12 United States Patent

US007043522B2

(10) Patent No.:

US 7,043,522 B2

Olson et al. 45) Date of Patent: May 9, 2006
(54) UNBOUNDED COMPUTING SPACE 6,233,601 Bl 5/2001 Walsh
6,282,563 Bl 8/2001 Yamamoto et al.
(75) Inventors: Lance E. Olson, Sammamish, WA 0,282,582 Bl 82001 Oshima et al.
(US); Eric K. Zinda, Seattle, WA (US) 6,330,588 Bl ~ 12/2001 Freeman
6,334,146 B1 12/2001 Parasnis et al.
: _ : : 6,782,398 B1* 82004 Bahlooinh.l. 707/200
(73) Assignee: h{[;;m“ft Corporation, Redmond, WA 2003/0182460 ALl* 9/2003 Kharecoooo........ 709/310
(US) 2004/0205772 Al* 10/2004 Uszok et al. 719/317
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
tent 1s extended djusted under 35
%ase 1(1: li’ SZ}Ebinbi 7;; 3 aj;;s - e Fielding et al, Hypertext Transfer Protocol—HTTP/1.1, Jun.
S ' 1999, The Internet Society, Request for Comments, 2616,
(21) Appl. No.: 10/156,936 pp. 35-36.% |
United Devices, Inc.™, printed from http://www.ud.com/
(22) Filed: May 30, 2002 home.htm, Apr. 24, 2002, 1 page.
Continued
(65) Prior Publication Data ()
Primary Examiner—Rural Dharia
US 2003/0225822 Al Dec. 4, 2003 Assistant Examiner—Brian J. Gillis
(51) Int. Cl (74) Attorney, Agent, or Firm—Banner & Witcodl, Ltd.
GO6F 15/16 (2006.01) (57) ARSTRACT
(52) US.CL ., 709/202; 709/205 _ | S
(58) Field of Classification Search 709/202, ~ An unbounded computing space including independent
700/201_ 203. 205. 224 nodes 1s provided. Each node includes a discovery module
See application file for complete sear::h hijstory.j to detect other nodes within the unbounded computing
space, and an interaction module to communicate with the
(56) References Cited other detected nodes. Any node within the unbounded com-

5,136,708
5,812,771
5,832,514
6,009,456
6,016,393
6,055,562
6,005,039
6,065,040
0,115,736
0,134,580
0,163,855
0,192,354

U.S. PATENT DOCUMENTS

puting space can introduce an mdependent agent (e.g., an
executable code assembly) into the unbounded computing
space. The node 1n which an independent agent 1s introduced

A * 8/1992 Lapourtre et al. 718/103 _
A * 9/1998 Feeetal ...cccc...... 709/201 can subsequently send the independent agent to another
A 11/1998 Norin et al. node 1n the unbounded computing space for execution in the
A 12/1999 Frew et al. other node. Nodes 1n which an independent agent 1s intro-
A 1/2000 White et al. duced can define privileges that are associated with one or
A 4/2000 Devarakonda et al. more agents and can be used to ensure the agent does not
A 5/2000 Paciorek exceed a security policy as defined by the node. This allows
A 5/2000 Mima et al. S - - - .
for a distributed computing system i1n which an unlimited
A 9/2000 Devarakonda et al. . :
A 10/2000 Tahara ef al number of different agents can be 1ntroduced.
A 12/2000 Shrivastava et al.
B1 2/2001 Bigus et al. 30 Claims, 4 Drawing Sheets
203 207 213 217 200
HS AN S SR
DISCOVERY IND. DISCOVERY IND.
MODULE AGENT MODULE AGENT
INTERACTION IND. INTERACTION "_,21 1
MODULE AGENT MODULE
26;_/ NODE 208 EEJ NODE
8 223
201 2
DISCOVERY 227
—1 251 . MODULE 2
\/?N;-TWGRK INTERACTION IND.,
/IMHH e : MODWLE AGENT
[~ —
"‘-"""“\253 225 NODE
24 221
:
ISCOVERY
i e
INTERACTION INTERACTION| | IND. |1 237
MODULE MODULE AGENT
— —
245 NGDE 235 NODE

241

231

US 7,043,522 B2
Page 2

OTHER PUBLICATIONS

Products: MetaProcessor™ platform version 2.1, printed
from http://www.ud.com/products/mp__platform.htm, Apr.
24, 2002, 2 pages.

Projects: Cancer Research , printed from http://members.ud.
com/projects/cancer/, Apr. 24, 2002, 1 page.

Grid computing—printed from http://searchwebservices.
techtarget.com/sDefinition/0,,s1d26 __ gc1773157,00.html,
May 21, 2002, 3 pages.

B. Rostamzadeh et al., “DACAPO: A Distributed Computer
Architecture for Safety-Critical Control Applications”,
Intelligent Vehicles “95 Symposium, Sep. 25-26, 1995, pp.
376-381.

J. Gosling, “The Feel of Java”, IEEE Computer Society, Jun.
1997, pp. 53-57.

L. Goldschlager, “A Universal Interconnection Pattern for
Parallel Computers”, Journal of the Association for Com-
puting Machinery, vol. 29, No. 3, Jul. 1982, pp. 1073-1086.
E. Krieger et al., Models(@Home: distributed computing in
bioinformatics using a scrveensaver based approach, Oxiord
University Press, Feb. 2002, vol. 18, No. 2, pp. 315-318.
D. Liang et al., *“A fault-tolerant object service on CORBA”,
The Journal of Systems and Software, vol. 48, No. 3, Nov.
1999, pp. 197-211.

W. Reisig, “Distributed Algorithms: Modeling and Analysis
with Petr1 Nets”, IEEE International Conference on Sys-
tems, Man, And Cybernetics, vol. 1, 1998, pp. 38-43.

T. Mudge “A Computer Architecture For Parallel Process-
ing”, University of Michigan, p. 596.

M. Portmann et al., “The Cost of Peer Discovery and
Searching 1n the Gnutella Peer-to-peer File Sharing Proto-
col”, IEEE, 2001, pp. 263-268.

N. Eng et al., “An Imitial Approach of a Scalable Multicast-
based Pure Peer-to-Peer System™, IEEE Proceedings of the
First International Conference on Peer-to-Peer Computing,
Aug. 27, 2001, pp. 97-98.

A. Loo et al., “A peer-to-peer distributed selection algorithm
for the Intemet , Internet Research: Electronic Networking
Applications and Policy, vol. 12, No. 1, 2002, pp. 16-30.
C. J. Anumba et al., “Collaborative design of structures
using intelligent agents™, Automation 1n Construction, 2002,

pp. 89-103.

B. Boutsinas et al., “On distributing the clustering process”,
Pattern Recogmition Letters, vol. 23, No. 8, 2002, pp.
999-1008.

* cited by examiner

@\

as

L

P SINVHOON L 9inbi14

o NOILYDITddY

S

o~ vlva |g mwwwoow__\u o5 SWYHOOUd |gg WILSAS
% ISNON NVIOONd NOILYOITddY|” " ONILYY3dO
-

W_m_._.Dn_S_OO
41 0NdS

08 0L
.4
= V6l c6l = Z61 _ v1vQ
y— NYHOOHd
)
= JOV4HALNI 3DV4HILNI 3OV443ILNI JOV443LNI
= TN 1HOd INNG IAIHA YSI MSIa
7 SISREN TYDILdO 1 LIANOVIN A¥VH
VIHY VD0 SIINAON
0L /61 WNYHOO0Hd
% SNg NIALSAS 43H10
~
o 101 961 SNYHO0Ud
J NOILYDI1ddY
o~
= H3ldvav Ol LINN WALSAS
HOLINOW O3dIA ONISSTDOHd 96} oNILwy3do
201 o w
ozl | |99

ol (NOH)

s SpEmns SN AN TEEa—— EE——— S

AMOWIW WILSAS

00}

U.S. Patent

U.S. Patent May 9, 2006

203 207

DISCOVERY IND.
| MODULE AGENT | |
INTERACTION | | IND.
MODULE AGENT

205 209

NODE

201 |

291

24

DISCOVERY
MODULE

INTERACTION

MODULE

243 NODE |

241

Sheet 2 of 4 US 7,043,522 B2

200

213 217

DISCOVERY IND.
MODULE AGENT

INTERACTION
MODULE

215

211

NODE

223

DISCOVERY
MODULE

TION
LE

NTERAC
MODU
225

221
DISCOVERY 233
MODULE
INTERACTION 231
MODULE
235

231

Figure 2

US 7,043,522 B2

; i o) o SR M T i e, 0 2 L ATy Ty . .
g . o i
[} .. : h _..n..hu.“. L3 . d ¥
e . _.”_ L () " " J W.u.“ L :
i o X S ; - : .ﬁm” e d : :
Pl 11 o - Ak : Nt o ;) S :
: - ¥ s S ; % i ..w_h., eyt o : RS .
P ; .
s e _ ; .?m ! i ; i VRIS ;
o FIF - CEH] . By
R _ S ; 5 S : : s - i
e A L 5 2t i) o
AR ; : i et &
2 A S
h L] 4 ", 1 ...u. ! > !]
b1 . d " - ' - a 1

e

o
o
:

:

i
o
e
e
T
e,

Sheet 3 of 4

May 9, 2006

U.S. Patent

“ : e -
L e] ik : : mw o
. L, i R :
" N w e-MM mw.. = b NN NL]
1 L 1E = e » Lt .
L + s 2 Ty e
- L5, wlad] uu. T
s r“.T ; m__. o ; i - = ﬁ. n -nru-..- e , - M T e
1 ' . = k P e T L oA
ot ..W..Tn.._.rn..- sﬁ.mﬁﬂq e e R] 7} CHENENNw) WU.-u-u-n- . y! .-...J-E-_..._w.
i < ; : R e oy LA AL
L T i) ; CY Py ; : et
: : JARITEAE nieli S
La N .t i - e a4 . ra
¥ : -.. 1 L1 AR . k. 0 _._-# v : u.mr..W . v
w X i s 1 . ¥ H
H AT, i : A - 5 : T . s 1 gl .
> I % ..H—x S !
1 - .—. - -
A 7 : . - o :
o T} - ” LT :
1 HL L 1d i - MM -. = y <
k i ']
i m n 1 i i,]
i : 4 Fi LY 7 _ ’ .m - ! S i
XA i Vi
' 1 L] - H Jd
% fixs P wwmm. ., o i . G :
2 : > i ¢ e
L) Ll L) . . - . g _ T 1 L] H
w Pl - -& - oy H C] IW u. [
5 .W .WW-: L N L 3 i .__.n. | N} W FA v
! o I 1
{ ' . . i - -
...wm.,..m.. MW%J o W_.W#. £ 1... ..m.u. = : ¥ EEa
1 LS et X = . .
ou....r. N w.___ P [} o 5 a : : e - : i o "
. A o o s
AR e / : TR o
T 2 v = , . ;
e : AR o i ey et A0 T
o e o & AR ' ! .
g e T e o T T HE
SR el ke . e, W
AT Y ittt QEos o : : i e e
A A e S “ ! £ i i
Hiik S 3 : MG S :
s r A M A :] ! i n e
N . - v_r"-“- '
i o : i a4 o - »
T L P, i e : e .
o hi B Lo
i EEE Fy 8 ; ﬁ.x WE i
i e o 1 , ; SR] .
ﬂw] i : e LU : byl e W.“.".uw....ﬂw Il -
= TR £ 3 i R
R 2 : : 5 Sy
CRCR : o ; i T
| [.mn. S .] H : e
; .u.m% ..ﬁwﬂmm.“. % I : .
: ; i LT y A e b _ & :
R SIS S B S i _
: } : ﬁ.m. o 44 : & s e :
] R m.u..u. 11} ,.. = m:m. : |
' . e . . . Ry . 2
" 2 e L x_uc ST
T 4 . - . o 3] ! ¥ e :
i] |] ' H ' nm.—_
W i ! . . Rl i m...,_. ! ;)
b e ; = . 2 T
;G 2 : T =
. S : : Y E !
; ; : _ : : :
5 il i
S ir e e
A . i e H
S ? B Tt
: : :
- ety 1 r
] . i e EARRAAL . 2 L ; : :
SR 5) Leht F 1 - N e
% ..m..“.w .".M.....TE et : e
. - ot
i , Ly o e o
; e e i . S H
. y -.m. i = W e
1 i L I
A L i AT : =
LE_ LA H L 1
= . : o ! R i e
= ' 3 T Y ; At Epdie : S
'tn s Y T30 ' »
2 : p is ;
: e 2 Sl ‘ :
T v.....................,_ m... T g
) B ; _ i
L Can s - . .]
1! i ‘ L ™ i
H] ! ! 4]
P x -n i ¥
,.} ; il _. ir EH K bt i
i - b ,
Pt L1K] . .nﬂ g %uﬂ.ﬁ-.ﬂ W% .".
ul = SEE T R z
i ; N WA AN "
i i uuﬁ..__ m sl dnn ;
i : £ . : ST e
- e z .m...m.m. ; 3 %WM& =
.-..-n. o - ! RECITTh bl -u-m-n_.u.ﬂ..-...._. ¥ "
L, L 1 Y n“ , Lk L] ; 4 i
Y 1 1y RN
: 3 i b] A e 2 S R : S
TN H ; o = =) L T : s
I ' S ﬁﬂm e :
" L " [_.._.“ b
g =3 ;- % i G
= ; A , & R 1 i
- 5 : ; ; . o
o= . 1
3 i ! R : i 1
r. | s ! v 1
. _-1 u.-... - - 1) !
..._m.... __ el n i i e 1 g
i T ; 5 o i v e o oyt
il ey 5 i .n.“.u..u.m
..-- 1 - -
. ; 5 ‘“_m_,_ h i . :
e R i : T A , L
o = __un .-_,..." a ;ﬁ - o :
= ! W“.m;...-.r. ._.n.._u.nt-_ - : v i A
W% ’ - o 15 ; ﬁw - i R
.... hT ey iy 1 = = n : % .m m mm“........._-u.
it ; iy ik :)
S i o : S
1) g 3 k ."n... - CR Ty
. ; : T : : i S .“..“.MJL 2
Z - . L e, : el
i [e h e e
[J..M. . e Lo
Coee N ! b 1
o () - ' r-u-..“-.. N] -. - L] u..n. -
% CiREALh H.u.ﬁ.._ T i e ﬁ. i
- L
AR e ; 3 Rz RN EEEAER
-2 W ae . L " &. WA
.r sm. i i ! o ok ! L S
e e . - o L
e : : ; S
5 : .--...- H] m_.. = _}_.W ST 1 oy S
[mm 1 -mun.._-“ .u 3 - . . nu-
:) s EiiF M b =
¢ : T A :
iy o . Y S ! AT,
i S e j e ey Gie ! . A
i o L SR : i S PR e o
= _ﬂ e, i ; " : ...W e sym.] o
_ L St e _ : o i . i
T 1 L, e A el S - _m"
; W .u..u.uu". Tl A R s : ZnFrE]
P 0y - N L, P, h g .q-. l"r - =
e % o “w% e =i __.m L Rt . .m.m. N tH
j S e A : O el s ;
AT) HL ..u....... i ! uu.-
e : :] . NN
AR .w B .:h 5 - - b ¥ 1 > kg - . ¥ 1 e .un.,_.__ ..-MM i ;
e % N Thlleseas ks i e e ; i e i
v ' ek _...”m..r-.."-n..-".. ' 1 ey_.-r.. o . LR ;
: b i mi..._ - " S,
PR il : H .M o ; . [- wil 1
m.wm.__w. __......H : : .‘ - i e ; ; =
! et) H - ol 12 LT T

309 311

rar—rm

Figure 3

N dd aa

313

301

U.S. Patent May 9, 2006 Sheet 4 of 4 US 7,043,522 B2

START
NODE INTRODUCES
INDEPENDENT AGENT 401

: INDEPENDENT AGENT |

RUNS ON -~ 103
| INTRODUCING NODE |

~_ EVENT? -~ =ND

- /--""_.---"-\

~- 405
Y

SEND AGENT
TO NEW NODE

407

- ~ T~ ~
—~ "PREDEFINED ~ __
"< _CONDITION? —~~>" 409
T ~ -

|
Y

RUN INDEPENDENT
AGENT ON NEW NODE 411

Figure 4

US 7,043,522 B2

1
UNBOUNDED COMPUTING SPACE

FIELD OF THE INVENTION

The 1nvention generally relates to distributed computing 5
architectures. More specifically, the invention relates to an
unbounded computing space that dynamically alters com-
position as computers are added or removed from the
computing space.

10
BACKGROUND OF THE INVENTION

Distributed computing systems are generally known 1n the
art. However, known distributed computing systems such as
orid computing systems typically divide a single large 15
computing task into sub-tasks, and each participant in the
orid computing system performs or solves only the sub-task
that 1t was given. In addition, each distributed computer
generally only works on its assigned sub-task when 1its
processor or other resources necessary to the sub-task would 20
otherwise be 1dle. In addition, each distributed computer
node 1s required to trust a central authority to execute code
on the node’s machine with little control over what that code
1s able to do.

For example, one known distributed computing system 1s 35
the Intel-United Devices Cancer Research Project sponsored
by United Devices, Inc. of Austin, Tex. and Intel Corpora-
tion of Santa Clara, Calif. The Cancer Research Project
allows PC owners to volunteer idle processor time on their
own computers to help find a cure for cancer. Each user 3g
downloads a software client that periodically receives a
research sub-task from a server, and performs the sub-task
when the local computer processor would otherwise be 1dle.
Upon completion of the sub-task, the local client sends the
results to the server, and recerves a new sub-task. At all times 35
the local client 1s dependent on the central server that divides
the task into sub-tasks and assigns sub-tasks to volunteer
client machines. In addition, each client does not contribute
to the computing space except that the client performs an
assigned sub-task. That 1s, each client only executes sub- 40
tasks defined by the server; each client 1s not capable of
executing any arbitrary application program. Finally, the
nodes must rely on United Devices to ensure that code or
data coming from the server will execute 1n a manner that
will not harm other components of the machine, such as by 45
deleting or altering data on the hard drive. This known
system 1s bounded by the ability of the central server to
assign sub-tasks to each of the nodes for processing.

Another known pseudo-distributed computing space 1s
demonstrated by online roll-playing games such as Ultima 50
Online®. In an online roll-playing game (RPG), each remote
user typically must log 1n to a central server that administers
and oversees the game play of the RPG. The virtual world
in which characters live i1s defined by and maintained by the
central server, and appears 1dentical to each remote client 55
(player characters) connected to that central server. In addi-
tion, all interaction between players goes through the central
server. Thus, while online RPGs may be thought of as
distributed computing environments, they are in fact large
client-server applications, and users are not allowed to 60
introduce executable elements mto the system.

Thus, 1t would be an advancement in the art to provide a
computing space in which programs could run on any
computer without being dependent on a central server,
where the computer running the program can do so without 65
concern for violation of other resources on the system, and
in which each computer 1s part of and defines an overall

2

computing space. It would be a further advancement 1in the
art 1 the computing space were unbounded such that the
computing space 1s potentially defined by an unlimited
number of participating computers.

BRIEF SUMMARY OF THE INVENTION

The inventive method and system overcome the problems
of the prior art by providing an unbounded computing space
that includes multiple interconnected computer systems on
which a program agent can run in a manner that allows the
computer systems to define privileges that may be granted to
cach program agent. Agent programs can be sent between
nodes and safely execute on each machine, regardless of
cach agent’s origin (trusted versus untrusted source). That 1s,
any node within the computing space can introduce a
program agent that can be sent to and run on any other node
in the computing space. Each node may use a detection
module to learn about other nodes within the unbounded
computing space, and an interaction module to communicate
with other nodes within the unbounded computing space,
including sending and receiving program agents between
nodes.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present mnvention
and the advantages thereof may be acquired by referring to
the following description in consideration of the accompa-
nying drawings, 1n which like reference numbers indicate
like features, and wherein:

FIG. 1 illustrates a schematic diagram of an exemplary
general-purpose digital computing environment that may be
used to implement various aspects of the present invention.

FIG. 2 illustrates a schematic diagram of an unbounded
computer space according to an illustrative embodiment of
the 1vention.

FIG. 3 illustrates a screenshot of a user interface for an
unbounded computing space used as an unbounded gaming
application according to an illustrative embodiment of the
invention.

FIG. 4 illustrates a method for executing an independent

agent 1n an unbounded computing space according to an
illustrative embodiment of the invention.

DETAILED DESCRIPTION OF TH.
INVENTION

L1l

Aspects of the present invention provide an unbounded
computing space in which agent programs can execute. One
or more aspects of the invention are applicable to any
general purpose computing platform capable of running a

variety of operating systems, virtual machines, and applica-
tions, cluding PCs running WINDOWS®, LINUX®,

MacOS®, or SOLARIS® brand operating systems and the
like, as well as PDA devices, Tablet PCs, pen-based com-
puters, and other data processing systems.

FIG. 1 1illustrates a schematic diagram of an exemplary
conventional general-purpose digital computing environ-
ment that may be used to implement various aspects of the
present invention. In FIG. 1, a computer 100 includes a
processing unit 110, a system memory 120, and a system bus
130 that couples various system components including the
system memory to the processing unit 110. The system bus
130 may be any of several types of bus structures including
a memory bus or memory controller, a peripheral bus, and a
local bus using any of a variety of bus architectures. The

US 7,043,522 B2

3

system memory 120 includes read only memory (ROM) 140
and random access memory (RAM) 150.

A basic mput/output system 160 (BIOS), containing the
basic routines that help to transfer information between
clements within the computer 100, such as during start-up,
1s stored 1n the ROM 140. The computer 100 also includes
a hard disk drive 170 for reading from and writing to a hard
disk (not shown), a magnetic disk drive 180 for reading from
or writing to a removable magnetic disk 190, and an optical
disk drive 191 for reading from or writing to a removable
optical disk 192, such as a CD ROM or other optical media.
The hard disk drive 170, magnetic disk drive 180, and
optical disk drive 191 are connected to the system bus 130
by a hard disk drive interface 192, a magnetic disk drive
interface 193, and an optical disk drive mterface 194,
respectively. The drives and their associated computer-
readable media provide nonvolatile storage of computer
readable 1nstructions, data structures, program modules, and
other data for the personal computer 100. It will be appre-
ciated by those skilled 1n the art that other types of computer
readable media that may store data that 1s accessible by a
computer, such as magnetic cassettes, tlash memory cards,
digital video disks, Bernoulli cartridges, random access
memories (RAMs), read only memories (ROMs), and the
like, may also be used in the example operating environ-
ment. It will also be appreciated that one or more aspects of
the invention may be implemented using software, hard-
ware, or a combination of the two.

A number of program modules may be stored on the hard
disk drive 170, magnetic disk 190, optical disk 192, ROM
140, or RAM 150, including an operating system 195, one
or more application programs 196, other program modules
197, and program data 198. A user may enter commands and
information into the computer 100 through mput devices,
such as a keyboard 101 and a pointing device 102. Other
input devices (not shown) may include a microphone, joy-
stick, game pad, satellite dish, scanner, or the like. These and
other mput devices often are connected to the processing
unit 110 through a serial port interface 106 that 1s coupled to
the system bus 130, but may be connected by other inter-
taces, such as a parallel port, game port, or a universal serial
bus (USB). Further still, these devices may be coupled
directly to the system bus 130 via an appropriate interface
(not shown). A monitor 107 or other type of display device
1s also connected to the system bus 130 via an interface, such
as a video adapter 108. In addition to the monitor 107,
personal computers typically include other peripheral output
devices (not shown), such as speakers and printers. As one
example, a pen digitizer 165 and accompanying pen or user
input device 166 are provided in order to digitally capture
frechand input. The pen digitizer 165 may be coupled to the
processing unit 110 via the serial port interface 106 and the
system bus 130, as shown in FIG. 1, or through any other
suitable connection. Furthermore, although the digitizer 165
1s shown apart from the monitor 107, the usable 1mput area
of the digitizer 165 may be co-extensive with the display
area of the monitor 107. Further still, the digitizer 165 may
be 1ntegrated 1n the monitor 107, or may exist as a separate
device overlaying or otherwise appended to the monitor 107.

The computer 100 may operate in a networked environ-
ment using logical connections to one or more remote
computers, such as a remote computer 109. The remote
computer 109 may be a server, a router, a network PC, a peer
device, or other common network node, and typically
includes many or all of the elements described above
relative to the computer 100, although only a memory
storage device 111 with related applications programs 196

10

15

20

25

30

35

40

45

50

55

60

65

4

have been illustrated 1n FIG. 1. The logical connections
depicted 1 FIG. 1 include a local area network (LAN) 112
and a wide area network (WAN) 113. Such networking
environments are commonplace 1n oflices, enterprise-wide
computer networks, intranets, and the Internet.

When used in a LAN networking environment, the com-
puter 100 1s connected to the local network 112 through a
network interface or adapter 114. When used in a WAN
networking environment, the personal computer 100 typi-
cally includes a modem 115 or other means for establishing
a communications link over the wide area network 113, e.g.,
to the Internet. The modem 115, which may be internal or
external, 1s connected to the system bus 130 via the serial
port interface 106. In a networked environment, program
modules depicted relative to the personal computer 100, or
portions thereof, may be stored 1n a remote memory storage
device.

It will be appreciated that the network connections shown
are exemplary and other techniques for establishing a com-
munications link between the computers may be used. The
existence of any of various well-known protocols such as
TCP/IP, Ethernet, F'TP, HI'TP and the like 1s presumed, and
the system may be operated 1n a client-server configuration
to permit a user to retrieve web pages from a web-based
server. Any of various conventional web browsers may be
used to display and manipulate data on web pages.

With reference to FIG. 2, a symmetric multi-processing,
unbounded computing space can be created by leveraging
idle processing time on networked computers, combined
with suflicient security and sandbox mechanisms to allow
execution of code from potentially untrusted sources. Each
node 1n the computing space may have a detection mecha-
nism to discover other nodes 1n the computing space. As a
result, new nodes may by dynamically added and removed
without being required to register with a central server, and
any user can mtroduce executable code nto the computing
space.

An unbounded computing space (UCS) 200 includes one
or more independent nodes 201, 211, 221, 231, 241. Each
node that 1s a part of the UCS 200 provides an environment
in which software programs, referred to as independent
agents, can run. That 1s, each node acts as an execution shell
for independent agents. In addition, because each node
added to UCS 200 may have a different configuration from
the other nodes (e.g., varying software, resources, security
policy, hardware, attached peripheral devices, etc.), each
node provides a unique computing space. Thus, two differ-
ent nodes executing the same independent agent may yield
different results.

Each node 1n the unbounded computing space may be
thought of similar to a plot of land, with unique character-
1stics, that executes independent agents recerved from other
nodes within the UCS. Thus, as each node 1s added to the
UCS 200, e.g., by launching node application software, the
environment in which independent agents can run increases.
Likewise, as nodes are removed from the UCS 200 (e.g., as
a result of a user closing the node application program
executing on a computer system), the environment in which
independent agents can run decreases.

The individual nodes that make up the unbounded com-
puting space might not be dependent on a server for the
receipt of independent agent soitware modules. That 1s, each
node in the unbounded computing space can introduce an
independent agent, which may subsequently be copied or
transierred to another node within the unbounded computing
space.

US 7,043,522 B2

S

A node 201 1n unbounded computing space 200 includes
a discovery module 203 and interaction module 205, and
often (but not always) includes one or more independent
agents 207, 209. Node 201 calls discovery module 203 to
detect other nodes within the unbounded computing space,
and calls mteraction module 205 to interact with the other
detected nodes, e.g., by sending an independent agent to
another node. As stated above, independent agent 207, 209
1s a code assembly that uses the interaction module to travel
to and execute on another node or nodes within the
unbounded computing space to perform a function. Inde-
pendent agents can be transported or copied from one node
to another, optionally maintaining state information between
nodes. It 1s also possible that an agent does not travel from
one node to another, and instead executes only 1n the node
in which 1t was introduced.

Unbounded computing space 200 may also include addi-

tional nodes 211, 221, 231, 241, with respective discovery
modules 213, 223, 233, 243, interaction modules 215, 225,

235, 245, and mdependent agents 217, 227, 237. Nodes,
generally, are embodied 1n computer systems interconnected
via a network 251 such as the Internet, a LAN, WAN,
intranet, etc. Each node may vary i composition from
system to system, provided each node can understand the
other nodes within the unbounded computing space, e.g., by
using a common communication protocol. That is, each
node can use a unique algorithm to create and define a
computing space that i1s represented by the node.

In one 1illustrative example, with reference to FIG. 3,
nodes may represent physical terrain in a virtual world. FIG.
3 illustrates a user interface for a terrain node 301 that 1s part
of an unbounded computing space that interacts to play a
game. Fach imdependent agent 303, 305 may represent an
ammal or plant that lives and grows (and potentially dies) on
the terrain in the virtual world, and that may be transported
from one terrain node to another terrain node. Another
independent agent 307 might execute only on the terrain
node on which 1t 1s mitially introduced and launched. In this
example, independent agent 307 represents a sphere that
randomly travels around the terrain of 1ts local terrain node
and, upon hitting an independent agent representing an
amimal or plant, causes the local terrain node to “teleport™
the animal or plant to another random terrain node within the
unbounded computing space by copying the independent
agent to another terrain node along with the current state
information of the independent agent. FIG. 3 illustrates only
a portion of the terrain of the terrain node 301. Map 309
illustrates the entire terrain located on terrain node 301, and
box 311 indicates the visible portion shown 1n window 313.

In another example, each node may be defined to allow
diagnostic functions to execute on the computer system on
which each node 1s located. That 1s, an mndependent agent
may perform a diagnostic service on the computer system on
which the node 1s located. For example, an independent
agent named Delragger, upon being introduced on or copied
to a diagnostic node, may check to determine a fragmenta-
tion level of one or more local hard drives. When the
fragmentation level 1s above a predefined threshold, Delrag-
ger may launch a defragmentation utility on the local
computer to defragment the 1dentified hard drive. Similarly,
an independent agent named SpaceMaker, upon being 1ntro-
duced on or copied to a diagnostic node, may check to
determine how much space i1s available on the local hard
drives of the computer on which the diagnostic node 1is
located. When the amount of available space i1s below a
predefined amount (or percentage of total space available),
SpaceMaker may automatically (optionally upon confirma-

5

10

15

20

25

30

35

40

45

50

55

60

65

6

tion by a user) delete files known not to be needed, such as
temporary files, cache files, and the like.

As 1s 1llustrated above, because each node can use a
different algorithm, each node can serve a different purpose
than other nodes, and can allow diflerent tasks than other
nodes allow. In one illustrative embodiment, nodes of dit-
fering types communicate with each other mm a global
unbounded computing space, e.g., through the use of a
common port on each computer system. Before sending an
independent agent from one node to another, the nodes may
communicate to determine whether the independent agent 1s
compatible with the node to which 1t 1s being sent (e.g., an
independent agent of the animal type illustrated above
cannot successiully run on a diagnostic node). When a node
of one type sends an agent meant for execution on a node of
a second type, the receiving node may still execute the agent
in order to read parameter information associated with the
agent. Upon detecting that the agent 1s meant for another
type of node, the receiving node may stop execution of the
agent.

In an alternative illustrative embodiment, unbounded
computing spaces of diflerent types are kept separate, and
nodes of one type are unaware of and do not communicate
with nodes of another type. In this illustrative embodiment,
communications may be kept separate through the use of
separate ports on a machine, or any other known technique.
For example, a machine 1dentified by IP address 1.2.3.5 may
have a terrain node accessible at 1.2.3.5:50000, while a
diagnostic node on the same machine may be accessible at
1.2.3.5:50001.

Each node may include parameter definitions that vary
from node to node, ¢.g., indicating the node’s type, terrain
size and definition (when applicable), types of agents
allowed, number of independent agents that can execute
simultaneously, and the like. Fach node also provides secu-
rity so that independent agents cannot perform malicious
acts on the node’s local computer system. The security
parameters and controls may be stored 1n a security module
that executes 1 or as part of the node module. In one
illustrative embodiment, each node 1s executed 1n a managed
code environment, such as Common Language Runtime
(CLR) and the NET framework, or Java Virtual Machine.
Any managed code environment providing similar security
mechanisms may alternatively be used.

Running each node mn a managed code environment
allows each node to use the environment’s security policy
measures to sandbox independent agents (1.e., restrict inde-
pendent agents Irom performing malicious acts on the
computer system). That 1s, each node can define a security
policy 1n such a manner so as to allow independent agents
to perform only non-malicious acts when executing on the
local computer system, based on a predefined security policy
manager provided by the managed code environment. The
security policy may be defined on a per-agent basis (1.e.,
cach independent agent may have a differing security
policy), may be defined on a group basis (1.e., each agent
belonging to a specified group has the same security policy),
or may be defined globally (1.¢., all independent agents have
the same security policy). Using the various security policy
definition levels, a node can provide one or more security
policies to one or more independent agents, including inde-

pendent agents unknown at the time the security policy 1s
defined.

With reference back to FIG. 2, each node 201, 211, 221,
231, 241 includes a discovery module 203, 213, 223, 233,
243, respectively. The discovery module can detect other
nodes that are a part of the unbounded computing space, and

US 7,043,522 B2

7

may also maintain a list of other nodes that are available to
receive an mdependent agent.

In one 1illustrative embodiment, each discovery module
may communicate with a central server 2353 that maintains
a list of active nodes in the unbounded computing space 200.
Each new node, upon initialization, may register with the
server 253 and obtain a list of active nodes within the
unbounded computing space 200. Each node may subse-
quently recerve an updated list of active nodes in predeter-
mined intervals (e.g., every 2 minutes, 5 minutes, 15 min-
utes, etc.). According to one aspect of the mnvention, server
253 may provide to a requesting node a list of the n closest
nodes to the requesting node, and also provide the total
number of registered nodes. According to another aspect,
server 253 may provide a complete list of active nodes to a
node upon request.

In another illustrative embodiment, no central server is
used. Instead, a peer-to-peer detection scheme may be used
to discover other nodes. In this embodiment, a node 201 may
broadcast an undirected discovery request over the network
251, e.g., by sending a network broadcast specilying a
specific HT'TP port without specifying a specific recipient,
as 1s generally known 1n the art. When another node, e.g.,
node 211, receives the broadcast, it sends a response to the
broadcasting node 201 indicating 1ts presence in the
unbounded computing space. Once the broadcasting node
201 receives the response, 1t can determine the network
address of the other node 211, and can communicate with
node 211 to learn about still other nodes of which node 211
1s aware, €.g., nodes 221, 231, and/or 241. This process can
be repeated until node 201 is either aware of every node in
the UCS 200, or 1s aware of at least a predetermined number
or percentage ol nodes in the UCS 200, as defined by the
detection module.

Each node also includes an interaction module that coor-
dinates communication and independent agent transmissions
among nodes. The interaction module defines the common
way 1n which each node communicates with other nodes by
defining an information passing protocol that 1s used
throughout the unbounded computing space, as well as an
agent passing protocol that 1s used to transtfer independent
agents from one node to another. In an alternative embodi-
ment, information and agent passing may be performed by
a single protocol.

The information passing protocol i1s used to pass envi-
ronment information from one node to another. Environment
information may include information such as runtime ver-
s1on, knowledge of certain types of independent agents, and
the like. Knowledge of a certain independent agent may be
useiul because 1f node 201 1s already storing a copy of a
specific independent agent, e.g., the SpaceMaker indepen-
dent agent, then there 1s no need for another node 211 to
duplicatively send another copy. Instead, when node 211
informs node 201 that node 211 1s going to send the
SpaceMaker imndependent agent, node 201 indicates to node
211 that node 201 1s already aware of the SpaceMaker
independent agent, authenticates the preexisting copy of the
SpaceMaker independent agent, and executes the preexist-
ing copy ol the SpaceMaker independent agent when
authenticated successtully.

In one 1illustrative embodiment of the invention, the
interaction module uses a hypertext transport protocol
(HT'TP) server to perform information and agent passing
among nodes via extensible markup language (XML) mes-
sages. The interaction module may use the HI'TP POST
feature to upload an independent agent from one node to
another, e.g., by using a specific port identifier. One of skill

10

15

20

25

30

35

40

45

50

55

60

65

8

in the art will appreciate that other communications proto-
cols may be used for node communications and independent
agent transmissions. For example, an interaction module
may alternatively use a TCP (Transmission Control Proto-
col) connection between peers in combination with the
serialization mechamsm provided in Common Language
Runtime (CLR) to exchange information between nodes. In
yet another embodiment an independent agent may be stored
on a removable disk (e.g., a tloppy disk), which 1s trans-
ported to another computer system acting as a node, and the
independent agent 1s loaded from the removable disk. Any
other protocol that provides a standard way to exchange
information and code can alternatively be used. Preferably,
the selected protocol should understand and account for
evolving nodes. That 1s, the protocol should (but 1s not
required to) communicate with older nodes that do not
necessarlly include all the functions of the latest node
software.

With reference to FIG. 4, using the above-described
unbounded computing space, any node can introduce an
independent agent that can potentially run on any other node
within the unbounded computing space. In step 401, an
introducing node, e.g., node 201 1n FIG. 2, introduces an
independent agent. Node 201 may introduce the independent
agent by loading the independent agent within the execution
environment defined by node 201. Optionally, 1n step 403,
node 201 executes the introduced independent agent. In step
403, also optional, node 201 may wait for a predefined event
to occur, prior to sending or copying the independent agent
to a new node in step 407. If the predefined event never
occurs, the independent agent might not be transierred to
another new node. The predefined event may be the occur-
rence of any event or the satisfaction of any condition as
defined by a user or program. For example, the predefined
event may be as simple as the satisfaction of the condition
that there 1s another node 1n the computing space 1n which
the independent agent has not yet been run, and the present
node may send the mdependent agent to that node 1n step
407. That 1s, the independent agent may store historical data
regarding nodes which the agent has visited and/or which
have executed the agent. The present node may compare the
historical data to the present node’s list of other nodes of
which 1t 1s aware, and the present node may send the
independent agent to a node of which 1t 1s aware that the
agent has not yet visited and/or on which the agent has been
executed.

As another example, the predefined event may be the
occurrence of an event, such as a local process 1indepen-
dently determining that the independent agent should be sent
to a new node, e.g., independent agent 307 “hitting™ a plant
or ammal independent agent as 1llustrated above. Alterna-
tively, node 201 may send the independent agent to a new
node 1n step 407 without waiting for a predefined event or
may select a node at random to which the independent agent
1s sent.

In step 407, node 201 sends a copy of the independent
agent to a new node, e.g., node 211. Node 201 may or may
not delete 1ts local copy of the independent agent. Node 201
may or may not include the independent agent’s state
information when sending to node 211, depending on the
design and purpose of the independent agent. I the agent 1s
being “teleported” from one node to another, state informa-
tion may be included. However, 1f the agent 1s performing
diagnostic services, state information might not be included
so that the independent agent can start from a newly 1nitial-
1zed state on each node. Alternatively, some state informa-
tion may be copied from one node to another in order to

US 7,043,522 B2

9

track and keep a historical record of the activities of the
independent agent (e.g., number of nodes on which it has
executed, age since creation, average fragmentation of hard
drives, and other statistical and descriptive information).

In step 409, the node receiving the independent agent
optionally checks for the presence of or waits for a pre-
defined condition to occur 1n step 409 prior to running the
independent agent in step 411. The predefined condition may
include any user or program defined condition, such as hard
drive fragmentation above a certain threshold, available hard
drive space below a certain threshold, and the like. The
predefined condition may be provided by either the agent
itself or the node to which it was sent. After running the
independent agent 1n step 411, the present node (node 211)
may return to step 4035 and wait or check for the predefined
event associated with that independent agent (or a different
predefined event), or may skip step 405 and continue 1mme-
diately to step 407 and send the independent agent to yet
another node (e.g., back to node 201, or to a new node 221,
231, 241).

While the mvention has been primarily described as an
unbounded computer space, in an alternative illustrative
embodiment a grid computing architecture can be modified
to allow any person (or machine), even an untrusted person
(or machine), to introduce programs into the computing
space. Each node 1n the grid computing architecture can use
CLR code access security, or any similar security model, to
sately execute software, including software submitted by an
untrusted party.

Using any of the above-described models, e.g., the
unbounded computing space or modified grid computing
architecture, work can be performed in a distributed manner
without using a central server to coordinate each task. For
example, when a user or program determines that a primary
task could be performed more quickly if the primary task
were distributed among multiple computers, the user (or
program) may create an independent agent that, when intro-
duced at a node, coordinates the performance of the task
across one or more systems in the entire computing space
(e.g., by sending independent agents containing sub-tasks to
other nodes). That 1s, the unbounded computing space acts
as a ‘“‘supercomputer’ by treating each node 1n the
unbounded computing space as a processor, and allowing
users to submit programs that can run independent but
coordinated tasks on several of the nodes. Any user (even
untrusted users) can submit programs for execution on the
supercomputer, €.g., programs that get more accurate or
more detailed with more processors. For example, a user
may submit an independent agent that models tratlic, and
cach node computer behaves like an automobile. Adding
more nodes to the unbounded computing space allows the
agent to model a larger road as a result of having more “cars”
to work with.

In an 1illustrative embodiment, a primary independent
agent ntroduced in a coordinating node may generate
derivative independent agents that, when sent to other nodes,
cach performs a sub-task of the primary task, or each equally
interact to accomplish a joint task. The original independent
agent or the dervative independent agents may be pro-
grammed to check for predetermined criteria prior to send-
ing one of the derivative independent agents to another node.
For example, an agent may check to determine that the other
node’s processor utilization level 1s below a predetermined
threshold to ensure that the derivative agent will not inter-
tere with other programs executing on the other node, or an
agent may check to verily that the other node has a specific
resource that 1s required 1n order to complete the sub-task.

10

15

20

25

30

35

40

45

50

55

60

65

10

Thus, any node in the unbounded computing space (or
modified grid computing architecture) can dynamically act
as a coordinator for a given task performed or distributed
across the system, without requiring that the coordinating
node has any special central authority or privileges, because
cach node 1n the system ensures that agent programs do not
perform malicious behavior as defined by each node’s
security policy. Fach node that performs the task (or a
portion of the task) may send results back to the coordinating
node, as specified by the derivative independent agent(s)
sent to the other nodes.

While the mvention has been described with respect to
specific examples including presently preferred modes of
carrying out the invention, those skilled in the art will
appreciate that there are numerous variations and permuta-
tions of the above described systems and techniques that fall
within the spirit and scope of the invention as set forth 1n the
appended claims.

We claim:
1. A distributed computing architecture, comprising;:

a plurality of node modules 1n which agent programs can
run, each node module comprising:
security module using code access security to execute
an agent program 1 a sandboxed environment
regardless of an 1dentity of a source of a source of the
agent program;

a discovery module that detects other node modules
within the distributed computing architecture; and
an mteraction module through which each node module

communicates with other node modules,

wherein each node module 1s capable of introducing the

agent program that can be sent to one or more other
node modules, via the interaction module, and run in
the one or more other node modules.

2. The distributed computing architecture of claim 1,
wherein a discovery module of a first node communicates
with a server that maintains a database of active node
modules.

3. The distributed computing architecture of claim 1,
wherein a discovery module of a first node broadcasts an
undirected request over a network to detect other active node
modules.

4. The distributed computing architecture of claim 1,

wherein each node module executes 1n a managed code
environment.

5. The distributed computing architecture of claim 4,
wherein the managed code environment comprises Common
Language Runtime.

6. The distrnbuted computing architecture of claim 4,
wherein the managed code environment comprises a Java
virtual machine.

7. The distributed computing architecture of claim 1,
wherein each interaction module communicates with other

node modules using HI'TP messages.

8. The distributed computing architecture of claim 1,
wherein each interaction module communicates with other

node modules using TCP messages.

9. The distributed computing architecture of claim 1,
wherein each node module defines virtual terrain, and each
agent program defines a virtual terrain inhabitant.

10. The distributed computing architecture of claim 1,
wherein the agent program coordinates a distributed task
across the plurality of code modules.

11. A method for executing a program on a computer
system, comprising:

US 7,043,522 B2

11

(a) introducing an agent program into a first node of a
plurality of nodes, wherein each node provides a secure
environment 1 which the agent program can run;

(b) detecting a second node of the plurality of nodes;

(¢) sending the agent program to the second node, wherein 5
the first node retains no expectation of a return of the
agent program to the first node; and

(d) executing the agent program in the secure environ-
ment of the second node, wherein each secure envi-
ronment comprises a security module using code access 10
security to execute the agent program in a sandboxed
environment regardless of an 1dentity of a source of the
agent program.

12. The method of claim 11, wherein step (b) comprises:

(1) sending to a server a node list request; and 15

(1) receiving from the server a list of active nodes.

13. The method of claim 11, wherein step (b) comprises
broadcasting an undirected request over a network.

14. The method of claim 11, wherein step (¢) comprises
sending an HT'TP message to the second node. 20
15. The method of claim 14, wherein 1n step (¢) the HT'TP

message comprises POST data.

16. The method of claim 11, wherein step (¢) comprises
sending an XML message to the second node.

17. The method of claim 11, wherein step (d) comprises 25
performing a diagnostic service on a local computer system.

18. The method of claim 17, wherein step (d) comprises:

(1) detecting an amount of available space 1n a storage
device;

(1) when the detected amount of available space 1s below 30
a predetermined level, deleting unnecessary files meet-
ing predefined criteria.

19. The method of claim 17, wherein step (d) comprises:

(1) detecting a level of file fragmentation 1n a storage
device; 35

(1) when the detected level of file fragmentation 1s above
a predetermined level, mitiating a defragmentation
procedure on the storage device.

20. The method of claim 11, wherein further comprising
the step of executing the agent program 1n the first node, 40
wherein the agent program coordinates a distributed task
across at least the first and second nodes.

21. In a computing architecture comprising a plurality of
nodes that are capable of executing agent programs, and
wherein each node comprises a security module using code 45
access security to execute agent programs in a sandbox
environment, a detection module that detects other nodes in
the computing architecture, and an interaction module that
communicates with other nodes 1n the computing architec-
ture, a method for distributing agent programs, comprising: 50

(a) introducing a first agent program by a {irst node of the
plurality of nodes;

(b) according to a predetermined algorithm, determining
a second node to which the first agent program should
be sent; 55

(c) sending the first agent program to the second node,
without retaining an expectation of a return of the first
agent program to the first node of the plurality of nodes;

12

(d) introducing a second agent program by a third node of
the plurality of nodes;

(¢) according to the predetermined algorithm, determining
a fourth node to which the second agent program
should be sent; and

(1) sending the second agent program to the fourth node,
without retaining an expectation of a return of the
second agent program to the third node of the plurality
of nodes.

22. The method of claim 21, wherein the predetermined
algorithm comprises selecting a fourth node to which the
agent program has not yet been sent.

23. The method of claim 21, wherein the predetermined
algorithms comprises randomly selecting a fourth node.

24. A computer architecture comprising a first plurality of
computing nodes, wherein any node within the first plurality
of computing nodes 1s capable of introducing a program
agent and sending the program agent to any other node
within the first plurality of computing nodes, where the
program agent subsequently runs i a sandboxed environ-
ment using code access security, wherein the sending node
does not retain an expectation of a return of the program
agent.

25. The computer architecture of claim 24, wherein the
computer architecture consists of the first plurality of nodes.

26. The computer architecture of claim 24, further com-
prising a second plurality of computing nodes, wherein any
node within the second plurality of computing nodes 1s
capable of mtroducing a second program agent and sending
the second program agent to any other node within the
second plurality of computing nodes, where the second
program agent subsequently runs.

27. A method for performing a task across a distributed

computer system, comprising:

(a) introducing an agent program into a first node of a
plurality of nodes, wherein each of the plurality of
nodes provides a secure sandboxed environment in
which the agent program can run and 1s capable of
receiving the agent program;

(b) dividing a task defined by the agent program into a
plurality of sub-tasks;

(c) creating a plurality of derivative agent programs,
wherein each derivative agent program 1s based on one
sub-task of the plurality of sub-tasks; and

(d) sending each of the plurality of derivative agent
programs to different nodes of the plurality of nodes.

28. The method of claam 27, wherein a selection of the
different nodes 1s based on predetermined critena.

29. The method of claim 28, wherein the predetermined
criteria comprises a processor utilization level below a
predetermined threshold.

30. The method of claim 28, wherein the predetermined
criteria comprises a predetermined resource.

	Front Page
	Drawings
	Specification
	Claims

