United States Patent

US007043715B1

(10) Patent No.: US 7,043,715 B1
45) Date of Patent: May 9, 2006

(12)
Bauer et al.
(54) METHOD AND APPARATUS FOR
CUSTOMIZING SOFTWARE
(75) Inventors: Andreas L. Bauer, Acton, MA (US);
Thomas M. Price, Shrewsbury, MA
(US); Munish T. Desai, Shrewsbury,
MA (US); Anthony M. Smith,
Harvard, MA (US)
(73) Assignee: EMC Corporation, Hopkinton, MA
(US)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 339 days.
(21) Appl. No.: 09/587,783
(22) Filed: Jun. 6, 2000
(51) Int. CL
GO6l’ 9/44 (2006.01)
(52) US.ClL ..., 717/107;,°717/163
(58) Field of Classification Search 717/100,
717/102, 103, 106, 107-109, 163
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
5,600,778 A * 2/1997 Swanson et al. 345/762
5,754,858 A * 5/1998 Broman et al. 717/111
5,797,015 A * 81998 Daniels et al. 717/163
5,903,859 A * 5/1999 Stone et al. 704/8
5,995,757 A * 11/1999 Amberg et al. 717/175
6,020,886 A * 2/2000 Jacober et al. 345/709
6,252,589 B1* 6/2001 Rettiget al. 345/703
6,263,346 B1* 7/2001 Rodnquez 707/201
6,298,481 B1* 10/2001 Kosaka et al. 717/110
6,330,007 B1* 12/2001 Isreal et al. 345/762
6,384,923 B1* 5/2002 Laheyccooevvininnnin. 358/1.13
6,490,719 B1* 12/2002 Thomasc.oen.n..... 717/107
6,490,723 B1* 12/2002 Bearden et al. 717/174
6,671,800 B1* 12/2003 Mclnally et al. 713/1
2002/0062405 Al1* 5/2002 Ayvagarlc.coeeenenes 709/331

STANDARD GUI IMPLEMENTATION:

GRAPHICAL USER INTERFACE {GUI)
301~

GRAPHICAL RESOURCES: STRINGS,
302~ BITMAPS, DIALOG CONTROLS

GUI IMPLEMENTATION WITH RESOURCE MANAGER:

301 GRAPHICAL USER INTERFACE {GUY)

303 ~_] RESCURCE MANAGER

304 ~_4 STANDARD CEM
GRAFHICAL GRAPHICAL
RESOURCES RESQURCES

OTHER PUBLICATTIONS

Fowles, Ken, “International Mobilization for Windows 95,
Jul. 1996, retrieved from http://www.microsolt.com/glo-
baldev/gbl-gen/mtw93d.asp on Dec. 12, 2002.*

Kano, Nadine, “Truelyupe Open Extends Support for
International Typography”, Nov./Dec. 1995, MICROSOFT
Developer Network News, hittp://www.microsolit.com/
globaldev/gbl-gen/codesets/trutype.asp on Dec. 12, 2002.*
Riskin, Cindy, “Diversity in the Workplace: Developing for
Both Windows 95 and Windows NT Version 4.0, Jul. 1996
retriecved from http://www.microsoit.com/globaldev/gbi-
gen/inssync.asp, on Dec. 12, 2002.*

(Continued)

Primary Examiner—We1 Y. Zhen
Assistant Examiner—Mary Steelman

(74) Attorney, Agent, or Firm—Krishnendu Gupta; Robert
Kevin Perkins

(57) ABSTRACT

There 1s disclosed improved apparatus and methodology for
customizing software. With respect to GUI resources such as
splash-screens, a dynamic link library containing a custom-
er’s customized resources and a default link library contain-
ing the manufacturer’s default resources are prepared at
design time. Source code 1s normally not included in the
customized dynamic link library. At run time, the customer
resources are automatically included by operation of a
resource manager algorithm and appear on the computer
terminal screen unless they were not made available initially
in which case the equivalent default resource 1s shown on the
screen. If there are any bugs which are induced by the
customer’s specifications to be corrected, or if the custom-
1zed dynamic link library 1s changed for some other reason,
the source code does not have to be rewritten as 1t 1s not
included 1n the dynamic link library.

39 Claims, 7 Drawing Sheets

USER INTERFACE CODE AND
RESOURCES ARE CONNECTED

> AT COMPILE/LINK TIME. THERE
IS ONLY ONE SET OF RESOURCES.

~, USER INTERFACE CODE AND
RESOURCES ARE CONNECTED

AT RUN-TIME. THERE ARE TWOQ

> SETS OF RESOURCES (STANDARD
AND QEM) AND THE RESCURCE
MANAGER CHOOSES THE

~ CORRECT ONE.

US 7,043,715 B1
Page 2

OTHER PUBLICATIONS

“Building for International”, Apr. 1996, retrieved from
http://www.microsoit.com/globaldev/gbi-gen/
build.asp#binary on Dec. 12, 2002 .*

Barrett, Mike, “HOWTO: Use the Preinstallation Kit for

Large Deployment”, Created Jun. 23, 1998, http://support.
microsoit.com/default.aspx?scid=kb%Ben-us%3B24,

retrieved on Apr. 8, 2003.%

Posey, Brien M., “Upgrading to MS Windows 98 The Easy
Way”, retrieved from www.microsoit.com, on Apr. 8, 2003.*
“Deploying Windows 98 using Batch 98 and Infinst.exe”, p.
1-19, retrieved from www.microsoit.com, on Apr. 8, 2003.%*
“Deploying Windows 98 Using Batch 98 and Infinst.exe”,

retrieved from http://support.microsoft.com/default.aspx?
sc1d=kb%3Ben-us%3B241286, on Apr. 8, 2003.*

* cited by examiner

US 7,043,715 B1

Sheet 1 of 7

May 9, 2006

U.S. Patent

NOEEETZEE

INJWIOVYNVYIN SS3004d INJW3OVYNVIA AHOW3IN

___ e SYIAC
NILSAS ONILVHEId0

ASV3134-10NA0x4d
SAILMLN

HVANI VO »

INERLA 133HSAVIYLS -
SOILSONDVIQ d05534004d JHOM
dN MOV » 301440

d3INJWOVYHdd
S100L W3LSAS -
g3 1IdANQD »
d011dd
S100.1

JHYML40S SNOILVOl'lddV

dld -

ONIGVHS d31NIdd »
S34NL0Id ONIHVYHS 3114 -
VI3IWNYO VLIDIa - MMM
JISNIA » SMAN -
OddIA VAT -

vIAIWIL AN SNOLLVOINNWNQD

e

U.S. Patent May 9, 2006 Sheet 2 of 7 US 7,043.715 B1

% S

X aV

>

O

D

—

0

LL
L @\
-1 i
— 0
2 o

LL)

>

Y

LLJ 2

0 O

< O
- N S
S Q N

U.S. Patent May 9, 2006 Sheet 3 of 7 US 7,043.715 B1

STANDARD GUI IMPLEMENTATION:

GRAPHICAL USER INTERFACE (GUI)
GRAPHICAL RESOURCES: STRINGS,
BITMAPS, DIALOG CONTROLS

USER INTERFACE CODE AND
RESOURCES ARE CONNECTED

AT COMPILE/LINK TIME. THERE

IS ONLY ONE SET OF RESOURCES.

301

302

GUI IMPLEMENTATION WITH RESOURCE MANAGER:

USER INTERFACE CODE AND
1 GRAPHICAL USER INTERFACE (GUI) RESOURCES ARE CONNEG TED
30 AT RUN-TIME. THERE ARE TWO
SETS OF RESOURCES (STANDARD
ND OEM) AND THE RESO
303 RESOURCE MANAGER SIAII?JEGEI% CE%OSES THE IREE

CORRECT ONE.
304 STANDARD OEM 305
GRAPHICAL GRAPHICAL
RESOURCES RESOURCES

FIG. 3

US 7,043,715 B1

Sheet 4 of 7

May 9, 2006

U.S. Patent

907

v Ol

ANOQ

110 33dN053s NOILVYOl'lddV
N3O JHL WOY4 IN3IT0 JHL OL

39dN0534d JHL 139 FodN0S3d JHL NdNldy

s

110 S324N0S3H NOILY Ol 1ddV
30410534 JHL NI I TYNIDIHO 3HL WOS
1VHL H1IM J0dN0Sdd ON 304N0S3d JHL 139
V 34dH1
ol

S0v

?
110
J04N0SJY
vV dAVH IM
Od

SJA ON

c0v

a1 304N0STY S.1I A8
3DHNOSIY HO4 SHSY
NOILYDI1ddY LN3ID 07

14004

A7

US 7,043,715 B1

G i
<L AX N0, =— G L0047 O4,, -G
HADVYNVYIN NJO dO4d NOD) = JHAHdSIAVN HO4d NOD| = ¢
| - § TOHINQOD X049 1103 = ¢
- ¢ «JdAl, < ¢
<JIDOVNVWN W3O, = | «JHIHASIAVN,, - |
I~ TIAQ'NIO 11 HDONIAVN
1= 01S 005
S)
D
o
et
79
\& 4%
m 140}®
3
=
s
-
= ZAX JNFO, JdAL 004v O dAdALl
LS AR
¢0§
gRe d39DVNVIN (N3O, £0GC ‘ JHIHASIAVYN
10G

U.S. Patent

US 7,043,715 B1

Sheet 6 of 7

May 9, 2006

U.S. Patent

9 Dld

! () xobeuepsoaInosayTARNAOCILIES(: t I9brUurHOOINOSAYTACND = IbNosydx IobrUPWOOINOSaYTAPND

*I9beuvUWl 20INOSSI SY3 SZTTRTITUTSJ//

***S20IN0SaI Y IS //

!(NIFTUDS HSYTIAS 9dI)obevwrlzsn <- I1bwosud(dvWILIH) = dewitgy JYWIICH

* I8beurw soxnosax ay3z woxi dewlTtq © yos3ad //

!(ITLIL NOILYDITddY XJAN SAI)buTtiision <«<— abposyd = sweNAeTdsTgso HBUTIISD

*I5beurwl 2oINOSaX dY3 woxI butals e yoisg //

: () T9beuesOINOSOYTARNAOILISS(: : I9DbRPUBHIOINOSSYTARND = IDWOSYdy ISheURRNSDINOS3YTARND

" I9beuruw 9oINOSSI BYF SZTIRTIITUI //

LU I8DbRUBRNSOINOSOYTARCN, OPNIOUTH

709

019

609

£09

809

¢09
£09

109

909

G09

US 7,043,715 B1

Sheet 7 of 7

May 9, 2006

U.S. Patent

47

27

0L

604

L Old

(MV937LIL IHL

_ OL ILIL IHL
J18YINVA LYHL J19VINVA LYHL 80L J118M) T18VINYA LYHL

45N MOHINOS 35N MOH3INOS

45N MOHIWOS

J18VIdVA ~ F1GVIEVA ONIFLS F1aVIHVA ONIYLS
NV Ol L1NS3d VOl 11INS3d v Ol1 11NS3s
SHIVVNYIN 304N0S3Y S.H3OVNVYIN 30HN0S3Y L0. SHJVVNVIA JOdN0S3d

JHL NOISSY 4HL NDISSY JH1 NOISSY

(¥ 'O14) (¥ "O14) (¥ 'Ol3)
AHLINO9O1V WHLIHODTY 90/ NHLHODTY
HIOVYNYIW 30HNO0STY HIAOYNYW 3OHNOSIY HIOVYNYIA 3DHNOSIY

BN STOINA (95 = @1 DSY) (€21 = Q1 95Y)
o 907vIQ ¥ OLN) T
3 dYNLIE 139 SINOILYOddY 139
JOINOSTY YN~ =— — — — — — JOUNOSIM dYNLIg ~————————— 30¥NOSTH ONIMLS

P0.

£0.

¢0.

104

Uus 7,043,715 Bl

1

METHOD AND APPARATUS FOR
CUSTOMIZING SOFTWARE

CROSS REFERENCE TO RELATED
APPLICATIONS

None.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to the field of utility
soltware, and more particularly relates within that field to
improved product release software which, at least, prepares
customer-soitware to be automatically customizable by the
customer at runtime.

2. Description of Prior Art

Before discussing prior art to the present invention, to
place 1t 1n context refer to FIG. 1. There 1s depicted a
software “field” showing three basic divisions of software:
(1) Firmware or BIOS (Basic Input/Output System); (2)
Operating System soltware; and (3) Applications software.
The relationship of these various software categories to each
other 1s generally suggested by their respective juxtaposi-
tions 1n the diagram. The firmware (BIOS) software 1s
needed to get a computer system “booted-up” or turned on.
The operating system runs on top of the BIOS and 1s needed
to bring that computer system to “life”, to enable it to run or
operate—kind of the lifeblood of the computer system. The
application software runs on the operating system software,
and directs that computer system in a particular task of
interest. A detailed discussion of each of the entries on the
software field 1s not undertaken herein as each entry 1s
self-explanatory. This software field 1s not complete and
other soitware entries could have been made, known by
names such as: daemons, processes, threads, API, sockets,
algorithms, data structures, etc. Each of these other software
names has special meaning in the software arts. Software
depicted 1n FIG. 1, this other software, and yet other
software not mentioned can all have a role to play 1n
producing and controlling an operational computer by func-
tionally-interconnecting with each other and with the com-
puter system’s firmware and hardware in a concerted effort
to manage or control overall computer system operation in
a manner to provide the result desired by the computer
system human user. The present invention relates to a
category of applications software known as “utilities” which
1s shown 1n FIG. 1, and relates to a particular type of utility
software known as product release software—software
which aids 1n readying or producing other software for
consumer or customer usage on or within the customer’s
computer system.

Although the categories of application software are shown
in the field as being 1solated from each other for purposes of
clarity of presentation, that 1s not necessarily the case. For
example, the product release soiftware within the utilities
category 1s shown separated from the other categories of
applications soltware, but it relates closely to the Tools
category and could have been shown within or connected to
that category under the more generic heading of a tool used
to manage memory or storage such as disk arrays.

As 1s understood by those familiar with the computer arts,
a human language such as English 1s used by programmers
or soltware developers to create “files” and put commands
and code 1n those files. These source code files are compiled
by a compiler program into binary language understandable
by the computer. There may be many source code files and

10

15

20

25

30

35

40

45

50

55

60

65

2

cach needs to be compiled. The compiled source code 1is
called an object file. In order to construct a program one
needs to combine or link all of the object files 1into a single
file called the executable or binary file by way of a linker
program. Not all of the object files contained in the execut-
able or binary file are intended to be executed, although such
non-executable files can remain within the binary file. Alter-
natively, some of the object files which were not intended to
be executed can be combined by the linker into a different
file such as a library file.

With any discussion focused primarily on computer pro-
gramming and software, one could lose sight of ultimate
computer system operation: regardless of size or complexity
of the computer system or computer system network, includ-
ing multiple layers of software, mn every system electrons
ultimately tlow over conductive paths and through electrical
nodes 1n a manner such that for every digital subsystem the
nodes are either at a high voltage (high) or low voltage (low)
at any given clock cycle (snapshot in time), and there could
be multiple clocks. It 1s the controlling of each of these
nodes or circuit-component-junctions, (e.g.: junctions
between 1ndividual resistors and capacitors, junctions
between individual transistors’ emitters, bases or collectors
and other active or passive circuitry, etc.), which may
number possibly 1n the billions or even trillions per com-
puter system when considering the huge number of inte-
grated circuits that can be employed, to be either high or low
at any specific point 1n time, and the controlling of how each
one of these nodes changes from high to low and vice versa,
which 1s the job of the various pieces of software on the
computer system working in concert with each other. This
concerted effort produces the desired result for the human
computer user.

The prior art to the present invention includes utility
soltware apparatus and methodology which human software
developers use at “design-time”—at the time that source
code 1s being written—to customize application software.
(Software developers typically consider the development
cycle to be divided into various “times™ such as design time
when the source code 1s written, code implementation time
when at least compiling and linking are performed, kit time
when the customer’s kit 1s prepared, ship time when the kat
and related software are shipped, and run time when the kit
and related software are run normally at the customer’s site.)
This prior art utility software becomes an integral part of the
application source code software and of 1ts compiled binary
intended for delivery to such customer-user. As an example
of an application of this prior art utility software, consider
the scenario where a computer company employs a team of
soltware developers (“team” 1s intended to mean more than
one person and can include people from the same depart-
ment or from various departments within a single company
or multiple companies) to develop graphical user interface
(GUI) software to run on its own computer systems which
it markets. Certain OEM (original equipment manufacturer)
customers purchase those systems from the computer com-
pany but prefer to incorporate their own GUI nomenclature,
(1.e. logo, splash-screen, etc.), so that when an OEM’S end
user customer runs a system purchased from that OEM the
GUI displays only that OEM’s nomenclature and not any of
the original computer company’s nomenclature.

Prior art software employed in the GUI context includes
usage ol certain resource file(s) within the source code
application software that define all visual elements or
resources. (On a computer screen, for example, the “dialog
box” 1s a resource, the “title bar” contained within the dialog
box 1s a resource, etc.) In this prior art approach, resources

Uus 7,043,715 Bl

3

can be changed, but only directly by developers at “design
time” when the developers are constructing the software.
Resources will be changed, for example, when a different
visual look-and-feel 1s required for a diflerent customer user.
(In a specific example, a computer system and software
provider would normally have its own logo or “splash-
screen” as a visual resource that ships with the software, but
an OEM customer purchasing such soiftware and system
would normally want to substitute its own OEM logo or
splash-screen.) Because the prior art utility product release
soltware was integrated 1nto the source code of the appli-
cation software to be shipped to the customer, this entailed
rewriting vast portions of the entire application software
source code, not only the resource files, each time a new
customer wanted 1ts own new computer screen 1mage or
cach time an old customer wanted an update or revision to
its old computer screen 1image. For example, in the prior art,
the team of developers had to perform five separate steps to
accomplish customization, namely: (1) write source code

and 1imbed 1nto this code the customization requested by the
OEM/user/customer; (2) compile the source code to obtain
binary files (as discussed); (3) link the files using a linker
program (as discussed); (4) repeat steps 1, 2, 3 for every
module needed; and (35) prepare the customer’s kit installing,
the customized software onto a CD (compact disk). If any
changes were required, all steps had to be performed,
starting with rewriting the source code which 1s the most
expensive step and a major challenge.

Other prior art challenges of a similar nature appear in the
“Internationalization” arena. There are requirements for
software (computer code) written 1n one human language,
say English using the “Visual C++” computer language, to
be translated into many foreign languages and/or foreign
alphabets, such as, for example, Farci, Hebrew, Arabic,
Greek, Russian, Japanese, Chinese and others, at least at the
GUI level. In other words, English-language messages and
icons on a computer screen may not normally be understood
and therefore not normally be useful in a particular foreign
country such as Turkey where Farci 1s spoken and 1t would
therefore be very useful for a computer user/customer in
Turkey to have such GUI 1cons and other GUI resources
presented 1n Farci. In the prior art, these foreign-language
GUI resources can be changed but, again, only directly by
the developers 1n the source code at design time which
presents the challenges and problems noted above.

Moreover, 1f a soltware bug was somehow 1ntroduced 1nto
the software development process at design time from a
particular customer’s particular specifications for 1ts particu-
lar computer screen 1mage (whether such specifications are
resource-related or language-related or otherwise) but not
detected until later, perhaps not until that software was
shipped and run at that customer’s site, then, 1n the mean-
time, such a bug could also infect other related software
being customized for other customers. Resource files, for
example, containing software retlecting customer specifica-
tions are intertwined with the source code and are not
separately extractable and repairable. Thus, the only fix
available would then be to rewrite entire portions of the
source code for each and every infected customer to undo
the bug. This prior art procedure for preparing application
software for customer usage and for fixing bugs in such
soltware was and 1s a large problem for software developers.
As noted above, this prior art problem 1s particularly acute
when there are a large number of different customer-users
who each need to get theiwr application software fixed
because a particular bug 1s common to all customers’

10

15

20

25

30

35

40

45

50

55

60

65

4

application software. In such a case, each users’ software
has to be individually rewritten which 1s a major headache.

In short, prior art disadvantages and problems arising
from the intimate relationship between application software
and these resources are derived from the following com-
plexities: (1) when resources are changed, the complete
application software has to be rebuilt and relinked; (2)
resource changes may introduce bugs to the overall appli-
cation software; and, (3) there 1s a considerable management
ellort required 11 several different resource files and appli-
cation binaries with different built-in resources have to be
maintained. What was badly needed was a solution to avoid
this waste of effort, time and money caused by the necessity
of rewriting source code and handling the complete appli-
cation when bugs or like problems arise. The present inven-
tion provides such a welcome solution, to be described
hereinbelow.

SUMMARY OF THE INVENTION

The present invention relates to an improved method
and/or apparatus for customizing application software
intended for a particular customer or user, such customer
application soiftware referred to hereinaiter as “CAS”. More
specifically it relates to software developers packaging nto
such particular customer’s CAS kit, at the end of the
soltware development cycle and prior to software-shipment,
customization-software capable of being run at “run time”
when that customer 1nstalls and first runs the CAS that was
developed and shipped to such customer.

In a first aspect of the present mnvention a default binary
or executable file, which 1n a particular embodiment utilizes
a dynamic link hibrary (DLL) dynamically linked to the
CAS, 1s established and contains a certain number of default
resources. A customized dynamic link library dynamically
linked to the CAS 1s also established and contains another
number of customized resources (less than or equal to the
number of default resources). The customized DLL need not
have any source code 1n it. A resource manager 1s provided
which the customer can employ at runtime to mitially access
the customized dynamic link library to obtain all desired
customized resources and detect unavailability of any of the
desired resources. Upon detection of unavailability of any
resource the accessing of the customized dynamic link
library 1s stopped and the accessing of the binary file or
default dynamic link library is 1nitiated to obtain the func-
tional equivalent of that unavailable resource whereupon the
accessing of the binary file or default dynamic link library 1s
halted and the accessing of the customized dynamic link
library 1s restarted. This continues until all desired custom-
1zed resources that are available 1n the customized dynamic
link library are obtained.

In another particular embodiment of the present mmven-
tion, the customized dynamic link library and the default
dynamic link library contain GUI resources, such as, for
example: a dialog box, an 1con such as a splash-screen 1con;
a bitmap, a string, etc.

In a further feature of the present invention, the custom-
1zed dynamic link library does not contain any source code
and contains only a collection of resources potentially
desired by a particular user of the application software.

In another aspect of the present invention, an improved
product-release methodology 1s provided for use, at design
time, by computer software developers developing software
product capable of subsequent customization by a subse-
quent user of the software. First, certain source code 1is
written to obtain a portion of the software 1mn an uncus-

Uus 7,043,715 Bl

S

tomized source-code state. Then that portion 1s compiled to
obtain an uncustomized file of that portion in object code.
This source code writing and compilation process 1s
repeated until all necessary uncustomized files are obtained
in object code whereupon they are linked into a single
module. The foregoing source code writing, compilation and
linking 1s repeated until all required modules are obtained.
Then, at kit time, a kit for that subsequent user 1s customized
or prepared by packaging therein all of the required modules
along with a dynamic link library which 1s customized 1n
accordance with previously-supplied user specifications.
The library 1s dynamically linked to at least one of the
required modules and 1s accessible to the user, whereupon
the product 1s released. Thereafter, upon receipt of the
software product, the subsequent user can undertake to
customize the software at runtime.

In such other aspect, the customization undertaken at
runtime involves both a default binary or executable file
which, for example, can utilize a dynamic link library
having stored therein default information functionally cor-
responding to user iformation stored 1n the user dynamic
link library and resource manager software for automatically
selecting the user information when available but otherwise
for selecting the default information functionally corre-
sponding thereto. And, 1n this other aspect the dynamic link
libraries can contain GUI resources such as bitmaps, dialog
boxes and splash-screen icons.

It 1s advantageous to employ the present mvention in

software product development because it reduces the need
for rewriting source code for each customer or user that may
wish to have its software customized. For example, for
multiple customers requesting GUI resource customization,
cach such customer’s CAS would have the same source code
but would each have a different kit contaming a different
dynamic link library. This 1s a far more eflicient method and
means of producing customizable CAS than was previously

available.

Another advantage 1n employing the present invention 1s
obtained 1n the event of software bugs that may be intro-
duced by any customer’s specifications, where those bugs
would now be contained to that customer’s dynamic link
library and would not infect the source code. Before, 1n the
prior art method of incorporating user specifications into the

source code, contamination of the source code would result
thus affecting all users’CAS.

It 1s thus a general object of the present invention to
provide an improved methodology and apparatus for cus-
tomizing application soitware.

It 1s another object of the present invention to provide an
improved methodology and apparatus for customizing appli-
cation soitware for various OEM customers having various
specification requirements such as GUI requirements or
foreign language and/or foreign alphabet requirements.

It 1s yet another object of the present invention to provide
an 1mproved methodology and apparatus for customizing
application software which avoids the necessity of rewriting
source code because of customer-induced software bugs.

It 1s a further object of the present invention to provide an
improved methodology and apparatus for customizing appli-
cation software 1n a manner that reduces 1nefliciencies and
saves eflort, time, human and machine resources and money.

Other objects and advantages will be understood after
referring to the detailed description of the preferred embodi-
ments and to the appended drawings wherein:

10

15

20

25

30

35

40

45

50

55

60

65

0
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a software “field” showing the juxtaposi-
tion of various types of software and showing the category
of software to which the present invention is related;

FIG. 2 depicts a dialog box “resource” of the type that
could be seen on a computer terminal screen including
various resources such as the edit box that appear in that
dialog box;

FIG. 3 depicts the relationship of the software of the prior
art to the GUI code 1n juxtaposition to the relationship of the
software of the present invention to the GUI code;

FIG. 4 1s a flowchart showing algorithmically how the
resource manager software of the present invention operates;

FIG. 5 depicts two dialog boxes at “run time”, one
showing the software developer’s default resources and the
other showing a generic OEM customer’s specified
resources;

FIG. 6 depicts the type of code written 1in the Visual C++
language that 1s needed to use the resource manager depicted
algorithmically 1n FIG. 4; and,

FIG. 7 depicts operation of the code of FIG. 6 showing
completion of the task for each resource prior to going to the
next resource.

DETAILED DESCRIPTION OF TH.
PREFERRED EMBODIMENTS

L1

Referring to FIG. 2 there 1s depicted dialog box resource
200 containing resources: title bar 201, label/type box 202;
edit box 203; and icon or splash-screen box 204 with icon
therein. This 1s intended to be representative of the kind of
display that a human user views on his/her computer termi-
nal and may appear 1n various contexts such as programs to
be run, empty resource boxes to be filled-in, or home pages
to be viewed and responded-to. It 1s to be understood that
other formats for dialog boxes are extant and that more
resources than those shown are available and included
within the scope of the present invention. It is to be further
understood that the expression of these GUI resources 1s not
limited to any particular computer language or operating
system. Those GUI resources as well as any other non-GUI
resource can be expressed in any application software
including but not limited to Windows, UNIX, JAVA, etc.,
whereby the present invention 1s not limited to any particular
kind of resource nor any particular kind of computer lan-
guage or operating system.

Referring to FIG. 3, graphical user interface software 1s
represented by GUI box 301 and 1s shown juxtaposed both
the standard (prior-art) graphical resource software box 302
and the present-invention-related resource manager box 303
to give a clear overview of the difference between the
architecture of the present invention and that of the prior art.
Resource manager 303 operates automatically to preferably
select OEM-customer graphical resources (which are
desired) as a function of their availability as depicted by box
305, but 11 unavailable to select the functionally-equivalent
default resource as depicted by box 304. Detailed operation
ol the resource manager soitware 1s discussed hereinbelow.

Referring to FIG. 4, a flowchart depicting operation of the
algorithm comprising the resource manager software 1s
shown and utilizes software constructs known as dynamic
link libraries. In programming terms, a library 1s generally
thought of as a large repository of related binary information
and 1s a convenient way for one programmer to provide such
information for use by another programmer. It thus contains

a large amount of code all relating to some specific job, task,

Uus 7,043,715 Bl

7

function or usage. A static linked library, sometimes called
an archive, does not get linked to other code or programs
until a human programmer decides to cause such linkage,
but a dynamically linked library (DLL) gets linked auto-
matically to other code or programs normally at runtime
when a customer/user of CAS first runs i1t on its system.
DLL’s are also referred to as either runtime-linked or
late-linking or late-binding libraries. Typically, DLL’s are
supplied on a compact disk (CD) along with application
code (executables).

In general, in the present invention, software developers’
source code 1s excluded from the customized DLL. How-
ever, certain circumstances may arise in which the devel-
opers create certain limited source code 1n response to their
own design requirements and/or 1 response to customer
requirements which 1s essentially unrelated to the main body
of the software developers’ source code. This unrelated
source code may get included 1n the customized DLL as a
matter of convenience or design choice. Because it 1s
unrelated to the main body of source code 1t does not involve
that source code 1n any bug fixes to which 1t relates or for
which it 1s responsible.

More specifically, a particular preferred embodiment
excludes all software developers’ source code from the
customized DLL, which therefore completely de-couples
any fixes for such source code from {fixes related to the
customized DLL and vice versa. However, as noted, certain
limited categories of other types of source code could exist
in the customized DLL such as source code logic that
comprises a specific routine for a particular OEM-customer
and which has been placed 1n the customized DLL as a
matter ol convenience for such customer. An example of
such a routine would be one which controls a reset button on
a dialog box by checking host computer conditions before
making the reset button active 1 a host computer is not
talking to (reading from and/or writing to) a disk array or
making the reset button inactive 1f the host is talking to the
array. This routine, although appearing in source code form,
1s essentially functionally-unrelated to developers” source
code and to customized resources contained 1n the customs-
1zed DLL, and therefore does not atlfect the decoupling of
any fixes aflecting the customized DLL from fixes affecting
the developers’ source code.

In FIG. 4, block 401 shows that the client application
(CAS) functions 1n a manner to locate a particular resource
by 1ts 1dentification number (ID). In other words, at runtime,
the CAS supplied to the customer/user 1s run on the cus-
tomer/user’s computer system at which time a desired,
customized resource such as that particular customer/user’s
dialog box, for example, 1s requested automatically by
operation ol the solftware program because the customized
DLL 1s dynamically linked to the CAS. That particular
resource 1s 1dentified by a unique decimal number associated
only with 1t and with 1ts corresponding default resource to be
discussed below. The algorithmic process moves to decision
block 402 and determines whether or not a resource-con-
taiming DLL 1s available. If so, the algorithmic process
moves to decision block 405 to determine 1f there 1s a
resource 1n that DLL with the ID number corresponding to
that resource sought by operation of the client application in
block 401. If “ves” then the algorithmic process moves to
block 406 and obtains that resource from that customized
OEM or user DLL, and moves thereafter to block 404 where
that resource 1s returned to the client application (i.e., where,
in the example being used herein that desired resource
appears on the computer terminal as the OEM-specified
dialog box).

10

15

20

25

30

35

40

45

50

55

60

65

8

As noted above use of the same ID number to identity
both the desired customized resource and the definitely-
available, functionally-equivalent default resource ensures
that at least a functionally-equivalent resource shall be
obtained in response to each request. (Accordingly, custom-
1zed resource ID#’s, if fewer than default resource ID#’s,
will necessarily be a subset of the default resource 1D#’s.)
The desired customized resource 1s expected to be found 1n
the OEM’s DLL, (sometimes written as or designated
“OEM.DLL” when working with Microsoit’s Visual C++
language and Microsoit software, although the present
invention 1s by no means limited to any specific language or
soltware type). The functionally-equivalent default resource
1s defimitely available from the default DLL (and designated
in the software development operation of the assignee of the
present imnvention as “NAVIMGR.DLL”). Accordingly, the
number of customized resources are less than or equal to the
number of default resources. In accordance with the best
mode now known for practicing the present invention deci-
mal numbers are used to i1dentily desired OEM customer/
user resources and their respective equivalents, although
other than decimal numbers could be used. For example, 1n
FI1G. 2, the reference numbers 200-204 which refer to
individual resources could be chosen to be the very decimal
numbers coded and implemented 1n the application software
to 1dentily those respective resources. As an added benefit to
assigning 1D numbers, each resource with 1ts own designa-
tion can be assigned to one or a limited number of software
developers thereby reducing the probability of other devel-
opers on the team from interfering when writing code with
respect to a particular resource. Resource number ranges can
also be usetul, because a particular class of resources, such
as dialog boxes for example, can be designated decimal
numbers within a particular range lending a semblance of
order i there are a huge number of resources of multiple
types to manage which 1s not atypical.

Returning to decision block 405, 11 the other result, “no”,
had been obtained, then the algorithmic process moves to
block 403 which represents operation of the code 1n its
obtaining the equivalent default resource from the original
application. Thereafter, the algorithmic process moves to
block 404 and returns the resource (in this instance the
default resource) to the client or OEM customer/user appli-
cation.

Returning finally to decision block 402, again i1 the other
result, “no”, had been obtained then no OEM-supplied DLL
exists and the algorithmic process moves to block 403
whereupon all resources obtained are default resources from
the default DLL and thereafter moves to block 404 and
returns the resources (in this mstance all default resources)
to the client application. The default DLL 1s dynamically
linked to the CAS. Of course this entire algorithm 1is
repeated as many times as 1s required to obtain all resources
(desired or default) needed.

Referring next to FIG. 5, there 1s shown two dialog boxes
that would be created at “run time”. The box on the left
depicts the software developer’s default resources and
would be created as 1s only 11 there 1s no user or customized
OEM.DLL or 1if it does exist and there are no desired
resources 1n 1t. That box 1s compared with the box on the
right which shows a generic OEM customer’s specified
resources which would be created as 1s, 1f every desired
resource 1s available 1n such OEM.DLL. In dialog box 500
there 1s shown title bar 501, type box 502, edit box 503 and
icon box 304 with developer’s 1con. Similarly, 1n dialog box
510 there 1s shown title bar 511, type box 512, edit box 513,
and 1icon box 514 with OEM’s 1con. The developer’s default

Uus 7,043,715 Bl

9

DLL name shown 1n this mstance 1s NAVIMGR.DLL under
which 1s listed an example of resource ID numbers associ-
ated with their respective default resources: For example, 1D
#1 1s associated with the title bar and the default name stored
in this DLL for the title bar 1s NAVISPHERE. (These are
actual names used by the assignee of the present invention.)
By comparison, the generic OEM customer’s DLL name 1s
OEM.DLL under which 1s listed another example of
resource ID numbers associated with their respective desired
resources. For example, ID #1 1n this case 1s likewise
associated with the desired title bar and the generic desired
name stored in this DLL for the title bar 1s OEM MAN-
AGER. Without discussing them 1n detail, similar commen-
tary applies to both sets of ID#’s 2, 3, 4 and 5 shown 1n FIG.
5 under the two DLL headings shown. As earlier noted,
strings, bitmaps, edit boxes, splash-screen 1cons, etc. are all
resources 1n the GUI context, and as will be understood by
those skilled 1n this art, a team of programmers can write
code by physically typing-in at their respective computer
terminals source code in the chosen computer language, in
this case Visual C++, by using a “dialog editor”.

A dialog editor 1s another program which 1s used to
establish at design time which particular resource will be
“assigned” to which particular “string” (1.e. which ID# 1t
will have). In our example, the dialog editor 1s used to
assign: (a) “ITitle” to string ID #1; (b) “type or label” to
string ID #2; (¢) “edit box” to string 1D #3; and (d) “icon”
to string ID #4. These assignments are established for both
default resources to be stored in NAVIMGR.DLL and for all
corresponding OEM customers’ resources, and the same
ID#’s are used for their corresponding resources.

Referring next to FIG. 6, there 1s presented the actual code
needed to use the algorithm shown 1n FI1G. 4. As noted, this
code 1s written 1 Microsoit’s Visual C++ language, as a
preferred method of implementation. However, as earlier
noted, other languages could be used. For example, JAVA 1s
another language which could be used to readily implement
this code. In FIG. 6, the code shown i1s intended to be
exemplary and not necessarily complete; more code could
be shown and used to accomplish additional tasks. As those
skilled 1n the art of programming in the Visual C++ language
will understand, four lines of code are shown that specily
resource related commands and are identified by numerals
601, 602, 603, and 604. Code line 601 creates the resource
manager; code lines 602 and 603 asks the resource manager
to do work; code line 604 destroys the resource manager.
Detailed discussion of this i1s presented below. The double
slash syntax *//” signifies that what follows 1s a message or
comment for humans that explains the next line of code;
such a message or comment appears immediately ahead of
cach of the above-noted lines of code for that purpose.
Therefore, comment line 606 signifies that line of code 601
1s mntended to mnitialize the resource manager. In line of code
601 where the resource manager 1s created there 1s a pointer
to the resource manager indicated by “*pRscMgr”.

Comment line 607 signifies that line of code 602 1s to
fetch a string from the resource manager. The variable
“pRscMgr” 1s a pointer to the resource manager; the “->Get
String”” and particularly the “->” arrow syntax means: “ask
the resource manager to get the string that has a particular
name. In this case, that particular name 1s “IDS_NFX_AP-
PLICATION_TITLE” which 1s actually an ID#. In other
words, line of code 602 1s “asking” the resource manager to
fetch a particular resource with a particular ID#. And this
line of code, particularly from the arrow syntax to the end of
the line, has the property of pulling-in the subroutine or
tfunction call represented by the entire tlowchart of FIG. 4.

10

15

20

25

30

35

40

45

50

55

60

65

10

Accordingly, such subroutine will first seek out the OEM/
customer resource with that ID# and, 1f available, will return
it. In our GUI context example, 1t will be used by appearing
on the computer terminal screen 1n the title bar; 1 unavail-
able, the functionally-equivalent default string will appear.
This 1s expressed by comment or message line 609.

Comment line 608 signifies that line of code 603 is to
fetch a bitmap from the resource manager. The discussion
with respect to this line of code and 1ts syntax 1s similar to
the foregoing discussion with respect to line 602 where
detailed repetition 1s not needed. However, the portion of the
code: “HBITMAP hBitmap” means “declare a variable of
type—Handle to a Bitmap—which gives a placeholder for a
bitmap. Again the subroutine of FIG. 4 1s called and 1t will
return the OEM bitmap if available in the OEM.DLL and it
unavailable will return the default bitmap. The bitmap
(erther default or desired) 1s used by its incorporation nto
the visual display on the computer terminal as a splash-
screen. This 1s expressed by comment line 609.

After the resource manager has obtained all resources
requested of 1t, 1t has to be retired. Comment line 610
signifies that line of code 604 shall deinitialize the resource
manager. Line of code 604 1s the functional opposite of line
of code 601 and contains the word “Destroy” 1n place of the
word “Create” appearing in line of code 601. As understood
by programmers skilled in this language, lines of code in
FIG. 6 shall appear 1n multiple places throughout the CAS,
possibly 1n thousands of places throughout such application
software. And each time these lines of code appear, the
algorithm of FIG. 4 1s employed to seek the desired cus-
tomized resource and in 1ts absence to supply the equivalent
default resource.

Referring next to FIG. 7, operation of code of FIG. 6
incorporating the algorithm of FIG. 4 1s depicted with
respect to an undefined number “N” of resources. Again, this
1s an exemplary presentation and 1s not itended to delimat
the present invention. At the left of the Figure, a titlebar
string resource 1s sought. Operation of the code with respect
to block 701 1s a command to get the application’s title, such
resource being represented by ID# 123; this 1s equivalent to
line of code 602 of FIG. 6. In box 702, the resource manager
algorithm 1s called 1nto play (the entirety of FIG. 4). In box
703 the result of operation of the algorithm 1s assigned to a
string variable which 1s represented i1n code line 602 by:
“CString csDisplayName”. And in box 704 somehow that
variable 1s used and 1n this case 1s used by writing the title
to the titlebar space on the computer terminal screen.

After completion of the steps mvolved 1n obtaining the
string resource, FIG. 7 shows that the next desired resource
1s sought, which in this example 1s a bit map Again,
operation of the code with respect to box 703 1s a command
to get a bit map into a dialog. In this case the resource has
ID# 456. Again, 1n box 706, the resource manager algorithm
1s called into play (the entirety of FIG. 4). In box 707 the
result of operation of the algorithm 1s assigned to a variable
which 1s represented in code line 603 by “HBITMAP
hBitmap”. And 1in box 708, somehow that variable 1s used
and 1n this case 1s used by writing a splash-screen in the
appropriate location on the computer terminal.

After the bitmap resource has been obtained, the next
desired resource 1s sought and so on until the last (the Nth)
resource 1s sought and obtained. The boxes 709, 710, 711,
and 712 function similarly to their equivalent boxes 1n the
diagram.

The present embodiments are to be considered in all
respects as illustrative and not restrictive. As noted earlier,
the present invention can be implemented in any suitable

Uus 7,043,715 Bl

11

computer language such as JAVA or with any suitable
operating system such as UNIX. And the resources sought
need not be limited to GUI resources but can be any kind of
customized resource that 1s desired by a customer. Thus any
apparatus or methodology which customizes the CAS with
such customized resource for and by such customer at
runtime, by operating upon those resources at runtime and
which were installed at design time i1s intended to be
included within the scope of the present invention. Thus, the
scope of the present mvention 1s indicated by the appended
claims rather than by the foregoing illustrative description,
and all changes which come within the meaning and range
of equivalency of the claims are therefore intended to be
embraced therein.

What 1s claimed 1s:

1. A method to be practiced by a team of software
developers for preparing a computer software kit for unin-
stalled shipment to a particular user, said software automati-
cally customizing at runtime said method comprising the
steps of:

(a) each member of said team writing certain source code
to obtain his/her respective contribution to said soft-
ware 1n an uncustomized source code state;

(b) each member of said team compiling said respective
contribution to obtain an uncustomized file of 1ts cor-
responding contribution in object code;

(c) each member of said team linking each said obtained
uncustomized file mnto a single module containing
linked and uncustomized object code;

(d) repeating steps (a) through (c) for each said module
required to be obtamned and thereby obtaining all
required modules; and,

(¢) packaging into said computer software kit for unin-
stalled shipment to said particular user both (1) said all
required modules and (11) a dynamic link library cus-
tomized 1n accordance with a specification of said
particular user, said library being dynamically linked to
at least one of said all required modules to automati-
cally customize, by a resource manager, said all
required modules at said runtime;

wherein said dynamic link library contains GUI resources
in accordance with said specification of said particular
user.

2. The method of claim 1 and wherein said dynamic link

library excludes any of said source code.

3. The method of claim 2 and wherein said dynamic link
library contains foreign language resources in accordance
with said specification of said particular user.

4. The method of claim 2 and wherein said dynamic link
library contains non-English alphabet resources in accor-
dance with said specification of said particular user.

5. The method of claim 1 and wherein said GUI resources
include at least one string.

6. The method of claim 1 and wherein said GUI resources
include at least one bitmap.

7. The method of claim 1 and wherein said GUI resources
include at least one dialog box.

8. The method of claim 1 and wherein said GUI resources
include at least one icon.

9. The method of claim 8 and wherein said icon 1s a
splash-screen icon.

10. A method for preparing a computer software kit for
uninstalled shipment to a particular user, said software
automatically customizing at runtime, said method compris-
ing the steps of:

(a) writing certain source code to obtain a portion of said

software 1n an uncustomized source-code state:

10

15

20

25

30

35

40

45

50

55

60

65

12

(b) compiling said portion to obtain an uncustomized file
of said portion 1n object code;

(¢) repeating steps (a) and (b) as many times as necessary
to obtain all necessary uncustomized files of their
respective portions in object code;

(d) linking said all necessary uncustomized files into a
single module to obtain linked and uncustomized
object code;

(e) repeating steps (a) through (d) for each said module
required to be obtained and thereby obtaining all
required modules; and,

(1) customizing said computer software kit for uninstalled
shipment to said particular user by packaging therein
both (1) said all required modules, and (2) a user
dynamic link library customized 1n accordance with a
specification of said particular user, said library being
dynamically linked to at least one of said all required
modules to automatically customize, by a resource
manager, said all required modules at said runtime;

wherein said dynamic link library contains GUI resources
in accordance with said specification of said particular
user.

11. The method of claim 10, and wherein said computer

software further includes:

(a) storing, 1n a default binary file, default information
functionally corresponding to said user information
stored 1n said user dynamic link library; and,

(b) selecting, by way of resource manager soitware, said
user information when available and said default infor-
mation functionally corresponding thereto when said
user mformation 1s unavailable.

12. The method of claim 11 and wherein said binary file

1s a dynamic link library.

13. The method of claim 12 and wherein operation of said
resource manager software 1s under control of said user at
run time.

14. The method of claim 11 and wherein said selecting
step selects said functionally-corresponding default infor-
mation by matching the ID# of said default information to
the ID# of said user information.

15. The method of claim 12, and wherein said dynamic
link library excludes any of said source code.

16. The method of claim 10 and wherein said GUI

resources include at least one string.
17. The method of claim 10 and wherein said GUI

resources include at least one bitmap.
18. The method of claim 10 and wherein said GUI

resources include at least one dialog box.
19. The method of claim 10 and wherein said GUI

resources include at least one 1con.

20. The method of claim 19 and wherein said icon 1s a
splash screen icon.

21. In a computer system, a method for customizing
application software running 1n said system comprising the
steps of:

(a) establishing a default binary file containing a first
plurality of default resources dynamically linked to said
application software;

(b) concurrently establishing a customized dynamic link
library 1n accordance with a specification of a particular
user, containing a second plurality of customized
resources dynamically linked to said application soft-
ware, said second plurality being smaller than or equal
to said first plurality;

(¢) said application software including resource manager
soltware separate from said default binary file first
accessing, at runtime, said customized dynamic link

Uus 7,043,715 Bl

13

library to obtain a desired one of said customized
resources for further usage by said computer system;

(d) 1f said desired one of said customized resources is
available from said customized dynamic link library,
repeating step (c¢) to obtain the next desired one of said
customized resources and 1n a repetitive manner until
all desired customized resources are obtained or until
any said next desired one of said customized resources
1S unavailable:

(e) 11 said desired one or any said next desired one of said
customized resources 1s unavailable from said custom-
1zed dynamic link library thereby being an unavailable
customized resource, then said resource manager soft-
ware next accessing said default binary file to obtain a
certain one of said first plurality of default resources
being the functional equivalent of said unavailable
customized resource; and, (1) repeating steps (c), (d)
and (e) until all available said all desired customized
resources are obtained from said dynamic link library.

22. The method of claim 21 and wherein said binary file
1s a dynamic link library.

23. The method of claim 21 and wherein said second
plurality 1s a subset of said first plurality when said second
plurality 1s less than said first plurality.

24. The method of claim 21 and wherein said GUI
resources include at least one string.

25. The method of claim 21 and wherein said GUI
resources include at least one bitmap.

26. The method of claim 21 and wherein said GUI
resources include at least one dialog box.

27. The method of claim 21 and wherein said GUI
resources include at least one 1con.

28. The method of claim 27 and wherein said icon 1s a
splash-screen icon.

29. The method of claim 21 and wherein said application
soltware excludes source code.

30. The method of claim 29 and wherein said GUI
resources include at least one string, bitmap, dialog box, or
icon.

31. The method of claim 21 and wherein said next
assessing step obtains said functional equivalent by match-
ing the ID# of said unavailable customized resource to the
ID# of said certain one of said first plurality of default
resources.

32. The method of claam 21 and wherein said first
plurality and said second plurality of resources are selected
from the group consisting of foreign language resources and
non-English alphabet resources.

33. In a computer system, apparatus for customizing
application soitware running 1n said system comprising:

means for establishing a default binary file containing a
first plurality of default resources dynamically linked to
said application software;

means for concurrently establishing a customized
dynamic link library, in accordance with a specification

10

15

20

25

30

35

40

45

50

14

of a particular user, containing a second plurality of
customized resources dynamically linked to said appli-
cation soitware, said second plurality being smaller
than or equal to said first plurality; and,

resource manager means separate from said default binary
file including first means for first accessing, at runtime,
saild customized dynamic link library to obtain all
desired said customized resources, second means for
detecting unavailability of any one of said desired
resources, third means responsive to operation of said
detecting means detecting said unavailability for stop-
ping the operation of accessing said customized
dynamic link library and for accessing said default
binary file to obtain the functional equivalent of said
one unavailable resource, and fourth means responsive
to obtaining said functional equivalent for returning
access control to said first means:

wherein said default binary file 1s a default dynamic link
library; and

wherein said default dynamic link library and said cus-
tomized dynamic link library contain GUI resources.

34. The apparatus of claim 33 and wherein said second
plurality 1s a subset of said first plurality when said second
plurality 1s less than said first plurality.

35. The apparatus of claim 33 and wheremn said GUI
resources include at least one string, bitmap, dialog box, or
icon.

36. The apparatus of claim 33 and wherein said custom-
ized dynamic link library contains no source code and
contains GUI resources.

37. The apparatus of claim 36 and wherein said GUI
resources 1nclude at least one string, bitmap, dialog box, or
icon.

38. The apparatus of claim 33 including:

means for establishing a first set of ID #’s for said first
plurality of default resources and a second set of ID #’s
for said second plurality of customized resources;

means for assigning each one of said ID #’s from said first
set to each one of said default resources respectively
and for assigning each one of said ID #’s from said
second set to each one of said customized resources
respectively and 1n a manner so that any selected one of
said customized resources with a particular function-
ality will have the same ID # as a particular one of said
default resources having functionality equivalent to
said particular functionality.

39. The apparatus of claim 33 and wherein said default
dynamic link library and said customized dynamic link
library contain resources selected from the group consisting
of non-English language resources and foreign alphabet
resources.

	Front Page
	Drawings
	Specification
	Claims

