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A method for performing route calculations in a link state
routing protocol at a node within a computer network. The
method 1ncludes evaluating existing routes of the node when
new route information 1s recerved and recalculating routes
for the node only when the new route information improves
at least one of the existing routes or at least one of the
existing routes 1s made worse or lost. A system for perform-
ing route calculations 1s also disclosed.

32 Claims, 9 Drawing Sheets
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METHOD AND SYSTEM FOR
ACCELERATING ROUTE CALCULATION IN
LINK STATE ROUTING PROTOCOLS

BACKGROUND OF THE INVENTION

The present invention relates generally to routing com-
munications within a computer network, and more specifi-
cally, to link state routing protocols.

Communication in a computer network involves the
exchange of data between two or more entities intercon-
nected by communication links and subnetworks. Entities
concerned primarily with the correct routing of information
in the network are called routers, to distinguish them from
end systems which process tratlic but do not take part 1n
routing 1t. There are two fundamentally different approaches
to the distribution and use of routing information 1 a
network, called Distance Vector Routing and Link State
Routing. In the former, each router tells its 1mmediate
neighbors how 1t would reach each entity in the network,
updating this as similar information 1s received from its
neighbors. In the latter, each router arranges to send infor-
mation about 1ts own connectivity to 1ts neighbors to all
routers in the network. Each router then runs an algorithm
called Shortest Path First (SPF) to find the best route from
itself to each entity in the network. Early routing protocols
(e.g. RIP) used the Distance Vector approach. Link State
Routing protocols first appeared in the early 1980s, and
became widely used in the Internet during the 1990s. OSPF
(Open Shortest Path First) and Integrated IS—IS (Interme-
diate System—Intermediate System) are widely used
examples of such protocols. Although there are many
detailed differences between them, the fundamental algo-
rithms are the same for both of them. OSPF 1s a routing
protocol developed for IP (Internet Protocol). IS—IS was
originally designed for Open Systems Interconnection (OSI)
protocols, and was subsequently extended to deal with IP.

With link state routing, each router must discover its
neighbors and learn their network addresses. A cost (typi-
cally related to the link bandwidth) 1s associated, generally
by network management, with each link. One or more link
state packets are then constructed containing this informa-
tion, and flooded to all routers in the network. Dikstra’s
Shortest Path First algorithm 1s then used at each router to
find the shortest path to every other router. This algorithm
maintains a set of nodes whose shortest path 1s already
known and operates by adding one node to this known set
with each iteration. The next step 1s to the next closest router
along this path, always choosing the one which has the
lowest cost from the local node. This process continues until
all reachable nodes are 1n the known set with costs assigned
to each.

Link state protocols ofler several advantages over alter-
natives such as distance vector protocols, but have at least
one significant drawback. With conventional link state pro-
tocols, every time a link changes state (e.g., up, down, or
change 1n administrative cost) anywhere i the network,
cach node must recalculate all of the routes from scratch by
running the Dijkstra algorithm. This 1s fine for small net-
works, but route recalculation 1n large networks may take
hundreds of milliseconds. This limits the speed with which
the network can react to changes and places a heavy burden
on the route processor 1n a router. In an attempt to reduce the
number of times route recalculations are performed, hold-
down timers are sometimes used, which limit the frequency
with which the SPF algorithm 1s run. However, this results
in networks that are relatively slow to react to changes.
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There 1s, therefore, a need for a method and system for
reducing the amount of route recalculations required without
increasing the time 1t takes for a network to react to topology
changes.

SUMMARY OF THE INVENTION

A method and system for accelerating route calculations
in link state routing protocols are disclosed.

A method for performing route calculations 1n a link state
routing protocol at a node within a computer network
generally comprises evaluating existing routes of the node
when new route mformation 1s received and recalculating
routes for the node only when the new route information
improves at least one of the existing routes or at least one of
the existing routes 1s made worse or lost.

In another aspect of the mvention, a method of updating
a tree structure of a root node 1 a computer network of
interconnected nodes after a change 1n the network’s topol-
0gy comprises recerving new route iformation at the root
node and applying an incremental Dijkstra algorithm to the
root node only 1f the new route immformation improves or
worsens existing routes of the node or one of the existing
routes of the nodes are lost.

A computer program product of the present invention
generally comprises code that evaluates existing routes of
the node when new route information 1s received and code
that recalculates routes for the node only when the new route
information improves at least one of the existing routes or at
least one of the existing routes 1s made worse or lost. The
product further comprises a computer-readable storage
medium for storing the codes.

A system of the present invention generally comprises a
processor operable to evaluate existing routes of the node
when new route mformation 1s recerved and recalculate
routes for the node only when the new route information
improves at least one of the existing routes or at least one of
the existing routes 1s made worse or lost. The system further
includes memory for storing route information.

In another aspect of the invention, a system for perform-
ing route calculations 1 a link state routing protocol at a
node within a computer network generally comprises means
for evaluating existing routes of the node when new route
information 1s recerved. The system further includes means
for recalculating routes for said node only when the new
route information 1mproves at least one of the existing routes
or at least one of the existing routes 1s made worse or lost.
The system also includes memory for storing route infor-
mation.

The above 1s a brief description of some deficiencies 1n
the prior art and advantages of the present invention. Other
features, advantages, and embodiments of the invention will
be apparent to those skilled in the art from the following
description, drawings, and claims.

BRIEF DESCRIPTION OF TH.

L1l

DRAWINGS

FIG. 1 1s a diagram of a network system comprising a
plurality of computer networks.

FIG. 2 1s a diagram illustrating an example of a computer
system that can be utilized to execute software of an
embodiment of the present invention.

FIG. 3 1s a flowchart 1llustrating a process for adding new
link state information to a node.

FIG. 4 1s a flowchart illustrating a process for reattaching
a node when 1t has lost 1ts path.
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FIG. 5 1s a tflowchart illustrating a process for recalculat-
ing routes 1n nodes of a subtree when a path to a root has
worsened or gone away.

FIGS. 6-8 are tlowcharts 1illustrating a process for per-
forming an incremental route recalculation.

FIG. 9 1s a diagram 1llustrating nodes of a network and
links connecting the nodes.

Corresponding reference characters indicate correspond-
ing parts throughout the several views of the drawings.

DETAILED DESCRIPTION OF TH.
INVENTION

L1

The following description i1s presented to enable one of
ordinary skill in the art to make and use the invention.
Descriptions of specific embodiments and applications are
provided only as examples and various modifications will be
readily apparent to those skilled in the art. The general
principles described herein may be applied to other embodi-
ments and applications without departing from the scope of
the mmvention. Thus, the present mnvention 1s not to be limited
to the embodiments shown, but 1s to be accorded the widest
scope consistent with the principles and features described
herein. For purpose of clanty, details relating to techmical
material that 1s known 1n the technical fields related to the
invention have not been described 1n detail.

The present invention operates 1n the context of a data
communication network including multiple network ele-
ments. FIG. 1 1s a block diagram of a network system,
generally indicated at 10, comprising a collection of com-
puter networks having a plurality of stations. The stations
are typically computers comprising source station 12, des-
tination station 14, and intermediate stations 16. Some of the
nodes 1 a network that employs the present invention may
be network devices such as routers and switches. For
example, some of the nodes 16 may be suitably configured
routers such as those available from Cisco Systems, Inc. of
San Jose, Calif. As used herein the term router 1s used to
refer to devices that forward packets based on network and
higher layer information. The router 16 may include, for
example, a master central processing unit (CPU), interfaces,
and a bus. The CPU preferably includes memory and a
processor. When acting under the control of appropnate
soltware or firmware, the CPU 1s responsible for such router
tasks as routing table computations, network management,
and general processing ol packets. It preferably accom-
plishes all these functions under the control of software
including an operating system (e.g., a version of the Inter-
network Operating System (IOS®) of Cisco Systems, Inc.)
and any appropriate applications software. The CPU may
include one or more processors such as a processor from the
Motorola family or microprocessors of the MIPS family of
microprocessors. In an alternative embodiment, the proces-
sor 1s specially designed hardware for controlling the opera-
tions of the router. Memory can be non-volatile RAM and/or
ROM. However, there are many different ways i which
memory could be coupled to the system. In an alternative
embodiment, a router or switch may be implemented on a
general purpose network host machine such as the computer
system of FIG. 2.

FIG. 2 shows a system block diagram of computer system
that may be used to execute software of an embodiment of
the mvention. The computer system may include subsystems
such as a central processor 40, system memory 42, remov-
able storage 46 (¢.g., CD-ROM drive), and a hard drive 44
which can be utilized to store and retrieve solftware pro-
grams ncorporating computer code that implements aspects
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of the invention, data for use with the invention, and the like.
The computer readable storage may also include flash
memory, or system memory. Additionally, a data signal
embodied 1n a carrier wave (e.g., in a network including the
Internet) may be the computer readable storage medium.
Other computer systems suitable for use with the mvention
may include additional or fewer subsystems. For example,
the computer system may include more than one processor
40 (1.e., a multi-processor system) or a cache memory.

The system bus architecture of the computer system 1s
represented by arrows 58 1n FIG. 2. However, these arrows
are only illustrative of one possible interconnection scheme
serving to link the subsystems. For example, a local bus may
be utilized to connect the central processor 40 to the system
memory 42. The components shown and described herein
are those typically found 1n most general and special pur-
pose computers and are intended to be representative of this
broad category of data processors. The computer system
shown 1n FIG. 2 1s only one example of a computer system
suitable for use with the mvention. Other computer archi-
tectures having different configurations of subsystems may
also be utilized.

Communication between computers within the network 1s
made possible with the use of communication protocols,
which govern how computers exchange information over a
network. The computer may include an 1nput/output circuit
used to communicate mformation in appropriately struc-
tured form to and from parts of the computer and associated
equipment. Preferably, each of these interfaces includes a
plurality of ports appropriate for communication with the
appropriate media, and associated logic, and in some
instances memory. The associated logic may control such
communication intensive tasks as packet integrity checking
and media control and management. The high speed inter-
faces are preferably multiport Ethernet interfaces, but may
be other appropnate interfaces such as FDDI interfaces.

The routers 16 facilitate the flow of data packets through-
out the system by routing the packets to the proper receiving
stations. The packet typically contains the address of the
final destination station 14. The final destination address
remains constant as the packet traverses the networks. A key
function of router 16 1s determining the next station to which
the packet 1s sent. The routers 16 typically execute routing
algorithms to decide over which communication links
incoming packets should be transmitted. A type of network
layer routing protocol commonly employed by routers 1s a
link state routing protocol. With link state routing, each
router must discover its neighbors and learn their network
addresses, measure the delay to each of its neighbors,
construct a packet containing this information, send the
packet to all other routers, and compute the shortest path to
every other router.

When router 16 1s booted, 1its first task 1s to learn who 1its
neighbors are. It accomplishes this goal by sending a special
HELLO packet on each point-to-point line. The router 16 on
the other end 1s expected to send back a reply telling who 1t
1s. Once the information needed for the exchange has been
collected, the next step 1s for each router to build a packet
containing all of this data. The packet (a Link State Packet)
starts with the identity of the sender, followed by a sequence
number, age, and a list of neighbors. For each neighbor, the
cost to that neighbor, a network management parameter, 1s
given. The link state database 1s synchronized by having the
routers exchange LSPs to build the link state database. The
routers tlood the networks with LSPs, check integrity using
a checksum, and resend the LSPs by forwarding them out on
all enabled interfaces except the interface on which each was
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received or on which the same LSP has already been
received. The router’s link state database 1s thus a combi-
nation of the router’s own adjacency database and the LSP
packets arriving from all other routers. When the link state
database 1s complete in conventional systems, a copy of the
database, which includes a map of the network and 1ts links,
services, and external routes for the area, 1s maintained 1n
cach router.

Once a router has accumulated a full set of link state
packets, 1t can construct the entire subnet graph since every
link 1s now represented. Dijkstra’s algorithm 1s then run
locally to construct the shortest path to all reachable desti-
nations. The output of the Dijkstra algorithm 1s the next hop
(1.e., intermediate router) to the destination. The results of
this algorithm 1s installed in the routing tables.

In conventional link state algorithms, every time a link
changes state anywhere in the network, each node must
recalculate all of the routes from scratch by running the
Dijkstra algorithm. Most of the time this 1s a lot of unnec-
essary work. Fach node 1n the network builds a spanning
tree which encompasses each other node 1n the network. A
Spanning Tree 1s a graphical construction 1 which each
node (router in the present instance) i1s reachable over a
unique sequence of links. The majority of the links will not
figure 1n any given spanning tree, since the number of links
in use 1s one less than the total number of nodes, whereas the
number of links in the network 1s typically many times this.
Furthermore, most of the links which are 1n use will be near
leaves of the spanning tree (1.e. distant from the root), and
will aflect only a small number of nodes.

As described below, the method and system of the present
invention utilizes an 1incremental Dikstra algorithm.
Whereas the conventional Dijkstra algorithm always com-
putes the entire spanning tree, the incremental Dijkstra
algorithm can incorporate changes to the information about
individual links in an optimized way, without examining
every node. Nodes with new route information (Link State
Packets) are sorted into order of cost from the current node
(the root). Each change 1n state 1s then evaluated. If 1t has no
cllect on existing routes 1t 1s 1ignored. If 1t improves existing
routes, the routes are re-evaluated starting from the changed
node. If existing routes are lost or made worse, the entire
subtree from the aflected link 1s re-evaluated. Each node 1s
reattached at the best (lowest cost) point 1n the remaining
spanmng tree, 1I possible, and routes re-evaluated starting
from the nodes that have been reattached. The ellect is
equivalent to runming the full Dijkstra algorithm, at a much
lower computation cost.

In the following description the global variable root 1s the
identity of the node which 1s at the root of the spanning tree
(1.e., normally the node which 1s running the algorithm).
CurrentNode 1s used throughout the description to represent
the node currently being worked on, while neighbor 1s used
as the neighbor currently being considered. F1G. 9 1llustrates
an example of a network having six nodes 70, 72,74, 76,78,
80. Node 70 1s 1dentified as the root node. Its neighbor nodes
are nodes 72, 76, and 80. Similarly, node 74 has neighbor
nodes 72, 76, 78, and 80. Root node 70 can reach node 74
by passing through node 72, node 80, node 76, or nodes 78
and 72, 76, or 80. As indicated by solid lines, the path
through node 72 1s the shortest path from node 70 to node
74. Since traflic to node 74 has to pass through node 72 to
get from the root node 70, node 72 1s referred to as 1ts parent
node.

The subtree of a node 1s the set of nodes which are reached
from the root by passing through that node. For example, the
subtree of node 76 in FIG. 9 consists of node 78. In a larger

10

15

20

25

30

35

40

45

50

55

60

65

6

and more realistic network, there will be nodes whose
subtrees are large. A node which has no subtree (1.e., which
1s on the path from the root to no other node except 1tself)
1s called a leaf node.

New route information provided to a node 1n the link state
packet can be classified as good news, bad news, or no
impact to a node. Good news means that the node’s path to
the root becomes cheaper. Since it was already in the best
place, there 1s no change to the path to this node. But its links
need to be examined 1n case this results 1n a better path to
one or more of 1ts neighbors. Also, the nodes for which 1t 1s
already the parent must be processed since they too will
receive good news. The link state change results 1n bad news
if the node’s current path to the root becomes more expen-
sive (1including the case where 1t 1s no longer available at all).
In this case there may be a better route via a diflerent parent.
This also applies to each node 1n 1ts subtree, which must be
scrapped and rebuilt. For each affected node, each link must
be examined to see which gives the best route, via the link’s
neighbor considered as a potential parent. Nodes which have
been “orphaned” as a result of receiving bad news (as well
as nodes which were already unreachable) must be excluded
as possible parents, otherwise loops will be created. It there
1s no change to the cost of the node’s path, there 1s nothing
clse to be done.

It 1s normal 1n network design to allow traflic to be split
across more than one path, if their total cost 1s the same.
When this 1s allowed, there may be more than one path to the
same node. In graph-theoretic terms, the spanning tree now
becomes a directed graph. Considering the simple network
of FIG. 9, and supposing that all links have the same cost,
then node 74 could be reached from the root node 70 via any
of nodes 72, 76 and 80. The present mmvention allows
incremental route recalculation when equal cost path split-
ting 1s 1n use. In practice, the number of possible paths
through the network 1s limited to some value (referred to as
maxPathSplits) to reduce memory usage in the router.

This changes the good news and bad news information as
tollows. For the good news, i there are multiple parents,
then all other parents (1.e., except the neighbor on the link
bearing good news) are no longer relevant since they are no
longer of equal cost. For the bad news, 11 there 1s more than
one parent, then the bad news parent (i.e., neighbor on the
link bearing bad news) 1s simply removed as a parent. Only
when this 1s the sole parent (or sole remaining parent) does
the subtree need to be scrapped as described above.

When the parents of a node change but not the distance
from the root, further work 1s required. The purpose of the
spanmng tree 1s to determine the output adjacencies to use
from the root when forwarding tratlic to the node. The set of
output adjacencies 1s calculated as the umion of the output
adjacencies for all of the parents, and pruned 1f necessary
according to the maxPathSplits parameter. If this does not
change with a change 1n the set of parents, then no further
action 1s required. However, 1f the adjacencies do change
then this calculation must be repeated for each subordinate
node, and so on recursively. It can be stopped at any given
node 1f the adjacency set does not change for this node (as
may happen 1f other parents for this node replace those
which were lost at the subtree root, for example).

The following 1s a description of one example of an
algorithm that can be used to implement the present inven-
tion.

Each node in the network 1s represented by a data struc-
ture. There are a number of sets of nodes, with each node
located 1n one set at a time. This 1s implemented by storing
cach set as a doubly-linked list, with the node structure

"y
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containing the necessary pointer fields. The act of adding a
node to one set implicitly removes 1t from whichever set it
1s currently 1n, or 1f 1t 1s already in the target set then does
nothing. The following 1s a list of node 1dentifiers:

Unreached: Nodes which have not yet been reached, or
which are unreachable.

Paths: Nodes to which the minimum cost path has been
found, and which are not awaiting some action 1n some
other set.

Tent: Nodes to which a path has been found, which 1s not
yet known to be minimum cost. These nodes are held
in ascending order of cost.

Orphans: Nodes for which the minimum cost path 1s no
longer valid, as a result of a link status update.

ParentsChanged: Nodes whose parents have changed,
although at least one former minimum cost path 1s still
valid. These nodes are held 1 ascending order of cost.

NewLSP: Nodes for which new Link State information
has been received.

The following information 1s stored for each node:

currentLinks: Information about links to other nodes (1.¢.,
the link state information). For each node to which
there 1s a link (neighbor), two pieces of information are
held: link cost to the neighbor and identity of the
neighbor.

newlinks: New information received as a result of an
update.

costToRoot: Cumulative cost of all links traversed from
root to this node. For nodes in Paths and Par-
entsChanged, this 1s the definitive cost to the node. For
nodes 1 Tent, it 1s the tentative cost by the best path
found so far. For nodes 1n Orphans and Unreached, 1t 1s
greater than any valid path cost (e.g., maxPathCost+1).

parents: Set of node references including all of the nodes
having a link giving equal cost path to this node.

outputAdjacencies: Set of node references which are the
nodes adjacent to root to which tratlic for this node 1s
to be forwarded. Each such node 1s the first along the
set of equal cost paths corresponding to each member
ol parents. OutputAdjacencies for a node 1s the union
ol outputAdjacencies for each of 1ts parents. This may
be pruned to a maximum size (maxPathSplits) in which
case the set should be held 1n some canonical order (for
example, by order of increasing router address) so that
the set of adjacencies used does not depend on the order
in which updates are made.

When new Link State information 1s recerved for a node,

a ReceiveLSP routine 1s invoked. This routine does not
automatically trigger route recalculation, which requires a
call to a RecalculateRoutes routine. The two may be invoked
together, but they may also be invoked separately. For
example, RecalculateRoutes may be allowed to run only at
a maximum frequency, with a delay of the order of hundreds
of milliseconds imposed to allow several updates to be
processed at once. FIG. 3, 1s a flowchart illustrating steps for
the ReceiveLSP process. New Link State information 1s first
received at Step 100. At step 102, newLinks 1s set to the new
Link State information. The node 1s then added to the set
NewLSP at step 104.

A ReattachNode procedure 1s invoked when a node has
lost 1ts path to try and reattach it somewhere to the remaining
spanmng tree. In order to provide the same result as in the
conventional algorithm, the link cost 1n the node’s own LSP
1s 1gnored. The LSP contents are used to 1dentify potential
parents. In calculating the cost via a potential parent, the
value used 1s the cost to the parent plus the cost to the present
node contained 1n the parent’s LSP, rather than the value in
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the node’s own LSP. This 1s because links are allowed to
have a different cost 1n each direction; the simpler approach
of using the node’s own cost would not necessarily give the
same result as the full Dykstra calculation. This technique
also 1mplicitly performs a two-way connectivity check, a
required feature of Link State routing operation which
ensures that a link 1s only used 11 1t 1s available to the node
at either end. Steps of the ReattachNode process are shown
in the flowchart of FIG. 4. The process begins when a node
loses 1ts path at step 120. A bestCost 1s first 1mtialized to
maxPathCost+1 at step 122. Step 124 is next performed for
cach neighbor in the currentLinks. The neighbor’s link
information 1s found for the current node by traversing the
LSP (step 124). The cost (thisNeighborCost) 1s calculated of
the reaching node via this neighbor as the neighbor’s cost-
ToRoot plus the cost of the link from the neighbor (step
126). If this NeighborCost 1s less than bestCost then best-
Cost 1s set to the thisNeighborCost and the parents are set to
the neighbor, removing all current members (steps 128 and
130). If the calculated cost 1s not less than bestCost but 1s
equal to it the neighbor 1s added to parents (steps 128, 131,
and 132). Steps 124-134 are repeated for each neighbor. If
bestCost has been changed, costToRoot 1s set to bestCost

and the node 1s added to the corresponding entry of Tent
(steps 136 and 138).

A ScrapSubtree procedure 1s invoked when the path to a
node has become worse or gone away completely to force
recalculation of routes to all of the nodes 1n the subtree of
which 1t 1s the root. The effect 1s to place all nodes in the
subtree mto either Orphans (11 all of their parents are 1n the
subtree being scrapped) or ParentsChanged (if only some of
their parents are 1n the subtree being scrapped). FIG. 5 1s a

flowchart 1llustrating the ScrapSubtree procedure. After a
path to the node has worsened or gone away (step 150), a
local set of nodes ToBeScrapped created and the target node
1s inserted at step 152. The currentNode 1s then set to the first
node from ToBeScrapped (step 154). Next 1t 1s determined
if currentNode 1s the neighbor’s only parent for each link 1n
currentNode’s current LSP (step 156). 11 1t 1s, the node 1s
added to ToBeScrapped (step 158). If currentNode 1s one of
the parents and there are still others, it 1s removed from the
set of parents and the neighbor 1s added to ParentsChanged
in the appropriate position (according to costloRoot) (step
160). Steps 156164 are repeated for each link 1n current-
Node’s currentL.SP. At step 170 currentNode 1s added to
Orphans and costToRoute 1s set to maxPathCost+1. If the
node has an outstanding new LSP (i1.e., newLSP 1s not null)
then 1t 1s made the currentL.SP (i.e., set currentLSP to
newLL.SP and set newLLSP to null (steps 172 and 174). This
1s not required 1t only a single node 1s dealt with at a time
by RecalculateRoutes as 1t happens only when a node with
a new LSP 1s also part of the subtree of another node which
has received bad news. Steps 154-176 are repeated while
there are still nodes 1n ToBeScrapped.

A recalculateRoutes procedure 1s invoked to perform an
incremental route recalculation for all nodes which have
received new link state information. Changes for more than
one node can be processed at the same time, as long as nodes
are dealt with 1n increasing order of distance from the root.

This ensures correct treatment for a node which has a change
in 1ts own link state information, and which 1s also 1n the
subtree of a node closer to the root whose information has
changed. It 1s important that the correct link state informa-
tion 1s used at each step. As described below, some steps
require the old Link State mformation (1.e., those dealing
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with the current structure of the spanning tree) while those
concerned with building the new tree must use the new Link
State information.

FIGS. 6-8 illustrate a process for recalculating routes.
The node which currently has the lowest value of costToR-
oot 1s picked from NewLSP and set as currentNode at step
200. It 1s next determined whether the existing route to this
node 1s still valid. The currentL.SP 1s scanned and checked
that there 1s still a link to each parent (steps 202 and 204).
The cost of the link 1s that of the parent, which either has not
changed or has been dealt with by now. Thus, the link cost
in this node’s LSP 1s irrelevant. If there are no longer any
valid parents, ScrapSubtree 1s invoked for this node (step
206). If there are any nodes remaining in NewLSP, the
process returns to step 200 (step 208). If there are no nodes
remaining, ReattachNode 1s invoked (see step 264 of FIG.
7). 1T there are still valid parents, the newLLSP 1s scanned
(steps 204 and 210). If the neighbor on the link does not have
the current node 1n 1ts set of parents, the process returns to
step 210 to deal with the next link (step 212). If the neighbor
has current node 1n 1ts set of parents, the cost to the neighbor
1s calculated via the current node (1.e., costlToRoot plus the
link cost) at step 214. If the cost to the neighbor 1s less than
the neighbor’s current cost (costloRoot) then the neighbor
has good news and the current node 1s set as its only parent,
its costToRoot 1s set to the new value, and 1t 1s added to Tent
at the appropriate position (steps 216 and 218). If the cost to
the neighbor 1s greater than the neighbor’s current cost and
the current node 1s the only parent (steps 216 and 220), the
neighbor has bad news and ScrapSubtree 1s mvoked (step
222). If the cost to the neighbor 1s greater than the neighbor’s
current cost and there 1s more than one parent (steps 216 and
220), the current node 1s removed from the set of parents and
the neighbor 1s added to ParentsChanged at the appropnate
position (step 224). Steps 210-226 are then performed for
the next link.

Links which have gone away completely are next dealt
with 1 FIG. 7. The currentLLSP 1s scanned to look for all
neighbors that are included in current LSP but not in
newL.SP (step 250). This 1s necessary because an LSP will
explicitly report an 1increase 1n cost, but will not report a link
that 1s no longer 1n service (1.e. whose cost has eflectively
become 1nfinite). For each such entry found steps 252256
are performed, exactly as i1I explicit bad news had been
received. I the current node 1s the only parent, ScrapSubtree
1s 1nvoked for the neighbor (steps 252 and 254). If the
current node 1s not the only parent, the current node 1is
removed from the set of parents and the neighbor 1s added
to ParentsChanged at the appropriate position (steps 252 and
256). The node’s new LSP 1s made the current LSP by
setting currentLL.SP to newLLSP and setting newLLSP to null
(step 238). The current node 1s then added to Paths at step
260. The process returns to step 200 (FIG. 6) i1 there are any
nodes remaining in NewLSP (step 262).

If there are no nodes remaining 1n new LSP, Reattach-
Node 1s then invoked for every node 1n Orphans (step 264).
This may succeed 1n reattaching some, all, or none of the
nodes, depending on the other links that they have. Those
which are reattached are placed 1n Tent and nodes which
cannot be reattached are placed in Unreached (step 266).

The D1jkstra algorithm 1s then run for each node which 1s
now 1n Tent. The first node from Tent (i.e., one with lowest
cost) 1s selected (step 270) and steps 272278 are performed.
For each link 1n currentLLSP the cost to the neighbor via this
node 1s calculated (1.e., costToRoot plus the link cost) (step
272). 1T this cost 1s less than the neighbor’s current cost
(including the case where the neighbor 1s not yet reachable),
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the current node 1s set as the neighbor’s only parent, its
costToRoot 1s set, and it 1s added to Tent 1n the appropriate
position (steps 274 and 276). If this cost 1s equal to the
neighbor’s current cost, the current node 1s added to 1its set
of parents and the neighbor 1s added to ParentsChanged at
the appropriate position 11 not already 1n Tent (steps 274 and
2778). Steps 272280 are repeated for each remaining link 1n
the LSP.

The output adjacencies are then calculated for the node
(1.e., the union of the output adjacencies of all parents) and
trimmed 1if necessary according to maxPathSplits (step 300)
(FI1G. 8). The node 1s then added to Paths at step 282. If there
are still nodes in Tent, steps 270-282 are repeated (step 284).
The nodes whose parents have changed are next dealt with.
The first node from ParentsChanged 1s selected (step 290).
The new output adjacency 1s calculated and set for the node
(step 292). IT the resultmg set ol output adjacencies has
changed from 1ts previous value, then for each neighbor 1n
the LSP, 11 this node 1s a parent of the neighbor, the neighbor
1s added to ParentsChanged at the appropriate position (steps
294-296). The process returns to step 290 1f there are any
nodes left in ParentsChanged (step 298).

As can be observed from the foregoing, the method and
system of the present invention provide a reduction 1n the
cost of processing an update over conventional link state
protocol methods. For the conventional implementation of
the Dikstra algorithm, every node 1n the network has to be
examined for every change. With the present invention, the
number of nodes to be examined i1s proportional to the
network diameter (i.e., the log of the number of nodes) and
1s typically less than five on average. Even in the worst case
(e.g., change in state of a link directly attached to the node
under consideration) the computation required 1s a fraction
of the conventional implementation.

Although the present imvention has been described in
accordance with the embodiments shown, one of ordinary
skill 1n the art will readily recognize that there could be
variations made to the embodiments without departing from
the scope of the present invention. Accordingly, 1t 1s
intended that all matter contained in the above description
and shown 1n the accompanying drawings shall be inter-
preted as 1llustrative and not 1in a limiting sense.

What 1s claimed 1s:

1. A method for performing route calculations 1n a link
state routing protocol at a node within a computer network,
the method comprising:

recerving new route mformation at the node;

evaluating existing routes of the node before recalculating

and modifying routes to determine if said new route
information improves at least one of the existing routes
or at least one of the existing routes 1s made worse or
lost;

recalculating routes and modifying a routing table for the

node only when said new route information improves at
least one of the existing routes or at least one of the
existing routes 1s made worse or lost, wherein recalcu-
lating routes comprises modiltying information about
links within the network without examining each of the
nodes within the network; and

upon losing one of the existing routes:

initializing a best cost;

finding a neighbor node’s link mformation by travers-
ing a link state packet;

calculating a neighbor cost of reaching another node
via the neighbor node; and

setting the best cost to the neighbor cost if the neighbor
cost 1s less than the best cost:
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wherein only a parent node sending the new route infor-
mation 1s used in recalculating routes if the new route
information improves existing routes.

2. The method of claim 1 further comprising receiving a
new link state packet with information about the node’s path
to a root node and wherein the node’s route to the root node
1s 1improved and further comprising evaluating the node’s
neighbor nodes.

3. The method of claim 1 further comprising receiving a
new link state packet with information about the node’s path
to a root node and wherein the node’s route to the root node
has worsened and further comprising evaluating the node’s
path to the root node.

4. The method of claim 3 wherein nodes contained within
a subtree containing the node are scrapped and the routes to
all nodes 1n the subtree are re-evaluated.

5. The method of claim 1 wherein recalculating existing
routes comprises implementing equal-cost path splitting.

6. The method of claim 5 wherein the new route infor-
mation i1mproves existing routes and only a parent node
sending the new route mnformation 1s used 1n recalculating
routes.

7. A method for performing route calculations 1 a link
state routing protocol at a node within a computer network,
the method comprising:

receiving new route information at the node;

evaluating existing routes of the node belore recalculating

and modifying routes to determine 1f said new route
information improves at least one of the existing routes
or at least one of the existing routes 1s made worse or
lost;

recalculating routes and modifying a routing table for the

node only when said new route information improves at
least one of the existing routes or at least one of the
existing routes 1s made worse or lost, wherein recalcu-
lating routes comprises modilying nformation about
links within the network without examining each of the
nodes within the network; and

upon losing one of the existing routes:

initializing a best cost;

finding a neighbor node’s link mnformation by travers-
ing a link state packet;

calculating a neighbor cost of reaching another node
via the neighbor node; and

setting the best cost to the neighbor cost 11 the neighbor
cost 1s less than the best cost:

wherein a parent node sending the information 1s no

longer considered a parent node by said node 11 the new
route information worsens existing routes.

8. The method of claim 1 wherein the computer network
comprises greater than one hundred nodes.

9. The method of claim 1 wherein said node has lost its
path to a diflerent node within the computer network.

10. The method of claim 9 further comprising reattaching
the node at a location within a remaining portion of a
spanning tree.

11. The method of claim 1 further comprising recalculat-
ing routes to all other nodes 1n a subtree of which the node
1s a root node.

12. The method of claim 1 further comprising performing
an incremental route recalculation for all nodes within the
network that have received new link state information.

13. A computer program product for performing route
calculations 1n a link state routing protocol at a node within
a computer network, comprising;:

code that evaluates existing routes of the node before

recalculating and modifying routes to determine if said
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new route mformation improves at least one of the
existing routes or at least one of the existing routes 1s
made worse or lost;

code that recalculates routes and modifies a routing table

for said node only when said new route information
improves at least one of the existing routes or at least
one of the existing routes 1s made worse or lost,
wherein said code that recalculates routes comprises
code that modifies information about links within the
network without examining each of the nodes within
the network;

code that, upon losing one of the existing routes:

initializes a best cost;

finds a neighbor node’s link information by traversing,
a link state packet;

calculates a neighbor cost of reaching another node via
the neighbor node; and

sets the best cost to the neighbor cost i the neighbor
cost 1s less than the best cost; and

a computer-readable storage medium for storing the

codes;

wherein only a parent node sending the new route infor-

mation 1s used 1n recalculating routes if the new route
information improves existing routes.

14. The computer program product of claim 13 wherein
the computer-readable medium 1s selected from the group
consisting of CD-ROM, floppy disk, flash memory, system
memory, hard drive, and data signal embodied 1n a carrier
wave.

15. The computer program product of claim 13 further
comprising code that performs equal-cost path splitting.

16. A system for performing route calculations 1n a link
state routing protocol at a node within a computer network,
the system comprising a processor operable to evaluate
existing routes of the node before recalculating and modi-
tying routes to determine 1f said new route information
improves at least one of the existing routes or at least one of
the existing routes 1s made worse or lost, recalculate routes
and modily a routing table for said node only when said new
route information improves existing routes or existing routes
are made worse or lost, and upon losing one of the existing
routes 1mtializes a best cost, finds a neighbor node’s link
information by traversing a link state packet, calculates a
neighbor cost of reaching another node via the neighbor
node, and sets the best cost to the neighbor cost 1t the
neighbor cost 1s less than the best cost; wherein recalculating
routes comprises moditying information about links within
the network without examining each of the nodes within the
network and wherein only a parent node sending the new
route information 1s used 1n recalculating routes 1f the new
route information improves existing routes; and memory for
storing route information.

17. A system for performing route calculations 1n a link
state routing protocol at a node within a computer network,
comprising:

means for evaluating existing routes of the node belore

recalculating and modifying routes to determine 1t said
new route mformation improves at least one of the
existing routes or at least one of the existing routes 1s
made worse or lost;

means for recalculating routes and modilying a routing

table for said node only when said new route informa-
tion 1mproves existing routes or existing routes are
made worse or lost, wherein means for recalculating
routes comprises modilying information about links
within the network without examining each of the
nodes within the network;
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means for mitializing a best cost when one of the existing

routes 1s lost;

means for finding a neighbor node’s link information by

traversing a link state packet;

means for calculating a neighbor cost of reaching another

node via the neighbor node;

means for setting the best cost to the neighbor cost 1t the

neighbor cost 1s less than the best cost; and

memory for storing route information;

wherein only a parent node sending the new route infor-

mation 1s used 1n recalculating routes if the new route
information improves existing routes.

18. The system of claim 17 further comprising means for
performing equal-cost path splitting.

19. A method for performing route calculations 1n a link
state routing protocol at a root node within a computer
network, the method comprising:

receiving new route information at the root node;

sorting nodes with new route information into order of

COst;

evaluating changes 1n state;

evaluating routes before reattaching routes, 1f existing

routes are improved, lost, or made worse;

reattaching routes at lowest cost point 1n a spanning tree;

and

re-evaluating routes from reattached nodes; and

upon losing one of the existing routes:

initializing a best cost;

finding a neighbor node’s link mformation by travers-
ing a link state packet;

calculating a neighbor cost of reaching a node via the
neighbor node; and

setting the best cost to the neighbor cost 11 the neighbor
cost 1s less than the best cost:;

wherein only a parent node sending the new route infor-

mation 1s used in evaluating the routes 1f the existing
routes are improved.

20. The method of claim 19 further comprising splitting
traflic across more than one path 11 total cost 1s the same for
cach of the paths.
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21. The method of claim 20 wherein evaluating changes
in state comprises performing incremental route recalcula-
tion.

22. The method of claim 19 wherein sorting nodes com-
prises sorting nodes into order of cost from the root node.

23. The method of claim 19 further comprising leaving
routes unchanged 11 the new route information has no eflect
on existing routes.

24. The method of claim 19 wherein existing routes are
lost or made worse and further comprising re-evaluating a
subtree of the root node.

25. The method of claim 24 further comprising splitting,
paths among equal cost routes.

26. The method of claim 1 wherein each node within the
computer network 1s represented by a data structure com-
prising information about links to other nodes and cumula-
tive cost of all links traversed from a root to the node.

277. The method of claim 1 wherein recalculating routes

from the node comprises applying an incremental Dijkstra’s
algorithm to the node.

28. The method of claim 1 wherein said at least one of the
existing routes 1s made worse and further comprising recal-
culating routes to all nodes 1n a subtree of the node.

29. The method of claim 1 wherein recalculating routes
comprises recalculating routes at all nodes which have
received new link state information and processing said
nodes 1n increasing order of distance from a root node.

30. The method of claim 1 further comprising applying an
incremental Dijkstra’s algorithm to the root node only 11 said
new route information improves or worsens at least one of
the existing routes or at least one of the existing routes 1s
lost.

31. The method of claim 30 further comprising applying
equal-cost path splitting.
32. The method of claim 30 wherein the number of nodes

examined 1s proportional to the log of the number of nodes
within the network.
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