US007069317B1
a2 United States Patent (10) Patent No.: US 7,069.317 B1
Colrain et al. 45) Date of Patent: Jun. 27, 2006
(54) SYSTEM AND METHOD FOR PROVIDING 5,659,781 A 8/1997 Larson
OUT-OF-BAND NOTIFICATION OF SERVICE 5,706,516 A 1/1998 Chang et al.
CHANGES 5727206 A * 3/1998 Fish et al. ..ooovoevenn.... 707/202
5,802,523 A 9/1998 Jasuja et al.
. . 5,828,876 A 10/1998 Fish et al. .oovvevveeeereenn.! 707/1
(75) " Inventors: gf"l g %"lraln’fe%mm Shores, 5872981 A 2/1999 Waddington et al. 710/200
(US); Harvey A. Eneman, 5,890,153 A 3/1999 Fukuda et al.ocvvvvn... 707/8
Belmont, CA (US); Wei-Ming Hu, Palo 6,105,026 A 82000 Kruglikov et al
Alto, CA (US); Sashikanth 6,108,654 A 8/2000 Chan et al. wooveeveeenn.. 707/8
Chandrasekaran, Belmont, CA (US) 6,148,299 A 11/2000 Yoshimoto
6,314,563 B1 11/2001 Agesen et al.
(73) Assignee: Oracle International Corporation, 6,347,374 Bl 2/2002 Drake et al.
Redwood Shores, CA (US) 6,370,529 Bl 4/2002 Kruglikov et al.
6,401,120 Bl 6/2002 Gamache et al.
(*) Notice: Subject to any disclaimer, the term of this 6,418,542 B1 ~ 72002 Yeager

patent 1s extended or adjusted under 35

(Continued)
U.S.C. 154(b) by 830 days.

OTHER PUBLICATTIONS

“Sun Cluster 2.2 Software Installation Guide,” Sun
(22) Filed: Feb. 28. 2002 Microsystems, Part No. 809-5342, Jul. 2000, Revision A.

(Continued)

(21) Appl. No.: 10/086,949

Related U.S. Application Data

.. L Primary Examiner—Krisna Lim
(60) Provisional application No. 60/272,386, filed on Feb.

(74) Attorney, Agent, or Firm—Hickman Palermo Truong &

28, 2001. Becker, LLLP
(31) Int. CI. (57) ABSTRACT
Gool’ 15/16 (2006.01)
(52) US.CL ..., 709/224; 714/4; 714/6; A system and method for detecting a failure ot a first process
714/7 1s disclosed. According to one aspect, a first connection 1s
(58) Field of Classification Search 714/4, established between a first process and a second process. A
714/6, 7. 47, 48, 799; 707/202, 201; 709/224 monitoring mechanism monitors the status of the ﬁrst pro-
See application file for complete search history. cess to detect wl?et‘her the first process has fa}led. In
response to determining that the first process has failed, the
(56) References Cited monitoring mechanism causes an out-of-band message to be
.S PATENT DOCUMENTS sent to the second process.
5,623,666 A 4/1997 Pike et al. 707/200 44 Claims, 13 Drawing Sheets
30
Client(s) .~ 63
50
- = E l‘L Midtier i_L %
i TPM i
i | Server ' 8
vy Momem 339 997 GE:LI:;T;) Listener | [%° Groups) |~ ms
1 > :
' = e = e :
Database | Run Method) 5(1]
32 I I M pp——— R PR LR LR etk
P instence "o Method B4a
Mobile (P S oo — '
obile 40 : . l
367 Address é ﬁﬂf ST [.5eé
» 31 '53{><_]0B Instance DB Instance o 51
Cluster Global | Cooperative Cooperative |
37 Sorvics Services | Resource Group 52 55 Resource Group .
ADaemon{) E Data Server T E
41 > Wl 1 —— —
~—— ~ Shared | _~ 86
38 N Shared Databass
Database p— e
S— e A -

US 7,069,317 Bl
Page 2

U.S. PATENT DOCUMENTS 2004/0205414 A1* 10/2004 Roselli et al. 714/39
2005/0171945 Al 8/2005 Colrain et al.

6,463,457 B1 10/2002 Armentrout et al.
6,466,574 B1* 10/2002 Funsak: et al. 370/356 OTHER PURI ICATIONS
6,549,957 B1* 4/2003 Hanson et al. 710/5
6,625,602 Bl 9/2003 Meredith et al. 707/8 “Compact ProlLiant Clusters HA/F100 and HA/F200
gﬂ;?gﬂ i gg E . 3? gggj Eomﬁl;n ft aiﬂ* 1a/al Administrator Guide,” Compaq Computer Corporation, Part
6772255 BL 82004 Daynes oo 710200 NO- 380362002, Second Edition (Sep. 1999).
6,799.173 Bl 9/2004 Czajkowski et al. Gray J et al., “Iransaction Processing: Concepts and Tech-
6,804,711 B1 10/2004 Dugan et al. niques,” 1993, pp. 128-138, Morgan Kauifman, San Fran-
6,807,540 Bl 10/2004 Huras et al. cisco, CA.
6,892,205 Bl 5/2005 Colrain et al.

2002/0107957 Al* 82002 Zargham et al. 709/224 * cited by examiner

US 7,069,317 B1

Sheet 1 of 13

Jun. 27, 2006

U.S. Patent

QgL

A

usiio
a]0WoY

"L 24nbi4

U.S. Patent Jun. 27, 2006 Sheet 2 of 13 US 7,069,317 B1

Figure 2.

34 Monitors 39 i 1 I

- Database -Run Method .
nstance | a1 Method

Mobile IP 40

S5 Address
- 31

Cluster Glol_oal l
37 . Services

Service

Daemon
41

33

38 Shared
Database

TN
asedeleq |
09 paleys

US 7,069,317 B1

m dnoJg) 92In0say T GG oS dnolig) mom:omOmm_ m

m aAneladoon aAneladoo m

) LG ().“@m oouejsu| 4q Tocﬂmc_ aal—x S

fm __ OPON _ G SPON "

e m L5 Agpuels OMIOY | |

E S B S A A I N m
L slefe

Sy NN e N I 1

NG _ |

= ” “

~ ! (s)dnolr) 09 L (s)dno.o 56 "_

K 84 v €9 JEVIVEETS 1BAIBS |

= m i | m

m _ | 1SNPIN M ﬂ m

0S

€9 (shusliD

‘€ 2inbi4

U.S. Patent

U.S. Patent Jun. 27, 2006 Sheet 4 of 13 US 7,069,317 B1

/2

75

Terminate
73 Register first time

/1

ﬂ-
P>~

aln|ie} ©pou Uo Ue}soy

Figure 4.

US 7,069,317 B1

Sheet 5 of 13

Jun. 27, 2006

U.S. Patent

(NMOQ) aulj-uo ©YD Bulq o) 1senbay

£8

28 V8 18
(dN) 8ul-}Jo HYD &kl 0] 1senbey

‘¢ 3Inbig

US 7,069,317 B1

Sheet 6 of 13

Jun. 27, 2006

U.S. Patent

cO

DOIEPI|EA puB paAledal abueyd diysiaquuisiy

€6

148
palalsibal 801AI8S

XS

‘9 94nbi14

U.S. Patent Jun. 27, 2006 Sheet 7 of 13 US 7,069,317 B1

Figure 7. Resilient
100 Failover (Active
node failure)
101 N Active node fails
109 | Service fails over to .
standby node
Issue event or RPC from
103 recovering instance that
service is COMING_UP |
on former standby node |
104 Recelve event or
RPC on TPM
TPM administers fast Tl:(';iiig: iar:IsSeer:/Veerr‘—l
shutdown of all server P .
105 . group on former active (™ 106
Processes In server node connected and In
group with failed node

suspended state

Application logic
107 resubmits failed
transactions in parallel to
TPM recovering any in-
doubt transactions

Active and standby roles
108 reversed when resilience
restored

End

U.S. Patent Jun. 27, 2006 Sheet 8 of 13 US 7,069,317 B1

Figure 8. Non-Resilient
110 Failure and

Restart

111 Active node fails

lssue event or RPC from
112 failed resource group

that service is DOWN

Receive event or

113 RPC on TPM
TPM administers fast
114 shutdown of all server

DrOCESSES IN server
group on failed node

115 Restart node

Issue event or RPC from
resource group that
service iIs UP

117 Recelve event or
RPC on TPM

TPM starts all server
118 OroCesses in server
group on active node

116

End

U.S. Patent Jun. 27, 2006 Sheet 9 of 13 US 7,069,317 B1

Figure 9. Resilient
120 Failure (Standby

Node Failure)

121 Standby node fails

Issue event or RPC from
122 failed resource group
that service is DOWN

153 Recelve event or
RPC on TPM

TPM administers fast

154 A shutdown of_all server
| processes In server
group with failed node
125 Restart node

Issue event or RPC from
resource group that
service is UP

157 Recelve event or
RPC on TPM

TPM starts all server
processes in server i

126

128 " group on standby node
' connected and In
suspended state

US 7,069,317 B1

Sheet 10 of 13

Jun. 27, 2006

U.S. Patent

V101
2001 SS900.d -
¢lLO}

v0ol 80IA8(] 181NAWI0Y)

101IUON\

e 0101
E o
_ a2I1ne(] Ja1ndwo) c00}
0001

‘01 24nbi

US 7,069,317 B1

Sheet 11 of 13

Jun. 27, 2006

U.S. Patent

chil

OLLE

vOLL

145"

19A19S

uoneolddy

uolyeolddy

201A9(] Je1ndwion

usi[O

JUSID

OL L1

vELL

Ocll

JOJIUOIN
Jine4

L1

aoue)su|
aseqeleq

woalsSAg Jaindwio)

8011

Q011

cObl

'L} 94nbi4

US 7,069,317 B1

o

\

Cop

&

e I9AIBS

" vicl uoneoday
S

=

N

o AR uoljeoijddy
=

e\

5

= 90¢!

= 90IAe(Jeindwo)

U.S. Patent

8icl

:

aouB)Su|
aseqgeleq

'~ 0LZl

i

[—————————peepeyesspp W pr g e e e L B R S E E S i aie sk b R e X L J 1 B L R L L _J§ J

SPON ™\ womvm

H(022!

_|||

aouelsu|

! aseqeled 80cl

912l |
SPON 20z H

102} Y
118N

002 |

‘2l 2inbi4

—

US 7,069,317 B1

JONUON

ne 80|
s 9LE! clel
=
-
w...w 0LEl $S990.1d §S920id L 9081
79

74 R3!
S
SEERASCL ao1ne(Jeindwon aoineq Jendwon Ot}
=
=
00t L

U.S. Patent

‘€1 @Inb14

US 7,069,317 Bl

1

SYSTEM AND METHOD FOR PROVIDING
OUT-OF-BAND NOTIFICATION OF SERVICE
CHANGES

CROSS-REFERENCE TO RELATED 5
APPLICATION

This patent application claims priority under 35 U.S.C. §
119(e) to provisional patent application Ser. No. 60/272,386,
filed Feb. 28, 2001, the disclosure of which 1s incorporated 1¢
by reference 1n 1ts entirety for all purposes.

FIELD OF THE INVENTION

The present invention relates in general to systems and | .
methods with high availability operating requirements and,
in particular, to a system and method for providing out-oi-
band notification of changes to the database service.

BACKGROUND OF THE INVENTION

20

Cluster databases provide location transparency to data by
allowing multiple systems to serve the same database. One
specific type of cluster database 1s the Oracle Real Appli-
cation Clusters™ product, licensed by Oracle Corporation,
Redwood Shores, Calif. Sets of two or more computers are 2>
grouped 1nto real application clusters. The clusters harness
the processing power ol multiple interconnected computers
to provide a single robust computing environment. Within
cach cluster, all nodes concurrently execute transactions
against the same database to synergistically extend the 30
processing power beyond the limits of an individual com-
ponent. Upon the mounting of the shared database, the real
application cluster processes a stream of concurrent trans-
actions using multiple processors on diflerent nodes. For
scale-up, each processor processes many transactions. For .
speed up, one transaction can be executed spanning multiple
nodes.

Cluster databases provide several advantages over data-
bases that use only single nodes. For example, cluster
databases take advantage of information sharing by many
nodes to enhance performance and database availability. In
addition, applications can be sped up by executing across
multiple nodes and can be scaled-up by adding more trans-
actions to additional nodes. Multiple nodes also make clus-
ter databases highly available through a redundancy of
nodes executing separate database instances. Thus, 1f a node 45
or database 1nstance fails, the database instance 1s automati-
cally recovered by the other instances which combine to
serve the cluster database.

Cluster databases can be made more highly available
through integration with high availability frameworks for sq
cach cluster. The inclusion of these components provides
guaranteed service levels and ensures resilient database
performance and dependable application recovery. Organi-
zationally, individual database servers are formed into inter-
connected clusters of independent nodes. Each node com-
municates with other nodes using the mterconnection. Upon
an unplanned failure of an active database server node, using

40

55

2

clusterware, an application will fail over to another node and
resume operations, without transaction loss, within a guar-
anteed time period. Likewise, upon a planned shutdown, an
application will be gracefully switched over to another node
in an orderly fashion.

The guarantee of service level thresholds 1s particularly
crucial for commercial transaction-based database applica-
tions, such as used in the transportation, finance, and elec-
tronic commerce industries. System downtime translates to
lost revenue and loss of market share. Any time spent
recovering from a system failure 1s measurable 1n terms of
lost transactions. Consequently, high availability systems
budget a set time period to help minimize lost revenue due
to unplanned outages. High availability systems also budget
for planned service interruptions.

Three types of service outages can occur for the database
service. In the first type of software outage, such as due to
a termination of a database instance or a clean shutdown of
hardware, a standard error message 1s generated when the
client attempts to next use the system. If the outage closes
the TCP/IP network connections (sockets) through which the
client sessions are communicating, the client application
will generally recerve a standard error message. The client
can then attempt to restart the transaction once the service 1s
restored. This type of outage is routine and readily resolved.

In the second type of outage, the outage panics the node,
which fails to close the sockets through which the client
sessions are communicating. The sessions will hang when
synchronous blocking read or write system calls are pending,
or are 1ssued prior to the outage until the client application
times out due to the TCP keep-alive timer. TCP keep-alive
timers are particularly problematic for applications that
require high availability and can result 1n extremely long
delays and service interruptions. The wait for a TCP keep-
alive timer can be as long as two hours. And although TCP
keep-alive timers are adjustable, tuning this parameter to
low values can result 1n false reports of failure.

In the third type of outage, the outage panics the node and
fails to close the sockets through which the client sessions
are communicating while no read or write system calls are
pending. The sessions block depending upon whether the
Internet protocol (IP) address 1n use 1s static or mobile. For
sessions using static IP addresses, the sessions will wait until
for a TCP timeout, which includes a tcp_ip_interval delay
for connection requests and a tcp_ip_interval delay for
conversation requests. The wait can be unacceptably
lengthy. For sessions using cooperative resource groups with
address resolution, each session will block and wait for a
timeout upon 1ssuing a read or write system call against the
IP address. The session will immediately receive an end-oi-
file error, unblock and select the next mobile IP address 1n
the cooperative resource group address list.

Table 1 describes the eflects of service outages on a
TCP/IP-based client. In the first case, an outage with sockets
closed due to software failure or node shutdown, the client
receives an error and recovers. In the second case, an outage
with sockets left open, the client blocks and waits from 75
seconds to two hours.

TABLE 1

Client Effects.

State of

Sockets After Conversation (SQL Blocked 1n I/O Read
Outage Connection Request or PL/SQL Request) or Write

Socket Closed Client receives error Client receives error Client receives error

(software

US 7,069,317 Bl

TABLE 1-continued

Client Effects.

State of

Sockets After Conversation (SQL
Outage Connection Request or PL/SQL Request)
failure or node

shutdown)

Socket left Tep_1p_ abort_ cinterval Tep__1p_abort_ interval
open (node (75 seconds) (10 minutes)

panics)

Therefore, there 1s a clear need for a mechanism that can
reduce the latency that 1s typically incurred when a socket
has been left open between a first and a second process after
one of the two processes has failed.

SUMMARY OF THE INVENTION

A system and method for detecting a failure of a first
process 1s disclosed. According to one aspect, a {irst con-
nection 1s established between a first process and a second
process. A monitoring mechanism monitors the status of the
first process to detect whether the first process has failed. In
response to determining that the first process has failed, the
monitoring mechanism causes an out-of-band message to be
sent to the second process. According to one feature, the
operation of establishing a first connection between the first
process and a second process includes the operation of
establishing a first connection between an application server
and a database instance; the operation of monitoring the
status of the first process includes the operation of monitor-
ing the status of the database instance; and the operation of
notifying the second process that the first process has failed
includes the operation of causing an out-of-band break to be
sent to the application server.

BRIEF DESCRIPTION OF TH.

L1

DRAWINGS

FIG. 1 1s block diagram showing a cluster computing
environment including cluster databases imncorporating high
availability components.

FIG. 2 1s a functional block diagram showing a database
stack implemented on a server node, including a system for
providing out-of-band notification of service changes, in
accordance with the present invention.

FIG. 3 1s a functional block diagram showing, by way of
example, an active and stand-by node configuration, includ-
ing a midtier.

FIG. 4 1s a state transition diagram showing service
change notifications for a cluster service.

FIG. 5 15 a state transition diagram showing notifications
as part of a user interface routine.

FIG. 6 1s a state transition diagram showing notifications
as part of a global services daemon.

FIG. 7 1s a flow diagram showing, by way of example, a
method for providing resilient faillover upon an active node
failure.

FIG. 8 1s a flow diagram showing, by way of example,
non-resilient failure and restart.

FIG. 9 1s a flow diagram showing, by way of example,
resilient failover following failure of a standby node.

FIG. 10 1s a block diagram in accordance with certain
embodiments of the mmvention.

FIG. 11 1s a block diagram in accordance with certain
embodiments of the mvention.

Blocked in I/O Read
or Write

Tep_ _keepalive interval
(2 hours)

15

20

25

30

35

40

45

50

55

60

65

FIG. 12 1s a block diagram 1n accordance with certain
embodiments of the invention.

FIG. 13 1s a block diagram 1n accordance with certain
embodiments of the mvention.

DETAILED DESCRIPTION

A method and apparatus for providing an out-of-band
notification for a service change 1s described. In the follow-
ing description, for the purposes of explanation, numerous
specific details are set forth to provide a thorough under-
standing of the present invention. One skilled in the art
would recognize that the present invention may be practiced
without these specific details. In other instances, well-known
structures and devices are shown in block diagram form to
avoild unnecessarily obscuring the present invention.

FUNCTIONAL OVERVIEW

In one embodiment, a mechanism 1s disclosed that pro-
vides for out-of-band noftifications of database service
changes 1n a cluster framework of cooperative resource
groups. The use of an out-of-band noftification can resolve
situations in which clients block on read or write responses
upon a node failure with the sockets remaining open.

An embodiment of the present invention 1s a system and
method for providing out-of-band notification of database
service changes. A cluster framework 1s structured into a
layered architecture. An application layer includes at least
one of applications and middleware supporting the applica-
tions. A database 1nstance resource group interoperates with
the application layer and includes a database instance pro-
viding services. A monitor 1s associated with the database
instance resource group and exports an out-of-band interface
to the clients. An UP service notification 1s generated from
the cluster framework upon service availability. A DOWN
service notification 1s generated from the cluster framework
upon service non-availability.

A further embodiment 1s a system and method for com-
municating service change events 1n a cluster framework
environment. A plurality of service change events for com-
munication between a plurality of nodes are defined and
include an UP service change event, a DOWN service
change event, a COMING UP service change event, and a
GOING DOWN service change event. The event 1s pub-

lished to subscribing clients and the middleware layer.
Table 2 describes the eflects of service outages on a
TCP/IP-based client 1n an environment including coopera-
tive resource groups and out-oi-band service change notifi-
cations 1n accordance with the present invention. In the first
case, an outage with sockets closed due to software failure
or node shutdown, the client recerves an error, plus an
out-of-band event (service change notification) for a con-
versation or blocked IO, and recovers. In the second case,

US 7,069,317 Bl

S

an outage with sockets lett open, the client recerves either an
error or an out-of-band event, thereby enabling the client to
immediately recover. This arrangement eliminates TCP/IP
timeout errors for active connections with active conversa-
tions.

TABLE 2

Client Effects.

State of Conversation Blocked 1n
Sockets After Connection (SQL or [/O Read
Outage Request PL/SQL Request) or Write

Client receives Client receives

Socket Closed Client receives

(software error both error and both error and
failure or node out-of-band event out-of-band event
shutdown)

Socket left Client recerves Client recerves Client receives
open (node error due to out-of-band event out-of-band event
panics) logical IP address

failing over

FIG. 1 1s a block diagram showing a cluster database 12
incorporating high availability components. Parallel data-
base servers 11a—d, each including a cooperative resource
group are each coupled to a single cluster database 12 to
form a high availability cluster framework 14, such as

described 1in U.S. patent application, Ser. No. 10/086,782
entitled “System And Method For Providing Cooperative
Resource Groups For High Availability Applications,” filed
Feb. 28, 2002, pending, the disclosure of which 1s 1mcorpo-
rated by reference 1n 1ts entirety for all purposes. The servers
11 process a stream of transactions receirved from clients,

such as client 13 and remote client 18, 1n parallel with each
server processing an entire transaction.

Operationally, the remote client 18 1s 1nterconnected to

the servers 1la—d via an internetwork 16, such as the
Internet. Servers 11a—d and client 13 are iterconnected via
intranetworks 15a, 1556. Both intranetworks 154 and 155 are
respectively interconnected to the mternetwork 16 through
gateways 17a—b. Other network topologies and configura-
tions, mcluding various combinations of intranetworks and
internetworks are feasible, as would be recognized by one
skilled 1n the art.

The cluster framework 14 appears as a single node to
individual clients, which subscribe to the services published
by each cluster. The client sessions receive notification of
any changes 1n the services provided and transier to alternate
nodes as necessary, as further described below beginning
with reference to FIG. 2.

Within each cluster framework 14, each of the database
servers 11 incorporate high availability components, such as
described 1n J. Gray et al., “Transaction Processing: Con-
cepts and Techniques,” pp. 128-38, M. Kauimann Pubs.,
San Francisco, Calif. (1993), the disclosure of which 1s
incorporated by reference in 1ts entirety for all purposes.
Failover processing 1s initiated upon the detection of the
termination of a database instance, such as described in U.S.
patent application, Ser. No. 10/087,494, entitled “System
And Method For Detecting Termination Of an Application
Instance Using Locks,” filed Feb. 28, 2002, pending, the
disclosure of which 1s incorporated by reference in 1ts
entirety for all purposes. Likewise, upon a planned shut-
down, an application will switch over to another instance of
the database supporting the service. Other situations in
which failover processing 1s required are possible, as would
be recognized by one skilled in the art.

10

15

20

25

30

35

40

45

50

55

60

65

6

The response times provided by the substitute database
servers 12 1n the standby node may be longer than prior to
fallover or switchover until the ramp-up period for populat-
ing the database instance caches has run, although the
ramp-up period can be substantially minimized by pre-
connecting to the standby node and warming the database
instance caches beforehand, such as described 1n U.S. patent
application, Ser. No. 10/086,842 entitled *“System And
Method For Pre-Compiling A Source Cursor Into A Target
Library Cache,” filed Feb. 28, 2002, pending, the disclosure

of which 1s incorporated by reference in its entirety for all
pUrposes.

The individual computer systems, including database
servers 11, clients 13, and remote clients 18, are general
purpose, programmed digital computing devices consisting
ol a central processing unit (CPU), random access memory
(RAM), non-volatile secondary storage, such as a hard drive
or CD-ROM drive, network interfaces, and peripheral
devices, mcluding user-interfacing means, such as a key-
board and display. Program code, including software pro-
grams, and data are loaded into the RAM for execution and
processing by the CPU and results are generated for display,
output, transmittal, or storage.

FIG. 2 1s a functional block diagram showing a database
stack 31 implemented on a server node 30, including a
system for detecting termination of a database instance using,
locks, such as described 1n U.S. patent application, Ser. No.
10/087,494, entitled “System And Method For Detecting
Termination Of an Application Instance Using Locks,” filed
Feb. 28, 2002, pending, the disclosure of which 1s incorpo-
rated by reference in 1ts entirety for all purposes. The
database stack 31 1s logically divided into two parts: a
cooperative resource group 32, and a resource 33. The
cooperative resource group 32 includes a mobile iternet
protocol (IP) address 36, a database instance 35 (or high
availability application), and external monitors 34. The
mobile IP address 36 1s assigned to the cooperative resource
group 32 to support client access. More generally, a generic
high availability application could execute within the coop-
erative resource group 32, mnstead of the database instance
35, as would be recognized by one skilled in the art.

The monitors 34 detect the failure of the database instance
35 or the loss of access to a resource 33, plus “hang”
situations. The resources 33 include a cluster service 37 and
a shared database 38, as well as physical hardware devices,
such as disk drives and network cards, and logical items,
such as volume groups, TCP/IP addresses, applications, and
database 1nstances.

Within each cluster framework 14 (shown in FIG. 1), the
cluster service 37 executes all operations on the cooperative
resource group 32. Three types of out-of-band notifications
of service changes are provided. Notifications are provided
as part of running and halting the cooperative resource group
32 supporting a database instance using run method 39 and
halt method 40, as further described below with reference to
FIG. 4. Notifications are also provided as part of planned
operations on the cooperative resource group 32 using a
flexible user intertace (not shown) implemented 1n an appli-
cations and middleware layer, as further described below
with reference to FIG. 5. Finally, notifications are provided
as part of membership change events using a global services

daemon 41 implemented as part of the cluster service 38, as
further described below with reference to FIG. 6.

As shown below 1n Table 3, each service notification
includes seven parameters naming the application service
that 1s changed, and describing the role of the service, node
name, new status and date and time stamp of the change.

US 7,069,317 Bl

7

TABLE 3

Parameter Description

Name of application service that has
changed

Role of the service - primary,
secondary or ofl-line (maintenance)
Node name where cooperative resource
group 1s on-line

Name of the database

Name of the instance

Service Name

Role of Service

Node Name

Database Name
Instance Name

Status New status that service has assumed or
1s about to assume. Values are UP,
DOWN, COMING_ UP, and
GOING_DOWN

Incarnation Date and timestamp (local time zone)

to order notification messages

Each module within the database stack 31 i1s a computer
program, procedure or module written as source code in a
conventional programming language, such as the C++ pro-
gramming language, and 1s presented for execution by the
CPU as object or byte code, as 1s known 1n the art. The
various 1implementations of the source code and object and
byte codes can be held on a computer-readable storage
medium or embodied on a transmission medium 1n a carrier
wave. The run method 39, halt method 40, and global
services daemon 41 operate 1n accordance with a sequence
ol process steps, as further described below beginning with
reference to FIGS. 4, 5 and 6.

FIG. 3 1s a functional block diagram showing, by way of
example, an active and standby node configuration 50,
including a midtier. In this example, a data server tier 51
includes an active node 52 and standby node 35 executing
against a shared database 66. The active node 52 includes an
active database instance 53 executing within a cooperative
resource group 54 while the standby node 535 includes a
standby database instance 36 executing within a standby
cooperative resource group 57. There can be multiple active
and multiple standby nodes. In this example, a client/
middleware tier (midtier) 58 includes two sets of server
groups 39, 62. The server group 59 includes an associated
transaction process monitor (IPM) 60.

The described configuration applies equally to two- or
three-tiered database models, and also applies equally to
tully active database nodes, as would be recognized by one
skilled 1n the art. In a two-tiered database model, the
client/middleware tier 58 includes clients. In a three-tiered
database model, the client/middleware tier 58 interfaces to
one or more clients 63 executing 1n an upper client tier.

The database instances 53, 356, communicate through
mobile internet protocol (IP) addresses 63a—b. Change of
service notifications 64a—b are exchanged separately from
communications between the database instances 53, 56
through asynchronous remote procedure calls (RPCs) or
preferably by using an event system on redundant public
networks.

In addition to the active node 52 and standby node 55 in
the data server tier 51, two sets of server groups 59, 62
execute 1n a chient/middleware tier 58. Each set can com-
prise multiple server groups. In the described configuration,
one database instance 53 and one set of server groups 59 are
active while the other database istance 56 and set of server
groups 62 are 1n standby, ready to take over in the event of
a failure. A key aspect of this example configuration 1s an
option for the standby server groups 62 to be pre-connected,
that 1s, connected and ready to resume service immediately
upon notification of a failure.

10

15

20

25

30

35

40

45

50

55

60

65

8

For example, assume that the active database instance 53
fails while sessions executing within the set of active server
groups 39 are active or blocked during read or write system
calls. Next, the active node 52 fails. Membership changes
and the services formerly provided by the now-failed data-
base 1nstance 33 are moved to the standby node 35. A global
services daemon 41 (shown 1n FIG. 2) receives notification
of a COMING UP event (described below). A listener 61
executing within a TPM 60 receives the service change
notification, stops the failed server group 39, and resumes
services on the standby server node 35. Application logic
within the TPM 60 resubmits any failed transactions and
recovers any in-doubt transactions. Transaction processing
then continues as normal.

Event-based or RPC change of service notifications are
issued for three different work tlows for cooperative given
resource groups as follows:

(1) by the cluster service 37 as part of running and halting

a cooperative resource group 32 supporting a database

istance 35 (shown in FIG. 2);
(2) by the user interface routine as part of a planned action
requested for the cooperative resource group 32; and
(3) by a global services daemon 41 1nternal to the resource
33 that 1s waiting on a service change event at a
recovering database instance 35.

The use of an out-of-band event resolves situations 1n which
clients block on read or write responses upon a node failure
with the sockets remaining open.

FIG. 4 1s a state transition diagram 70 showing service
change notifications for a cluster service 37. Server change
notifications for cluster services are generated as part of the
running and halting of a cooperative resource group 34
supporting a database instance 35.

Planned service changes are communicated using the
notification mechanism in the run method 39 and halt
method 40 1n the database instance 35 using either an
event-based or RPC mechamism. Depending upon the
mechanism used, either an event or an RPC 1s 1ssued
synchronously to allow the database instances 33 receiving,
the change of service notifications to methodically execute
steps before the cluster service 37 continues with shutdown.
For example, a client database instance 35 i1s able to shut
down belore a subscribed server database instance 1s termi-
nated. When executed as an event or an RPC, a reliable
handshake 1s used to ensure that the call 1s received.

Notifications are sent to inform client sessions that the
cluster service 37 1s 1n one of two states, either UP 71 or
DOWN 72. A notification that the service 1s 1n an UP state
71 1s made when the application service 1s registered to a
listener 61 (shown 1n FI1G. 3) for the first time (transition 73).
Notification that the service 1s 1n a DOWN state 72 1s sent
alter the application service 1s terminated (transition 75).
The transitions to the UP state 71 are implemented as part of
the starting of a cooperative resource group 34. The transi-
tion to the DOWN state notification 1s implemented as part
of halting a cooperative resource group 54.

No DOWN state notification 1s sent 1f a node fails without
executing the halt method for the cooperative resource group
54. When a node fails without executing the halt method,
node failure 1s inferred when a COMING UP state 91
(shown 1n FIG. 6) 1s received from the cooperative resource
group 32 at the recovering node while the node restarts on
failure (transition 74). The DOWN state notification 1s sent
for each group membership change on the other nodes.

FIG. 5 15 a state transition diagram 80 showing notifica-
tions as part of a user interface routine, which allows user

US 7,069,317 Bl

9

defined control over failover, switchover, and related opera-
tions, such as creating a record of uptime and opening
fault-tracking tickets.

Notification that the service 1s in a COMING UP state 81
1s made when a request 1s 1ssued to bring the cooperative
resource group 32 (shown in FIG. 3) on-line (DOWN)
(transition 83). The COMING_UP state notification 1s
implemented as part of the user interface and occurs when
a request 1s 1ssued to the cluster service 37 to bring the
cooperative resource group 32 contaimng the database
instance 33 on-line.

Notification that the service 1s in a GOING DOWN state
82 1s made when a request 1s 1ssued to take the cooperative
resource group 32 off-line (UP) (transition 84). The
GOING_ DOWN state notification 1s implemented as part of
the planned operation interface that occurs when a request 1s
1ssued generally via the user interface to the cluster service
37 to take the cooperative resource group 32 ofl-line.

FIG. 6 1s a state transition diagram 90 showing notifica-
tions as part of a global services daemon 41 (shown 1n FIG.
2). Noftification 1s provided as part of a membership change
event. Notification that the service 1s 1n a COMING UP
state 91 1s made on a recovering database instance 35
(shown 1n FIG. 2) immediately following the receipt and
validation of a membership change event (transition 93).
The COMING_UP state notification 1s implemented using a
global services daemon 41 started with the cooperative
resource group 32. This transition waits on and validates the
membership change event. Note that for a two-node cluster
with one node acting as a primary and the other node acting
as a secondary, this transition occurs on the secondary node
when the primary node terminates. For a fully active cluster
with more than two nodes, this notification occurs at the first
node that detects the membership change.

A notification that a service 1s 1n an UP 92 state 1s made
when the service 1s registered and the role becomes available
(transition 94). The UP state notification 92 i1s implemented
using the same global services daemon 41 that waits for a
membership change event. Switching of services and roles
occurs before Distributed Lock Manager (DLM) locks are
re-mastered. For a fully active cluster with more than two
nodes, switching of services and roles 1s performed by the
global services daemon 41 and not necessarily at the recov-
ering database instance 35.

FIG. 7 1s a flow diagram showing, by way of example, a
method for providing resilient faillover upon an active node
tailure 100. The purpose of this routine 1s to provide service
tallover to a standby node (block 102) following the failure
of an active node (block 101). Depending upon the mecha-
nism used, either an event or an RPC 1s 1ssued from the
recovering instance that the service 1s mm a COMING_UP
state 81 (shown 1n FIG. 5) on the node that was previously
executing as a standby node (block 103).

By way of example, high availability logic executing
within a TPM that subscribes to the resource manager state
events receives the COMING_UP state notification (block
104) as either an event or an RPC. Upon receiving the
COMING_UP state 81 nofification, a two-step process
(blocks 105-106) occurs in parallel. First, the high avail-
ability logic in the TPM administers, via an administration
utility, a fast shutdown of all server processes 1n the server
group executing on the failed node (block 105). Concur-
rently, the high availability logic starts all server processes
in the server group on the former active node connected and
in a suspended state (block 106). The former active node 1s
pre-connected. The high availability logic then resubmits
any failed transactions in parallel while the TPM recovers

10

15

20

25

30

35

40

45

50

55

60

65

10

any in-doubt transactions (block 107). When resilient opera-
tion 1s restored, the active and standby roles are reversed
(block 108), whereupon the method completes.

FIG. 8 1s a flow diagram showing, by way ol example,
non-resilient failure and restart 110. For a non-resilient
configuration, that i1s, a one node configuration, the node
must be restarted upon a failure, as there 1s no standby
system ready to take over processing in the event of a
failover.

Thus, upon the failure of the active node (block 111),
depending upon the mechanism used, either an event or an
RPC 1s 1ssued from the failed cooperative resource group 32
that the service 1s in a DOWN state 72 (block 112). The high
availability logic 1n the TPM (muidtier or client) that sub-
scribes to the resource manager state events receives the
notification about the change in service (block 113) as either
an event or an RPC. The TPM (midtier or client) administers
a Tast shutdown of all server processes associated with the
failed resource manager instance (block 114) and restarts the
tailed node (block 115). Upon successiul restart, an event or
an RPC 1s 1ssued 1n all places from the recovered coopera-
tive resource group 32 that the service 1s 1n an UP state 71
(block 116). The TPM (midtier or client) subscribing to the
resource manager state events receives the UP service
change notification (block 117) as either an event or an RPC.
The TPM (midtier or client) resumes from a suspended state
the server processes 1 server group on the active node
(block 118), after which the routine completes.

FIG. 9 1s a flow diagram showing, by way ol example,
resilient failover following failure of a standby node 120.
The standby node simply must be restarted upon a failure.

Thus, upon the failure of the active node (block 121),
depending upon the mechanism used, either an event or an
RPC 1s 1ssued from the failed cooperative resource group 32
that the service 1s 1n a DOWN state 72 (block 122). In this
example, the high availability logic in the TPM (midtier or
client) that subscribes to the resource manager state events
receives the notification about the change in service (block
123) as either an event or an RPC. The TPM (muadtier or
client) administers a fast shutdown of all server processes
associated with the failed resource manager instance (block
124) and restarts the failed node (block 125). Upon success-
ful restart, an event or an RPC 1s 1ssued from the recovered
cooperative resource group 32 that the service 1s 1n an UP
state 71 (block 126). The TPM (midtier or client) subscrib-
ing to the resource manager state events receives the UP
service change notification (block 127) as either an event or
an RPC. The TPM (mudtier or client) starts all the server
processes on the standby node with the node pre-connected,
that 1s, connected and 1n a suspended state (block 128), after
which the routine completes.

In certain embodiments, a monitoring process 1s used to
monitor the status of a particular process. If the monitoring
process determines that the specific process has failed, the
monitoring process can proceed to take certain actions to
notity other processes that the specific process has failed.
For example, FIG. 10 1s a block diagram 1000 showing a
communication link 1012 that has been established between
a computer device 1002 and a computer device 1004. In this
example, a communication link 1012 can be established
using various diflerent communication protocols or by a
variety of different communication mediums. For example,
communication link 1012 can be established using a variety
of different network mediums, such as FEthernet, optical
mediums, telephone lines, and so forth, that can include
public networks, such as the Internet or one or more private
networks, such as a company’s private intranet.

US 7,069,317 Bl

11

In one embodiment, the communication link 1012 repre-
sents a socket connection that has been established using the
TCP/IP protocols. Fault monitor 1016 represents a process
or program that 1s configured to monitor the status of process
1006. As depicted 1n this example, a communication link
1016 15 used by fault monitor 1010 to momitor the status of
process 1006. A variety of methods can be employed to
monitor the status of process 1006 and, as such, embodi-
ments of the invention are not limited to any particular
monitoring method. For example, the monitoring methods
can include, but are not limited to “pinging” or veritying the
“heartbeat” of process 1006 to determine whether process
1006 has failed. Other momitoring methods can include
establishing one or more callbacks within process 1006 that
notity fault monitor 1010 when an error 1s detected. In
addition, although fault monitor 1010 1s depicted as being
located within computer device 1002, 1n certain embodi-
ments, fault monitor 1010 can be located on a separate
computer device from computer device 1002.

In one embodiment, upon detecting a failure of process
1006, fault monitor 1010 causes process 1008 to be notified
that process 1006 has failed. In certain embodiments, fault
monitor 1010 communicates the failure of process 1006 to
process 1008 over a communication link 1014. Upon receiv-
ing the notification, process 1008 can then take appropriate
actions based on the failure of process 1006.

For example, to allow process 1008 and process 1006 to
communicate, a communication link 1012 can be estab-
lished using a socket connection. As indicated above, 1n
certain situations, i1f process 1006 fails after establishing
communication link 1012, sockets can still remain open,
thus causing a significant delay between the time that
process 1006 fails and the time when process 1008 1s able to
detect the failure. In one embodiment, 1n response to detect-
ing the failure of process 1006, fault monitor 1010 causes
process 1008 to be notified that process 1006 has failed.

In certain embodiments, process 1008 1s notified using an
out-of-band break. For example, by communicating with
process 1008 over a communication link that i1s separate
from communication link 1014, an out-of-band break can be
used to interrupt process 1008 and thus reduce the delay
incurred by process 1008 having to wait for a particular
timeout due to the failure of process 1006.

FIG. 11 1s a block diagram 1100 1n which certain embodi-
ments of the mvention can be used. In this example, com-
puter system 1102 includes a database instance 1106 and a
fault monitor 1108. Database instance 1106 1s configured to
execute database instructions that are received from com-
puter system 1104. Fault monitor 1108 1s configured to
monitor the current status of database instance 1106. As
turther depicted, computer system 1104 includes an appli-
cation server 1112 and one or more applications 1110. In
certain embodiments, the one or more applications 1110
provide a set of services that can be utilized by one or more
client devices 1120, 1122. For example, client devices 1120,
1122 can represent a set of one or more “thin” client devices
that include a set of software programs, such as a browser
application, that allows a user to access the services that are
provided by the one or more applications 1110. To support
execution of the applications, a communication link 1114 1s
established between the application server 1112 and the
database 1nstance 1106.

In one embodiment, upon detecting a failure of database
instance 1106, fault monitor 1108 causes a notification to be
sent to application server 1112, thus notifying application
server 1112 that database instance 1106 has failed. Upon
receiving the notification, application server 1112 can then

5

10

15

20

25

30

35

40

45

50

55

60

65

12

take appropriate actions, which can include, for example,
connecting to a different database 1nstance.

In certamn embodiments, prior to detecting a failure of
database instance 1106, a communication link 1116 1s estab-
lished between fault monitor 1108 and application server
1112. Thereafter, upon detecting a failure of database
instance 1106, fault monitor 1108 sends a message to
application server 1112 over a communication link 1116
indicating that database instance 1106 has failed. In another
embodiment, communication link 1116 1s established after
fault monitor 1108 detects that database instance 1106 has
failed.

FIG. 12 1s a block diagram 1200 in which certain embodi-
ments of the invention can be used. As depicted, a plurality
of nodes 1202, 1204 are configured as a cluster 1201. For
example, nodes 1202 and 1204 can be configured as an
Oracle Real Application Cluster™. In this example, node
1204 1s configured to monitor the status of database instance
1208. In response to detecting that database instance 1208
has failed, node 1204 causes a notification to be sent to
computer device 1206. Based on the notification, application
server 1214 determines that database instance 1208 has

falled and can proceed to take an appropriate action 1n
response to the failure.

In one embodiment, instead of, or 1n addition to, notilying
computer device 1206 of the failure of database instance
1208, node 1204 automatically updates the mobile IP
address that 1s currently assigned to node 1202 to cause
future communications to be automatically performed

between application server 1214 and database instance
1210.

FIG. 13 1s a block diagram 1300 in which certain embodi-

ments ol the invention can be used. In this example, a
communication link 1314 has been established between a
process 1310 executing on computer device 1304 and a
process 1306 executing on computer device 1302. As
depicted, fault monitor 1308 i1s configured to monitor the
status of process 1306. In one embodiment, in response to
detecting a failure of process 1306, fault monitor 1308
causes a fault notification to be sent to process 1310 over a
communication link 1314.

For example, 1n response to detecting a failure of process
1306, fault monitor 1308 can cause a message to be sent over
connection link 1314 that simulates as if the message was
actually sent by process 1306 over the previously-estab-
lished connection or session. For example, by replicating the
header and other key mformation that 1s used to identify
messages as being sent from process 1306, fault monitor
1308 can communicate with process 1310 over the commu-
nication link 1314. In response to recerving the message sent
from fault monitor 1308 over the communication link 1314,
process 1310 can 1nmitiate an appropriate action.

In another embodiment, 1n response to detecting a failure
of process 1306, fault monitor 1308 causes the communi-
cation link 1314 to be closed. For example, 1 after the
failure of process 1306, the socket connection 1s left open,
by causing the socket connection to be closed, an error
message can be detected by process 1310. Based on the error
message, process 1310 can then take an appropriate action.

While the invention has been particularly shown and
described as referenced to the embodiments thereof, those
skilled 1n the art will understand that the foregoing and other
changes 1 form and detaill may be made therein without
departing from the spirit and scope of the invention.

US 7,069,317 Bl

13

What 1s claimed 1s:

1. A system for providing out-of-band notification of

service changes, comprising:
a cluster framework into a layered architecture, compris-
ng:
an application layer comprising at least one of appli-
cations and middleware supporting the applications;
a database 1nstance resource group interoperating with
the application layer and comprising a database
instance providing services; and
a monitor associated with the database instance
resource group and exporting an out-oi-band inter-
face to the database instance resource group; and
a nofification mechanism generating an UP service noti-
fication from the cluster framework upon service avail-

ability and generating a DOWN service nofification
from the cluster framework upon service non-availabil-

ity.

2. A system according to claim 1, further comprising:

a planned operation interface incorporated into the appli-

cation layer; and

the notification mechanism generating a COMING UP

service notification responsive to an 1instruction
received through the planned operation interface and
generating a GOING DOWN service notification
responsive to a further mstruction received through the
planned operation interface.

3. A system according to claim 1, further comprising:

a global services daemon interfaced to the database

instance resource group; and

the notification mechanism generating a DOWN service

notification for the services on a failed database
instance; generating a COMING UP service notifica-
tion from the global services daemon responsive to a
recovering database instance and generating an UP
service notification from the global services daemon
responsive to a recovered database instance.

4. A system according to claim 1, further comprising:

at least one of a remote procedure call interface and an

cvent 1nterface provided to the database instance
resource group.

5. A system according to claim 1, further comprising:

a resilient set of cluster frameworks comprising an active

node and one or more standby nodes.

6. A system according to claim 5, wherein the resilient
cluster framework executes a node failover to the active
node.

7. A system according to claim 3, wherein the resilient
cluster framework executes a node failover to one such
standby node.

8. A system according to claim 1, further comprising:

a non-resilient set of cluster frameworks comprising an

active node.

9. A system according to claim 1, wherein the resilient
cluster framework terminates service on a failed node
responsive to a DOWN service notification.

10. A system according to claim 1, wherein the resilient
cluster framework resumes service on a recovered node
responsive to an UP service notification.

11. A system according to claim 1, wherein the resilient
cluster framework eflects a switchover to a standby node
responsive to a COMING UP service notification.

12. A system according to claim 1, wherein the applica-

tion layer pre-connects to a standby node responsive to one
of a COMING UP service notification and an UP service
notification.

10

15

20

25

30

35

40

45

50

55

60

65

14

13. A computer-implemented method for providing out-
of-band notification of service changes, comprising;
configuring a cluster framework into a set of layers,
wherein said set of layers compromise:
an application layer comprising at least one of appli-
cations and middleware supporting the applications;
a database 1nstance resource group interoperating with
the application layer and comprising a database
instance providing services; and
a momtor associated with the database instance
resource group and exporting an out-of-band inter-
face to the database instance resource group;
generating an UP service nofification from the cluster
framework upon service availability; and
generating a DOWN service notification from the cluster
framework upon service non-availability.
14. A computer-implemented method according to claim
13, further comprising:
incorporating a planned operation interface into the appli-
cation layer;
generating a COMING UP service notification responsive
to an 1nstruction received through the planned opera-
tion interface; and
generating a GOING DOWN service notification respon-
sive to a further 6 instruction receirved through the
planned operation interface.
15. A computer-implemented method according to claim
13, further comprising:
providing a global services daemon interfaced to the
database instance resource group;
generating a DOWN service notification for the services
on a failed database instance;
generating a COMING UP service notification from the
global services daemon responsive to a recovering
database instance; and
generating an UP service nofification from the global
services daemon responsive to a recovered database
instance.
16. A computer-implemented method according to claim
13, further comprising:
providing at least one of a remote procedure call interface
and an event interface to the database 1nstance resource
group.
17. A computer-implemented method according to claim
13, further comprising:
configuring a resilient set of cluster frameworks compris-
ing an active node and one or more standby nodes.

18. A computer-implemented method according to claim
17, further comprising:
executing a node failover to the active node.
19. A computer-implemented method according to claim
17, further comprising:
executing a node failover to one such standby node.
20. A computer-implemented method according to claim
13, further comprising:
configuring a non-resilient set of cluster frameworks
comprising an active node.
21. A computer-implemented method according to claim
13, further comprising:
terminating service on a failed node responsive to a
DOWN service notification.
22. A computer-implemented method according to claim
13, further comprising:
resuming service on a recovered node responsive to an UP
service notification.

US 7,069,317 Bl

15

23. A computer-implemented method according to claim
13, further comprising;:

cllecting a switchover to a standby node responsive to a

COMING UP service notification.

24. A computer-implemented method according to claim
13, further comprising:

pre-connecting to a standby node responsive to one of a

COMING UP service notification and an UP service
notification.

25. A computer-readable storage medium holding nstruc-
tions for causing a processor to execute the computer-
implemented method according to claim 13.

26. A system for communicating service change events in
a cluster 2 framework environment, comprising:

a plurality of service change events for communication

between a plurality of nodes, comprising:
an UP service change event;

a DOWN service change event;
a COMING UP service change event; and

a GOING DOWN service change event;

a remote procedure call interface from a database instance

in a database stack executing on one such node; and

a notification mechanism publishing at least one such

service change event from the database instance.

27. A system according to claim 26, further comprising;

a further notification mechanism receiving the one such

service change event at one or more other nodes.

28. A system according to claim 26, further comprising;

a cluster service within the database stack.

29. A system according to claim 26, further comprising;

a planned interface within the database stack.

30. A system according to claim 26, further comprising;

a global services daemon with listener within the database

stack.

31. A system according to claim 26, further comprising:
a cluster service processing a multiple instance failover
from the one such node to one or more other nodes.
32. A system according to claim 26, further comprising;
a cluster service processing a single istance failover to

the one such node.

33. A system according to claim 26, further comprising;

a cluster service processing a switchover from the one

such node to one or more other nodes.

34. A computer-implemented method for communicating,
service change events 1n a cluster framework environment,
comprising;

defimng a plurality of service change events for commu-

nication between a plurality of nodes, comprising:
an UP service change event;

a DOWN service change event;
a COMING UP service change event; and
a GOING DOWN service change event;

exporting a remote procedure call interface from a data-
base instance 1n a database stack executing on one such
node; and

10

15

20

25

30

35

40

45

50

16

generating a notification publishing at least one such

service change event from the database instance.

35. A computer-implemented method according to claim
34, turther comprising:

recerving the one such service change event at one or

more other nodes.

36. A computer-implemented method according to claim
34, further comprising:

providing a cluster service within the database stack.

37. A computer-implemented method according to claim
34, further comprising:

providing a planned interface within the database stack.

38. A computer-implemented method according to claim
34, turther comprising:

providing a global services daemon with listener within

the database stack.

39. A computer-implemented method according to claim
34, further comprising:

processing a multiple istance failover from the one such

node to one or more other nodes.

40. A computer-implemented method according to claim
34, further comprising:

processing a single instance failover to the one such node.

41. A computer-implemented method according to claim
34, further comprising:

processing a switchover from the one such node to one or

more other nodes.

42. A computer-readable storage medium holding instruc-
tions for causing a processor to execute the computer-
implemented method according to claim 34.

43. A computer-implemented method for detecting a
failure of a first process, the method comprising the steps of:

establishing a first connection between said {irst process

and a second process;

monitoring status of said {first process to determine

whether said first process has failed; and

in response to determiming that said first process has

falled, notifying said second process that said first
process has failed;

wherein a second connection, that 1s different from said

first connection, 1s used to notily said second process of
said failure of said first process failure.

44. A computer-implemented method according to claim
43, wherein:

the step of establishing a first connection between said

first process and a second process includes the step of
establishing a first connection between an application
server and a database 1nstance;

the step of monitoring includes the step of monitoring

status of said database instance; and

the step of notifying said second process that said {first

process has failed includes the step of causing an
out-of-band break to be sent to said application server.

	Front Page
	Drawings
	Specification
	Claims

