web Cache Coordination Protocol (WCCP) provided
by Cisco Systems, Inc., a specific embodiment of which 1s

described 1n copending, commonly assigned, U.S. patent
application Ser. No. 08/946,867 for METHOD AND APPA.-

RATUS FOR FACILITATING NETWORK DATA TRANS-
MISSIONS filed Oct. 8, 1997, the entirety of which 1is
incorporated herein by reference for all purposes.

Each cache system has a particular capacity. For example,
a cache system may be configured to handle four buckets of
traffic. A bucket is generally defined as Y2s6” of the total
amount of traflic (e.g., IP address space) being handled by a
particular group of associated cache systems (commonly
referred to as a “cache cluster” or “cache farm”™). For
example, each bucket represents Y4s6” of the IP addresses or
web servers being spoofed by the cache systems within a
particular cache cluster. Conventionally, the buckets are
evenly apportioned between the cache systems of a cache
cluster. Unfortunately, the capacity may vary from cache
system to cache system. When the particular cache cluster
has a relatively large amount of traflic (e.g., a fat pipe) and
a cache system’s capacity 1s less that 1ts assigned load, the
cache system may become quickly overwhelmed. Also,

US 7,009,324 Bl

3

when the number of cache systems within a cluster 1s
reduced, for example, to a single cache system, the remain-

ing cache system may become overwhelmed when it 1s
assigned the full 256 buckets.

When a particular cache system becomes overloaded, the
network traflic may become disrupted as the cache system
fails to handle the traflic in a timely manner. For example,
the cache system may block traflic for a minute or more
when 1t becomes overwhelmed with more packets than even
its bypass mechanism can handle. As a result, the cache
system may become a bottle neck for the cache cluster’s
traflic. Therefore, there 1s a need for improving traflic
handling procedures within a cache cluster so that occur-
rences of cache system overload are minimized.

SUMMARY OF THE INVENTION

Accordingly, the present invention provides an apparatus
and method for intelligently assigning a portion of a clus-
ter’s traflic (e.g., buckets) to a cache system to minimize
overloading of such cache system. In general terms, when a
new cache system enters a cache cluster and/or starts up, the
new cache system’s full bucket allocation 1s not immediately
assigned to the new cache system. Instead, only a portion of
the full bucket allocation i1s mitially assigned to the new
cache system. Thus, the new cache system 1is less likely to
be immediately overwhelmed as 1t enters a cache cluster.

In one embodiment, the new cache system’s bucket
assignment 1s gradually increased until the cache system 1is
handling 1t’s full bucket allocation or it becomes overloaded.
The cache system’s load 1s also checked periodically (e.g.,
every 30 seconds) to determine whether 1t has become
overloaded. When the cache system becomes overloaded,
buckets are immediately shed from the cache system. As a
result, 11 the new cache becomes overloaded, 1t 1s unlikely to
remain overloaded for a significant period of time. Thus, the
new cache system 1s unlikely to cause a bottle neck for the
cluster’s network traflic. In sum, the new cache system’s
load 1s adjusted until 1t 1s handling an optimum number of
buckets (e.g., the cache 1s not underloaded or overloaded). In
other embodiments, each cache system’s load within the
cache cluster continues to be monitored and adjusted so as
to facilitate eflicient use of each cache system.

In one aspect, the mvention pertains to a method for
assigning traflic buckets to a cache system. When a new
cache system starts up i1n a cache cluster having a plurality
of total buckets, a full bucket allocation 1s determined for the
new cache system. Buckets are assigned to the new cache
system using a first techmque when the cache cluster 1s not
operating at a maximum load. Buckets are assigned to the
new cache system using a second technique that differs from
the first technique. The second technique 1s performed after
the first technique. Preferably, the full bucket allocation 1s
assigned to the new cache system when the cache cluster 1s
operating at a maximum load.

In one 1mplementation, the first technique includes peri-
odically monitoring a load of the new cache system. When
the new cache system 1s overloaded, a minimum number of
buckets are shed from the new cache system. When the new
cache system i1s underloaded, the minimum number of
buckets are added to the new cache system. In a more
specific 1implementation, the minimum number equals a
single bucket.

In a specific implementation, the second technique 1s
performed until the full allocation has been assigned to the
new cache system or a minimum number of buckets have
been added to or shed from the new cache system. In this
implementation, a portion of the full bucket allocation 1s
initially assigned to the new cache system. When the new
cache system 1s overloaded and when no buckets have been

10

15

20

25

30

35

40

45

50

55

60

65

4

previously shed, a portion of the assigned buckets are
periodically shed from the new cache system. When the new
cache system 1s overloaded and when buckets have been
previously shed, a portion of a number of buckets that were
previously shed are periodically shed from the new cache
system. When the new cache system 1s not overloaded and
when no buckets have been previously shed, a portion of the
unassigned buckets are periodically assigned to the new
cache system. When the new cache system 1s not overloaded
and when buckets have been previously shed, a portion of a
number ol buckets that were previously shed are periodi-
cally assigned to the new cache system. In a more specific
embodiment, the portion of the number of buckets that were
previously shed from the new cache system, the portion of
the unassigned buckets, and the portion of the assigned
buckets are equal to a half portion.

In another implementation of the above method, when an
existing cache system leaves the cache cluster or shuts
down, a new bucket allocation 1s determined for each of the
remaining cache systems and buckets are assigned to the
remaining cache system using the first technique.

In another embodiment, the invention pertains to a com-
puter system operable to assign traflic buckets to a cache
system. The computer system includes a memory and a
processor coupled to the memory. The memory and the
processor are adapted to provide at least some of the above
described method operations. In yet a further embodiment,
the mmvention pertains to a computer program product for
assigning tratlic buckets to a cache system. The computer
program product has at least one computer readable medium
and a computer program 1nstructions stored within the at
least one computer readable product configured to cause a
processing device to perform at least some of the above
described method operations.

These and other features and advantages of the present
invention will be presented 1n more detail 1n the following
specification of the invention and the accompanying figures
which illustrate by way of example the principles of the
ivention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a network diagram illustrating cache clusters
according to a specific embodiment of the present invention;

FIG. 2 1s a flowchart representing a bucket assignment
process for a cache system (CS) that 1s joining a cluster or
starting-up 1n accordance with one embodiment of the
present 1nvention.

FIG. 3 1s a flowchart illustrating the slow-start procedure
of FIG. 2 1n accordance with one embodiment of the present
invention.

FIG. 4 1s a flowchart 1llustrating the tracking procedure of
FIG. 2 1 accordance with one embodiment of the present
ivention.

FIG. 5 1s a flow chart 1llustrating a procedure for assigning
buckets when a CS leaves a cluster 1n accordance with one
embodiment of the present invention.

FIG. 6 1s a diagrammatic representation of a router in
accordance with one embodiment of the present invention.

DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENTS

Reference will now be made in detail to a specific
embodiment of the imnvention. An example of this embodi-
ment 1s 1llustrated 1n the accompanying drawings. While the
invention will be described 1n conjunction with this specific
embodiment, 1t will be understood that it 1s not intended to
limit the invention to one embodiment. On the contrary, it 1s
intended to cover alternatives, modifications, and equiva-

US 7,009,324 Bl

S

lents as may be included within the spirit and scope of the
invention as defined by the appended claims. In the follow-
ing description, numerous specilic details are set forth 1n
order to provide a thorough understanding of the present
invention. The present mvention may be practiced without
some or all of these specific details. In other 1nstances, well
known process operations have not been described in detail
in order not to unnecessarily obscure the present invention.

FI1G. 1 1s a simplified network diagram which will be used
in conjunction with the tflowcharts of FIGS. 2 and 3 to
describe a specific embodiment of the present invention.
According to this embodiment, a plurality of client machines
102 which are resident on a local area network (LAN) 104
communicate via router 106 and wide area network (WAN)
108, c.g., the internet, with server 110. Of course, some or
all of the clients 102 may communicate with the router 106
through various other configurations, rather than through a
LAN. For example, a client may be coupled directly to the
router 106 or there may be one or more intermediate routers
between a client 102 and the router 106.

As discussed above, the router 106 may direct certain
traflic, e.g., destined for port 80, to a cache system, such as
112a, which 1s configured to “spoof” server 110. 11 there are
multiple caches connected to the cache-enabled router, the
router selects from among the available caches for a par-
ticular request based on the destination IP address specified
in the packet. For example, a first set of destination IP
addresses may be assigned to cache system 112a; a second
set of IP addresses to cache system 1125; and a third set of
IP addresses to cache system 112c.

Before sending the packet to one of its associated cache
systems, the cache-enabled router 106 encapsulates the
packet for transmission to the selected cache system by
adding another IP header which designates the router as the
source of the packet and the cache system as the destination.
That 1s, the router encapsulates the packet for transmission
to a cache system which might be several “hops™ away. So,
for example, router 106 might encapsulate the packet for
transmission to cache system 1124 which 1s connected to
router 106 via router 114. Thus, not only may multiple cache
systems be associated with a particular router, but multiple
routers may be supported by an individual cache system or
a group ol cache systems. This allows a tremendous amount
of flexibility 1n where the cache system and router need to
be 1n relation to each other.

The selected cache system 112a responds to a request
from a client 102 to obtain objects from destination platform
110. The cache system 112a either retrieves objects from
destination platform 110 to then present to one of the clients
or retrieves objects from 1ts own cache (which objects were
previously retrieved from the destination platform 110).

It will be understood that the network cache systems
described herein may employ any of a variety of existing file
systems and remain within the scope of the mvention. For
example, the mvention may be implemented using a Unix
general purpose file system or the equivalent. A particular
embodiment of the mvention employs the file system
described in commonly assigned, U.S. Pat. No. 5,950,205
for DATA TRANSMISSION OVER THE INTERNET
USING A CACHE MEMORY FILE SYSTEM issued on
Sep. 7, 1999, the entire specification of which 1s incorpo-
rated herein by reference for all purposes.

In the illustrated embodiment, cache systems 112a, 1125,
112¢, and 1124 form a cache cluster or farm 120 and cache
system 122 form a cache cluster 122. Traflic 1s typically
allocated to each cache system within the same cache
cluster. Trathic may be allocated based on any suitable factor.

10

15

20

25

30

35

40

45

50

55

60

65

6

In the 1llustrated embodiment, traffic 1s allocated based on IP
destination address. That 1s, each cache system 1s assigned
to handle requests for objects from a particular set of
destination addresses. The present invention provides
mechanisms for intelligently assigning buckets to each
cache system within a cluster so that the cache system 1s not
immediately overwhelmed by object requests, for example.
Any suitable mechanism may be utilized for preventing
cache system overload. For example, buckets may be slowly
assigned to a new cache system upon startup. Additionally,
the cache system’s may be continuously monitored for
overload, as well as underload, and the bucket assignment 1s
then appropnately adjusted. As one or more cache system(s)
are pulled from a cluster or shut-down, bucket can also be
intelligently re-assigned to minimize traflic bottle-necks.

FIG. 2 1s a flowchart representing a bucket assignment
process 200 for a cache system (CS) that 1s joining a cluster
or starting-up 1n accordance with one embodiment of the
present mvention. Initially, the new CS announces its pres-
ence 1n operation 202 to the other CS’s and/or router(s) of
the cluster. In response to this announcement, the full bucket
allocation for each CS 1s then determined 1n operation 204.
This bucket allocation procedure may be implemented 1n
any of the router’s or CS’s associated with the cluster. When
allocation 1s implemented within a CS, that CS 1s commonly
referred to as the “lead CS.” The CS with the lowest
assigned IP address typically functions as the lead CS.

In one embodiment, the buckets are evenly divided
among the cache system’s of the cluster. For the cache
cluster 120, 64 buckets (1.e., 256/4) are allocated for each CS
since there are four CS’s (112a—112d). On the other hand,
since there 1s currently only a single CS 110 within the
cluster 122, 256 buckets are allocated for CS 110. When a
new CS 1s associated with a particular cluster, buckets from
existing CS’s are allocated to the new CS 1n a roughly even
mannet, 1.e., about the same number from each. The router
may also attempt to preserve the utility of data already stored
in the existing CS’s while filling up the new caching engine
with new information. Buckets may also be assigned based
on any suitable load balancing techniques. That 1s, buckets
are assigned so that traflic 1s evenly distributed among the
CS’s of the cluster. For example, the high traflic buckets
would not be assigned to the same CS. A weighted load
balancing assignment techmque 1s further described below.

After the full bucket allocation 1s determined for each CS,
it 1s then determined whether the cluster 1s at maximum load
in operation 208. If the cluster 1s currently handling a
maximum load (e.g., prior to start-up of the new CS), the
256 buckets are already apportioned among the existing
CS’s i chunks that are manageable for the existing CS.
Since the new allocation for each CS 1s a lower number of
buckets than the number of buckets currently assigned to the
existing CS’s, the new CS 1s likely to able to handle 1ts tull
allocation of buckets. Thus, 1f the cluster 1s at maximum
load, the full bucket allocation i1s then assigned to each
cluster CS 1n operation 214. Of course, it 1s assumed that the
new CS does not have a radically lower capacity than the
existing CS’s. Typically, when one adds a CS to a cluster, the
CS will be an upgraded higher capacity CS. At the very least,
the new CS has the same capacity as the other CS’s 1n the
cluster. Operations 208 and 214 may be skipped to allow for
a more diverse arrangement of CS’s with widely variable
capacities.

If the cluster 1s not at maximum load, a relatively large
number of buckets may not be assigned to the old CS’s. In

other words, a large number of buckets may be allocated to
the new CS. Thus, the full bucket allocation may then be

US 7,009,324 Bl

7

gradually assigned to the new CS using a slow-start tech-
nique 1n operation 210 so as to not overload the new CS. In
general terms, buckets are slowly assigned to the new CS
until the full allocation 1s assigned or the new CS 1s
overloaded. Buckets are then continuously assigned to each
cluster CS using a tracking technique in operation 212. In
tracking mode, the CS’s are continuously monitored for
overloading and underloading. The underloaded or over-
loaded CS’s bucket assignment 1s then appropnately
adjusted.

FIG. 3 1s a flowchart illustrating the slow-start procedure
210 of FIG. 2 1n accordance with one embodiment of the
present invention. For exemplary purposes, CS 1124 has
entered cluster 120, which already has existing CS’s 112a,
1125, and 112¢. When the slow-start procedure 210 1s
implemented for new CS 112d, half of the full bucket
allocation 1s assigned to the new CS 1124 1n operation 302.
In this example, the full allocation 1s 64 buckets; therefore,

CS 1124 1s mitially assigned 32 buckets.

It 1s then determined whether the current bucket count that
was assigned/shed 1s less than or equal to one bucket in
operation 304. If the current bucket count assigned/shed 1s
less than or equal to one, then slow-start mode 1s exited.
Tracking mode 1s then implemented on the new CS 1124, as
well as the other CS’s (112a through 112¢). In the illustrated
tracking mode embodiment, the CS 1s monitored for under-
load or overload and a single bucket may then be shed/
assigned accordingly. Of course, tracking mode may be
entered upon reaching any other suitable bucket count that
was assigned or shed.

It the count 1s not less than one, the slow-start mode 1s not
exited (and the tracking mode i1s not entered). Instead, the
process waits for a predetermined time 1n operation 306. The
predetermined time 1s selected based on any number of
factors, such as a desire to reduce the amount of time a CS
remains overloaded, minimize the amount of overhead
required to momnitor the CS, the time by which load 1s
assumed to decrease after being shed and/or the time
required by the CS to shed load. In the illustrated embodi-
ment, 30 seconds appears to work well.

It 1s then determined whether the new CS 1s overloaded in
operation 308. Any suitable mechanism may be utilized to
determine whether the new CS 1s overloaded. For example,
cach CS may include a readable memory location in the
form of an overload flag for indicating overload. The lead
CS may then read the new CS’s overload flag to determine
whether 1t 1s overloaded. In an alternate embodiment, the
new CS may be configured to send a message to the lead CS
indicating whether 1t 1s overloaded or not.

In a specific WCCP v2 implementation, a CS sends a
“WCCP2_BUCKET_LOAD_REQUEST” message every
30 seconds to the lead CS (or router). The time interval 1s
preferably configurable. This message tells the lead CS
whether the new CS can take more load or needs to shed
some load. If the new CS needs to shed load, it may also
specily how much load to shed. In a more specific embodi-
ment, the message contains the following standard WCCP
v2 message components:

Message Header
Security Component
Service Component

The above common header 1s well described 1n the co-

pending U.S. Provisional Application No. 60/168,862 for
METHOD AND APPARATUS FOR REDIRECTING NET-

WORK TRAFFIC filed Dec. 2, 1999, the entirety of which

10

15

20

25

30

35

40

45

50

55

60

65

8

1s 1ncorporated herein by reference for all purposes. For
implementation of one embodiment of the present invention,
the message contains the following additional message
components:

Web Cache Identity Info Component
WC Load Component

The Web Cache Identity Component identifies the CS (e.g.
the same way as 1n the “Here I am™ messages from the CS).
For example, it has information regarding the IP address of
the CS and the buckets assigned to 1t. The Web Cache
Identity Info component 1s also described further in the
above referenced provisional application. The Web Cache
Load Component contains information regarding the load
status of the CS. For example, 1t has the following fields:

Load State Flag
No. of Buckets to Shed/Add (if any)
List of Buckets

The Load State Flag indicates whether the CS 1s under- or
overloaded. The meaning of the No. of Buckets to Shed/Add
Field depends on the state of the Load State Flag. When the
Load State Flag indicates overload, the No. of Buckets to
Shed/Add Field indicates how many bucket needs to be shed
so the CS will not be overloaded. When the Load State Flag,
indicates underload, the No. of Buckets to Shed/Add Field
indicates how many bucket needs to be add so the CS will
not be underloaded. Of course, 1if the No. of Buckets to
Shed/Add Field 1s set to a value of zero, the CS 1s 1n a stable
state (1.e., not under- or overloaded). The List of Buckets
indicates which buckets that the overloaded CS wishes to
shed.

Which buckets to shed may also be determined by select-
ing the buckets that are currently being bypassed by the CS.
In one embodiment, the shedding of buckets may be a
three-way process. A message 1s sent to the lead CS to shed
the buckets and then the lead CS informs the router. How-
ever, this process may not be quick enough to reduce load on
the CS. Accordingly, the CS may imitially shed the buckets
by sending them back to the router through a packet return
(or bypassing) mechanism. One embodiment of a packet
return mechanism 1s described further in the above refer-
enced U.S. provisional application, which 1s incorporated
herein by reference. Once the lead CS 1s able to inform the
router, the load for these bypassed buckets 1s not seen 1n the

shedding CS.

Which buckets to add may be determined by analyzing
the history of the buckets that were previously assigned to
the CS and then shed. Accordingly, load balancing tech-
niques that were previously implemented by the lead CS (or
router) to allocate and assign buckets need not be repeated.
Of course, which buckets to shed may merely be randomly
determined.

Referring back to FIG. 3, 1f the new CS 1s overloaded,
then a number equal to half of last buckets previously shed
from new CS 1s shed from the new CS 1n operation 309. Of
course, any suitable number of buckets may be shed from
the new CS to relieve the overload. Alternatively, the num-
ber of buckets shed may equal the No. of Buckets to
Shed/Add indicated in the WC Load Component. After the

buckets are shed, 304 through 308 are repeated until one of

US 7,009,324 Bl

9

three events occur: (1) the current bucket count assigned or
shed from the new CS 1s equal to or less than one (2) the full
bucket allocation 1s assigned to CS or (3) the new CS 1s not
overloaded. When events #1 or #2 occur, the slow-start
procedure ends.

When 1t 1s determined that the new CS 1s not overloaded
(event #3), a determination 1s then made as to whether or not
the full bucket allocation 1s assigned to the new CS in
operation 310. If the full bucket allocation i1s not assigned,
it 1s then determined whether there were any buckets pre-
viously shed 1n operation 312. If buckets were shed, then
half of the previously shed buckets are assigned to the new
CS 1n operation 314. I there were no buckets previously
shed, then half of the remaining buckets are assigned to the
new CS 1n operation 316. Operations 304 through 310 are
then repeated until the current bucket count assigned or shed
from the new CS 1s equal to or less than one or the full
bucket allocation 1s assigned to CS. The slow-start proce-
dure then ends, and the tracking procedure 1s then performed
on the new CS, as well as the other CS’s within the cluster.

FIG. 4 1s a flowchart illustrating the tracking procedure
212 of FIG. 2 1n accordance with one embodiment of the
present invention. Initially, the process waits a predeter-
mined time (e.g., 30 seconds) 1n operation 402. It 1s then
determined whether any cluster CS 1s overloaded in opera-
tion 404. IT a cluster CS 1s overloaded, a single bucket 1s
shed 1n operation 405 and the process again waits the
predetermined time 1n operation 402. A single bucket con-
tinues to be shed every predetermined time until the CS 1s no
longer overloaded.

When the CS 1s not overloaded, it 1s then determined
whether any cluster CS 1s underloaded in operation 406. 1T
a cluster CS 1s underloaded, 1t 1s then determined whether
the underloaded CS 1s assigned a full bucket allocation in
operation 408. If the underloaded CS 1s not assigned a full
bucket allocation, a single bucket 1s then added to the
underloaded CS in operation 410. In contrast, if the CS 1s
assigned a full bucket allocation, this operation 410 1is
skipped and a bucket 1s not added. Additionally, if the CS 1s
not underloaded, operations 408 and 410 are skipped. The
tracking procedure then repeats at operation 402.

In addition to providing mechanisms for intelligently
assigning buckets upon start-up of a new cluster, mecha-
nisms may also be provided for intelligently assigning
buckets to the remaining CS’s when a CS exits from a
cluster or 1s shut-down. In one embodiment, the slow-start
procedure 1s implemented to assign the buckets left by the
exiting CS to the remaining CS’s. However, the slow-start
procedure may immediately overburden all of the remaining,
CS’s 1f they were operating at close to maximum capacity
prior to the CS leaving the cluster. Alternatively, the slow
start procedure may be implemented to assign all of the
buckets of the cluster to the remaining CS’s. However, this
may cause the remaining CS’s to in eflect shed a significant
portion of their assigned buckets. The CS’s assigned bucket
then slowly increase until the new full bucket allocation 1s
reached again. This 1s likely to occur when the cluster 1s
operating at close to a maximum load, 1n which case each
remaining CS should preferably continue to handle a sig-
nificant number of buckets.

Another approach 1s to utilize some form of tracking
procedure. This approach 1s more conservative than using
the slow-start technique to assign the remaining cluster
buckets and more eflicient than using the slow-start tech-
nique to assign the total cluster buckets. FIG. 5 1s a flow
chart illustrating a procedure 500 for assigning buckets
when a CS leaves a cluster 1n accordance with one embodi-

10

15

20

25

30

35

40

45

50

55

60

65

10

ment of the present invention. Initially, a new full bucket
allocation 1s determined 1n operation 502. For example, the
buckets are evenly divided among the remaining CS’s. In
operation 504, the remaining buckets are then incrementally
assigned to each CS using the tracking technique, e.g., as
illustrated 1n FIG. 4. The tracking procedure prevents the
remaining CS’s from being immediately overloaded upon
exit of a CS. Instead, single buckets are slowly assigned
every 30 seconds, for example, to each non-overloaded CS
until the full bucket allocation 1s reached.

Other mechanisms may also be provided for intelligently
determining the full bucket allocation for each CS (besides
merely evenly dividing the buckets among the CS’s). For
example, each CS may have an associated weight value that
indicates what maximum percentage of the cluster load that
may be allocated to such CS. By way of a specific example,
a cluster having four high-powered CS’s and a lower pow-
ered CS may evenly allocate 93% of the total buckets to the
high-powered CS’s, and the remaining 5% 1s allocated to the
low-powered CS. In one embodiment, a CS communicates
a weight value within a message to the lead CS (e.g., the
WCCP2_BUCKET_LOAD_REQUEST message). This
welght value may then be taken mto account when calcu-
lating the full bucket allocation for the associated CS. The
above described slow-start and tracking procedure may then
be used to monitor and adjust the CS’s bucket assignment,
for example, until the full bucket allocation 1s assigned to the

CS.

Mechanisms may also be provided for communicating
bucket assignment information and load status of each of the
CS’s to each one of the other CS’s withun a cluster. This
mechanism allows a non-lead CS to take over the functions
of a lead CS 11 the lead CS exits from the cluster. That 1s, any
one of the CS’s may become the lead when the lead CS exits
the cluster. This function may be implemented n any
suitable manner. In one specific implementation, the lead CS
periodically (e.g., every 30 seconds) broadcasts a
“WCCP2_BUCKET_LOAD_UPDATE message to all of
the CS’s withun 1ts cluster. This message contains informa-
tion on the bucket allotment for all the CS’s 1n the cluster.
In one specific embodiment, the
“WCCP2_BUCKET_LOAD_UPDATE” message contains
the following components for each CS (in addition to the
standard components such as Message Header, Security
Component, and Service Component):

The Identity (IP address for CS)
The Allocated Hash (buckets allocated to this CS
Assignment Number (IP + Change)

The Allocated Hash 1s the full buckets allocation for this
CS. The Assignment Number i1s the 1dentification that deter-
mines the buckets that are actually being serviced by this
CS. The buckets actually serviced by the CS’s 1s transmitted
in the “I see you” message sent by the router to each of the
CS’s. Alternatively, the lead CS may broadcast this infor-
mation. The CS’s may then use these two pieces of 1nfor-
mation to determine what part of the load is still unassigned
(e.g., by subtracting the number of assigned buckets from
the number of buckets actually being serviced by the router).
Each response message may also include an assignment key
so that the CS may determine whether it has the latest update
(1.e., by comparing the key from router response and the lead
CS response).

US 7,009,324 Bl

11

In this embodiment, a CS may also request this informa-
tion by sending a “WCCP2_BUCKET_LOAD_QUERY”
message to the lead CS and the router. In a specific embodi-
ment, this message may include the following components
(in addition to the standard components):

Component Header

Cache Version
Sender CS IP address

Target CS IP Address

The Component Header indicates a
WCCP2_BUCKET_LOAD_QUERY message, and the
Cache Version indicates the version of InterCache protocol.
The Sender CS IP Address specifies the requesting CS’s 1P
address so the lead CS can respond back to the correct CS.
The Target CS IP Address specifies which CS the requesting
CS wishes to receive information about.

Several embodiments of the present invention provide a
number of advantages. For example, specific embodiments
allow tlexibility 1in the capacity of individual cache systems
within a particular cache cluster. That 1s, the cache systems
of a particular cluster may have different capacities since
load 1s 1ntelligently assigned to each cache. For instance, a
small-capacity cache system may be used within a cluster of
mostly high-capacity cache systems without significantly
interfering with traflic. For example, the lower capacity
cache system 1s unlikely to become overloaded and thereby
form a bottleneck since load 1s assigned so as to match the
capacity of the cache system. In contrast, conventional
bucket management techniques typically divide the cluster’s
load evenly between the cache systems and immediately
assign the full bucket allocation to each cache system. As a
result, a cache system with a lower-level capacity may
become overwhelmed when implementing conventional
bucket assignment mechanmisms.

The above described allocation and assignment mecha-
nisms of the present mvention may also be utilized in
conjunction with the flow protection mechanisms described
in co-pending U.S. patent application Ser. No. 09/476,188
by Kwok et al., entitled METHODS AND APPARATUS
FOR REDIRECTING NETWORK TRAFFIC, filed on 3
Jan. 2000, which application 1s herein incorporated by
reference 1n 1ts entirety. The flow protection mechamism
generally prevent traffic from being disrupted when a CS
enters or exits the cluster. Likewise, the assignment mecha-
nisms allow a CS to enter or exit a cluster without disrupting,
traflic (e.g., by a CS becoming overloaded). These two
mechanisms together provide significant flexibility m CS
arrangements. For example, one may easily upgrade a CS
cluster by adding a high-power CS and/or taking a low-
power CS away without causing significant traflic disrup-
tion. By way of another example, a cluster may have CS
with widely varying capacity since mechanisms for intelli-
gent assigning and/or shedding buckets from a CS are
provided. Additionally, a lower incidence of traflic disrup-
tions contributes to the transparency aspect of the CS’s.

Generally, the bucket allocation and assignment tech-
niques of the present mvention may be implemented on
soltware and/or hardware. For example, it can be imple-
mented 1n an operating system kernel, 1n a separate user
process, 1n a library package bound into network applica-
tions, on a specially constructed machine, or on a network
interface card. In a specific embodiment of this mvention,
the technique of the present invention 1s 1mplemented in

10

15

20

25

30

35

40

45

50

55

60

65

12

soltware such as an operating system or in an application
running on an operating system.

A software or software/hardware hybrid bucket allocation
and assignment system of this invention 1s preferably imple-
mented on a general-purpose programmable machine selec-
tively activated or reconfigured by a computer program
stored 1n memory. The programmable machine may be 1n the
form of a general purpose computer that 1s configured to
implement a cache system. The computer system generally
includes a memory, processor, and network interface mod-
ules.

Such programmable machine may also be a network
device designed to handle network tratlic. Such network
devices typically have multiple network interfaces including
frame relay and ISDN interfaces, for example. Specific
examples of such network devices include routers and
switches. For example, the allocation and assignment sys-
tems of this mnvention may be specially configured routers
such as specially configured router models 1600, 2500,
2600, 3600, 4500, 4700, 7200, 7500, and 12000 available
from Cisco Systems, Inc. of San Jose, Calif. A general
architecture for some of these machines will appear from the
description given below. In an alternative embodiment, the
bucket assignment system may be implemented on a gen-
eral-purpose network host machine such as a personal
computer or workstation. Further, the invention may be at
least partially implemented on a card (e.g., an interface card)
for a network device or a general-purpose computing device.

Referring now to FIG. 6, a router 10 suitable for imple-
menting the present invention includes a master central
processing unit (CPU) 62, interfaces 68, and a bus 15 (e.g.,
a PCI bus). When acting under the control of appropriate
soltware or firmware, the CPU 62 1s responsible for such
router tasks as routing table computations and network
management. It may also be responsible for determining full
bucket allocation for a new CS, assigning buckets to a CS 1n
slow-start mode or tracking mode, etc. It preferably accom-
plishes all these functions under the control of software
including an operating system (e.g., the Internetwork Oper-
ating System (IOS®) of Cisco Systems, Inc.) and any
appropriate applications software. CPU 62 may include one
or more processors 63 such as a processor from the Motorola
family of microprocessors or the MIPS family of micropro-
cessors. In an alternative embodiment, processor 63 1is
specially designed hardware for controlling the operations of
router 10. In a specific embodiment, a memory 61 (such as
non-volatile RAM and/or ROM) also forms part of CPU 62.
However, there are many different ways in which memory
could be coupled to the system. Memory block 61 may be
used for a variety of purposes such as, for example, caching
and/or storing data, programming instructions, efc.

The interfaces 68 are typically provided as interface cards
(sometimes referred to as “line cards™). Generally, they
control the sending and receiving of data packets over the
network and sometimes support other peripherals used with
the router 10. Among the iterfaces that may be provided are
Ethernet interfaces, frame relay interfaces, cable interfaces,
DSL mterfaces, token ring interfaces, and the like. In addi-
tion, various very high-speed interfaces may be provided
such as fast Ethernet interfaces, Gigabit Ethernet interfaces,
ATM interfaces, HSSI interfaces, POS interfaces, FDDI
interfaces and the like. Generally, these interfaces may
include ports appropriate for communication with the appro-
priate media. In some cases, they may also include an
independent processor and, 1in some instances, volatile
RAM. The independent processors may control such com-
munications 1intensive tasks as packet switching, media

US 7,009,324 Bl

13

control and management. By providing separate processors
for the communications intensive tasks, these interfaces
allow the master microprocessor 62 to efliciently perform
routing computations, network diagnostics, security func-
tions, etc.

Although the system shown i FIG. 6 1s one specific
router of the present invention, it 15 by no means the only
router architecture on which the present invention can be
implemented. For example, an architecture having a single
processor that handles communications as well as routing,
computations, etc. 1s often used. Further, other types of
interfaces and media could also be used with the router.

Regardless of network device’s configuration, it may
employ one or more memories or memory modules (such as,
for example, memory block 65) configured to store data,
program 1nstructions for the general-purpose network opera-
tions and/or bucket allocation and assignment mechanisms
described herein. The program instructions may control the
operation of an operating system and/or one or more appli-
cations, for example. The memory or memories may also be
configured to store the above described message compo-
nents, the current number of buckets being shed or assigned
for each CS, etc.

Because such information and program instructions may
be employed to implement the systems/methods described
herein, the present mvention relates to machine readable
media that include program instructions, state information,
etc. for performing various operations described herein.
Examples of machine-readable media include, but are not
limited to, magnetic media such as hard disks, floppy disks,
and magnetic tape; optical media such as CD-ROM disks;
magneto-optical media such as floptical disks; and hardware
devices that are specially configured to store and perform
program 1nstructions, such as read-only memory devices
(ROM) and random access memory (RAM). The invention
may also be embodied 1n a carrier wave travelling over an
appropriate medium such as airwaves, optical lines, electric
lines, etc. Examples of program instructions include both
machine code, such as produced by a compiler, and files
containing higher level code that may be executed by the
computer using an interpreter.

By way of further implementation, the bucket assignment
mechanisms and/or flow protection mechanisms may be
utilized with cache systems that were integrated within the
router 1tself as RAM-based cache blades. The router may be
configured to allow expandable and/or replaceable RAM-
based cache blades.

Although the foregoing invention has been described 1n
some detail for purposes of clarity of understanding, it will
be apparent that certain changes and modifications may be
practiced within the scope of the appended claims. For
instance, although a slow-start technique and then a tracking
technique 1s described as being implemented on a new CS,
the tracking technique may be exclusively utilized on the
new CS. Therefore, the described embodiments should be
taken as illustrative and not restrictive, and the invention
should not be limited to the details given herein but should
be defined by the following claims and their full scope of
equivalents.

What 1s claimed 1s:

1. A method for assigning tra
system, the method comprising:

a) when a new cache system starts up 1n a cache cluster
having a plurality of cache systems among which a
plurality of total buckets are to be allocated, distribut-
ing the total buckets among the cache systems, includ-
ing the new cache system, so that a full bucket alloca-

1¢ buckets to a cache

5

10

15

20

25

30

35

40

45

50

55

60

65

14

tion 1s determined for the new cache system and
assigning a portion of the full bucket allocation to the
new cache system that was determined at start up;

b) periodically determining a load of the new cache
system;

¢) each time 1t 1s periodically determined that the new
cache system 1s underloaded and buckets have not been
previously shed from the new cache system, slowly
assigning a portion of the full bucket allocation that
was determined at startup without redistributing the
total buckets among the cache systems, including the
new cache system, unless the cache cluster 1s operating
at a maximum load;

d) each time it 1s periodically determined that the new
cache system 1s underloaded and buckets have been
shed previously from the new cache system, slowly
re-assigning a portion of the buckets that have been
previously shed from the new cache system to the new
cache system without redistributing the total buckets
among the cache systems, including the new cache
system, unless the cache cluster i1s operating at a
maximum load; and

¢) each time 1t 1s periodically determined that the new
cache system 1s overloaded, shedding a portion of the
buckets previously assigned to the new cache system
without redistributing the total buckets among the
cache systems, including the new cache system:;

wherein each bucket portion corresponds to a portion of
the total traflic being handled by the cache cluster.

2. A method as recited in claim 1 further comprising
assigning the full bucket allocation to the new cache system
when the cache cluster 1s operating at a maximum load.

3. A method as recited 1n claim 1, wherein shedding a
portion of the buckets previously assigned to the new cache
COmprises:

when no buckets have been previously shed, periodically
shedding a portion of the assigned buckets from the
new cache system:;

when buckets have been previously shed, periodically
shedding a portion of a number of buckets that were
previously shed from the new cache system.

4. A method as recited 1n claim 3 turther comprising after
the full allocation of buckets 1s assigned to the new cache
system or the last assigned or shed number of buckets for the
new cache system 1s less than or equal to one:

halting operations (b) through (e);

¢) periodically monitoring a load of each of the other
cache systems, including the new cache system, within
the cache cluster;

1) when any of the cache systems 1s overloaded, shedding
a mimmmum number of buckets from the overloaded
cache system; and

o) when any of the cache systems 1s underloaded, adding
the minimum number of buckets to the underloaded
cache system.

5. A method as recited 1n claim 4, wherein the minimum
number of buckets equals a single bucket, the portion of the
full bucket allocation equals a hall of the full bucket
allocation, and the portion of a number of buckets that were
previously shed equals half of the number of buckets that
were previously shed.

6. A method as recited 1n claim 4 further comprising:

when an existing cache system leaves the cache cluster or
shuts down, determining a new bucket allocation for
cach of the remaining cache systems; and

assigning buckets to the remaining cache system using the
new bucket allocation with operations (e) through (g).

US 7,009,324 Bl

15

7. A method as recited i claim 3 further comprising;:
receiving load information from the new cache, the load
information indicating whether the new cache system 1s
overloaded; and
using the load information to determine whether the new
cache 1s overloaded.
8. A method as recited i claim 7 wherein load informa-
tion 1s periodically received from the new cache system.
9. A method as recited 1n claiam 7 wherein the load
information further indicates a number of buckets to shed or
add, wherein the portion of the number of buckets that were
previously shed from the new cache system and the portion
of the assigned buckets are equal to the indicated number of
buckets to shed or add.
10. A method as recited in claim 1 wherein the operations

(b) through (e) are performed until the full allocation has
been assigned to the new cache system or a minimum

number of buckets have been added to or shed from the new
cache system.

11. A method as recited 1n claim 10 wherein operations (b)
through (e) are performed about every 30 seconds.

12. A method as recited 1n claim 1, wherein the full bucket
allocation 1s equal to a number of buckets allocated to each
existing cache system within the cache cluster.

13. A method as recited 1n claim 1, wherein the full bucket
allocation 1s not equal to a number of buckets allocated to
cach existing cache system within the cache cluster.

14. A method as recited in claim 13, further comprising
receiving a weight value from the new cache system indi-
cating a percentage of the total buckets to allocate the new
cache system.

15. A computer system operable to assign traflic buckets
to a cache system, comprising:

a memory; and
a processor coupled to the memory,

a) when a new cache system starts up 1n a cache cluster
having a plurality of cache systems among which a
plurality of total buckets are to be allocated, distrib-
uting the total buckets among the cache systems,
including the new cache system, so that a full bucket
allocation 1s determined for the new cache system
and assigning a portion of the full bucket allocation
to the new cache system that was determined at start
up;

b) periodically determining a load of the new cache
system;

¢) each time it 1s periodically determined that the new
cache system 1s underloaded and buckets have not
been previously shed from the new cache system,
slowly assigning a portion of the full bucket alloca-
tion that was determined at startup without redistrib-
uting the total buckets among the cache systems,
including the new cache system, unless the cache
cluster 1s operating at a maximum load;

d) each time 1t 1s periodically determined that the new
cache system 1s underloaded and buckets have been
shed previously from the new cache system, slowly
re-assigning a portion of the buckets that have been
previously shed from the new cache system to the new
cache system without redistributing the total buckets
among the cache systems, including the new cache
system, unless the cache cluster 1s operating at a
maximum load; and

¢) each time it 1s periodically determined that the new
cache system 1s overloaded, shedding a portion of the
buckets previously assigned to the new cache system

5

10

15

20

25

30

35

40

45

50

55

60

65

16

without redistributing the total buckets among the

cache systems, including the new cache system,
wherein each bucket portion corresponds to a portion of

the total traflic being handled by the cache cluster.

16. A computer system as recited in claim 15, wherein at
least one of the memory and the processor are further
adapted to provide:

assigning the full bucket allocation to the new cache
system when the cache cluster 1s operating at a maxi-
mum load.

17. A computer system as recited in claim 15, wherein at
least one of the memory and the processor are further
adapted to provide after the full allocation of buckets 1is
assigned to the new cache system or the last assigned or shed
number of buckets for the new cache system 1s less than or
equal to one:

halting operations (b) through (e);

¢) periodically monitoring a load of each of the other
cache systems, including the new cache system, within
the cache cluster;

1) when any of the cache systems 1s overloaded, shedding
a mimmum number of buckets from the overloaded
cache system; and

o) when any of the cache systems 1s underloaded, adding
the minimum number of buckets to the underloaded
cache system.

18. A computer system as recited in claim 17 wherein at
least one of the memory and the processor are further
adapted to provide:

when an existing cache system leaves the cache cluster or
shuts down, determining a new bucket allocation for
cach of the remaining cache systems; and

assigning buckets to the remaining cache system using the
new bucket allocation with operations (¢) through (g).

19. A computer system as recited 1n claim 15, wherein the
portion of the number of buckets that were previously shed
from the new cache system, the portion of the full bucket
allocation, and the portion of the assigned buckets are equal
to a half portion.

20. A computer program product for assigning traflic
buckets to a cache system, the computer program product
comprising:

at least one computer readable medium;

computer program instructions stored within the at least
one computer readable product configured to:

(a) when a new cache system starts up 1n a cache cluster
having a plurality of cache systems among which a
plurality of total buckets are to be allocated, distribut-
ing the total buckets among the cache systems, includ-
ing the new cache system, so that a full bucket alloca-
tion 1s determined for the new cache system and
assigning a portion of the full bucket allocation to the
new cache system that was determined at start up;

b) periodically determining a load of the new cache
system:

¢) each time 1t 1s periodically determined that the new
cache system 1s underloaded and buckets have not been
previously shed from the new cache system, slowly
assigning a portion of the full bucket allocation that
was determined at startup without redistributing the
total buckets among the cache systems, including the
new cache system unless the cache cluster 1s operating
at a maximum load;

d) each the 1t i1s periodically determined that the new
cache system 1s underloaded and buckets have been
shed previously from the new cache system, slowly
reassigning a portion of the buckets that have been

US 7,009,324 Bl

17

previously shed from the new cache system to the new
cache system without redistributing the total buckets
among the cache systems, including the new cache
system, unless the cache cluster 1s operating at a
maximum load; and

¢) each time it 1s periodically determined that the new
cache system 1s overloaded, shedding a portion of the
buckets previously assigned to the new cache system
without redistributing the total buckets among the
cache systems, including the new cache system,

wherein each bucket portion corresponds to a portion of
the total tratlic being handled by the cache cluster.

21. A computer program product as recited 1n claim 20,
wherein the computer program instructions are further con-
figured to assign the full bucket allocation to the new cache
system when the cache cluster 1s operating at a maximum
load.

22. A computer program product as recited in claim 20,
wherein shedding a portion of the buckets previously
assigned to the new cache comprises:

when no buckets have been previously shed, periodically
shedding a portion of the assigned buckets from the
new cache system:;

when buckets have been previously shed, periodically
shedding a portion of a number of buckets that were
previously shed from the new cache system.

23. A computer program product as recited i claim 22
wherein the computer program 1nstructions are further con-
figured to after the full allocation of buckets 1s assigned to
the new cache system or the last assigned or shed number of
buckets for the new cache system 1s less than or equal to one:

halt operations (b) through (¢);

¢) periodically monitor a load of each of the other cache
systems, including the new cache system, within the
cache cluster;

1) when any of the cache systems 1s overloaded, shed a
minimum number of buckets from the overloaded
cache system; and

o) when any of the cache systems 1s underloaded, add the
minimum number of buckets to the underloaded cache
system.

24. A computer program product as recited in claim 23,
wherein the minimum number of buckets equals a single
bucket, the portion of the full bucket allocation equals a half
of the full bucket allocation, and the portion of a number of
buckets that were previously shed equals half of the number
ol buckets that were previously shed.

25. A computer program product as recited in claim 23,
wherein the computer program instructions are further con-
figured to:

when an existing cache system leaves the cache cluster or
shuts down, determine a new bucket allocation for each
of the remaining cache systems; and

assign buckets to the remaining cache system using the
new bucket allocation with operations (e) through (g).

26. A computer program product as recited 1n claim 22,
wherein the computer program 1nstructions are further con-
figured to:

receive load information from the new cache, the load
information indicating whether the new cache system 1s
overloaded; and

use the load information to determine whether the new
cache 1s overloaded.

27. A computer program product as recited in claim 26,

wherein load information 1s periodically received from the
new cache system.

10

15

20

25

30

35

40

45

50

55

60

65

18

28. A computer program product as recited 1in clam 38,
wherein the load information further indicates a number of
buckets to shed or add, wherein the portion of the number of
buckets that were previously shed from the new cache
system and the portion of the assigned buckets are equal to
the 1indicated number of buckets to shed or add.

29. A computer program product as recited in claim 20,
wherein the operations (b) through (e) are performed until
the tull allocation has been assigned to the new cache system
or a minimum number of buckets have been added to or shed
from the new cache system.

30. A computer program product as recited 1n claim 29,
wherein operations (b) through (e) are performed about
every 30 seconds.

31. A computer program product as recited in claim 20,
wherein the full bucket allocation 1s equal to a number of
buckets allocated to each existing cache system within the
cache cluster.

32. A computer program product as recited in claim 20,
wherein the full bucket allocation 1s not equal to a number
of buckets allocated to each existing cache system within the
cache cluster.

33. A computer program product as recited in claim 32,
wherein the computer program 1nstructions are further con-
figured to receive a weight value from the new cache system
indicating a percentage of the total buckets to allocate the
new cache system.

34. An apparatus for assigning traflic buckets to a cache
system, comprising;:

means for when a new cache system starts up in a cache

cluster having a plurality of cache systems among
which a plurality of total buckets are to be allocated,
distributing the total buckets among the cache systems,
including the new cache system, so that a full bucket
allocation 1s determined for the new cache system and
assigning a portion of the full bucket allocation to the
new cache system that was determined at start up;

means for periodically determining a load of the new
cache system;

means for each time 1t 1s periodically determined that the
new cache system 1s underloaded and buckets have not
been previously shed from the new cache system,
slowly assigning a portion of the full bucket allocation
that was determined at startup without redistributing
the total buckets among the cache systems, including
the new cache system, unless the cache cluster 1is
operating at a maximum load;

means for each time 1t 1s periodically determined that the
new cache system 1s underloaded and buckets have
been shed previously from the new cache system,
slowly assigning a portion of the buckets that have been
previously shed from the new cache system to the new
cache system without redistributing the total buckets
among the cache systems, including the new cache
system unless the cache cluster 1s operating at a maxi-
mum load; and

means for each time 1t 1s periodically determined that the
new cache system 1s overloaded, shedding a portion of
the buckets previously assigned to the new cache
system without redistributing the total buckets among,
the cache systems, including the new cache system,

wherein each bucket portion corresponds to a portion of
the total traffic being handled by the cache cluster.

	Front Page
	Drawings
	Specification
	Claims

