12 United States Patent

US007058687B2

(10) Patent No.: US 7,058,687 B2

Kucherawy 45) Date of Patent: *Jun. 6, 2006
(54) E-MAIL SYSTEM WITH METHODOLOGY 5,937,162 A * 8/1999 Funketal. 709/206
FOR ACCELERATING MASS MAILINGS 6,148,329 A * 11/2000 Meyercoeeevvrverennnnnnn. 709/206
6,502,131 B1* 12/2002 Vaid et al. 709/224
(75) Inventor: Murrav Kuchera San Francisco 6,658,454 B1* 12/2003 Delany et al. 709/202
y WYy, ;
CA (US) 6,735,770 B1* 5/2004 Yeager et al. 718/107
6,779,039 Bl1* 8/2004 Bommareddy et al. 709/238
(73) Assignee: Sendmailj Illc_:J Emeryvillej CA (US) 2002/0129127 Al1* 9/2002 Romero et al. 709/220
. .
(*) Notice: Subject to any disclaimer, the term of this crted by examiner
patent 1s extended or adjusted under 35 Primary Examiner—David Wiley
U.S.C. 154(b) by 695 days. Assistant Examiner—Arrienne M. Lezak
(74) Attorney, Agent, or Firm—IJohn A. Smart
This patent 1s subject to a terminal dis-
claimer. (57) ABSTRACT
(21) Appl. No.: 09/863,941
_ An e-mail system 1s described that includes a mass-mail
(22) Filed: May 22, 2001 accelerator (MMA), which 1s particularly suited for process-
: Y ing mass e-mailings. Instead of being posted to a message
(65) Prior Publication Data transier agent (MTA), outgoing messages are instead passed
US 2003/0028580 Al Feb. 6, 2003 to the MMA {for carrying out highly parallel e-mail delivery/
routing. The MMA employs a plurality of queues, which
Related U.S. Application Data may either be general or specific. A specific queue is
(60) Provisional application No. 60/281,313, filed on Apr. conﬁgured to handle only e-mail des.tlned for a partlculz:zir
3 2001 domain, such as the AOL.com domain; a general queue 1s
’ ' configured to handle all other e-mail. Each queue manages
(51) TInt. CI. a pool of MTA threads. During MMA operation, once a
GOGF 15/16 (2006.01) message has been pa.ssed to a queue, that queue examines 1ts
cads to see 1 one 1s ready to acce € message.
GOGF 9/46 (2006.01) MTﬁﬁf ; d o fd ! dy 1 ocept th messag i
(52) U.SeCle oo, 709/206; 718/107 4 AITEAC 15 Teddy, Hhe qUELE WITD dbs1gh T1e TEssdEe
(58) Field of Classification Search 370/60, O that MIA. The MIA thread proceeds to handle the work
170/229240. 351360, 305.1- 709/224 of the SMTP exchange between the MMA and the target
709/251_953- 7’18/100—1!08' _;,1’9/313_319’ real-world MTA (e.g., an AOL MTA). While a given MTA
See anplication file f0; comnlete searjch histo thread 1s waiting for a reply from the real-world (destina-
PP P 24 tion) MTA (e.g., the AOL MTA), the MMA can proceed to
. 0 other work. In thais manner, the bofttleneck usua
(56) References Cited d h k. In th he bottl K Iy

—

U.S. PATENT DOCUMENTS

encountered with processing mass e-mailings 1s removed.

22 Claims, 10 Drawing Sheets

> RECIPIENT(S)

s mam o s s e Dbk PPN e - . e sl A D S W T e B S S - e e e

(MMA)

RECIPIENT(S)

< >

5.463.620 A * 10/1995 STIAM wovvevveoosooevnn. 370/412
400
410 420
- it ESSGETANORT AT
COMPOSER < A (MTA)
- 0
-
SMTP
RCE2T |
MASS-MAIL
(¢ ACCELERATOR

(1Y ¥0I¥d)
[DI

US 7,058,687 B2

(INTW)
HIOVYNYWN LSIT

(STI)XOaNI

NOLIVNILS 40 01 ONITIVIA

Sheet 1 of 10

(V.LIN) (VLN

INGOYV b v S J NV e
HI4SNYHL | © ISNVEL | e | (SNAD

JOVSSdN JOVSSAN

Gcl ecl L}

Jun. 6, 2006

AINTHS
VN

U.S. Patent

]
= (LY 1O11d)
3 ¢ Dl
vt
\(,
~
g
Z YILNINd AVdSIa
102 02 G0Z
802 902
— k¢ =l
JEN

< ONLLNIOC davo

g |

g ST V1V 012

= SNOILYOITddY

SHIANA JOV4WIING |
SO ANINOD

= 112

Q JOVYOLS (NdD) OV4HLN]
e TIEYAONIY (S)LINN ONISSII0Ud TYILNID THOMLAN [~ -»>
o

—

pu

G

102 4L

00¢ _

£0¢ ¢0¢

U.S. Patent

U.S. Patent Jun. 6, 2006 Sheet 3 of 10 US 7.058.687 B2

300

301a 301¢

BROWSER
PROGRAM

301d

APPLICATION
PROGRAM N

APPLICATION
PROGRAM 1

APPLICATION
PROGRAM 2

-]

E-MAIL
CLIENT

305

OPERATING SYSTEM
(e.g., WINDOWS 9X/NT, SOLARIS, UNIX, LINUX, MAC OS]

GRAPHICAL USER
INTERFACE

320 319 310

DEVICE DRIVERS
(e.g., WINSOCK)

| ~ 330

BIOS
(MICROCODE)

DISPLAY MONITOR
NETWORK INTERFACE
COMM PORT
KEYBOARD

MODEM

MOUSE

DISKS

PRINTER

FIG. 3

Ak |

US 7,058,687 B2

= HOLY o
= @ TIVIN-SSYIN @
N (S)INAIdIDAY <« N e
2 S
i
7).
&
—
—
g |
S
X USSRt (SRS Re
—
pu

(@) ¥) e

e (VL) A dINOD

SFLECICECIRS > | |N3OV LHOdSNYHL 3ovssan | T 1zg 09 4350
d1NS
02+ Ol

U.S. Patent

G Ild

US 7,058,687 B2

VIA
VIA

= I R
: V1N 1OV ik VN D
- ol /
m £2S C1G 12804
S)avaemHL || s
INTITD 0

° LNdNI
S VLN ——
: | o | (e
E dLNS NOILAN 3N3ND

v 0£S VA WO TTYWAN3S

dIl |zg 1
L] I _

ddOM-1v3d VIl
005

U.S. Patent

U.S. Patent Jun. 6, 2006 Sheet 6 of 10 US 7.058.687 B2

BEGIN

601
602
603

SMTP PHASE PROCESSING: OUTPUT MESSAGE (INCLUDING
MESSAGE BODY AND INFORMATION ABOUT SENDER AND
RECIPIENT) WITH ACKNOWLEDGEMENT BACK FROM MMA

604

CLIENT THREAD DECIDES WHICH QUEUE TO
ASSIGN TO WORK: ASSIGNMENT IS BASED ON IDENTIFICATION

OF RECIPIENT'S DOMAIN, AND IF SPECIFIC QUEUE EXISTS,
ASSIGN TO IT: OTHERWISE ASSIGN TO THE GENERAL QUEUE

605
CORRESPONDING QUEUE THREAD AWAKENED
WITH WORK
606

QUEUE THREAD ATTEMPTS TO LOCATE ANY MTA
THREAD THAT IS READY (IDLE)

CONTINUE TO FIG 6B

F1G. 6A

U.S. Patent Jun. 6, 2006 Sheet 7 of 10 US 7.058.687 B2

CONTINUED FROM FIG 6A
607
READY MTA THREAD LOCATED AND AWAKENED,;
IT TAKES ON THE WORK; MTA THREAD NOW TAKEN OFF
OF READY LIST
608
QUEUE’S HAND-OFF NOW COMPLETE; WILL PROCEED TO
NEXT MESSAGE IF ANY (PARALLEL PROCESSING) OR SLEEP
609
MTA THREAD, WHICH HAS PREVIOUSLY ESTABLISHED SMTP
SESSION WITH REAL-WORLD MTA, EXECUTES DELIVERY
610

PARTICULAR MTA NOW TAKES OVER RESPONSIBILITY
FOR DELIVERY OF THIS MESSAGE
MTA THREAD RETURNS TO READY LIST
DONE

611

F1G. 68

U.S. Patent Jun. 6, 2006 Sheet 8 of 10 US 7.058.687 B2

BEGIN
701
CONTEXT OF “NO MTA THREADS READY”

702

IF MAXIMUM LIMIT OF MTA THREADS, THEN BLOCK

OTHERWISE PROCEED

703

704
ASSIGN WORK TO NEWLY-CREATED THREAD

CREATE NEW THREAD

- ek o owmwm BE gw e E g EE W E g m EF S gw W E ek E R RE g R g BT E g .

FIG. 7

U.S. Patent Jun. 6, 2006 Sheet 9 of 10 US 7.058.687 B2

BEGIN

ERROR CONDITION AT MTA

601

802
MTA THREAD DETECTS PROBLEM

803

MTA THREAD PASSES MESSAGE BACK TO QUEUE THREAD
(MESSAGE MAY BE SUBJECT TO A MAXIMUM RETRY LIMIT)

804

IF ERROR IS FATAL, MTA THREAD WILL TERMINATE
(RELEASE ALL RESOURCES)

DONE

F1G. 8

U.S. Patent Jun. 6, 2006 Sheet 10 of 10 US 7,058,687 B2

BEGIN

SEE IF THERE IS AN MTA THREAD FOR RECIPIENT DOMAIN;

901

IF YES, ASSIGN TO MTA THREAD AND RETURN,;
IF NO, PROCEED TO NEXT STEP

902
903
IF NOT IN CACHE, THEN SEEK THIS INFORMATION
FROM DNS SERVER
904
A NEW MTA THREAD WILL MAKE CONNECTION TO
REMOTE MTA (EXECUTE SMTP INITIATION PROTOCOL)
905

ASSIGN MESSAGE TO MTA THREAD

FIG. 9

US 7,058,687 B2

1

E-MAIL SYSTEM WITH METHODOLOGY
FOR ACCELERATING MASS MAILINGS

RELATED APPLICATIONS

The present application 1s related to and claims the benefit
of priority of the following commonly-owned provisional

application(s): application Ser. No. 60/281,313, filed Apr. 3,
2001, entitled “E-Mail System with Methodology for Accel-
crating Mass Mailings”, of which the present application 1s
a non-provisional application thereof. The present applica-
tion 1s related to the following commonly-owned
application(s): application Ser. No. 09/499,502, filed Feb. 7,
2000, entitled “Electronic Mail System with Improved
Methodology for Processing Messages with Mailing Lists”.
The disclosures of each of the foregoing applications are
hereby incorporated by reference 1n their entirety, including,

any appendices or attachments thereof, for all purposes.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material which 1s subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure as 1t appears 1n the Patent and Trademark Oflice
patent file or records, but otherwise reserves all copyright
rights whatsoever.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to electronic mail
(e-mail) systems and, more particularly, to improved meth-
odology for processing automated e-mail messages sent to
numerous recipients.

2. Description of the Background Art

Today, electronic mail or “e-mail” 1s a pervasive, 1f not the
most predominant, form of electronic communication. FIG.
1 1llustrates the basic architecture of a typical electronic mail
system 10. At a high level, the system 1ncludes a mail server
connected over a network to various e-mail “clients,” that 1s,
the individual users of the system. More specifically, the
system 10 includes one or more clients 11 connected over a
network to at least one SMTP (Simple Mail Transport
Protocol) server or “Message Transier Agent” (MTA) 12a
for routing e-mail. Users write, send, and read e-mail via
Mail User Agents (MUA), such as Microsoit Outlook™,
present at each client (computer). To send e-mail, an MUA
connects to an MTA which receives the e-mail and routes 1t
to another MTA. An mtermediary MTA might forward the
c¢-mail to yet another MTA until the e-mail reaches the
destination system, where the e-mail 1s stored 1n a mailbox
accessible by the recipient.

A typical e-mail delivery process 1s as follows. In the
following scenario, Larry sends e-mail to Martha at her
c¢-mail address: martha@example.org. Martha’s Internet
Service Provider (ISP) uses an MTA, such as provided by
Sendmail® for NT, available from Sendmail, Inc. of

Emeryville, Calif. (With a lower case *s,” “sendmail” refers

to Sendmail’s MTA, which i1s one component of the Send-
mail® Switch product line.)

1. Larry composes the message and chooses Send 1n
Microsoft Outlook Express (a “Mail User Agent” or
MUA). The e-mail message 1tself specifies one or more
intended recipients (i.e., destination e-mail addresses), a

10

15

20

25

30

35

40

45

50

55

60

65

2

subject heading, and a message body; optionally, the
message may specily accompanying attachments.

2. Microsoit Outlook Express queries a DNS server for the
IP address of the local mail server running sendmail. The
DNS server translates the domain name into an IP address,
c.g., 10.1.1.1, of the local mail server.

3. Microsoit Outlook Express opens an SMTP connection to
the local mail server running sendmail. The message 1s
transmitted to the second sendmail server using the SMTP
protocol.

4. sendmail queries a DNS server for the MX record of the
destination domain, 1.e., example.org. The DNS server
returns a hostname, ¢.g., mail.example.org. sendmail que-
ries a DNS server for the A record of mail.example.org,
1.e., the IP address. The DNS server returns an IP address
of, for example, 127.118.10.3.

5. sendmail opens an SMTP connection to the remote mail
server providing e-mail service for example.org which 1s
also running sendmail. The message 1s transmitted to the
sendmail server using the SM'TP protocol.

6. sendmail delivers Larry’s message for Martha to the local
delivery agent. It appends the message to Martha’s mail-
box. By default, the message 1s stored in (e.g., using a
sample file path on a UNIX system):
/var/spool/mail/martha.

7. Martha has her computer dial into her ISP.

. Martha chooses “Check Mail” in Eudora.

9. Eudora opens a POP3 (Post Oilice Protocol version 3,

defined 1in RFC1725) connection with the POP3 (incom-
ing mail) server. Fudora downloads Martha’s new mes-
sages, including the message from Larry.

10. Martha reads Larry’s message.

The MTA, which 1s responsible for queuing up messages
and arranging for their distribution, 1s the workhorse com-
ponent of electronic mail systems. The MTA “listens™ for
incoming e¢-mail messages on the SMTP port, which 1s
generally port 25. When an e-mail message 1s detected, 1t
handles the message according to configuration settings, that
1s, the settings chosen by the system administrator, in
accordance with relevant standards such as Request For
Comment documents (RFCs). Typically, the mail server or
MTA must temporarly store incoming and outgoing mes-
sages 10 a queue, the “mail queue.” Actual queue size 1s
highly dependent on one’s system resources and daily
volumes.

MTAs, such as the commercially-available Sendmail®
MTA, perform three key mail transport functions:

1. Route mail across the Internet to an MTA serving a
different network or “domain” (since many domains
can and do exist 1n a single network);

2. Relay mail to another MTA (e.g., 12b) on a dif
subnet within the same network;

3. Transfer mail from one host or server to another on the

same network subnet.

0

‘erent

To perform these functions, an MTA accepts messages from
other MTAs or MUASs, parses addresses to identily recipi-
ents and domains, resolves aliases, fixes addressing prob-
lems, copies mail mto a queue on 1ts hard disk, tries to
process long and hard-to-pass messages, and notifies the
sender when a particular task cannot be successiully com-
pleted. The MTA does not store messages (apart from its
queue) or help users access messages. It relies on other mail
system components, such as message delivery agents, mes-
sage stores and mail user agents (MUASs), to perform these
tasks. These additional components can belong to any num-
ber of commercial or free products (e.g., POP3 or IMAP

US 7,058,687 B2

3

servers, Microsolt Exchange, IBM Lotus Notes, Netscape,
cc:Mail servers, or the like). Because of its central role 1n the
¢-mail systems, however, the MTA often serves as the “glue”
that makes everything appear to work together seamlessly.

The overall process may be summarized as follows.
E-mail 1s routed via SMTP servers, the so-called “Mail
Transier Agents” (MTA). Users write, send, and read e-mail
via Mail User Agents (MUA). To send e-mail, an MUA
connects to an MTA which receives the e-mail and routes 1t
to another MTA. An mtermediary MTA might forward the
c¢-mail to yet another MTA until the e-mail reaches the
destination system, where the e-mail 1s stored 1n a mailbox
accessible by the recipient.

For turther description of e-mail systems, see e.g., Send-
maill® for NT User Guide, Part Number DOC-SMN-300-

WNT-MAN-0999, available from Sendmail, Inc. of
Emeryville, Calif., the disclosure of which 1s hereby incor-
porated by reference. Further description of the basic archi-
tecture and operation of e-mail systems 1s available 1 the
technical and trade literature; see e.g., the following RFC
(Request For Comments) documents:

REFCR21 Simple Mail Transfer Protocol (SM'TP)

REFCR22 Standard for the Format of ARPA Internet
Text Messages

REFC974 Mail Routing and the Domain System

REFC937, RFC1081 Post Office Protocol version 3 (POP3)

REFC1123 Requirements for Internet Hosts- Application
and Support

REFC1725 Post Oflice Protocol version 3 (POP3)

REFC2033 Local Mail Transfer Protocol (LMTP)

REFC2060, RFC2061 Internet Message Access Protocol (IMAP)

RFC2246 The TLS Protocol, version 1.0

REFC2487 SMTP Service Extension for Secure SMTP over

TLS

RFCs are numbered Internet informational documents and
standards widely followed by commercial software and
freeware 1n the Internet and UNIX communities. The RFCs
are unusual 1n that they are floated by technical experts
acting on their own mitiative and reviewed by the Internet at
large, rather than formally promulgated through an institu-
tion such as ANSI. For this reason, they remain known as
RFCs even once they are adopted as standards. The above-
listed RFC documents are currently available via the Internet
(e.g., at hitp://www.1etl.org/ric), the disclosures of which are
hereby incorporated by reference.

Often when sending e-mail, a distribution or “mailing
list” 1s employed to facilitate the process of sending an
¢-mail message to a group of people. For instance, instead of
addressing an e-mail message to imndividual members of a
recurring group, a user can instead simply define a mailing
list to comprise those members. For example, the user could
define a “Marketing” mailing list that specifies members of
the marketing department of the user’s company. Once
defined, the mailing list can be used in the recipient field for
an e-mail message, in lieu of listing individual members. A
message sent to this distribution list goes to all recipients
listed. Typically, e-mail systems provide graphical user
interface facilities for managing (e.g., adding and deleting)
names 1n a mailing list.

Expectedly, as a particular list grows larger, 1t becomes
progressively more resource mtensive and time consuming,

to manage and process. Although the foregoing example of
a mailing list for a marketing department may comprise a

comparatively small group of recipients (e.g., less than 100),

10

15

20

25

30

35

40

45

50

55

60

65

4

a mailing list can 1n fact specily an extremely large group of
recipients. Consider, for mstance, a mailing list defined for
customer support (e.g., “North American Users”) for a large
soltware company. As another example, ISPs (Internet Ser-
vice Providers) typically support many domains, many lists
within each domain, and many users for each list. In such a
case, a given mailing list may 1n fact specily many thou-
sands or even millions of recipients, leading to an incredible
amount of mailing list tratlic. Accordingly, there 1s great
interest 1n 1mproving the management and processing of
mailing lists so that e-mail sent to mailing lists, particularly
large ones, are processed 1n an eil

1cient manner.

In an electronic mail system, the task of processing a
mailing list usually falls to a Mailing List Manager or
“MLM?”, such as MLM 13 for the e-mail system for FIG. 1.
Upon receiving an e-mail message sent to a predefined
mailing list, the system’s MTA hands off the message, with
the name of the list, to the system’s MLM. After checking
the message, the MLM enumerates the individual recipients
for the list and hands the message with a list of the specific
intended recipients (1.e., with the names/e-mail addresses of
the specific mtended recipients attached) back to the MTA
for redistribution. For instance, if the message had a mailing
list specifying 100 recipients, the MLM would, after finish-
ing its work, post the message back to the MTA with each
of the 100 recipients specified. Here, the MLM opens a
connection (e.g., “pipe” in UNIX—a direct data feed) to the
MTA. The MTA 1s responsible for queuing up the message,
arranging for 1its distribution to all of the various recipients,
and retrying failed deliveries.

Without further enhancement to this basic process of
handling an e-mail message with a large mailing list, the
MLM 1s handing a substantial amount of work to the MTA
to do, with no real intelligence. For instance, for a message
sent to a predefined mailing list of 1000 recipients, the MLM
1s handing to the MTA a list of 1000 tasks to do 1in
sequence—that 1s, 1000 messages to queue and distribute.
At the same time, MTAs tend not to be very good at parallel
delivery of a single message. Therefore, the approach com-
monly employed by MTAs 1s to do the tasks in series, one
at a time. However, that approach incurs the penalty of
increased delivery time due to network latency and/or sys-
tem load.

Apart for the above one-to-many problem, an analogous
problem concerns an e-mail that needs to go to a very large
number of people where the e-mail’s content or body 1s not
constant but, instead, 1s customized for a given recipient. In
such a case, one has millions of people who are intended
recipients of messages that vary in content (i.e., message
body)—that 1s, a scenario presenting a multitude of one-to-
one relationships.

Present-day mass-mailing advertisers face such a prob-
lem. Doubleclick, for example, employs a “Composer”
program to create customized mass e-mailings (1.e., elec-
tronic mailings). The Composer’s basic operation 1s simple.
The Composer works against a large list or database of
people. Each person, 1n turn, has signed up to receive one or
more specific topics (e.g., about travel, about business, about
finance, or the like) in a regular electronic mailing or
newsletter. Thus, 1n this large database of people, everybody
has different combmatlons of what specific information he
or she really wants. Based on this user-specific information,
the Composer program will compose a customized piece of
¢-mail for each particular user, inserting the specific pieces
ol information the user has requested into the e-mail mes-
sage’s body and possibly even using the user’s real name.
After the appropriate message 1s composed for a given target

US 7,058,687 B2

S

user, the Composer directs an accompanying e-mail system
to send that message to the target user. The Composer
program repeats this basic operation for all individuals 1n its
database.

For a given user, the foregoing process 1s relatively fast.
However, a mass-mailing database may contain many mil-
lions of names. When one 1s faced with the task of creating
customized mass e-mailings for millions of users, the
approach of doing one user at a time 1s rather netlicient.
Worse, with the standard systems that are being used today,
when a system sends a message, the system waits until that
message 1s accepted, by either the final mail server for
delivery, or by an intermediate mail server enroute, before
the Composer can proceed to the next address. Given the
massive scale 1n which the operation 1s occurring, there 1s of
course much interest in optimizing the process.

One approach to this problem 1s to attempt to run the
Composer with some amount of parallelism. Here, the
Composer 1s run in such a way that the list of recipients 1s
broken down into smaller groups for parallel processing. For
example, a group of one million people may be divided into
ten groups of 100,000, each group being processed in
parallel (e.g., by ten Composers running in parallel). The
improvements with this approach, however, are madequate.
Reasons 1nclude excessive disk I/O (input/output) and
excessive e-mail queue waiting times. The significant
improvements in scalability and throughput simply are not
realized with such an approach.

What 1s needed 1s an e-mail system that implements
parallel processing for mass mailings, with as much resource
sharing and re-use, and as little disk I/O, as possible. More
particularly, 1t 1s desirable to take advantage of today’s
multithreaded computer systems to send e-mail on one
processing thread while another processing thread 1s waiting,
for either input or a reply, including streamlining the process
so that there 1s as little waiting as possible.

GLOSSARY

DNS: Short for Domain Name System (or Service, or
Server), an Internet service that translates domain names
into IP addresses. Because domain names are alphabetic,
they are easier to remember. The Internet, however, 1s
really based on IP addresses. Every time one uses a
domain name, therefore, a DNS service must translate the
name to the corresponding IP address.

POP: Short for Post Office Protocol, a protocol used to
retrieve e-mail from a mail server. Most e-mail applica-
tions (e-mail clients) use the POP protocol, although some
can use the newer IMAP (Internet Message Access Pro-
tocol). There are two versions of POP. The first, called
POP2, became a standard in the mid-1980°s and required
SMTP to send messages. The newer version, POP3, can
be used with or without SMTP. Relevant RFC references
include RFC937 for POP2, and RFC1081 for POP3. More
modem message user agents (MUAs) use IMAP
(RFC2060 and RFC2061).

SMTP: Short for Simple Mail Transier Protocol, a protocol
for sending e-mail messages between servers. Most
¢-mail systems that send mail over the Internet use SMTP
to send messages from one server to another; the mes-
sages can then be retrieved with an e-mail client using
cither POP or IMAP. In addition, SMTP 1s generally used
to send messages from a mail client to a mail server.

SMTP 1s described in RFC821, which has been amended
and/or supplemented by several other RFCs.

10

15

20

25

30

35

40

45

50

55

60

65

6

TCP: Stands for Transmission Control Protocol. TCP 1s one
of the main protocols in TCP/IP networks. Whereas the 1P
protocol deals only with packets, TCP enables two hosts
to establish a connection and exchange streams of data.
TCP guarantees delivery of data and also guarantees that
packets will be delivered 1n the same order in which they
were sent. For an introduction to TCP, see, e.g., RFC 793,
the disclosure of which 1s hereby incorporated by refer-
ence.

TCP/IP: Stands for Transmission Control Protocol/Internet
Protocol, the suite of communications protocols used to
connect hosts on the Internet. TCP/IP uses several proto-
cols, the two main ones being TCP and IP. TCP/IP 1s built
into the UNIX operating system and 1s used by the
Internet, making it the de facto standard for transmitting
data over networks. For an introduction to TCP/IP, see
c.g., RFC 1180: A TCP/IP Tutonal, the disclosure of
which 1s hereby incorporated by reference. A copy of RFC
1180 1s currently available at ftp://ftp.1s1.edu/in-notes/
ric1180.txt.

SUMMARY OF THE INVENTION

An e-mail system constructed in accordance with the
present invention 1includes a composer module (“Com-
poser’), a message transport agent (MTA), and a mass-mail
accelerator (MMA). (The MTA component may be elimi-
nated 11 all outgoing e-mail messages are processed by the
MMA, as described below.) The Composer 1s a program that
operates against a very large database of users to provide
large-scale customized e-mail messages by combiming dii-
ferent pieces of a message together on a per-user basis.
Ordinarily, the Composer passes a given message on to an
MTA that, 1n turn, transmits the message to the intended
recipient. However, this basic operation 1s modified so that
the Composer passes a given message on to the MMA,
which serves to carry out e-mail delivery/routing for the
messages that have been passed on to 1t. More particularly,
the degree of parallelism on the MTA side of message
delivery has been greatly increased.

In operation, the MMA recerves input that, in turn, 1s fed
into one or more queues. The mput that 1s received, via
SMTP, comprises outgoing messages Irom one or more
Composers. A recerving (or “client”) thread initially handles
this input. In the instance that multiple Composers are
connected to the MMA (i.e., multiple concurrent connec-
tions), one client thread 1s assigned to each mcoming con-
nection. Two types of threads are actually employed here: a
“listener” thread waits for a new connection, creates a client
thread, and assigns the new connection to 1t (and thereafter
repeats), and a “client” thread 1s what actually interacts with
the Composer beyond the imitial TCP/IP handshake. The
respective client thread receives the incoming e-mail mes-
sage (or simply, “message”) and, i turn, decides which
queue from the set of queues within the MMA 1s appropriate
to receive and process the message. Any number of queues
may be supported, as desired (and as indicated by the
cllipsis). The client thread that receives the message exam-
ines the configuration and state of the available queues to see
which one 1s appropriate to receive the mcoming message.

Each queue itsell owns a thread that manages a list of
messages. As a particular advantage, the queues themselves
are configurable to either be general (generic) or be speciiic
to a particular mail (destination) domain. For instance, a
queue may be configured to handle only mail destined for
the Hotmail.com domain, or configured to handle only mail
destined for the AOL.com domain. A queue that 1s specifi-

US 7,058,687 B2

7

cally configured will only handle e-mail for its specific
domain and will not handle any other e-mail. In contrast, a
queue may be configured to be generic or general, 1n which
case 1t will handle e-mail destined for any domain which has
no specific queue assigned to 1t. E-mail posted to a specific
queue will not require a Domain Name Services (DNS)
look-up, as the MMA already knows (1.e., has cached) the
DNS information for the corresponding target e-mail
domain. Thus, for example, e-mail destined for the AOL-
.com domain 1s posted to the AOL queue. The MMA need
not look up the DNS information for the AOL.com domain
as this information has already been cached as part of the
setup for the AOL queue. Which queues are created 1s
entirely dependent on the configuration which gives the
customer-user (e.g., system administrator) the ability to
tallor or tune for a given situation. If, for example, the
system administrator knows that about 60% of outgoing
¢-mail for his or her company 1s going to AOL, then the
system administrator would set up an AOL-specific queue,
with corresponding resources.

Each queue manages a pool of MTA threads. During
configuration of the queues, the customer’s system admin-
istrator may specily the allocation of MTA threads to a given
queue. For instance, a system admimstrator may specily a
maximum and/or minimum number of MTA threads that are
available to a given queue. When a given MTA thread 1s
started, 1t establishes a connection out to a real MTA (e.g.,
remote MTA residing at a particular destination on the
Internet). This connection 1s established using SMTP over a
TCP (Transmission Control Protocol) connection. Via this
connection, a given MTA thread may talk SMTP to an actual
MTA out 1n the real world someplace (e.g., an AOL MTA).

During MMA operation, once a message has been passed
to a queue, that queue examines 1ts M TA threads to see 1f one
1s ready to accept the message. If an MTA thread is ready,
the queue will assign the message to that MTA. Once a
message 1s assigned to an MTA thread, that thread 1s no
longer available and, thus, 1t marks 1tself as “busy” (or
otherwise removes 1tsell from a “ready” list). The MTA
thread proceeds to handle the work of the SMTP exchange
between the MMA and the target real-world MTA (e.g., AOL
MTA). While a given M TA thread 1s waiting for a reply from
the destination MTA (e.g., AOL MTA), the MMA can
proceed to do other work. Thus, for instance, while a given
message 1s being handled by a particular MTA thread, other
Incoming messages can be injected, queued, requeued,
moved around, or the like, within the system. In this manner,
the bottleneck usually encountered with processing mass
¢-mailings 1s removed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram illustrating the basic architec-
ture of a typical electronic mail system.

FIG. 2 1s a block diagram illustrating a basic computer
system suitable for implementing desktop (e.g., e-mail cli-
ent) and server (e.g., mail server) components of the elec-
tronic mail system of the present invention.

FIG. 3 1s a block diagram of a basic software/firmware
system suitable for controlling operation of the computer
system of FIG. 2.

FI1G. 4 15 a block diagram illustrating a high-level view of
an e-mail system in which the present invention may be
embodied, including providing a mass-mail accelerator
(MMA) component.

FIG. 5 1s a block diagram illustrating the mass-mail
accelerator (MMA) component of FIG. 4 1n greater detal.

10

15

20

25

30

35

40

45

50

55

60

65

8

FIGS. 6 A—B present a high-level tlowchart summarizing
an overall method of operation for the MMA.

FIG. 7 1s a high-level flowchart summarizing exception
processing, in the case where no MTA threads are available.

FIG. 8 1s a high-level flowchart summarizing exception
processing, 1n the case where an error condition exists at the
remote (real-world) MTA.

FIG. 9 1s a high-level flowchart summarizing exception

processing, i the case where an MTA 1s not available for a
given domain.

DETAILED DESCRIPTION OF A PR
EMBODIMENT

[L]
=]

ERRED

The following description will focus on the presently-
preferred embodiment of the present invention, which 1s
implemented 1n server-based software operating in an Inter-
net-connected environment running under a server operating
system, such as the Microsoft® Windows NT running on an
IBM-compatible server computer. The present invention,
however, 1s not limited to any particular one application or
any particular environment. Instead, those skilled 1n the art
will find that the system and methods of the present inven-
tion may be advantageously embodied on a variety of
different platforms, including Macintosh, Linux, BeOS,
Solaris, UNIX, NextStep, FreeBSD, and the like. Therefore,
the description of the exemplary embodiments that follows
1s Tor purposes of illustration and not limitation.

I. Computer-Based Implementation

A. Basic System Hardware (e.g., for Desktop and Server
Computers)

The present invention may be implemented on a conven-
tional or general-purpose computer system, such as an
IBM-compatible server computer operating under a server
operating system. FIG. 2 1s a very general block diagram of
an IBM-compatible system 200. As shown, system 200
comprises a central processor unit(s) (CPU) 201 coupled to
a random-access memory (RAM) 202, a read-only memory
(ROM) 203, a keyboard 206, a pointing device 208, a
display or video adapter 204 connected to a display device
205, a removable (mass) storage device 215 (e.g., tloppy
disk), a fixed (mass) storage device 216 (e.g., hard disk), a
communication port(s) or interface(s) 210, a modem 212,
and a network interface card (NIC) or controller 211 (e.g.,
Ethernet). Although not shown separately, a real-time sys-
tem clock 1s included with the system 200, 1n a conventional
mannet.

CPU 201 comprises a processor ol the Intel Pentium®
family of microprocessors. However, any other suitable
microprocessor or microcomputer may be utilized for imple-
menting the present mmvention. The CPU 201 communicates
with other components of the system via a bi-directional
system bus (1including any necessary 1/0 controller circuitry
and other “glue” logic). The bus, which includes address
lines for addressing system memory, provides data transier
between and among the various components. Description of
Pentium-class microprocessors and their instruction set, bus
architecture, and control lines 1s available from Intel Cor-
poration of Santa Clara, Calif. Random-access memory 202
serves as the working memory for the CPU 201. In a typical
configuration, RAM of sixteen megabytes or more 1s
employed. More or less memory may be used without
departing from the scope of the present immvention. The
read-only memory (ROM) 203 contains the basic input
output system code (BIOS)—a set of low-level routines 1n
the ROM that application programs and the operating sys-

US 7,058,687 B2

9

tems can use to interact with the hardware, including reading,
characters from the keyboard, outputting characters to print-
ers, and so forth.

Mass storage devices 215, 216 provide persistent storage
on fixed and removable media, such as magnetic, optical or
magnetic-optical storage systems, or flash memory, or any
other available mass storage technology. The mass storage
may be shared on a network, or 1t may be a dedicated mass
storage. As shown 1n FIG. 2, fixed storage 216 stores a body
of program and data for directing operation of the computer
system, including an operating system, user application
programs, driver and other support files, as well as other data
files of all sorts. Typically, the fixed storage 216 serves as the
main hard disk for the system.

In basic operation, program logic (including that which
implements methodology of the present invention described
below) 1s loaded from the storage device or mass storage 216
into the main (RAM) memory 202, for execution by the
CPU 201. During operation of the program logic, the system
200 accepts user mput from a keyboard 206 and pointing
device 208, as well as speech-based input from a voice
recognition system (not shown). The keyboard 206 permits
selection of application programs, entry of keyboard-based
input or data, and selection and manipulation of individual
data objects displayed on the display screen 205. Likewise,
the pomting device 208, such as a mouse, track ball, pen
device, or the like, permits selection and manipulation of
objects on the display screen. In this manner, these input
devices support manual user input for any process running
on the system.

The computer system displays text and/or graphic images
and other data on the display device 205. The video adapter
204, which 1s mterposed between the display 205 and the
system, drives the display device 205. The video adapter
204, which includes video memory accessible to the CPU,
provides circuitry that converts pixel data stored 1n the video
memory to a raster signal suitable for use by a cathode ray
tube (CRT) raster or liquid crystal display (LCD) monitor. A
hard copy of the displayed information, or other information
within the system 200, may be obtained from the printer 207,
or other output device. Printer 207 may include, for instance,
an HP Laserjet® printer (available from Hewlett-Packard of
Palo Alto, Calit.), for creating hard copy images of output of
the system.

The system itself communicates with other devices (e.g.,
other computers) via the network intertface card (NIC) 211
connected to a network (e.g., Ethernet network), and/or
modem 212 (e.g., 56K baud, ISDN, DSL, or cable modem),
examples of which are available from 3Com of Santa Clara,
Calif. The system 200 may also communicate with local
occasionally-connected devices (e.g., serial cable-linked
devices) via the communication (“comm’) interface 210,
which may include a RS-232 serial port, a Universal Serial
Bus (USB) interface, or the like. Other devices may be
connected locally via the comm intertace.

IBM-compatible personal computers and server comput-
ers are available from a variety of vendors. Representative
vendors include Dell Computers of Round Rock, Tex.,
Compaq Computers of Houston, Tex., and IBM of Armonk,
N.Y. Other suitable computers include Sun Solaris worksta-
tions, which are available from Sun Microsystems of Moun-
tain View, Calif.

The above-described system 200 of FIG. 2 1s presented
for purposes of illustrating the basic hardware underlying
desktop (e.g., e-mail client) and server computer (e.g.,
SMTP server) components that may be employed in the
system of the present invention. Those skilled in the art will

10

15

20

25

30

35

40

45

50

55

60

65

10

appreciate that the present invention may be implemented 1n
any type ol computer system or processing environment
capable of supporting the methodologies of the present
invention presented in detail below.

B. Basic System Software

[lustrated 1n FIG. 3, a computer software system 300 1s
provided for directing the operation of the computer system
200. Software system 300, which 1s stored in system
memory (RAM) 202 and on fixed storage (e.g., hard disk)
216, includes a kernel or operating system (OS) 310. The OS
310 manages low-level aspects of computer operation,
including managing execution of processes, memory allo-
cation, file mput and output (I/0), and device I/O. One or
more application programs, such as client application soft-
ware or “programs” 301 (e.g., 301a, 3015, 301¢) may be
“loaded” (1.e., transferred from fixed storage 216 into
memory 202) for execution by the software system 200. For
instance, when the system 200 1s employed to control a
desktop machine, application software 301 includes client
¢-mail software 303 (e.g., Microsoit Outlook, available from
Microsolt Corporation of Redmond, Wash.), as shown.
When the system 200 1s employed to control a server
machine, on the other hand, application software 301
includes mail server software (e.g., Sendmail® for NT).

System 300 includes a graphical user interface (GUI) 3135,
for receiving user commands and data in a graphical (e.g.,
“point-and-click”) fashion. These inputs, 1n turn, may be
acted upon by the system 200 1n accordance with instruc-
tions from operating system 310, and/or client application
module(s) 301. The GUI 315 also serves to display the
results of operation from the OS 310 and application(s) 301,
whereupon the user may supply additional mputs or termi-
nate the session. Typically, the OS 310 operates in conjunc-
tion with device drivers 320 (e.g., “Winsock™ driver) and the
system BIOS microcode 330 (1.e., ROM-based microcode),
particularly when interfacing with peripheral devices. OS
310 can be provided by a conventional operating system,
such as Microsoft® Windows 9x, by Microsoft® Windows
NT, or by Microsoft® Windows 2000, all available from
Microsoit Corporation of Redmond, Wash. Alternatively,
OS 310 can also be an alterative operating system, such as
IBM OS/2 (available from IBM of Armonk, N.Y.) or Linux
OS (available from several vendors, including the Red Hat
distribution of Linux from Red Hat, Inc. of Durham, N.C.).

The above-described computer hardware and software are
presented for purposes of illustrating the basic underlying
desktop and server computer components that may be
employed for implementing the present imnvention. For pur-
poses of discussion, the following description will present
examples 1 which 1t will be assumed that there exists an
MTA (e.g., sendmail) that commumnicates with one or more
other MTAs (e.g., remote MTAs), as well as other relevant
systems (e.g., Composer, which 1s described below). The
present invention, however, 1s not limited to any particular
environment or hardware configuration. In particular, an
MTA distinction 1s not necessary to the invention, but 1s used
to provide a framework for discussion. Instead, the present
invention may be implemented 1mn any type of system
architecture or processing environment capable of support-
ing the methodologies of the present imnvention presented 1n
detail below.

II. Accelerating Mass Mailings
A. Overview of System Components and Basic Operation

FIG. 4 15 a block diagram illustrating a high-level view of
an e-mail system 400 1n which the present invention may be
embodied. As shown, the system 400 includes a Composer

US 7,058,687 B2

11

410, a message transport agent (MTA) 420, and a mass-mail
accelerator (MMA) 430 of the present invention. The Com-
poser 410 1s, as described above, a program that operates
against a very large database of users to provide large-scale
customized e-mail messages by combining diflerent pieces
of a message together on a per-user basis. In order to
perform this functionality, the Composer 410 takes each
constructed message and passes 1t on to an e-mail system for

¢-mail delivery to an intended recipient. The Composer 410
ordinarily passes a given message on to an MTA. As shown
in the upper half of FIG. 4, for example, the Composer 410
may pass a given message on to the MTA 420 that, in turn,
transmits the message to the intended recipient. Here, the
Composer 410 passes the message via the SMTP protocol
(defined 1n RFC 821) to the MTA 420, which serves as a
mail transport agent to receive e-mail and route that e-mail
to a particular destination (if the intended recipient resides at
a different domain), or delivers the e-mail to the recipient’s
local mail box (i1 the intended recipient resides at the same
domain). Thus, 1n this regard, the upper halt of FIG. 4
represents the pre-existing (1.e., unenhanced) approach.

The lower half of FIG. 4 demonstrates that the e-mail
system 400 has been modified, 1n accordance with the
present invention, to include the mass-mail accelerator
(MMA) 430. Again, the Composer 410 will pass a given
message on via SMTP. As shown, however, the Composer
410 now passes a given message on to the MMA 430. As 1n
the case of the MTA 420, the MMA 430 serves to carry out
c¢-mail delivery/routing for the messages that have been
passed on to 1t. However, as described in further detail
below, the degree of parallelism on the MTA side of message
delivery has been greatly increased.

In order to understand the approach adopted by the MMA
430, 1t 1s 1nstructive to first consider the basic transactions
that occur 1n an e-mail system. As shown in FIG. 4, an 1nitial
operation or transaction occurs for a given e-mail message,
in which the message 1s transierred from the Composer 410
to the MTA 420 via the SMTP protocol. This transaction 1s
labeled “A” 1n the figure. Before Transaction A ends, a
second transaction must occur: successiul delivery of the
¢-mail message to either its final destination or to an enroute
mail server (i.e., another MTA). This transaction 1s labeled
“B” 1 the figure. Of course, the approach of requiring
Transaction B to conclude before Transaction A may con-
clude sets up a serialized bottleneck that 1s to be avoided.

In accordance with the present invention, basic operation
of the e-mail system 1s modified as follows. As shown by the
transaction labeled “C” 1n the figure, the transaction for a
given e-mail message may instead comprise transferring the
message from the Composer 410 to the MMA 430. Now, in
contrast to the above, the operation or transaction of recipi-
ent delivery, labeled as “D”, begins while C 1s allowed to
complete immediately. Thus, an additional instance of C can
start while D 1s 1n progress. Continuing 1n this manner,
multiple instances of Transaction C may commence regard-
less of whether corresponding instances of Transaction D
have concluded; this approach introduces a pronounced
degree of parallelism into the system 400. Further, as
described below, the approach may be fine-tuned to further
accentuate the degree of parallelism and overall perfor-
mance that the system may achieve. Notwithstanding these
modifications, the system still employs the SMTP protocol
between system components. Although the internal opera-
tions between Transactions C and D differ substantially from
those of Transactions A and B, the internal operations are
performed 1in a manner that 1s mvisible to the SMTP proto-

10

15

20

25

30

35

40

45

50

55

60

65

12

col, thereby allowing the immproved system to maintain
compatibility and simplicity atfforded by the SMTP protocol.

B. Connection Caching

In order to improve throughput, the system of the present
invention extends the established “connection caching”
technique, 1nitially employed 1n the MTA, to mnclude con-
nections made by the MMA as well. Consider, for instance,
a message destined for an AOL user (1.e., a user 1n the
AOL.com domain). The MTA, without the enhancements of
the present invention, would simply make a connection to
AOL’s mail server to deliver that message, and thereafter
terminate the connection. However, the act of looking up
AOL’s mail server (e.g., in a domain name server) and
making a connection (e.g., establishing the TCP/IP connec-
tion and exchanging the initial protocol commands) 1s
resource-e¢xpensive and time-consuming. At the same time,
in the process ol going through 1ts queue and seeing how
much work 1t has to do, the MTA might discover that 1t has
more than one message destined for the AOL domain.
Therefore, 1nstead of terminating the just-made connection
to AOL’s mail server 1n the above example, the system of the
present mnvention would keep the connection open for use in
a connection cache. More particularly, the connection cache
keeps connections open to a configurable number of the
most-recently connected-to domains. In the currently-pre-
terred embodiment, the configurable number defaults to five
(5); that number may be modified, as desired. In response to
this setting, the system keeps the five most-recent connec-
tions open, with connections being “aged” or rotated out
using a least-recently used (LRU) technique (1.¢., the least-
recently used items are removed to make room for new
entrics). Thus, in the foregoing example, 11 the system
encounters a number of messages sent to the AOL domain,
the connection cache serves to keep the connection to AOL
open, thereby allowing the system to reuse that connection
without the expense normally associated with obtaining a
connection for a given message.

In a similar manner, the technique can be applied to
Domain Name Service (DNS) resolution. Domain Name
Service 1s an Internet service that translates domain names
into IP addresses. Domain names are alphabetic, so that they
are easier to remember. The Internet, however, 1s really
based on numeric IP addresses. Therefore, every time one
employs a domain name, a DNS service must translate the
name into the corresponding IP address. In the context of an
¢-mail system, the e-mail system must query a DNS server
to determine the e-mail server for a given domain (e.g.,
aol.com or a hotmail.com). Again, the process 1s time-
consuming, as the e-mail system must wait for the DNS
server to respond. By storing this information in a domain
name cache, the e-mail system may avoid repeating the
query for already-known domains and thus avoid the delay
typically incurred while waiting for the information to be
returned from a DNS server.

C. MMA Detailed Architecture

FIG. 5 15 a block diagram 1llustrating the MMA compo-
nent (now shown at 500) in greater detail. As shown, the
MMA 500 receives mput (SMTP) 501 that, in turn, 1s fed
into one or more queues 310 (e.g., queue 511, queue 513).
Each of the queues, 1n turn, assigns mail messages to one or
more MTA threads, as shown at 520. These features will now
be described 1n further detail.

The mput 501 receives, via SMTP, outgoing messages
from one or more Composers (previously described). A
client thread 503 imitially handles this input. In the nstance
that multiple Composers are connected to the MMA 500
(1.e., multiple concurrent connections), one client thread 1s

US 7,058,687 B2

13

assigned to each incoming connection. The respective client
thread receives the mncoming e-mail message (or simply,
“message”) and, 1n turn, decides which queue from the set
of queues 510 within the MMA 500 1s appropriate to receive
and process the message. Although the figure 1llustrates only
two queues, any number ol queues may be supported, as
desired (and as indicated by the ellipsis). The client thread
that receives the message examines the available queues
(e.g., queue 511, queue 3513) to see which one 1s appropriate
to receive the incoming message.

Each queue itself owns a thread that manages a list of
messages. As a particular advantage, the queues themselves
are configurable to either be general (generic) or be specific
to a particular mail (destination) domain. For instance, a
queue may be configured to handle only mail destined for
the Hotmail.com domain, or configured to handle only mail
destined for the AOL.com domain (e.g., as shown by queue
513). A queue that 1s specifically configured will only handle
¢-mail for 1ts specific domain and will not handle any other
¢-mail. In contrast, a queue may be configured to be generic
or general, 1n which case it will handle e-mail destined for
any domain which has no specific queue assigned to 1it.
E-mail posted to a specific queue will not require a Domain
Name Services (DNS) look-up, as the MMA 300 already
knows (1.e., has cached) the DNS information for the cor-
responding target e-mail domain. Thus, for example, e-mail
destined for the AOL.com domain 1s posted to the AOL
queue 513. The MMA 3500 need not look up the DNS

information for the AOL.com domain as this information
has already been cached as part of the setup for the AOL
queue 513. Which queues are created 1s entirely dependent
on the configuration which gives the customer-user (e.g.,
system administrator) the ability to tailor or tune for a given
situation. If, for example, the system administrator knows
that about 60% of outgoing e-mail for his or her company 1s
going to AOL, then the system administrator would set up an
AQOL-specific queue, with corresponding resources.

Each queue manages a pool of MTA threads. For example
as 1llustrated 1n the figure, the general or generic queue 511
manages MTA threads 521; the AOL queue 513 manages the
MTA threads 523. During configuration of the queues, the
customer’s system admimstrator may specily the allocation
of MTA threads to a given queue. For instance, a system
administrator may specily a maximum and/or minimum
number of MTA threads that are available to a given queue.
When a given MTA thread 1s started, it establishes a con-
nection out to a real MTA (e.g., remote MTA residing at a
particular destination on the Internet). This connection 1s
established using SMTP over a TCP (Transmission Control
Protocol) connection, such as TCP connection 530. Via this
connection, a given MTA thread may talk SMTP to an actual

MTA out 1n the real world someplace (e.g., AOL MTA).

During MMA operation, once a message has been passed
to a queue, that queue examines 1ts MTA threads to see 1f one
1s ready to accept the message. If an MTA thread 1s ready,
the queue will assign the message to that MTA thread (which
exists mside the MMA 500). Once a message 1s assigned to
an MTA thread, that thread 1s no longer available and, thus,
it marks itself as “busy” (or otherwise removes 1tself from a
“ready” list). The MTA thread proceeds to handle the work
of the SMTP exchange between the MMA and the target
real-world MTA (e.g., AOL MTA). While a given MTA
thread 1s waiting for a reply from the destination MTA (e.g.,
AOL MTA), the MMA can proceed to do other work. Thus,

for instance, while a given message 1s being handled by a

10

15

20

25

30

35

40

45

50

55

60

65

14

particular MTA thread, other incoming messages can be
injected, queued, requeued, moved around, or the like,
within the system.

If, when processing an incoming message, a given queue
thread finds all of 1ts MTA threads busy, the queue thread
may launch another MTA thread (unless the queue thread
has reached a user-specified maximum number of corre-
sponding MTA threads). The newly created thread will then
proceed to connect to the destination MTA and attempt
delivery. This process of spawning new MTA threads may
continue until underlying resources of the base hardware
system are exhausted (e.g., system has run out of file
descriptors or memory). In 1stances where no more MTA
threads can be created, the system logs corresponding infor-
mation to a log file, thereby allowing the system adminis-
trator to fine-tune the underlying system (e.g., adjust the
balance of queue and MTA resources) for the next run.

In contrast to a specific queue, the general or “others”
queue 1s not specific to a particular domain. Thus, the
general queue receives messages that are not posted to one
of the specific queues. The general queue employs, 1n
addition to a pool of MTAs, the above-mentioned connec-
tion-caching technique, including maintaining a list of name
server data (1.e., DNS data), as illustrated 1n FIG. 5. The list
reflects mail handlers for given domains that have been
recently encountered (e.g., DNS entries for sendmail.com,
netcom.com, earthlink.net, or like). The cache will rotate
these entries as 1t needs them, using the aforementioned
least-recently used (LRU) connection-caching techmque. In
this fashion, if the system happens to start getting a lot of
mail for a particular domain (e.g., sendmail.com), then the
queue’s connection to that particular domain can be reused.

Since the general queue talks to domains that are not
serviced by a domain-specific queue, i1ts treatment of con-
nections 1s slightly different because 1t might need to throw
away an old connection in favor of creating a new one to
something 1t has either never talked to, or has not talked to
recently. Consider, for instance, the scenario where the
general queue 1s employing a user-specified maximum num-
ber of MTAs, which are currently bound to one or more
destination MTAs, when a new message arrives that is
destined for the domain xyz.com for which the general
queue does not have any connection open. In this case, the
general queue will shut down an old connection so that 1t can
make a new one (1.e., within the user-specified maximum
number of MTAs). Here, the general queue will query a
DNS server for the appropriate name server data for the
newly-encountered domain. Upon receiving the name server
data, the general queue imnvokes an MTA thread for connect-
ing to the newly-encountered domain, whereupon the MTA
thread may transmit the message destined for the xyz.com
domain to the real-world MTA for xyz.com. If the general
queue encounters a particular domain on a repeated basis,
the general queue may post a corresponding entry to the
MMA’s log file to alert the user that 1t may be appropriate
to establish a specific queue for this particular domain. This
information may also be uncovered by performing a data-
base query against the database of recipients, with the results
being sorted by domain name.

A queue can be configured to pass messages it cannot
complete to some other queue for special handling. This
might be caused, for example, by a total network failure
between the MMA and a particular destination, such as
AOL.com or hotmail.com, as 1n previous examples. Where
this 1s the case, the queue thread which decides it 1s unable
to complete the delivery will hand the message to its
designated “retry” queue, and that queue will attempt to

US 7,058,687 B2

15

deliver the message using the MTAs and other features
available to it. If the initial queue thread has no “retry” queue
assigned, the message fails completely, an error 1s logged.,
and the message 1s discarded (or in safe mode, the SMTP
submission into the MMA fails).

A particular case of a useful “retry” queue 1s one which 1s
configured to connect to local MTAs which do nothing but

queue messages to disk for later attempts to connect. Such

an MTA 1s said to be operating 1n “deferred” or “fallback™
mode.

D. Detailed Internal Operation
1. Data Structures

Before describing internal methods of operation of the
present intention 1n detail, 1t 1s first instructive to review data
structures employed within the system. In particular, a
“queue” handle 1s defined to be an instance of the following
data structure.

1: /*

2: ** QUEUE handle, defining a queue of work for assignment to MTASs

3: %

4.

5: struct queue__handle

6: {

7: unsigned q_ randctx; /* rand_ r() context */

8 u_int q_mtaid; /* MTA sequence number */

9: u_int q_imitmta; /* mitial MTAs to be created */
10: u_.nt q_maxmta; /* max. MTAs to be created */
11: u_int q_ maxfail; /* max. MTA failures */

12: u_.int q_maxjobs; /* max. MTA jobs */

13: wu_.nt g__maxqueue; /* max. queued messages before
14: creating a new MTA */

15: wu_.nt q_flags; /* flags */

16: u_.int q_ startwait;/* secs to wait for MTA start */
17: u_nt q_ peakmtas; /* peak MTA count */

18: u_nt q_ peakmsgs; /* peak MSG count */

19: u_nt g__mtatimeout;/* MTA timeout (secs) */

20: u_.nt q_ batchsize;/* max. rcpts per transaction */
21: u_.int q_ mxlimit; /* MX record count limit */

22: t#hfdef FFR__THROTTLE

23: u_.int q_ throttle; /* max. queue length */

24: #endif /* _ FFR__ THROTTLE */

25: thidef FFR__NEW__ TIMEOUTS

26: u_.nt q__mtadatatimeout; /* MTA DATA timeout (secs) */
27 u_.int q__maxconntime; /* max. time to connect */
28: u_.nt q__maxtranstime; /* max. SMTP session time */
29: u_.nt q_ maxdelivertime; /* max. time to deliver */
30: #endif /* _ FFR__NEW_ TIMEOUTS */

31: #ifdef _ FFR_ MX_HANDLE

32: u_int q_ mxtimeout;/* max. time to keep MX list */
33: #endif /* _ FFR__MX_ HANDLE */

34: u_long q_ msgcount; /* messages processed */

35: #itdef _ FFR_ MAX_MESSAGE_ SIZE

36: u_long q__maxsize; /* max. message size */

37: #endif /* _ FFR_ MAX_MESSAGE_SIZE */

38: char * q__Name; /* name of the queue */

39: Arena q_ arena; /* arena for memory stuff */
40: QUEUE q_ retry; /* pointer to retry queue */
41: #ifdef _ FFR__DMS__MANAGER

42: DNSMGR q_ dnsmgr; /* DNS manager */

43: #endif /* _ FFR__ DNS_ MANAGER */

44: Vector q_ mftas; /* connected MTAs */

45: Vector q_ ready; /* MTAs ready for work */
46: Vector q__IMSgs; /* queued messages */

47: Vector q_ hosts; /* hosts for connect() */
48: HashTable q_ hosthash; /* hosts for connect() */
49: #ifdef _ FFR__TEST_ MODE

50: HashTable q_ testmtas;/* test MTAs */

51: #endif /* _ FFR__TEST_ MODE */

"
b2

: #ifdef _ FFR_ MX_HASH

HashTable g mxhash; /* MX list */
: #endif /* _ FFR__MX_HASH */

: #ifdef _ FFR__DNS__AVOID__DUP

HashTable q_ dnsip; /* DNS queries in progress */
: #endif /* _ FFR__DNS__AVOID_DUP *#/

A tn L tn L

10

15

20

25

30

35

40

45

50

55

60

65

16

-continued

58: pthread t q_ thread;
59: pthread_cond_t q_ gotwork;
60: pthread cond_t q_ gotmta;
61: pthread mutex_ t q_lock;
62: };

/* thread running this queue */
/* work to do */
/* MTA now ready */

/* lock for this queue */

As shown, the data structure fully characterizes a given
queue (instance). For example, the g_name member speci-
fies a text string for the queue’s name. The g_maxsize

member specifies the maximum message size handled by the
queue mstance, and the g_msgcount member records a count
of messages handled by the queue instance. The g_thread
member indicates the thread running the particular queue
instance. Several members specily MTA characteristics
associated with a given queue instance. For example, the

_1nmitmta member specifies an initial number of MTA
threads to be created for a given queue instance. The
g_maxqueue member, on the other hand, indicates the
maximum number of messages waiting before a new MTA
thread 1s created to process them. The basic function of other
members of the data structure may be discerned from the
included programming comments associated with each
member.

In a similar manner, data structures may be defined for
characterizing a message (object) and MTA (instance), as
follows.

: /®
: % MSG handle, defining a message which has not been processed

. RS

: struct msg__handle

A

bool * msg__success;/* creator’s success flag */

int msg flags; /* flags */

: #ifdef _ FFR_ DNS_ MANAGER

u__int msg__dnsretry;/* number of DNS retries */

: #endif /* __ FFR__DNS_ MANAGER */

u__int msg__retries;/* retry count */

: #ifdef _ FFR_ DISK_ CACHE

u__long msg__memsize;/™ max. in-memory body */

: #endif /* _ FFR__DISK_CACHE */

Arena msg__arena; /* memory arena */

char * msg__jobid; /* job ID for logging */

char * msg_ client; /* client, from LHLO */
SENDER msg__sender; /* sender */

Vector msg_ rcpt; /* RECIPIENT vector */

: #ifdef _ FFR_ MTA_ HISTORY

: Vector msg_mtahistory; /* MTA history */

: #endif /* _ FFR__ MTA__HISTORY */

BODY msg_body; /* body */

QUEUE msg queue; /* queue handling this msg */
MTA msg_mta; /* MTA handling this msg */
pthread_ cond_ t * msg_donesig; /* done signal */
struct timeval msg queuetime; /* queue time */

struct timeval msg start; /* start time */

: #ifdef FFR__DNS_ MANAGER
struct timeval msg dnsqueue;
struct timeval msg dnsstart; /* DNS query start tume */

struct timeval msg dnsdone; /* DNS query done time */
: #endif /* _ FFR__ DNS_ MANAGER */

: #ifdef FFR__ NEW_ TIMEOUTS
struct timeval msg_ aborttime; /* time after which to punt */
: #endif /* _ FER__NEW__TIMEOUTS */
struct timeval msg_done; /* finish time */
Bt

: /F
: ** MTA handle, defining a remote MTA
¥/

SO 00 -1 W O 00 - OB L R

2)

o N N T N T N I (N
L P i b

NS B S L U R NI R N I N R N
B2 = O ND D0] Oy

/* queue time */

W N LW S S B S BRSBTS S R 'S
b b — O ND S0 =1 Oy B

US 7,058,687 B2

17

-continued
44
45: struct mta__handle
46: {
47: char mta name[MAXMTANAME + 1];
/* connected host or prog */
48: u_.nt mta_ flags; /* status */
49: Int mta_ crli; /* CRLF handling */
50: Int mta__ inid; /* 1nput {d */
51: nt mta_ outid; /* output id */
52: piud_t mta_ pid; /* pid of child */
53: int mta__ exstatus; /* child exit status */
54: u_long mta__msgcount; /* messages handled */
55: u_.nt mta__timeout; /* mput wait timeout */
56: #ifdef _ FFR__ NEW__ TIMEOUTS
57: u_.nt mta__datatimeout; /* 1mput wait timeout */
58: #endif /* _ FFR__NEW_ TIMEOUTS */
59: u_.nt mta__ failed; /* failed message count */
60: HOST mta_ host; /* HOST handle */
61: QUEUE mta__queue; /* queue to which I belong */
62: MSG mta_ msg; /* message I’'m working on */
63: #ifdet _ FFR__TEST_ MODE
64: TEST mta_test; /* TEST handle */
65: #endif /* _ FFR_TEST MODE */
66: #hifdef _ FFR__LISTENER
67: CLIENT mta_ client; /* CLIENT handle */
68: #endif /* _ FFR_LISTENER */
69: Vector mta__esmtp; /* ESMTP services available */
70: struct in__addr mta_ addr; /* IP address 1n use */
71: struct timeval mta_ conntime; /* when connected */
72: struct timeval mta lastused; /* when last used */
73: #ifdef _ FFR__ NEW__ TIMEOUTS
74: struct timeval mta_ aborttime; /* time after which to abort */
75: #endif /* _ FFR__NEW__ TIMEOUTS */
76: pthread t mta_ thread; /* thread running this MTA */
77: pthread_cond_t mta_ gotwork; /* condition to start work */
78: pthread mutex t mta lock; /* structure lock */
79: };

As shown, a message (MSG) handle data structure 1s
defined at lines 1-39; 1t specifies the data members charac-
terizing an mmcoming message that 1s to be processed. An

MTA handle data structure 1s defined at lines 41-79, for
characterizing a remote or real-world (destination) MTA.

2. Methods of Operation

a) Core Operation

FIGS. 6 A—B present a high-level summary of an overall
method of operation for the MMA. For simplification of the
discussion that follows, the diagram presents a somewhat
serial or linear sequence of method steps. However, those
skilled 1n the art will appreciate that processing operations
described therein will 1n fact occur 1n parallel 1n the pre-
ferred embodiment. Therefore, the flowchart 1s offered for
the purpose of understanding the overall flow of operation,
rather than as a representation of the underlying program
code’s actual execution.

The method begins with the first invocation of the MMA,
for mstance, from a Composer program that has already
started. Here, the Composer will make a connection to the
MMA, as shown at step 601. This 1s done through a
UNIX-style pipe, or through a socket (e.g., TCP/IP), or
through any other construct/process that allows data to pass
back and forth (1.e., supporting interprocess communica-
tion). Now, the Composer will begin delivering a message
by initiating an SMTP dialog/session with the MMA, as
shown 1n step 602. At step 603, SMTP phase processing
begins; thus phase 1s repeated for each message. Here, a
given e-mail message 1s parsed (e.g., for determining 1ts
sender, recipient, body, attachments, delivery restrictions,
and the like). After the message 1s parsed, 1t 1s ready for
delivery. At the completion of the SMTP phase for the first
recipient, the MMA now has the message proper (e.g.,

10

15

20

25

30

35

40

45

50

55

60

65

18

accessible via a handle) and all of its corresponding param-
cters required for delivery, and may therefore return an
acknowledgment back to the Composer that the message has
been successtully received and that the MMA 1s now ready
for more messages.

Operation at this point 1s controlled based on how the
MMA 1s configured: (1) sale mode or (2) unsate mode. In
sale mode, the MMA will not send an acknowledgement
back until the message has passed through the MMA 1n its
entirety—that 1s, that the message was successiully sent
somewhere, such that some other M TA 1n the world receirved
and accepted responsibility for the message. In other words,
in sate mode, only when the MMA successiully sends the
message (to another MTA) will 1t indicate to the Composer
that 1t 1s ready for more work (1.e., to receive additional
messages). Sate mode 1s provided to comply strictly with the
definitions of RFC 821 (SM'TP), which guarantees message
reliability. However, this atomic transaction-based approach
presents a bottleneck to system throughput. As a result, the
MMA 1s also allowed to operate 1n unsafe mode.

In unsate mode, the MMA will indicate to the Composer
that 1t 1s ready for more work regardless of whether the
current message has already been successiully sent some-
where. As a result, unsafe mode operates a great deal faster
because there 1s no waiting for confirmation that a given
message has been successiully received by another MTA.
Although unsate mode may provide less reliability (e.g., no
guarantee of service), the mode operates a great deal faster
since the bottleneck of awaiting confirmation 1s removed,
thereby allowing a high degree of parallelism to be realized.
The system 1s user-configurable so that each individual
customer can decide which mode 1s preferred. Given the
substantial benefits 1 performance, however, most users
will typically use the unsaie mode of operation. Thus in
typical operation, where the system 1s operating 1n unsafe
mode, step 603 1s allowed to loop, or repeatedly execute, for
a multitude of messages.

As shown at step 604, each incoming message 1s received
by a client thread, which 1s listening for incoming messages
from the Composer. (The client thread 1s distinguishable
from the “listener” thread, which exists 1n the MMA only to
listen for new connections.) Upon receiving a new incoming
message, the client thread decides to which queue or queues
it will assign the workload of processing the message. In a
typical case, a given message will have only a single
recipient. For example, the message may be addressed to an
AOL recipient. In that case, the client thread determines
whether there are any queues that specifically process AOL
messages (1.e., messages destined for the AOL.com
domain). If an available specific queue 1s found, the client
thread assigns the message to that queue. Otherwise, the
message will be assigned to the general queue, as shown at
step 604.

A less common case 1s a message with multiple recipients.
Here, the client thread m effect “clones” the message and
assigns the clones to the appropriate queues. For example, 1f
a given message 1s addressed to an AOL recipient and a Xyz
recipient, the workload for the AOL recipient 1s assigned to
the AOL queue and the xyz recipient i1s assigned to the
general queue. During this “cloning™ process, the message
body 1tself 1s not needlessly duplicated. Instead, only a
single copy of the message body exists. Each clone refers to
the message body via a reference handle.

As shown at step 605, the act of assigning work to a queue
thread awakens that thread. Upon awakening, a queue thread
may now proceed with 1ts assigned work. Specifically, the
awakened queue thread looks to see if 1t has any MTA

US 7,058,687 B2

19

threads that are ready to handle the job that has been
assigned, as shown at step 606. Here, there 1s a distinction
between MTA threads that are running and MTA threads that
are ready. In the currently-preferred embodiment, each MTA
thread has an “inbox™ for receiving a single job at a time.
Once a job 1s placed 1n the MTA thread’s mmbox, that MTA
thread 1s removed from the queue thread’s list of ready MTA
threads, as shown at step 607 1n FIG. 6B. Once the work has
been passed on to an MTA thread, that work 1s no longer
within the realm of the queue thread. Thus, at that point (step
608), the queue can proceed to see if there 1s any other work
to be processed, or go to sleep waiting for more work.

Having received a new job, the MTA thread, in turn,
communicates with a real-world MTA (to which 1t 1s con-
nected), using the SMTP protocol, 1n order to execute the
delivery, as shown at step 609. Here, the same set of SMTP
commands that the Composer used to post a message to the
MMA are, in turn, sent directly to the destination. Now, at
step 610, the particular remote (real-world) MTA takes over
responsibility for delivery of the message. Once the remote
MTA confirms that 1t will take over responsibility for
delivery, the MTA thread (which has handled this message)
can now return 1tself to the “ready™ list, as shown at step 611.

b) Exception Case #1: No MTA Threads are Available

Suppose 1n step 606 that no MTA threads are available. In
that case, processing proceeds as shown i FIG. 7. Step 701
1s shown to indicate that these method steps are invoked 1n
the context of “no MTA threads ready.” What happens at this
point depends on the configuration of the queue, specifically,
whether the system 1s allowed by limits imposed in the
configuration to create any more MTA threads. I1 the system
has reached the configuration-specified limit, the method
simply blocks and awaits the availability of an MTA thread,
as 1indicated by step 702. However, if 1t has not reached this
maximum limit, the method may proceed to step 703, to
create or spawn a new MTA thread. In that case, after step
703, the method will assign the work (of message delivery)
to the newly created MTA thread, as shown at step 704.
Additionally, the newly created thread becomes part of the
general pool that this queue can use. As shown by the
foregoing, the system 1s able to tune itself based on run-time
dynamics, such that the system reaches equilibrium, or
steady state, where 1t does not need to create any more
threads and the ones that are there are usually busy.

¢) Exception Case #2: Error Condition Exists at Remote
(Real-World) MTA

FIG. 8 1illustrates processing in the face of an error
condition existing at the remote MTA. Step 801 indicates
that an error condition has occurred. The relevant MTA
thread detects the error condition, as shown at step 802. The
error condition itself may be any one of a number of things,
including, for example, abrupt termination of connection, a
timeout (1.e., connection 1s not terminated, but remote MTA
does not respond), protocol error (e.g., icorrect SMTP
response received), or the like. Upon detecting the error
condition, the MTA thread passes responsibility for process-
ing the message back to its corresponding queue, as ndi-
cated at step 803. The queue, 1n turn, reattempts delivery of
the message (up to a maximum retry limit, e.g., 10 attempts),
for instance by reassigning the message to another MTA
thread. If the error condition 1s fatal, the MTA thread will
shut 1tself down, as indicated by step 804. In this instance,
the MTA thread will release 1ts resources, remove itself from
the list of “ready” MTA threads, and therealiter terminate. At
this point, the queue knows that 1t has room for one more
MTA thread 1f needed. Note that 1n the case of a fatal error
condition, the message 1tself has not been lost, as the MMA

10

15

20

25

30

35

40

45

50

55

60

65

20

will reattempt delivery through some other channel (as a
result of step 803). IT a message cannot be delivered after a
maximum number of retries, the system will post a log entry
indicating that delivery failed for this recipient.

d) Exception Case #3: MTA Not Available for Domain

Recall that the general queue handles all domains for
which there 1s not a specific queue. Thus, the general queue
must make sure that there 1s a real-world MTA available for
a particular new domain that 1s encountered. Consider, for
instance, a scenario 1n which the general queue receives a
message destined for the xyz.com domain but it has not
opened a connection to the real-world MTA yet. In that
instance, the general queue must open such a connection.
The processing proceeds as outlined m FIG. 9, which will
now be described 1n detail.

At step 901, the system attempts to locate an MTA thread
handling mail for the recipient domain. If one 1s found, the
workload for delivering the message 1s assigned to that MTA
thread (whereupon the method may return). However, i1 one
1s not found, the method proceeds to step 902. The method
locates the MTA (host) that handles e-mail for this domain.
That information may already exist in the DNS cache.
Theretore, at step 902, the method checks the DNS cache for
an entry corresponding to the domain. If that information 1s
not already stored 1n the DNS cache, the MMA system must
look up that information on the Internet, by querying a DNS
server, as indicated by step 903. Two queries are actually
performed: a first query for determining which machine
handles mail for that domain and a second query for deter-
mining that machine’s IP address. Once the DNS informa-
tion 1s obtained (either from 1ts cache or from querying a
DNS server), a new MTA thread makes a connection to the
real-world M TA that handles mail for the recipient domain,
at step 904, including performing the mmitial SMTP hand-
shake. Now, the work can be assigned to the new MTA
thread, as indicated at step 905. After message delivery, that
MTA thread will remain in the general queue’s pool of MTA
threads until it 1s instructed to shut down and make room for
something else (e.g., an MTA thread for another domain).

While the invention 1s described in some detail with
specific reference to a single-preferred embodiment and
certain alternatives, there 1s no intent to limit the invention
to that particular embodiment or those specific alternatives.
For instance, although the currently-preferred embodiment
has been described in terms of receiving mput originating
from a Composer program, the system of the present inven-
tion may receive input from any program capable ol gen-
crating mass e¢-mailings. There 1s no requirement that a
Composer program be used. All told, those skilled 1n the art
will appreciate that modifications may be made to the
preferred embodiment without departing from the teachings
of the present invention.

What 1s claimed 1s:

1. In an electronic mail (e-mail) system, a method for
processing a plurality of e-mail messages that are being sent
to recipients at various destination domains, the method
comprising:

establishing a plurality of queues in the system, zero or

more of these being specific queues for handling mail
to a specific set of domains, and one being a general
queue for transierring e-mail to domains not handled by
specific queues, each said queue being configured to
spawn a number of message transport agents (MTAs)
for connecting to available e-mail servers for a given
domain, wherein each queue 1s associated with at least
one message transfer agent (MTA) processing thread
that establishes a connection with a recipient MTA and

US 7,058,687 B2

21

at least one queue 1s associated with a set comprising a
plurality of MTA processing threads, wherein said set
of MTA processing threads 1s dynamically configurable
for optimizing resources allocated for a given queue so
that the number of MTAs spawned for a given domain
may exceed the number of the available e-mail servers
for that given domain;

receiving at the system a request to process for transier a
plurality of outbound e-mail messages, each e-mail
message specilying delivery to at least one recipient at
a particular domain; and

for each given e-mail message, processing the given
¢-mail message by:

determining what domain the given e-mail message 1s
destined for,

i the determined domain for the given e-mail message
1s a specilic domain handled by a corresponding
specific queue, assigning the given e-mail message
to the corresponding specific queue for transferring
the given e-mail to said specific domain, otherwise
assigning the given e-mail message to said general
queue, each queue maintaining a “ready” list for
assigning the given e-mail message to an MTA that
has indicated that it 1s available for work, and

without waiting for confirmation that the given e-mail
message has been successiully processed for transter
to another system, proceeding to process the next
one of the e-mail messages.

2. The method of claim 1, wherein said system comprises
one general queue and optional specific queues.

3. The method of claim 1, wherein said at least one
specific queue only handles e-mail messages that are des-
tined for the specific queue’s corresponding domain.

4. The method of claim 1, wherein said general queue
handles all e-mail messages that are not processed by said at
least one specific queue.

5. The method of claim 1, wherein said system receives
said plurality of outbound e-mail messages from at least one
composer program, which automatically composes e-mail
messages based on database mformation.

6. The method of claim 1, wherein said system receives
said plurality of outbound e-mail messages via Simple Mail
Transport Protocol (SMTP).

7. The method of claim 1, further comprising:

creating at least one clone e-mail message upon encoun-
tering an ¢-mail message addressed to more than one
recipient; and

processing each clone for transier.

8. The method of claim 7, wherein each clone includes a
reference to contents for its corresponding e-mail message,
so that storage of e-mail contents 1s not duplicated.

9. The method of claim 1, further comprising;:

in the event that a particular e-mail message cannot be
successiully processed upon an 1mitial attempt, routing,
the particular message to another message transport
agent (MTA) which 1s to re-attempt transport.

10. An electronic mail (e-mail) system providing parallel

processing of e-mail messages, the system comprising:

a plurality of queues for processing incoming e-mail
messages, at least one queue being designated as a
specific queue for processing e-mail messages destined
for a specific domain, wherein the queues are dynami-
cally configurable at runtime to increase throughput via
spawning multiple connections to each e-mail server
for said specific domain;

wherein each queue 1s associated with at least one,
processing thread for receiving incoming e-mail mes-

10

15

20

25

30

35

40

45

50

55

60

65

22

sages that are to be transferred to another system, at
least one queue being associated with a plurality of
processing threads that may be spawned dynamaically at
runtime for optimizing resources allocated for said at
least one queue such that the number of threads that
may be spawned for a given domain can exceed the
number of available e-mail servers for that given

domain, and each incoming e-mail message being
assigned to a particular queue based on what domain
the incoming e-mail message 1s destined for; and

wherein a given e-mail message 1s assigned to said
specific queue when the given e-mail message 1s des-
tined for said specific domain.

11. The system of claim 10, wherein each queue controls
a set of one or more message transier agent (MTA) process-
ing threads, each MTA processing threads capable of per-
forming work to transfer an e-mail message to an MTA on
another system.

12. The system of claim 11, wherein the actual number of
MTA processing threads employed by a given queue 1is
controlled at runtime.

13. The system of claim 11, wherein each MTA process-
ing thread 1s capable of establishing a connection to an MTA

on another system.

14. The system of claim 12, wherein control of the actual
number of MTA processing threads employed by a given
queue 1s based, at least in part, on how many e-mail
messages are posted to the given queue at runtime.

15. The system of claim 12, wherein control of the actual
number of MTA processing threads employed by a given
queue 1S subject to a maximum limit.

16. The system of claim 10, wherein one of said queues
comprises a general queue for processing e-mail messages
that are destined for other domains.

17. The system of claim 16, wherein said general queue
controls a set of message transier agent (MTA) processing
threads, and wherein each said MTA processing thread of the
general queue 1s capable of transferring an e-mail message
to an MTA at a domain that 1s different than other domains
for e-mail messages processed by the set.

18. An improved e-mail system, the improvement com-
prising:
dividing incoming e-mail messages that are to be pro-

cessed for transfer into different groups, based on what
domain each e-mail message 1s destined for;

establishing a plurality of specific queues and accompa-
nyimng processing resources for processing transier of
e-mail messages, each said specific queue handling
¢-mail messages destined for a frequently encountered
domain; and

establishing at least one general queue and accompanying
processing resources for processing transier of e-mail
messages, each said at least one general queue handling
¢-mail messages destined for less-frequently encoun-
tered domains;

wherein each said queue 1s configured to assign an e-mail
message to a message transport agent (MTA) that 1s
available for sending the e-mail message to a given
domain, and is configured to create additional MTAs
when none are available to accept work, wherein each
said additional MTA 1s dynamically spawned for opti-
mizing resources allocated for a given queue, and
wherein the number of MTAs spawned for a given
domain may exceed the number of the available e-mail
servers for that given domain.

US 7,058,687 B2

23

19. The system of claim 18, whereimn each queue 1is
associated with a set of one or more message transier agent

(MTA) processing threads, each capable of transferring an
¢-mail message to recipient’s domain.

24

21. The system of claim 19, wherein the set of MTA
processing threads for said second queue may transier
¢-mail messages to different domains.

22. The system of claim 19, further comprising a con-

20. The system of claim 19, wheremn the set of MTA 5 nection cache for storing information about connections that

processing threads for said first queue 1s dedicated to trans-

terring e-mail messages only to said frequently encountered
domain.

have been made to other domains.

	Front Page
	Drawings
	Specification
	Claims

