US007051339B2
12 United States Patent (10) Patent No.: US 7,051,339 B2
Deverill et al. 45) Date of Patent: May 23, 2006
(54) SYSTEM AND METHOD TO MEASURE 6,202,036 B1* 3/2001 Klein et al. 702/178
LATENCY OF TRANSACTION 6,223,276 B1* 4/2001 Leeetal. ..ocooeuen........ 712/207
INFORMATION FLLOWING THROUGH A 6,415,133 B1* 7/2002 Brede et al. 455/3.05
COMPUTER SYSTEM 6,457,152 B1* 9/2002 Paley et al. 714/738
6,487,675 Bl1* 11/2002 Sager et al. 713/501
| . . | 6,633,908 B1* 10/2003 Leymann et al. 709/224
(75) Inventors: Ian J. Deverill, Maidstone (GB); Safe 2002/0016843 Al* 2/2002 Schweitzer et al. 709/227

E. Hammad, London (GB); Alex D.
Hassan, Harpenden (GB); Warren P. OTHER PUBLICATIONS

Finnerty, Plamfield, NJ (US) Mark W. Johnson & Jason Crow, Measuring the Perfor-
(73) Assignee: Goldman, Sachs & Co., New York mance of ARM 3.0 for Java, article, Dec. 2001, Tivoli

Systems.
NY (US
(US) Mark W. Johnson, The Application Response Measurement

(*) Notice: Subject to any disclaimer, the term of this (ARM) API, Version 2, article, Dec. 1997, Tivol1 Systems.

patent 1s extended or adjusted under 35

* cited by examiner
U.S.C. 154(b) by 587 days.

Primary Examiner—IJohn Follansbee

(21) Appl. No.: 09/896,854 Assistant Examiner—Haresh Patel

(74) Attorney, Agent, or Firm—IJohn F. Letchiord; Archer &
(22) Filed: Jun. 29, 2001 Greiner, P.C.
(65) Prior Publication Data (57) ABSTRACT

US 2003/0014464 Al Jan. 16, 2003

An application program interface (API) for use in monitor-

(51) Int. C. ing a computer application executed on a computer system.

5 I(}’OS6FC$1’/00 (2003i(;1/1)328' 200/223- 700/207 The API includes software code added to the computer
(52) T R e e e 3 " application for assigning a single general reference to char-
(38) Field of Classification Search 7097328, acteristic transactional information associated with a trans-

709/201, 200-203, 217-227, 610; 714/38,
714/4°7; 719/328, 310, 313-318; 705/63,
705/75, 11, 22; 718/100, 101; 902/22; 700/32,
700/91; 702/182; 703/22; 710/15-18; 715/736;

717/127, 128
See application file for complete search history.

action to be executed by the computer application. The API
further includes an agent for marking the time at which the
soltware code 1s executed and tagging that time with the
characteristic transactional information as the characteristic
transactional information 1s being currently processed by the
computer application. The API and 1ts method of operation
_ provide precise measurement of the latency of information
(56) References Cited flowing through the computer system while being uncom-

U S PATENT DOCUMENTS plicated 1n design and implementation, minimally invasive,
and highly scalable.

6,041,352 A * 3/2000 Burdick et al. 709/224

6,108,700 A * 82000 Maccabee et al. 709/224

6,144,961 A * 11/2000 de la Salle 707/10 4 Claims, 7 Drawing Sheets
606a

600 6187
)\ -
i

A

\

e —@J
AG%%:OR I
g [

DATABASL I m]
a 614
616

DO omr o OO

6038

610

U.S. Patent May 23, 2006 Sheet 1 of 7 US 7,051,339 B2

CLIENT A

g SERVER B

100
o N/
PRIOR ART
106 CORRELATION
APPLICATION
104

ARM AGENT

102 - ARM AP

start T1 start T2 start T3
(Corr C1) (Corr C2)
Corr C | 12, Corr C2
| CLIENT A —| SERVER B - SERVER C

FlG. 2

PRIOR ART

U.S. Patent May 23, 2006 Sheet 2 of 7 US 7,051,339 B2

SERVER A

0RO

SERVER B 'SERVER E

(3

FIG. 3

300
O\ 302 304

Process 1 Process Z

| (Front Office) (Back Office)
REF#1 ' - REF#1 |
| REFH2 . | REF#2

G 4

U.S. Patent May 23, 2006 Sheet 3 of 7 US 7,051,339 B2

!H‘" E-‘E
-
@
|'

LO)

S,

(1
ON
53

US 7,051,339 B2

Sheet 4 of 7

May 23, 2006

U.S. Patent

oW} swo9

9 O

UOT}OeSUCL] uonoesuel |
puy dpeL] YoJe PRI} IAIDIY 11e)g
SWOg SWot SWOg swQZ swQ |
pus ¢ 3d 807 [34 307] 1.1e3S
00+

ouin
19A0 JUIUUNI

woryeoryddy

US 7,051,339 B2

Sheet 5 of 7

May 23, 2006

U.S. Patent

(ss:uduyy AAAA wusw pp) suny

00’84 1002 qo4 80 0821 1002 924 80 00:/} 1002 984 80 .
. .ﬂ) . _ Tml |
__ l L _ | RN | ___ | | | b o aInuKiN -poiiad joi4
_ i I BEREREER VA IO RO AR LA v2:81 L00Z 8 Q9 :9iep pug
i L (R I IR R pe:8L 1002 | G2 elep Lelg
H * A | __ | | _ :__ _ vq |] | | __ oi.m..l._ —— poyad sutt].
i i V LR PO Ao : >
Litkd 8 INNE L iy R 002 1
NI Hi | _ |) bl I)
INIOJDOTPA _5_ _ I 5_ | 3
MBIA BUI | | | ~ MBIA BUINIOA ()
_ - DOE 3
| | 3 MBIA duny (s
| <
“ El ——Aejdsiqg
| 2
e e S T 00t
|
|
__ !
o) ~ A - — 00S

paxoeig (O sur O
(L pead) 1334 Bwely
anjeredwon (& Jeg @®

———adA | Heyn

v

10344 ‘aliesd] |

NOUNOT :gouejsu)

LANXHYIN ‘8dA}
AR aBrY Ele) B EEEE MOIPIOM
7777777777 2 ABry __ NIOD 507 | 37dnvs :uonedyddy

INoj07) uogouny JuIng Hon) n

— spelag uonesyddy

=E]

u_mﬂ M3 9]

9205

YOS

805

c0S

U.S. Patent May 23, 2006 Sheet 6 of 7 US 7,051,339 B2

% -
2 | = % 0
| 3 ® <
N\
(" 2 i = w
Q &
S (U

N\
§ -

OO a9 3w +=—0

4 -—

US 7,051,339 B2

Sheet 7 of 7

May 23, 2006

U.S. Patent

SNVI0LSn0 6 DI
osL~/
(3doyn3)
97/, 1AIMS
veLT™y SNOILYWYIINOD
(In) JONVAVIT) Adval
97/ 15340 Javyl Q7/.]
NILSAS |
e - > SININAY |
HSVD |
ATOHNOO0LS |
WL INISSII0Yd i it
2L 0V 1 CCL
— _ ¥OOLS
aavh Y =
1/ Ald3y 8IL 0z,
NOLLND3IX3.
oprs | NI / TR S
gnis [3dodna
__..l.._l.—l llllll -
o1 [LINAANVES - NFLI __-01L 80L - $0L
— VORINY ~IEER oL
R . 7 MECILISE SNy
. [_o1L AVMILYD SINIMD |
NOGNO
ep]/,

INONT |~ -
VISV INIDIY N
o0z

O1L 20L

Us 7,051,339 B2

1

SYSTEM AND METHOD TO MEASURLE
LATENCY OF TRANSACTION

INFORMATION FLOWING THROUGH A
COMPUTER SYSTEM

FIELD OF THE INVENTION

The present invention relates in general to systems and
methods for monitoring the performance of computer sys-
tems and, 1n particular, to computer system performance
monitoring using transaction latency data.

BACKGROUND OF THE INVENTION

Measurement and management of computer systems per-
formance 1s becoming increasingly important in businesses
and 1ndustries that rely heavily on iformation technology
(IT). The financial services industry, for example, 1s com-
prised ol investment houses, banks, stock exchanges, bro-
kers, and others who conduct countless computerized trans-
actions on a daily basis and whose capital investments 1n
technology may be tremendous. It 1s imperative, therefore,
that participants 1n this or other information-dependent
industries possess not only high-powered computer systems
capable of handling high volumes of computerized transac-
tions, but also that those systems function as nearly as
possible to peak efliciency.

The concept of latency 1s often used a gauge of computer
system and network performance. In a computer system or
network, latency i1s the total time between two measurable
points and 1s often used to mean any delay that increases real
or perceived response time. This time may include the time
it takes a message to be sent between processes or business
oflices over the network. It may also include the time spent
in writing details or data to a disk or database. Other
contributors to latency include processing/calculation
delays, mismatches 1n data speed between the microproces-
sor and mput/output (I/0) devices and inadequate data
builer, propagation (the time it takes for a packet to travel
between one place and another); transmission medium (opti-
cal fiber, wireless, or some other medium); packet size;
router and other processing (each gateway node takes time
to examine and possibly change the header in a packet); and
other computer and storage delays (e.g., within local area
networks (LANS) or similar networks at each end of the
journey, a packet may be subject to storage and hard disk
access delays at intermediate devices such as switch and
bridge).

A currently available IT performance optimization stan-
dard 1s application response measurement (ARM). ARM 1s
a specification that details application response measure-
ment and 1s provided as part of a software developer’s kit
that 1s available from various vendors including the Com-
puter Measurement Group (CMG) headquartered in Turn-
ersville, N.J. CMG and i1ts members are concerned with
measurement and management ol computer systems, includ-
ing performance evaluation of existing computer systems to
maximize their performance (e.g., response time, through-
put, etc.) and capacity management when enhancements to
existing systems are planned and when new systems are
being designed. The ARM specification 1s supported by
commercial software available from Hewlett Packard Co. of

10

15

20

25

30

35

40

45

50

55

60

65

2

Palo Alto, Calif., Tivoli Systems, Inc. of Austin, Tex. and
BMC Software, Inc. of Houston, Tex. The ARM program
includes an application program interface (API) that can
capture system measurement data. However, at each transier
of the measurement data from one component in a computer
system to the next, a umque API-generated handle (or
“correlator” or “1dentifier”) 1s created and transierred to the
next system component. Hence, 11 processing time or other
transactional data i1s to be passed from a first server to a
second server 1 a computer system, then a first unique
handle 1s generated by the ARM API that 1s correlated or
assoclated with the transactional data, and the first handle
and 1ts associated transactional data are then passed from the
first server to the second server. Likewise, if processing time
or other transactional data 1s to be passed from the second
server to a third server 1n the computer system, then a second
unmique handle 1s generated by the ARM API that i1s corre-
lated or associated with the transactional data, and the
second handle and 1ts associated transactional data are then
passed from the second server to the third server. In large
systems that process a complex transaction comprised of
many subtransactions, it becomes readily apparent that
many unique API-generated handles must be created and
passed through the system. Creating and passing multiple
API-generated handles throughout a computer system
requires that that the ARM API include a correlation appli-
cation or program for tracking and correlating the processing
time and other transactional data with the various handles as
they through the computer system. Such an arrangement
complicates the ARM API architecture and adds additional
processing and storage burdens and other operational 1net-
ficiencies to the computer system whose latency character-
1stics the ARM API 1s intended to monitor. Moreover, the
ARM API can only provide for the measurement of nested
transactions that are client-server in nature, 1.e., with a
parent-child relationship.

Alternative systems and methods for monitoring com-
puter system latency are disclosed in U.S. Pat. Nos. 6,041,
352; 6,144,961 and 6,108,700.

U.S. Pat. No. 6,041,352 teaches a response time measur-
ing system similar to conventional ARM. Conventional
ARM determines system response time at the point of origin
ol a transaction request, 1.¢., when a transaction starts and
when 1t completes from the perspective of the client. The
system disclosed 1n U.S. Pat. No. 6,041,352 differs form
conventional ARM 1n that 1t determines system response
time at any point in the outgoing and incoming transaction
path loop.

U.S. Pat. No. 6,144,961 describes a transaction response
time measuring system that uses sampling of Open Systems
Interconnection (OSI) data packets. In particular, when a
user sends a transaction across a network, such as a data
request for data stored on a server, data packets containing
session layer data (OSI level 5 or greater) will travel across
the network between the client and the server. When the
transaction 1s complete and there are no other transactions
currently pending between the client and the server, none of
the data packets traveling between the client and the server
will contain session layer data. In other words, packets
containing session layer data only travel between the client
and the server while the transaction between the client and

Us 7,051,339 B2

3
the server 1s pending. U.S. Pat. No. 6,144,961 uses this fact

to calculate the transaction response time in a non-intrusive
manner.

To determine transaction response times, U.S. Pat. No.
6,144,961 uses a routine which analyzes captured data
packets. The system captures data packets and then deter-
mines when the transaction i1n question begins. This 1s
accomplished by detecting the initial presence of a data

packet containing session layer data. The session layer data
1s detected by conventionally using the OSI model’s descrip-
tion of the sequence of data information within each packet.
Next, the routine detects an absence of session layer data
contained within successive captured data packets for a
predetermined amount of time. The routine then defines the

end of the transaction as the point in time at which the
predetermined amount of time began. The amount of time
for processing the transaction i1s then measured as the

difference between the beginning and the end of the trans-
action. Similar to the invention set forth in U.S. Pat. No.
6,041,352 and conventional ARM systems, the system and

method provided 1n U.S. Pat. No. 6,144,961 oflers a means
to evaluate the response time associated with a particular

user transaction request. Accordingly, like those technolo-
gies, 1t does not permit performance evaluation of a com-
puter system comprised of a plurality of cooperating busi-
ness units and/or processes.

U.S. Pat. No. 6,108,700 discloses a system for measuring
the response times of the various stages of computer appli-
cations. The invention described therein proposes the cre-

L1l

ation ol a transaction definition language called the ET.
(End-to-End) Transaction Definition Language that specifies
how to construct identifiable transactions from events and

links. In an 1llustrated example, the E'TE Transaction Defi-
nition Language provided mn U.S. Pat. No. 6,108,700
requires the creation of twenty-one (21) lines of software
code merely to define something as relatively simple as a
Web commerce transaction. Merely contemplating all of the
possible events and transactions that might be involved in a
complex business transaction, particularly one whose execu-
tion involves the coordination of several business entities
and computer systems, 1s 1tself a daunting task. Coditying

these items complicates the task. That 1s, individually defin-
ing all of these events and transactions 1n software code 1n
order to produce a complete set of transaction generation
rules amounts to a potentially vast amount of preliminary

preparation activity that must be performed before the
monitoring system may be placed mto operation.

An advantage exists, therefore, for a system and method
of measuring the precise latency of mformation tlowing
through computer systems comprising multiple business
units and/or or processes and regardless of system topology,
¢.g., nested client-server, distributed, or combinations
thereol. The technique should be uncomplicated in design
and 1implementation, minimally invasive, and highly scal-
able 1n order to accommodate potentially large volumes and
frequencies of information flow through vast computer
systems and networks.

10

15

20

25

30

35

40

45

50

55

60

65

4
SUMMARY OF THE INVENTION

The present mnvention provides a system for and method
of measuring the precise latency of mmformation flowing
through computer systems and regardless of system topol-
ogy, e.g., nested client-server, distributed, or a combinations
thereof. As used 1n connection with the present invention, a
“computer system” may include a single computer (includ-
ing, without limitation, a mini-computer on up through a
mainirame) as well the multiple processes running thereon,
a plurality of computers interconnected 1n the form of a local
areca network (LAN), terconnected regional business
oflices, a wide area network (WAN), an international net-
work of offices or the Internet. Similarly, a “transaction
event” may include a request, a response, a directive not
requiring a response, a complete or partially complete sub-
transaction, an automatically or manually triggered com-
puter function, a database store or retrieve function or any
other time-monitorable function or calculation that may be
performed by a computer system.

The metrics measured by the present invention include the
processing time for a given transaction event within each
computing process, the time spent by the transaction
between each computing process, and the time taken by the
transaction to pass through the entire computer system. An
exemplary, although not limitative, application of the
present mvention would mvolve precisely measuring the
latency of business information flowing through a trading
system comprising multiple processes running on multiple
computers whereby trade data 1s passed from one process to
the next with each new trade. Accordingly, the relevant
metrics for that particular application of the invention would
be the processing time for a given trade within each process,
the time spent by the trade between each process, and the
time taken by the trade to pass through any part of the system
or the enfire system.

The present invention involves the association of mea-
surement or timing data with iherent transactional infor-
mation that i1s ordinarily passed from one component of a
computer system to the next in the course of executing a
transaction by a computer application. The raw measure-
ment or timing data 1s then used to calculate latency data for
some or all aspects of a particular transaction. Significantly,
the mvention performs these operations based solely on
references drawn only from the business or other transac-
tional data associated with the transaction.

According to the invention, computer systems may be
instrumented using an uncomplicated and minimally 1nva-
sive API that allows the execution time of every task 1n an
application to be measured and transactional information to
be tagged to the measurement or timing data. Preferably, the
measurement data 1s also associated with related measure-
ment data from other components or systems of the same
business entity 1in order to give precise latency data and
statistics for transactions that mvolve more then one seg-
ment of a business’ operations. By way of example, a trade
reference or other inherent conventional business informa-
tion normally associated with an electronic business trans-
action may be used as the transaction identifier throughout
the latency measurement process. Then, individual tasks
required for processing the task can be tagged with timing

Us 7,051,339 B2

S

data whereby the data can be processed and evaluated to
produce desired latency and/or summary data. For instance,
the average, maximum or minimum time taken to process
commodities or securities trades from front-office to back-

oflice within a brokerage or investment house may be
calculated with precision 1n order to obtain meaningiul

information concerning the efliciency of the business enti-
ty’s computerized transaction system.

With the present invention, no special languages, software
code and rules must be created to predefine and pre-classity
events and transactions. Furthermore, no transaction handle
or correlator needs to be created for a transaction and passed
from one component of a computer system to the next since
the business information normally associated with the trans-
action 1s 1tself sutlicient to identify and track the transaction.

Since no use 1s made of API-generated handles, the present

system easier to deploy in modular systems than conven-
tional ARM systems.

Moreover, multiple computer systems or components that
may be required to execute an entire transaction need not be
confined to being client-server in nature since the API
according to the invention can be mapped to other topolo-
gies, €.g., a distributed system. The technique 1s simple 1n
design and implementation, minimally invasive, and highly
scalable 1n order to accommodate potentially large volumes
and frequencies of information flow through vast computer
systems and networks.

Among 1ts advantages, the present system eliminates
guess-work from computer system capacity estimates,
enables ready assessment of the performance impact of new
computer application releases and migrations, identifies
application performance trends, works with either intra-
system or 1ter-system IT system optimization tools, assists
in researching user performance complaints and generates
system management reports.

Other details, objects and advantages of the present inven-
tion will become apparent as the following description of the
presently preferred embodiments and presently preferred
methods of practicing the mvention proceeds.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will become more readily apparent from
the following description of preferred embodiments shown,
by way of example only, in the accompanying drawings
wherein:

FIG. 1 1s a schematic representation of a client-server
computer system topology whose transactional latency may
be measured by conventional IT performance optimization
tools;

FIG. 2 1s a schematic representation of how API-gener-
ated handles are created, correlated and tracked by conven-
tional IT performance optimization tools measuring the
transactional latency of the client-server computer system
topology shown 1n FIG. 1;

FIG. 3 1s a schematic representation of a distributed
computer system topology whose latency may be measured
by the computer system performance monitoring system of
the present invention;

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 4 1s a schematic view of a simplified computer
system whose latency may be measured using the computer
system performance monitoring system of the present mnven-

tion;
FIG. § symbolically represents the manner by which

business or other transactional information flows through
computer systems comprising multiple components;

FIG. 6 1s a view of a user-definable time frame for which
the computer system performance monitoring system of the
present invention may conduct timing measurements and
latency calculations;

FIG. 7 1s a window depicting a graphical user interface
according to the present invention charting computer system
latency data over a selected time frame;

FIG. 8 1s a schematic view of the architecture and
technology of the computer system performance monitoring
system of the present invention; and

FIG. 9 1s a schematic view of a globally dispersed
computer system whose performance may be monitored
using the computer system performance monitoring system
of the present 1nvention.

DETAILED DESCRIPTION OF TH.
INVENTION

(Ll

Referring to FIG. 1, there 1s shown a client-server com-
puter system topology whose transactional latency may be
measured by presently available I'T performance optimiza-
tion tools. In FIG. 1, Points 1 to 14 represent the tlow of
business or other transactional information through multiple
transactions on multiple computers respectively named CLI-
ENT A, SERVER B, SERVER C and SERVER D. The
client-server topology represented in FIG. 1 1s a nested
parent-child type of topology wherein completed transaction
1/14 1s comprised of a number of smaller nested transactions
or subtransactions. Transaction 1/14 typically includes an
initial transactional request made by user 100 (step 1) to a
suitable computer input/output (I/O) device which culmi-
nates in the provision of the requested information from the
I/0O device to the user (step 14). Transaction 1/14 represents
a transaction that 1s the parent of transaction 2/13, 1.¢., 2/13
1s nested within 1/14. Transaction 2/13, 1n turn, 1s the parent
of transaction 3/12, and so on. The latency of transaction
1/14 may be measured using a conventional IT performance
optimization tool such as the ARM SDK described above.

FIG. 2 depicts the manner by which a conventional ARM
program tracks flow of a simple completed transaction
through CLIENT A, SERVER B and SERVER C of FIG. 1
to provide a breakdown of times across the nested transac-
tions, 1.e., the transaction time for 1/14 and the transaction
time for 2/13 as part of 1/14, and so on. It will be understood
that the principles reflected 1n FIG. 2 can be extended to an
application, transaction and computer system of consider-
ably greater complexity. A characteristic feature of conven-
tional ARM programs 1s that an API-generated handle or
“correlator” 1s created for each transaction occurring in a
computer application. And, as discussed below, the handle
changes once 1t 1s passed from system component to the
next.

When a user makes a transactional request from an
application being monitored by the ARM program, CLIENT

Us 7,051,339 B2

7

A begins a first transaction T1 which mitiates a START call
to ARM API 102. An ARM START call typically identifies
the application being monitored, the transaction and (option-
ally) the user, as well as the status of the transaction when
completed. In the illustrated example, ARM API 102 also
assigns the correlator or handle Corr C1 to the first trans-
action T1 and returns the handle to CLIENT A. Concur-
rently, through an ARM agent 104, the handle Corr C1
associated with the first transaction T1 1s passed to a
correlation application 106. In addition to communicating
with the correlation application 106, ARM agent 104 mea-
sures and monitors the application transactions and may
make the information available to IT management/optimi-
zation tools such as those oflered by Cyrano SA of New-

buryport, Mass.

Having received handle Corr C1 from ARM API 102 for
the first transaction T1, CLIENT A sends a request (T1) to
SERVER B, and includes handle Corr C1 1n the request.
SERVER B then starts a second transaction T2, passing Corr
C1 as the parent handle or identifier for the second trans-
action to ARM API 102. At the same time, SERVER B
requests and receives from ARM API 102 a correlator, Corr
C2, which 1s assigned to the second transaction. Simulta-
neously, the handle Corr C2 associated with the second
transaction 12 1s passed to correlation application 106

through ARM agent 104. SERVER B then sends a request
(12) to SERVER C, and includes Corr C2 1n the request.
SERVER C starts transaction T3, passing Corr C2 as the
parent handle or i1dentifier for the third transaction to ARM
API 102. In more complex applications and systems this
cycle 1s repeated until the overall application transaction 1s
completed. And, with each succeeding transaction request 1n
the application or computer system, a new and diflerent
API-generated handle 1s created and passed with the request.

The correlation application 106 collects all the data about
these transactions, and puts together the total picture, know-
ing that T1 1s the parent of T2 (via C1), and T2 1s the parent
of T3 (via C2), and so forth. However, the creation, corre-
lation and storage of potentially vast numbers of API-
generated transaction handles needlessly complicates the
transaction tracking process and consumes processing and
storage resources that could be more productively allocated,
¢.g., to reducing the response time of the application being
monitored.

Referring to FIG. 3, there 1s shown a distributed computer
system 200, containing no nested transactions, whose
latency may be measured by the computer system perfor-
mance monitoring system of the present invention. Servers
A through E represent a distributed computer system
wherein business or other transactional information flows
from point 0 to point 9 via either Server C or Server D.
Unlike conventional ARM programs, the present computer
system performance monitoring system 1s unrestricted 1n 1ts
ability to measure the time taken for transactional informa-
tion to travel from point 0 to point 9 via Server C or Server
D.

The present system measures the timing and calculates the
precise latency of transactional information flowing through
any computer system comprising multiple components, e.g.,
system 200 (or a nested or a combined nested and distributed
topology system), by tagging or linking measurement data

10

15

20

25

30

35

40

45

50

55

60

65

8

directly to the business or other transactional information
being passed through the computer system. That 1s, unlike
existing computer latency measuring systems, the present
system employs no changing API-generated handles that are
passed from server to server during operation of a computer
application whose latency characteristics are being mea-
sured.

FIG. 4 1s a schematic view of a simplified computer
system whose latency may be measured using the computer
system performance monitoring system of the present mnven-
tion. The example shown 1n FIG. 4 represents a computer
system that performs securities trade processing. However,
its operational principles are applicable to all types of
computer requests and transactions and may be extrapolated
to model highly complex computer systems. The computer
system, represented generally by reference numeral 300,
comprises two components 302 and 304 whereby each
component 1s a process (arbitrarily named front-oflice and
back-oflice) through which two securities trades may be
processed. Whether the trades are processed simultaneously
or consecutively makes no difference to the outcome.

The API according to the present invention 1s placed
strategically 1n a computer application to mark the beginning
and end of processing (and any other significant events) at
desired computer system components or processes, all of
which are selected at the discretion of the user of the API.
More specifically, API software code 1s added to the com-
puter application which, when executed, assigns a single
general reference to characteristic transactional information
associated with a transaction event to be executed by the
computer application. Additionally, the API includes an
agent that marks the time at which the API software code 1s
executed and tags that time with the business or other
transactional information being currently processed by the
computer application. Unlike conventional ARM APIs, the
present API does not create or pass any data from one system
component to the next (e.g., a timestamp or a unique
API-generated handle, correlator or other identifier) beyond
that of the business information ordinarily passed in pro-
cessing a transaction. That 1s, the present invention recog-
nizes that characteristic transactional information inherently
associated with a given transaction, 1 and of 1itself, consti-
tutes a readily 1dentifiable electronic fingerprint or reference
that 1s suflicient to enable identification and tracking of
events processed by a computer application in executing the
transaction as 1t tlows through a computer system. For
instance, characteristic business or other transactional infor-
mation associated with a securities trade may include, inter
alia, a Trade Identifier (or trade ID or trade reference, the
identity of the party requesting the trade, the type of secu-
rities being traded, the number of securities being traded, the
price of the securities, the date of the trade, whether the trade
1s a “buy” or a “sell”, as well other trade-specific informa-
tion. Thus, the aggregation of this characteristic transac-
tional information represents a unique identifier that itself
may be directly tracked throughout processing by a com-
puter system, thereby eliminating the need for a new and
different API-generated handle to be created, correlated and
tracked at each transition from one computer system com-
ponent to the next and for each computer application trans-
action conducted in executing the transaction.

Us 7,051,339 B2

9

Referring again to FIG. 4, using the API of the present
invention, the following metrics are measured by the API
agent: the time spent by each trade within Process 1; the time
spent by each trade within Process 2; and the time spent by
cach trade between Processes 1 and 2. Fach of two trans-
action processes (or computer components) has been instru-
mented with the API such that the beginning and end of
processing will be logged and associated with the relevant
trade reference, 1.e., REF#1 and REF#2. The data produced
by the API executed within each of the two processes 302,
304 may be summarized as follows (times are given as

hh:mm:ss.SSS):

Process 1 (Front Office)
Business Tag: REF#1

Start Time: 09:49:51.143
End Time: 09:50:07.564
Business Tag: REF#2

Start Time: 09:50:15.387
End Time: 09:50:36.945

Process 2 (Back Ofilice)

Business Tag: REF#1
Start Time: 09:50:25.676

End Time: 09:50:51.392
Business Tag: REF#2

Start Time: 09:50:59.190
End Time: 09:51:16.775

Latency Data Calculation:
According to the present invention, the data produced by
the API can now be used to calculate the required metrics:

a) The time spent by each trade within Process 1 may be
calculated by a component that subtracts the start time
from the end time for each trade 1n Process 1:

Process 1:

Trade REF #1: time = REF #] end time — REF #1 start time

= (09:50:07.564 — (9:49:51.143
= 16.421 seconds

Trade REF #2: time = REF #2 end time — REF #2 start time

= (09:50:36.945 — (09:50:15.387
= 21.558 seconds

b) Time spent by each trade within Process 2 may be
calculated by a component that subtracts the start time
from the end time for each trade in Process 2:

Process 2:

Trade REF #1: time = REF #] end time — REF #1 start time

= (09:50:51.392 — 09:50:25.676
= 25.716 seconds

Trade REF #2: time = REF #2 end time — REF #2 start time

= (00:51:16.775 - 09:50:59.190
= 17.585 seconds

5

10

15

20

25

30

35

40

45

50

55

60

65

10

¢) The time spent by each trade between Process 1 and
Process 2 may be calculated by a component that
correlates the available data by associating like busi-
ness tags and subtracts the end time 1n Process 1 from
the start time 1 Process 2:

Trade REF #1: time = process 2 start time — process 1 end time

= (09:50:25.676 —09:50:07.564
= 18.112 seconds

Trade REF #2: time = process 2 start time — process 1 end time

= (09:50:59.190 — 09:50:36.945
= 22.245 seconds

In this simple example, general references REF#1 and
REF#2 are used as tags to link the business or other
transactional mformation they represent with measurement
data created in both the front office and back oflice systems
ol a securities brokerage or the like. In a large-scale com-
puter system, the software code of the API according to the
invention might also assign component-specific references
to the general transactional reference in order to track the
same packet of characteristic transactional information as it
passes Irom component to component. In the foregoing
example, therefore, the same trade, e.g., Trade REF#1,
might be referred to by reference REF#1/FO in the front
oflice process 302 and REF#1/BO 1n the back oflice process
304. The API according to the present invention will corre-
late reference REF#1/FO with REF#1/BO as referring to the
same trade without generating and tracking an entirely new
handle or correlator at each component.

FIG. 5 symbolically represents the manner by which
business or other transactional information tlows through
computer systems comprising multiple components.

Consider the general example of a distributed computer
system comprising a sequence ol n number of independent
computer system components (C,, C,, . . ., C __,, C)
connected via a network whereby the entire system pro-
cesses m number of transaction events (T,, T,, ..., T __;,
T) as business or other transactional information pertaining
to each transaction event (1',, T',, . . ., T' _,, T') flows
through the system. Transaction events are processed by
cach component in turn as business or other transactional
information pertaining to each transaction event 1s passed
from one component to the next.

Transaction event T, 1s first processed by component C,
and business or other transactional information T', 1s passed
to component C,; T, 1s then processed by C, and T', 1s
passed to C, and so forth until finally T, 1s processed by C .
This process 1s repeated for T,, T and so on until finally T
1s processed by the system. Whether transaction events T, to
T are processed simultaneously or consecutively does not
allect the outcome of the ensuing calculations.

The API according to the present mmvention i1s placed
strategically within each component such that it records the
start times (U ~,, U, ..., U~ _,, U,)and end times (V -,
Vs ..., Vo 1, V) tor the processing of each transaction
event within that component and tags those times with the
business information pertaining to the transaction.

Us 7,051,339 B2

11

A representation of the data recorded as each transaction
event T, to T, 1s processed by each component C, to C, as
business or other transactional information T', to T' 1s
passed from one component to the next 1s as follows:
T'l(UCl)ﬂ T'l(VCl):

T'l(UCQ)? T'I(VCE)ﬂ

2

T'l(}‘z:(}?)? T'I(VCH)
T'Z(:“:FCI):J T'Z(VCl):
T'Z(‘“‘CZ)!J T'Z(VCE):J

1'5(Ug)s Ta(Ve,)

T'm(IJCl)! T'm(VC‘l)!
T'm(IJCE)! T'm(VC.'Z)!

T'm([JCH)! T'm(VCH)

More generally, the data recorded at any given transaction
event T that 1s processed by any given component C,, 1s:
TTI(IJCy)! T'x(va)

Note that the above 1s purely a representation of the data
recorded. The language and format of the data and the
medium by which 1t 1s recorded 1s 1rrelevant to the outcome

of the ensuing calculations.

Latency Data Calculations:
The association of like business or other transactional

information in the data recorded by the API may now be
used to calculate the following metrics:

a) The time spent by each component processing each
transaction may be calculated by subtracting the start time
from the end time for each transaction event within each
component. For example, the processing time of transaction
event T, by component C, may be calculated by sieving the
recorded data for tag T', and associating the relevant times
found as follows:

TIl (VCI)_TII(UCI)

More generally, the processing time of transaction
event T, by component C, 1s:

Tlx (VCy)_T Ix (UCy)

b) The time spent by business or other transactional
information between one component and another may be
calculated by subtracting the end time for a transaction event
being processed by a given component from the start time
for a related transaction event 1n the other component. For
example, the time spent by business information or other
transactional T', between components C, and C, may be
calculated by sieving the recorded data for tag T', and
associating the relevant times found as follows:

TI1 (UC‘TE)_TII(VCI)

More generally, the time spent by business information
1", between C,, and C, 1s:

T (Ue)-T, (V)

Aggregation Calculations:
The results of the above calculations may be used to

produce statistics about a computer system, for example, the
mean transaction time in each component, the mean latency
of business imnformation between components and maxima
and minima amongst other statistics. To take a general
example of latency between components, one might calcu-

10

15

20

25

30

35

40

45

50

55

60

65

12

late the average latency of all business or transactional

information passed between components C, and C,, as fol-
lows:

(T{(Uey) = T{(Ve)+ (T(Ucy)) =T (Ve) + ...+ (T, (Ugy) —
Tr;!—l (Ver)) + (T.P;‘I(UC}’) - T;;;(VCI))

m

One might argue that if a statistical analysis of business
information tlow 1s all that 1s required (a potentially com-
mon scenario), a more appropriate technique might be to
take an intermittent “sample” of a system and its current
flows, 1.e., intermittently record and tag transaction start and
end times with business information, the rationale being a
reduction 1n data and CPU requirement. However, the results
would be inherently prone to error. Extreme times that occur
between samples may fail to be recorded thus giving rise to
incorrect maxima and minima. In addition, consider the
general example of time spent by business mformation T
between C, and C:

T II(UCE) _TII(VC_}E)

Given that data 1s sampled from two independent com-
ponents, namely C and C_, 1t cannot be guaranteed that for
transaction T, both T',(U.,) and 1" (V,) will have been
sampled and, accordingly, latency calculation i1s prevented
(particularly as no assumption can be made about the order
and concurrency of the processing of transactions, and
particularly as the general example 1s extended to more
complex topologies).

Various ARM-compliant systems gather the statistics
about tlows through a component of a computer system form
intermittent samples and aggregate these results directly.
The problem with this approach 1s that while 1t provides
good statistics about the time transaction time taken within
the individual modules or components 1t offers no 1indication
of the latency between these components.

A

Most business tlows 1n an organization or enterprise are
interlinked. A downstream system may receive messages
from many diflerent locations. It 1s not possible to, for
instance, just look at every 10th message and perform
latency calculations for that message. This 1s so because it 1s
nearly impossibly to reliably link the statistics gathered for
that message 1n a first component with those gathered for the
10” message in a second component because the. For
example, the 10” message in the first component may
correspond to the 287, 41% or any other message in the
second component.

The present invention enables precise measurements to be
calculated for every piece of business or other transactional
information flowing through a computer system. By com-
parison, the metrics gathered according to the present inven-
tion may be processed and analyzed to produce a statistical
view ol a system at a level of accuracy unattainable by
monitoring systems that employ sample-based monitoring.
Among other information, the present system may be used
to determine any of number of precise time-based param-
cters of interest.

FIG. 6 1s a view of a representative, although not limaita-
tive, user-definable time frame 400 for which the computer

Us 7,051,339 B2

13

system performance monitoring system of the present inven-
tion may conduct timing measurements and latency data
calculations. Time frame 400 1s a logical unit of time and
signifies the time required for an application to run from one
specified point to another. Although 1llustrated within the
context ol a computer transaction in the form of a securities
trade, frame 400 may be logically configured to instrument
any computer application that conducts any business or
other transaction. As well as having a start and end, frame
400 may also contain zero or more 1dentified log points (e.g.,
Log Pt 1, Log Pt 2) that subdivide the frame into logical
segments (e.g., Receive Trade and Match Trade). Further,
using the API according to the invention, all points on frame
400 may be established at a user’s discretion and may span
multiple applications.

The instant API 1s a set of function calls that closely
parallel the concept of the frame shown 1n FIG. 6 and may
be placed strategically within application code. The API may
be written 1n C, C++, Java or any presently available or
hereinafter developed programming language that 1s com-
patible with the application to be monitored.

In operation, a computer system passes data from one
application to the next and, hence, from one frame to the
next. The function calls of the present API allow the passing,
ol a transaction tag as a parameter (e.g., a trade reference
number) which enables the transaction to be tracked frame
by frame through multiple systems.

From an operational perspective, the present application
monitoring system may be easily activated and deactivated
as required. In the event of failure, the API has been
designed and written so that there 1s no risk of the API taking
down the component 1n which 1t 1s installed. If the API 1s
unable to gather or record statistics, 1t automatically disables
itsell. For example, 11 statistics are being recorded to disk
and the write returns a disk error, the API 1s disabled.
However, the component will continue to process but no
statistics will be recorded. Moreover, APl function calls
have a very low demand impact on the on the underlying
application and typically add less than 0.5% overhead to a
running application.

The momtoring system of the present invention can
capture the following metrics:

processing rate through a computer system component;

frame failure rate, 1.e., detection of whether a frame was
started but not completed (reasons for failure may include a
database commit failure and subsequent rollback or a trade
marked for processing at a later time);

time spent 1n different modules of a component;

trends for different categories of transaction, e.g.,
Market=Paris versus Market=Milan:

times across multiple systems, e.g., booking to reporting;

patterns, e.g., daily peak saw-tooth, 1dle times enabling
the user to 1dentity good times for batch;

hitting capacity, e.g., trend to converge on known maxi-
mum test volume; and

correlation with machine statistics, e.g., CPU, memory,
network trailic and I/O.

FIG. 7 1s a window depicting a graphical user interface
(GUI) 500 according to the present invention charting
computer system latency over a selected time frame. Region
502 of GUI 500 displays details of the application being

10

15

20

25

30

35

40

45

50

55

60

65

14

monitored such as, for example, the application name,
workilow (e.g., equity trades), type (e.g., by “market™),
instance (e.g., NASDAQ), and frame. Other application
details may be supported at the discretion of the user.

With GUI 500, a user may select at region 504 a “time
view” or a “volume view” of the chosen time frame (the
illustrated example depicts a time view plot of latency data
within the chosen time frame). In a time view mode, GUI
500 permits a user to select at region 506 a time period for
the frame under scrutiny, including the frame start and end
dates, as well as the interval or plot periods within the frame.
In the 1illustrated example, the selected plot period 1s one
minute, although greater or lesser time plot intervals may be
selected 11 desired or necessary. Region 508 allows a user to
select a chart type for display, e.g., “bar” or “line” and,
optionally, “comparative” or “stacked”. In the illustrated
example, a comparative bar chart 1s chosen and depicts a
comparison, i bar format, of the average latencies of the
frame at a selected log point within the frame (darker bars)
and at the end of the frame (lighter bars).

In the particularly described example, all the statistical
data 1s stored within a UDB database, although any database
suitable for the purposes of the present mvention would be
acceptable. As noted, this data can be looked at using GUI
500. In addition, printed reports may be generated from the
data. Other users may also load the data up into spreadsheets
to analyze 1t. In the same way, data may be collected from
processes by writing the data to file. Equally, the data could
be sent to a socket instead of a file.

FIG. 8 1s a schematic view of the architecture and
technology of the computer system performance monitoring
system of the present invention, which 1s identified generally
by reference numeral 600. System 600 monitors one or more
applications of production systems 602a, 6025 and 602¢ that
run on computer system servers 604a, 60045 and 604c. The
lightweight API according to the present invention assigns a
single general reference (and any component-specific refer-
ences) to characteristic transactional information associated
with a transaction request being executed by the computer
applications. Additionally, the API agent logs transactional
processing timing data to local file systems 606a, 6065, and
606c.

System 600 includes a collector 608 that reads file-based
timing data logged at local file systems 606a, 6065, and 606¢
and loads it into a monitoring system database 610 via Java
Database Connectivity (JDBC), Open Database Connectiv-
ity (ODBC) or other API specification compatible with the
database. Although not limited thereto, because of 1ts expan-
sive functionalities and system compatibility, a presently
preferred monitoring system database suitable for use in
system 600 1s the DB2 Universal Database (UDB) available
from International Business Machines Corporation (IBM) of
Armonk, N.Y. The IBM DB2 UDB runs on both IBM and
non-IBM hardware supporting multiple operating systems
including: Windows, AIX, Linux, Sun’s Solaris Operating
Environment, OS/2, HP-UX, NUMA-Q, 0O5/390, and
AS/400. Monitoring system database 610 1s the central
storage area for raw and aggregated application timing data.

System 600 further includes an aggregator 612 that pro-
cesses raw timing data produced by the API agent that i1s
stored 1 monitoring system database 610 to calculate

Us 7,051,339 B2

15

desired latency data and create summary data for a range of
time periods (minute, hour, etc.). This processed information
1s likewise stored 1n momitoring system database 610 for
retrieval by a user. In this connection, a GUI such as GUI
500 of FIG. 7 may be accessed by a user via a wired or
wireless web access device 614 such as a personal computer,
a laptop computer, a personal digital assistant or a cellular
telephone. The GUI may be a Java or other application that
may be run as a standalone application or as an applet within
the context of a web browser. Using the GUI, the user make
requests for information from monitoring system database
610 through a web server 616. Web server 616 1s preferably
a java-based remote method invocation (RMI) server which
ecnables 1nteraction between objects located on different
computers 1n a distributed network and which has the ability
to pass objects along with a request. Web server 616 may
serve web pages and the atorementioned applet to the web
access device 614 and a user may output desired information
generated by the GUI to a printer or other output device 618.

The system further desirably includes an administration
GUI to simplity setting up of workflows. Optionally, the
system would desirably include modeling capabilities such
as, for example, using the captured data and machine
statistics to plot volume trends and to predict when existing
system capacity will be exceeded and 1n which
component(s).

FIG. 9 1s a schematic view of a globally-dispersed com-
puter system 700 whose performance may be monitored
using the computer system performance monitoring system
of the present invention. Each of the boxes imn FIG. 9
represents a component system of computer system 700.
Computer system 700 1s made up of a number of component
systems which may or may not be similar to that shown 1n
FIG. 2. Each component system of computer system 700 1s
made up of one or more processes. In addition, each com-
ponent system will have 1ts own database and will use some
transport mechanism to send the business or other transac-
tional data to the next system 1in the flow.

As idicated previously, the present invention 1s con-
cerned with the time it takes transaction ‘events’ to occur 1n
a computer system. Computer system 700, for example, 1s
illustrative of merely one of many complex computer sys-
tems whose performance may be monitored by the system
and method according to the mvention. In particular, com-
puter system 700 1s a globally distributed computer system
a bank, brokerage, investment house or other similar entity
which runs an integrated computer application for enabling,
placement, processing and settlement of equities and other
securities trades.

Computer system 700 comprises a gateway 702 through
which clients 704 may initiate transactions such as trade
orders or the like. In placing a trade order or simply
requesting a current price for equity stocks or other securi-
ties, system 700 may provide a client with the desired price
via a Pricing Engine 706. If the price 1s satistactory to the
client, then the client might place a trade order for the
securities through a trade router 708 which, 1n turn, routes
the request to the appropniate regional oflice 710 (e.g., Asia,
America, Europe) of the imnvestment entity. From the appro-
priate regional oflice 710, a Send Order request 1s distributed
to the appropriate one or more exchanges 714a—714f capable

10

15

20

25

30

35

40

45

50

55

60

65

16

of fulfilling the trade order. Each of the relevant ones of

exchanges 714a—714f responds with 1ts ability to execute the
trade order via an Execution Reply 716 which 1s returned to
the appropniate regional office 710. At this juncture, the
regional oflice may convey the ability of the trade order to
be fulfilled back to the client 704 and await confirmation
from the client that the order 1s to be fulfilled. Alternatively,
the regional oflice may execute the trade order according to
previously agreed upon mstructions established by the cli-
ent.

Once authorization to execute the trade order has been
given, the trade 1s processed at Trade Processing stage 718
which communicates a Stock Record System 720 which
records the existence and pertinent details of the transaction.
Additionally, Trade Processing stage 718 communicates
with a cash Payments System 722 to secure payment for the
transaction and seeks clearance for settlement of the trade
through Trade Clearance stage 724. Depending on the geo-
graphic location of the regional office 710 through which the
trade 1s executed, the trade clearance stage may imvolve
obtaining clearance by one or more settlement systems 726
(e.g., CREST for settlement of UK, Irish and international
securities and Society for Worldwide Interbank Financial
Telecommunication “SWIFT™ for settlement of European
and 1nternational securities). With the appropriate clearances
obtained, Trade Processing stage 718 communicates the
cleared trades to Trade Confirmation stage 728 which, 1n
turn, notifies investment Custodians 730 and the client 704
(through Gateway 702).

In analysing computer system 700 1t may be important to
know, among other information, how long 1t takes an trade
order from a client 704 to be sent to the market. In FIG. 9,
this would be the time from the Gateway 702 to Send Order
712 to markets 714a—714f. With the present invention, this
and any other desired business flow 1n computer system 700
may be broken down in such a way that one can observe how
long it takes within each process en-route and the time taken
between each process.

Recall that 1n conventional ARM-type computer system
monitoring, an API-generated handle 1s created that 1s then
used to reference each logging action. This handle 1s passed
downstream to another process that supplies the first handle
to the ARM agent and 1s then given a replacement handle
that establishes the link between the first process and the
second. This link 1s continued through any linked processes.

In the present invention, there 1s no handle-generating
API agent or correlation application for correlating the
API-generated handles with the transaction being processed
This 1s because the only data passed between processes 1s
business or other transactional data and the only data sup-
plied to the instant collection agent 1s that data. This data,
¢.g. a Trade Identifier, 1s used to link the processes together
throughout computer system 700.

The advantage of this method 1s that there 1s no require-
ment for the processes to pass a handle between them. The
following hypothetical 1s illustrative. Assume, for instance,
that there are four processes mvolved 1n a particular trans-
actional tlow. If, as in the present example, each of these
processes uses the same reference to 1identify a trade being
processed, the present invention will enable monitoring of
the tlow 1f only process 1 and process 4 were logged. Since

Us 7,051,339 B2

17

the trade being monitored shares the same reference
throughout the business flow one could determine the start
time for process 1 and the end time for process 4. To perform
corresponding monitoring of the same trade with the ARM
standard, an external handle would need to be made avail-
able and this would entail the data links between process 1
and 2, 2 and 3, and 3 and 4 being changed at each link.

It 1s not uncommon for one or more of the processes in the
flow to be a package supplied by an external vendor. Under
those circumstances, statistics about the time taken within
the external package cannot be gathered. However, using the
present computer system monitoring system, the presence of
an externally controlled package would not negate the
ability to consider the total time taken within the flow or
within the individual components not under third party
control. An example of this provided in FIG. 9 wherein
orders are sent to a number of exchanges. A Trade Identifier
cannot be sent out from Send Order 712 to the exchanges
714. However, this does not impact the ability of the present
system to link Send Order 712 and Execution Reply 716
together by the business or other transactional data associ-
ated with the trade. In this way, the present system can
calculate how long the trade took being sent to and sent back
from the exchanges. This 1s extremely 1mportant 1n under-
standing where the latency within the flow 1s occurring. If,
for example, excessive latency was manifested between
Send Order 712 and Execution Reply 716, it might indicate
that the enterprise needs to upgrade links, etc.

A Tfurther advantage of the present invention 1s that
business or other transactional data collected from a process
may be used within a number of transactional flows under
scrutiny. Referring again to FIG. 9, consider the tflow path
that routes data from Gateway 702, Trade Router 708, the
European regional oflice 710, Send Order 712, European
regional oflice 710, Trade Router 708 to Gateway 702. This
flow would equate to the total round trip time for a trade
event from and to the client 704. Likewise, the data collected
from Gateway 702, Trade Router 708, European regional
oflice 710, Send Order 712 to European regional office 710
1s also used 1n the flow that feeds through to Trade Process-
ing 718 and beyond that to Stock Record system 720, Cash
Payments System 722, Trade Confirmations 728 and so on.
This 1s of particular importance since many complex and
geographically-dispersed computer systems are not nor-
mally limited to 1solated tlows. Most computer systems and
components receive events passed from a number of other
systems and, similarly, equally pass data to a number of
downstream systems. Associating all of these events with
common transactional data greatly simplifies tracking of the
transaction within the computer system and evaluation of
computer system’s performance.

Although the mvention has been described 1n detail for
the purpose of illustration, it 1s to be understood that such

10

15

20

25

30

35

40

45

50

55

18

detail 1s solely for that purpose and that variations can be
made therein by those skilled 1n the art without departing
from the spirit and scope of the invention as claimed herein.

What 1s claimed 1s:

1. A computer system performance monitoring system
having a computer readable medium comprising:

an application program interface for monitoring a com-

puter application executed on computer system, said
application program interface comprising:

software code added to said computer application for

assigning, without predefining events describing poten-
tial stages of a transaction to be executed by said
computer application, a single general reference to
characteristic transactional information associated with
a transaction to be executed by said computer applica-
tion 1n order to i1dentily transaction events performed
by said computer application;

an agent for marking a time at which said software code

1s executed and tagging that time with said character-
istic transactional information as said characteristic
transactional information 1s being currently processed
by the computer application;

an aggregator for calculating computer application

latency data from raw timing data produced by said
agent;

a database for storing said raw computer application

timing data and said latency data.

2. The computer system performance monitoring system
of claim 1 further comprising a graphical user interface for
cnabling a user to retrieve said latency data from said
database.

3. The computer system performance monitoring system
of claim 2 wherein said graphical user interface includes
means for charting latency of a computer system over a
selected time frame.

4. The computer system performance monitoring system
of claam 1 wherein said aggregator calculates latency of
transactional iformation passed between components of
said computer system according to the formula:

(T{(Ucy) = T{(Ve) + (T3 (Ugy) =Ty (Ve) + ... + (T, (Ugy) -
T;;;—l (VCI)) + (T;;;(UC}?) — T_:;:(VCI))

i

where:

m=an unspecified number of transaction events, T,
T, ...,T, _,T ;

T, T, ...,T _,, T =transactional information per-
taining to transaction events, T, T,, . .., T, _,, T

U, =start time for a transaction event at one component
of said computer system; and

V ~.=end time for a transaction event at another compo-
nent of said computer system.

7112

	Front Page
	Drawings
	Specification
	Claims

