United States Patent

US007036116B2

(12) (10) Patent No.: US 7,036,116 B2
Haber et al. 45) Date of Patent: Apr. 25, 2006
(54) PERCOLATING HOT FUNCTION 6,070,009 A * 5/2000 Dean et al. ................. 717/130
STORE/RESTORES TO COLDER CALLING 6,072,952 A * 6/2000 Janakiraman ............... 717/155
FUNCTIONS 6,128,775 A * 10/2000 Chow et al. ................ 717/156
6,175,957 B1* 1/2001 Juetal. .................... 717/156
(75) IIlVBIltOfSZ Gad Haberj NeSher (IL),, MOShe 6,324,683 B: 11/2001 Fllh etal. ..ooovviiiinai.l. 717/124
Klausner, Rramat Yishai (IL); Vadim 6,539,543 Bl 3/2003 Guilens et al. ............. 717/161
_ ’ : ’ 6,588,009 B1* 7/2003 Guiflens et al. ............. 717/161
Eisenberg, Haifa (IL) 6,826,748 B1* 11/2004 Hohensee et al. ......... 717/130
_ _ _ _ 2002/0066090 Al1* 5/2002 Babaian et al. ............. 717/156
(73) Assignee: International Business Machines 2002/0112228 Al* 82002 Granston et al. ........... 717/155
Corporation, Armonk, NY (US)
OTHER PUBLICATIONS
(*) Notice: SUbJeCt_ 10 any cills(c::llalme;{ the ?rm;f th;;’ T. Ball et al., Optimally Profiling and Tracing Programs, Jul.
%atsel(ljt 1;’ SZXlt:)enbe 8 :? ; 3 justed under 1994, ACM Transactions on Programming Languages and
S.C. 154(b) by 639 days. Systems, vol. 16, No. 4, pp. 1319-1360.*
_ R.J. Hall, Call Path Profiling, May 1992, ACM 0-89791-
(21) Appl. No.: 10/097,063 504-6, pp. 296-306.*
: Robert Cohn et al, “Spike: An optimizer for Alpha/NT
22) Filed: Mar. 14, 2002 P P b
(22) file - Executables™ Pubhshed in the Proceedings of the USENIX
(65) Prior Publication Data Windows NT Workshop, Seattle, Washington, Aug. 11-13,
19977 Jonline| [Retrieved on Oct. 25, 2000]. Retrieved from
US 2004/0015927 Al Jan. 22, 2004 the internet <URL.: http//www.usenix.org/publications/
utl__papers/cohn/cohn__html/cohn.html>.
Related U.S. Application Data
(60) Provisional application No. 60/278,487, filed on Mar. (Continued)
23, 2001. Primary Examiner—Chameli C. Das
Assistant Examiner—Andre R Fowlkes
(31) Int. CL 74) Attorney, Agent, or Firm—Browdy and Neimark,
v, Ag Y
GO6l 9/45 (2006.01) PI1.C
(52) US.CL ...l 717/151; 717/158; 717/159
(58) Field of Classification Search ......... 717/136-167 (37) ABSTRACT
See application file for complete search history.
(56) References Cited A method for post-link code optimization by identifying

U.S. PATENT DOCUMENTS

cold caller functions of a hot callee function, and percolating
store and restore instructions with respect to non-volatile

5,828,886 A * 10/1998 Hayashi
5,850,553 A * 12/1998 Schlansker et al.
6,029,004 A * 2/2000 Bortnikov et al.

717/1

59
55
58

17/1
17/1

48

FIND HOT FUNCTICN F (—~

|

FIND SET OF NON-VOLATILE

G

¥

FOR EACH FUNCTION H IN COLD (F)

)

USED IN H, OREG (F.H)

56
NO ONF

?
YES

registers from the callee function to the caller function.

60 Claims, 3 Drawing Sheets

REGISTERS USED IN F, REG(F}[ ™

FIND COLD (F), 50
SET OF COLD CALLERS OF F[™

o2

Y

FIND SUBSET OF REG (F} NOT|_ 54

of

FIND UNION OF OREG (F.H) OVER ALL H, OPT (F)

REMOVE STGRE,/RESTBRE OF OPT (F)
FROM PROLOG/EPILOG OF F

B0
-

l

——

FOR EACH FUNCTION H IN COLD (F)

62

.-'_"1,,‘_‘,.-'

I

FROM PROLOG/EPILOG OF F

ADD STORE/RESTORE OF OPT (F) \ REG(H) 64

ADD STORE/RESTORE OF
OPT(F) \ OREG(F.H)
BEFORE/AFTER BACH CALL TO F

NO m 63

YES

<>



US 7,036,116 B2
Page 2

OTHER PUBLICATIONS

Robert Cohn et al, “Optimizing Alpha Executables on Win-
dows N'T with Spike”, Digital Technical Journal, vol. 9, No.
4, pp. 3-20, 1997.

Robert Cohn et al, “Hot Cold Optimization of Large Win-
dows/NT Applications™ Published in Proceedings of Micro
29, Dec. 2, 1996 Research Triangle Park, North California.
Milo Martin, et al “Exploiting Dead Value Information”,
Published in Proceedings of Micro-30, Dec. 1-3, 1997,
Research Triangle Park, North Califormia, pp. 1-11.

Gadi Haber et al, “Reliable Post-link Optimizations Based
on Partial Information”, Proceedings of Feedback Directed
and Dynamic Optimizations Workshop 3, Dec. 2000,
Monterey, California, pp. 91-100.

Ealan Henis et al, “Feedback Based Post-link Optimization
for Large Subsystems”, Second Workshop on Feedback

Directed Optimization, Nov. 1999, Haifa, Israel, pp. 13-20.
W.J. Schmidt et al, “Profile-directed Restructuring of Oper-

ating System Code”, IBM Systems Journal, vol. 37, No. 2,

1998, pp. 270-297.

Robert Muth et al “Alto: A Link-Time Optimizer for the
Compaq Alpha” [online] Nov. 2, 1999. Retrieved from
Internet <http://www.cs.Arizona.edu/alto>.

U.S. Appl. No. 60/278,487, entitled “A Method For Opti-
mizing Post-Link Code By Eliminating Store/Restore
Instructions Of Non-Volatile Registers In Functions Prologs/
Epilogs Using Non-Used Volatile Registers”, filed Mar. 23,
2001.

U.S. Appl. No. 09/798,897, entitled “Optimizing Post-Link
Code”, filed Mar. 2, 2001.

* cited by examiner



U.S. Patent Apr. 25, 2006 Sheet 1 of 3 US 7,036,116 B2

FIG. 1

SOURCE

B




U.S. Patent Apr. 25, 2006 Sheet 2 of 3 US 7,036,116 B2

FIG. 2

DISASSEMBLE 32
POST-LINK CODE

PROFILE

INSTRUMENTATE

EXECUTE v

SAVE RESULTS 3
ANALYZE PROFILE
RESULTS

J0

34




U.S. Patent Apr. 25, 2006 Sheet 3 of 3 US 7,036,116 B2

C1G. 3 FIND HOT FUNCTION F }\/

FIND SET OF NON-VOLATILE | 48
REGISTERS USED IN F, REG(F)[

46

FIND COLD (F), 50
SET OF COLD CALLERS OF F|

FOR EACH FUNCTION H IN COLD (F) 9

FIND SUBSET OF REG (F) NOT 4
| USED IN H, OREG (F,H)

\ NO 56

YES  eg
FIND UNION OF OREG (F,H) OVER ALL H, OPT (F) [

44

REMOVE STORE/RESTORE OF OPT (F)| 60
' FROM PROLOG/EPILOG OF F -

—— FOR EACH FUNCTION  IN COLD (F) e

|ADD STORE/RESTORE OF OPT (F) \ REG(H) | %4
FROM PROLOG/EPILOG OF F

ADD STORE/RESTORE OF 66
OPT(F) \ OREG(F,H) 1\/
BEFORE/AFTER EACH CALL TO F

NO W 68

YES




Us 7,036,116 B2

1

PERCOLATING HOT FUNCTION
STORE/RESTORES TO COLDER CALLING
FUNCTIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application No. 60/278,487, filed Mar. 23, 2001. It 1s
also related to co-pending U.S. patent application Ser. No.
09/798,879, filed Mar. 2, 2001, and to a U.S. patent appli-
cation entitled, “Fliminating Cold Register Store/Restores
Within Hot Function Prolog/Epilogs,” and another U.S.
patent application enfitled “Eliminating Store/Restores
within Hot Function Prolog/Epilogs using Volatile Regis-
ters,” both filed on even date. All of these applications are
assigned to the assignee of the present patent application,
and their disclosures are incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates generally to optimization of
computer code to achieve faster execution, and specifically

to optimizing object code following compilation and linking,
ol the code.

BACKGROUND OF THE INVENTION

Post-link code optimizers generally perform global analy-
s1s on the entire executable code, including statically-linked
library code. Since the executable code will not be re-
compiled or re-linked, the post-ink optimizer need not
preserve compiler and linker conventions. It can thus per-
form aggressive optimizations across compilation units, 1n
ways that are not available to optimizing compilers. Addi-
tionally, a post-link optimizer does not require the source
code to enable its optimizations, allowing optimization of
legacy code and libraries where no source code 1s available.

At the same time, post-link optimizers must deal with
difficulties that are not encountered in compile-time optimi-
zation. Optimizing compilers operate on input 1n the form of
high-level language description, typically source code,
whose semantics are clearly defined. By contrast, static
post-link optimization tools receive as their input low-level
executable instructions (object code). The post-link opti-
mizer must first attempt to disassemble the object code in
order to 1dentity the data and instructions contained 1n the
code. Even after disassembly, the semantics of executable
code given to a post-link optimizer may be only partially
known, for the following reasons:

Code nstructions and data within an executable object are
intermingled, making 1t impossible 1n some cases to
distinguish between the two. Typically, there are code
arcas that cannot be classified unequivocally by the
optimizer as either data or code instructions. In the
context of the present patent application, these areas are
referred to as “non-classified code areas.”

Even for fully-classified code areas that are known to
contain code instructions, the semantics of the program
cannot always be determined. Machine instructions
operate on registers, which may contain either data
information or memory locations. Therefore, the opti-
mizer may be uncertain as to whether a given nstruc-
tion performs a pure data computation, or whether 1t
calculates an address to be used later in the program to
retrieve/store data or to perform a control transfer
within the program code.

Data elements and their types, such as arrays, structures or

scalars, can be 1dentified only 1n a high-level language,

10

15

20

25

30

35

40

45

50

55

60

65

2

such as C, C++, Pascal, etc. In post-link code, these
clements appear as arbitrary data areas, and references
to them are treated as arbitrary addresses. Therefore, at
the post-link level, references to data elements cannot

be fully resolved.

Because of these factors, the code semantics of the program
may never be fully extracted from post-link code, and some
of the dependencies between the data and code elements
used by the program may remain uncertain.

Haber et al. describe an approach for dealing with these
difficulties 1n an article entitled, “Reliable Post-Link Opti-
mizations Based on Partial Information,” in Proceedings of
Feedback Dirvected and Dynamic Optimizations Workshop 3
(Monterey, Calif., December, 2000), pages 91-100, which 1s
incorporated herein by reference. First, the program to be
optimized 1s disassembled into basic blocks, by incremen-
tally following all control flow paths that can be resolved in
the program. The basic blocks are marked as either code,
data or unclassified (not fully analyzed). Code blocks are
turther flagged according to their control flow properties.
Partially analyzed areas of the program are delimited so as
to contain the unclassified blocks, while relieving the rest of
the program of the limitations that these blocks impose on
optimization. The partially analyzed areas are chosen so that
even when they cannot be internally optimized, they can still
be repositioned safely en bloc to allow reordering and
optimization of the code as a whole.

Use of post-link runtime profiling as a tool for optimiza-
tion and restructuring 1s described by Henis et al., in
“Feedback Based Post-Link Optimization for Large Sub-
systems,” Second Workshop on Feedback Directed Optimi-
zation (Haila, Israel, November, 1999), pages 13—20; and by
Schmidt et al., 1n “Profile-Directed Restructuring of Oper-
ating System Code,” IBM Systems Journal 37:2 (1998),
pages 270-297. These publications are incorporated herein
by reference.

Runtime profiling of the program creates a log recording,
usage statistics of each code block 1n two stages. First, in an
instrumentation stage, each basic block 1s modified with
either a new header or footer, wherein the added code
increments a counter every time that basic block 1s run. In
the second stage (the execution stage), the modified program
1s executed. At the end of the execution, the counters are
written 1nto a log file. Statistical analysis of the frequency of
use of each basic block provides a method to rank the code
blocks by importance. Code blocks that are frequently
executed are called “hot” blocks, as opposed to rarely
executed “cold” blocks.

When a function using certain registers 1s called during
execution of a program, it 1s generally necessary to store
(save to memory) the contents of these registers before the
function starts to run, and then to restore the register
contents when the function returns. For this purpose, com-
pilers typically add appropriate store instructions to a prolog
of the function 1n the compiled code, with corresponding
restore 1nstructions 1n an epilog. Because memory access
has become a bottleneck for modern high-speed processors,
climinating superfluous store and restore operations can
reduce program execution time substantially.

Martin et al. describe a method of compiler optimization

based on eliminating storing and restoring the contents of
dead registers 1n

Exploiting Dead Value Information,”
published in Proceedings of Micro-30 (Research Triangle
Park, N.C., 1997), which i1s incorporated herein by refer-
ence. Dead value information, providing assertions as to
future use of registers, 1s calculated at compile time. The
authors suggest that processor instruction set architectures
be extended to enable this information to be communicated
to the processor. In the absence of this hardware specializa-



Us 7,036,116 B2

3

tion, standard RISC call conventions may still allow a subset
of the dead value information to be inferred and used by the
processor 1n climinating some of the store and restore
operations at procedure calls and returns.

Cohn and Lowney describe a method of post-link opti-
mization based on 1dentitying frequently executed (hot) and

infrequently executed (cold) blocks of code in functions 1n
“Hot Cold Optimizations of Large Windows/NT Applica-
tions,” published 1n Proceedings of Micro 29 (Research
Triangle Park, N.C., 1996) which 1s incorporated herein by
reference. The object code 1s disassembled into component
code blocks, and the control flow graph (CFG) of the tlow
of control through the program 1s constructed. Code blocks
are classified mnto code (instructions) and data. The code
sections are further classified into functions. Using profile
information, the functions are analyzed to find code blocks
that are rarely executed. By experimentation, the authors
chose to optimize functions containing blocks with less the
1% probability of execution. The code blocks 1n such
functions that are on the primary path of execution are
labeled “hot,” and the rarely executed code blocks are
labeled *“cold.” All hot blocks of code 1n the hot function are
copied to a new location. All calls to the function are
redirected to the new location. Flow paths in the hot routine
that target cold code blocks are redirected to the appropriate
location 1n the original function. Once the control path
returns to the original function, it does not pass back to the
copied function.

The new function 1s then optimized at the expense of
paths of execution that pass through the cold path. The
optimization comprises identifying unneeded code in the
new hot function, and moving 1t to a stub that 1s called when
the cold portion of the function 1s mvoked, before actually
returning to the original function. Cohn and Lowney
describe five diflerent types of optimization of the hot code:

Partial dead code elimination—the removal of dead code
from the hot function. Once the cold code 1s removed
from the hot function, some of the remaining instruc-
tions may be superfluous. An example of such an
instruction 1s an add instruction that writes to a register
that 1s only referenced within the cold code but is
positioned within the hot block. The dead code 1s
moved to the stub.

Non-volatile register elimination—the removal of the
save and restore of non-volatile registers in the hot
procedure. Non-volatile registers must be stored (re-
stored) 1n the function prolog (epilog). Once dead code
1s removed from the hot function, the use of the
non-volatile registers 1n the hot function 1s analyzed. IT
the registers are only referenced 1n the cold code, the
store (restore) mstructions are removed from the prolog
(epilog) of the hot function, and the store instructions
are moved to the stub. Since the cold code 1s followed
by the original function epilog, the original restore
instructions will restore the registers.

Stack pointer adjust elimination—the removal of the stack
adjusts 1n the hot function. If all the non-volatile store
istructions can be removed from the function prolog,
the stack pointer adjustment (on computer architectures
that require stack adjusts) can also be moved to the
stub.

Peephole optimization—the removal of self-assignments
and conditional branches with an always-false condi-
tion. Once the dead code 1s removed and excess non-
volatile registers are freed, an additional pass through
the code can 1dentily instructions that are now irrel-
evant. An example of such an instruction 1s a restore

10

15

20

25

30

35

40

45

50

55

60

65

4

instruction of a removed register that was turned nto a
self-assignment by copy propagation.

Inlining the hot function—the removal of control transfer
to the hot function. Code straightening can be applied
to the optimized code to inline the hot function.

Cohn and Lowney have implemented their methods of
optimization in a tool named “Spike,” which 1s used to
optimize executables for the Windows NT™ operating
system running on Alpha™ processors. Their method of
classiiying blocks as hot or cold requires a complete under-
standing of the CFG. It cannot be used 11 unclassified blocks
appear 1n the control flow of the hot function. The method
of eliminating non-volatile registers also requires that there
be no references to the non-volatile register left in the
function after removal of dead code. Additionally, the
method of elimination of non-volatile registers requires
duplication of the hot code to a new location.

Muth et al. describe the link-time optimizer tool “alto” 1n
“alto: A Link-Time Optimizer for the Compaq Alpha,”
published 1 Software Practice and Experience 31 (January
2001), pages 67-101, which 1s incorporated herein by ret-
crence. Alto exploits the information available at link time,
such as content of library functions, addresses of library
variables, and overall code layout, to optimize the execut-
able code after compilation. Alto can i1dentily control paths
where stores (restores) of non-volatile registers in function
prologs (epilogs) are unnecessary, either because the regis-
ters are not touched along all execution paths through a
function, or because the code that used those registers
became unreachable. Code can become unreachable due to
other optimizations carried out by alto, for instance because
the outcome of a conditional branch could be predicted as a
result of interprocedural constant propagation. The number
of such stores (restores) can be reduced by moving them
away from execution paths that do not need them.

Alto 1s similar to Spike 1n that 1ts optimizations require a
complete understanding of the control tlow within the func-
tion. The store (restore) replacements are only carried out
alter other optimization techniques have created dead code

within the function.

SUMMARY OF THE INVENTION

Preferred embodiments of the present invention provide
generalized methods for post-link reduction of store and
restore mstructions 1n function prologs and epilogs based on
run-time profiler feedback information, 1n order to optimize
program execution. The methods of the present invention
cnable global program optimization, since they treat the
entire executable code as a unified whole, unlike compiler
optimizations, which are generally limited to the scope of
the compilation unit.

Furthermore, while optimizing compilers are bound by
linkage conventions, the post-link optimizer can ignore
these conventions and remove unnecessary store and restore
instructions. The methods of the present invention can thus
be used to eliminate unneeded memory operations more
thoroughly than 1s possible when only compile-time tools
are used. These methods can be used for code optimization
even when the source code 1s unavailable for compile-time
optimizations, as may be the case when legacy object code
or statically-linked object code libraries are incorporated 1n
the executable. In addition, the methods of the present
invention can be used even when the control flow within the
program 1s only partially understood.

In preferred embodiments of the present mvention, a
post-link optimizer disassembles post-link object code n



Us 7,036,116 B2

S

order to i1dentity basic blocks of code 1n the executable file.
It 1s not necessary to analyze the entire control tlow graphs
of the functions, as 1n optimization methods known in the
art, but only to determine their constituent instructions.
Basic blocks are identified as functions, code within func-
tions, and data. The functions typically have a prolog and an
epilog, containing store and restore structions with respect
to registers used by the function. These registers are referred

to herein as non-volatile registers. Preferably, run-time pro-
filing, as 1s known 1n the art, 1s used to 1dentily functions that
are frequently called by other, less frequently-invoked tunc-
tions. The frequently-called functions are herein referred to
as callee functions, relative to the less frequently-called
caller functions.

The optimizer locates unused registers in a fully-disas-
sembled caller function that are stored (restored) in the
callee function prolog (epilog). The optimizer then modifies
the post-link code so as to remove the store (restore)
instructions from the callee function prolog (epilog) and
instead, add corresponding store/restore instructions 1n the
caller prolog (epilog). In the context of the present patent
application and in the claims, this sort of modification 1s
referred to as “percolating” the store (restore) instructions
from the callee to the caller.

If unused registers exist in the caller function, but the
unused registers do not match registers stored/restored in the
callee prolog/epilog, the optimizer preferably renames reg-
isters used in the caller or 1n the callee function so as to
enable the optimization.

The optimized callee function utilized by the caller func-
tion 1s preferably appended to the end of the original
post-link code, and the call mstruction i1s redirected to the
newly-appended function. Although the optimized code 1s
typically longer than the original post-link code, additional
optimization steps as are known 1in the art, such as code
straightening, can be applied to the code thereaiter.

There 1s therefore provided, 1n accordance with a pre-
terred embodiment of the present invention, a method for
code optimization, the method including;

disassembling object code that has been compiled and
linked;

analyzing the disassembled code so as to identily a callee
function 1n the code, the callee function including store and
restore 1nstructions with respect to a non-volatile register,

and further to 1dentify 1n the code a call instruction to the
callee function located 1nside a caller function; and

moditying the code so as to move at least one of the store
and restore instructions with respect to the non-volatile
register from the callee function to the caller function.

Preferably, moditying the code includes moving the at
least one of the store and restore instructions after deter-
mimng that the non-volatile register 1s not used 1n the caller
function.

In another preferred embodiment, modifying the code
includes locating an unused register 1in the caller function,
and modifying the caller function to reference the unused
register mstead of the non-volatile register.

In yet another preferred embodiment, modifying the code
includes:

creating a copy of the callee function;

removing the at least one of the store and restore nstruc-
tions from the copy; and

modifying the call instruction to reference the copy
instead of the callee function.

10

15

20

25

30

35

40

45

50

55

60

65

6

Preferably, the object code includes a fixed sequence of
code 1nstructions ending with a last instruction, and creating
the copy includes adding a copy of the callee function after
the last instruction.

Additionally preferably, analyzing the disassembled code
includes identifying call instructions to the callee function
located 1n a plurality of caller functions, and modifying the
code includes selecting at least one of the plurality of caller
functions to modity.

Preferably, modifying the code includes moving the at
least one of the store and restore instructions after deter-
mining that the non-volatile register 1s not used in the at least
one of the plurality of caller functions that 1s selected.

Preferably, modifying the code includes, for each one of
the plurality of caller functions, finding any use of the
non-volatile register 1n the one of the plurality of caller
functions, and inserting a store instruction before the call
instruction and a restore nstruction after the call instruction
in the one of the plurality of caller functions.

Preferably, modifying the code includes, 11 the use 1s not
found, adding the at least one of the store and restore
instructions to the one of the plurality of caller functions.

In another preferred embodiment, the callee function has
an original name, and moditying the code includes:

removing the at least one of the store and restore mnstruc-
tions from the callee function;

renaming the callee function with a new name; and

creating an added function with the original name of the
callee function, the added function including the at least one
ol the store and restore instructions removed from the callee
function and a call to the callee function using the new name.

Preferably, the object code includes a fixed sequence of
code 1nstructions ending with a last instruction, and creating
the added function includes inserting the added function
aiter the last instruction.

Additionally preferably, analyzing the disassembled code
includes identifying call instructions to the callee function
located 1n a plurality of caller functions, and moditying the
code includes selecting at least one of the plurality of caller
functions to modify.

Preferably, moditying the code includes moving the at
least one of the store and restore instructions after deter-
mining that the non-volatile register 1s not used 1n the at least
one of the plurality of caller functions that 1s selected.

Preferably, moditying the code includes, for each one of
the plurality of caller functions, finding any use of the at
least one of the non-volatile register in the one of the
plurality of caller functions, and 1nserting a store instruction
betore the call instruction and a restore instruction aifter the
call instruction 1n the one of the plurality of caller functions.

Preferably, modifying the code includes, 11 the use 1s not
found, adding the at least one of the store and restore
instructions to the one of the plurality of caller functions.

Additionally preterably, a function includes a name, and
creating the added function includes renaming the callee
function with a new name, and naming the added function
with the name of the callee function.

In yet another preferred embodiment, modifying the code
includes adding the at least one of the store and restore
instructions to the caller function.

Preferably, the caller function includes a fixed sequence of
code instructions, and modifying the code includes modi-
tying the code without altering the fixed sequence.

Further preferably, adding the at least one of the store and
restore instructions includes replacing an instruction in at
least one of the prolog and epilog of the caller function with
an unconditional branch to a caller function wrapper code,




Us 7,036,116 B2

7

and the caller function wrapper code includes the 1nstruction
so replaced and the at least one of the store and restore
instructions.

In another alternative embodiment, analyzing the disas-

sembled code includes determining a sum of frequencies of 3

executing the call instruction to the callee function within
the caller function, and moditying the code comprises modi-
tying the code conditional upon the sum of the frequencies
of executing the call instruction being greater than of the
sum of the frequencies of execution of call instructions to the
caller function.

In yet another alternative embodiment, modifying the
code 1cludes recompiling the object code.

There 1s additionally provided, in accordance with a
preferred embodiment of the present invention, apparatus
for code optimization, including a code processor, which 1s
arranged to disassemble object code that has been compiled
and linked, to analyze the disassembled code so as to
identify a callee function in the code, the callee function
including store and restore instructions with respect to a
non-volatile register, and further to 1dentity in the code a call
instruction to the callee function located inside a caller
function, and to modily the code so as to move at least one
of the store and restore instructions with respect to the

non-volatile register from the callee function to the caller
function.

There 1s further additionally provided, in accordance with
a preferred embodiment of the present invention, a computer
software product, including a computer-readable medium 1n
which software 1s stored, which software, when read by a
computer, causes the computer to disassemble object code
that has been compiled and linked, to analyze the disas-
sembled code so as to 1dentity a callee function 1n the code,
the callee function including store and restore instructions
with respect to a non-volatile register, and further to identify
in the code a call instruction to the callee function located
inside a caller function, and to modify the code so as to move
at least one of the store and restore instructions with respect

to the non-volatile register from the callee function to the
caller function.

The present mnvention will be more fully understood from
the following detailed description of the preferred embodi-
ments thereol, taken together with the drawings 1n which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram that schematically illustrates a
system for processing computer program code, 1 accor-
dance with a preferred embodiment of the present invention;

FIG. 2 1s a flow chart that schematically illustrates a
method for optimizing post-link code, 1n accordance with a
preferred embodiment of the present invention; and

FIG. 3 1s a flow chart that schematically illustrates a
method for percolating stores/restores from hot function
prolog/epilogs to their cold caller functions, 1n accordance
with a preferred embodiment of the present invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

FIG. 1 1s a block diagram that schematically illustrates a
system 20 for processing computer program code, 1n accor-
dance with a preferred embodiment of the present invention.
System 20 preferably comprises a general-purpose computer
processor, which 1s programmed to carry out the functions
described hereinbelow. The processor performs these func-
tions under the control of software supplied for this purpose.
The software may be downloaded to the processor 1n elec-

10

15

20

25

30

35

40

45

50

55

60

65

8

tronic form, over a network, for example, or 1t may alter-
natively be provided on tangible media, such as CD-ROM.

System 20 typically recerves source code that 1s prepared
by a programmer. A compiler 22 compiles the source code
to generate object code, and a linker 24 links the compiled
code with library code, as 1s known 1n the art. The linked
code 1s fed to a profiler 26, which obtains run-time infor-
mation about the frequency of use of each block of object
code 1n the linked code. The profile information 1s fed to an
optimizer 28, which labels often-run blocks as “hot” and
seldom-run blocks as “cold,” and then analyzes and modifies
the code to eliminate non-volatile register store/restore
instructions located 1n the prolog and epilog of hot functions,
as described 1n detail hereinbelow. The optimized code can
then be executed by a run-time module 30, as 1s likewise
known 1n the art. Although all of functions 22 through 30 are
shown for simplicity as being performed 1n system 20, 1t will
be appreciated that these functions may also be separated
and carried out on different computers. Thus, optimizer 28,
which 1s the element of concern to the present invention,
may receive proiile mformation from another source, out-
side system 20, and may pass the optimized code to yet
another computer for execution.

FIG. 2 1s a flow chart that schematically illustrates a
method for optimizing post-link code, carried out by opti-
mizer 28, 1n accordance with a preferred embodiment of the
present mvention. The post-link code 1s disassembled, at a
disassembly step 32, 1n order to 1dentify the instructions 1n
the code. Any suitable method known in the art can be used
for this purpose. Preferably, an incremental disassembly
method 1s used to dissect the code into its basic blocks, as
described in the above-mentioned articles by Haber et al.
and by Henis et al., for example. For this purpose, addresses
ol instructions within the executable code are extracted from
a variety of sources, 1 order to form a list of “potential entry
points.” The sources typically include program/DLL entry
points, the symbol table (for functions and labels), and
relocation tables (through which pointers to the code can be
accessed). The optimizer traverses the program by following
the control tlow starting from these entry points—while
resolving all possible control flow paths—and adding
newly-discovered addresses of additional potential entry
pomnts to the list, such as targets of JUMP and CALL
instructions.

Following the control flow of the program 1n this manner
covers a large percentage of the code. Basic blocks that are
not directly discoverable by incremental disassembly are
marked as “unclassified code.” These blocks typically con-
sist of code reached via a jump by a target register that 1s
resolved only at runtime. It 1s sometimes possible to classify
these blocks using mstrumentation of the code and dynamic
runtime analysis, as described by Henis et al., but a descrip-
tion of this method 1s beyond the scope of the present patent
application.

At the end of the incremental disassembly process, the
entire code section of the original program 1s dissected into
basic blocks, which are either classified or unclassified. The
classified blocks are marked with flags, which characterize
them as eirther code or data (such as branch table data), and
which identily the control tlow properties of the code blocks,
such as Fallthrough, Continue, Call, Return, Jump, etc. The
Call and Return flags, inter alia, are used to identify func-
tions and function calls 1n the code.

The disassembled code 1s profiled at a code profiling step
34. Profiling begins at an instrumentation step 36, wherein
cach basic block 1s modified so that each time the program
execution passes through the block a counter 1s incremented,




Us 7,036,116 B2

9

as described 1n the above-mentioned article by Henis et al.,
in section 2.3. Additional code 1s added to the beginning of
each basic block, termed instrumentation code. This code
performs a CALL jump to a umiversal stub function. The
universal stub function makes use of the return address
argument passed by the CALL instruction to identily from
which basic block i1t was called. The counter for that basic
block 1s mncremented each time the universal stub 1s called
from within that block during the profiling run. The univer-
sal stub function then returns execution to the calling basic

block.

A second method of mstrumentation, usetul on platforms
where no CALL instruction exists, comprises overriding the
last 1nstruction of each basic block with a JUMP 1instruction
to a designated code area that 1s appended to the end of the
original code section. In that area, the counter associated
with the basic block 1s incremented. The overwritten last
instruction that was taken from the original basic block 1s
executed 1n the appended area, thus maintaining the original
program semantics. Using this method, the original code
section size 1s kept intact, and most of the code 1s unaltered
(except the overwritten last istructions of the basic blocks,
which 1 most cases are control transferring instructions)

The instrumented program 1s run at an execution step 38.
On profiling run termination, the imformation 1s retrieved
from the counters and written to a log file at a save results
step 40. At a profiling analysis step 42, the basic blocks are
classified by the frequency of use. Frequently used blocks
are labeled “hot,” and rarely used blocks are labeled *“cold.”
Correspondingly, hot (cold) functions are functions that are
called frequently (rarely). The optimizer uses the dissembled
code and the profile information at a optimization step 44 to
percolate store/restore mstructions from a hot function’s
prolog/epilog to the hot function’s cold caller function, as
described hereinbelow.

FIG. 3 1s a flow chart that schematically illustrates a
preferred method for optimizing post-link code by percolat-
ing stores/restores from hot function prolog/epilogs to their
cold callers, carried out by the optimizer 1n optimization step
44, 1n accordance with a preferred embodiment of the
present invention. In the context of the present patent
application, the following definitions and notations are used
to describe the preferred method of optimization:

Non-volatile register—a register Rx 1s considered to be

non-volatile 1n some function 1 1f the value 1 Rx 1s
saved 1n the prolog of 1 and then restored back in the
epilog of 1. Therefore, a function that calls 1 can assume
that the value 1in Rx prior to the call 1s not affected by
invoking T,

Hot function—a function 1s considered to be hot when 1t

1s frequently mvoked, as determined in analysis step

40.

Cold caller function—a function h 1s considered to be a
cold caller of hot function 1 1f h calls f and h 1s colder,
even by one, than the call instruction that invokes f.
This means that the sum of frequencies of executing the
call instruction to 1 within h 1s greater than of the sum
of the frequencies of execution of call instructions to h
itsellf.

Fully disassembled function—a function 1s considered to
be fully disassembled 1f all i1ts constituent instructions
are known.

Optimizable Function—a function 1 1s considered opti-
mizable when the following criteria are met:

1. T has a cold caller function h.
2. T and h are fully disassembled.

3. There exists a non-volatile register Rx that 1s used 1n
f, but not used 1n h.

10

15

20

25

30

35

40

45

50

55

60

65

10

The optimizer locates a hot function at a finding step 46.
For each hot function 1, the optimizer locates REG(1)—the
set of all non-volatile registers used in f—at a register
finding step 48, and COLD({)—the set of cold caller tunc-
tions of —at a caller finding step 50. COLD() includes all
functions that are mnvoked less frequently than 1, even by one
invocation. The optimizer then loops through each function
h 1n COLD() at a COLD(1) loop step 52. For each cold
caller function h in COLD(), the optimizer finds a subset
OREG(1,h) of the registers in REG(T) that are unused 1n h,
at an OREG(1,h) finding step 54. The loop continues until all
the functions h have been processed, at a done step 56.

At OREG(1,h) finding step 54, the optimizer locates all
unused registers 1n h that are members of REG(T). Prefer-
ably, the optimizer tries to enlarge OREG(1,h) by pairing
cach register Rm that 1s used 1n h and 1s a member of REG(1)
with a register Rn that 1s unused 1n h and 1s not a member
of REG(1). When such a pairing exists, the optimizer then
renames each reference to Rm 1n h with a reference to Ra.

As a consequence, Rm 1s now unused 1n h, and the optimizer
can include Rm 1n OREG(1,h).

The set of registers OPT(1) which 1s the union of all
registers in OREG(1,h) over all possible h 1s found by the
optimizer at a union step 38. If OPT(1) 1s non-empty, the
optimizer removes the store/restore instructions from the
prolog/epilog of 1 at a store/restore removal step 60. Prei-
crably, the optimizer copies the instructions in 1 to a new
location, and names the relocated tunction 1_opt. The opti-
mizer then removes the store/restore instructions referring to
all registers in OPT(1) from 1_opt.

The optimizer again loops over all COLD(1) at a second
COLD(T) loop step 62. The optimizer adds the store/restore
istructions removed from I _opt to each function h 1n
COLD(1oo0), at a store/restore add step 64. Preferably, the
optimizer uses a wrapper code to add the instructions to the
prolog and epilog of function h. In the prolog of function h,
let addr_pro be the address of an existing store instruction
for some non-volatile register Rx, and let addr_pro_next be
the address of the mstruction following addr_pro. The
optimizer replaces the instruction at addr_pro with a branch
to a wrapper code comprising the store instruction for Rx,
additional 1nstructions to store each of the registers 1n
OREG(1.,h), and a branch to addr_pro_next. In the epilog of
function h, let addr_epi be the address of the existing restore
instruction for non-volatile register Rx, and let addr_ep1_n-
ext be the address of the 1nstruction following addr_ep1. The
optimizer replaces the mstruction at addr_ep1 with a branch
to a wrapper code comprising the restore 1struction for Rx,
additional 1nstructions to restore each of the registers 1n
OREG(1,h), and a branch to addr_epi_next.

At each call to function 1 1n function h, the optimizer adds
store/restore instructions for the set of registers i OPT(1)
that are not 1n OREG(1,h) at a store/restore add step 66.
Preferably, the optimizer replaces each instruction that calls
function 1 with a branch to a wrapper code comprising a
store 1nstruction for each register in OPT(1) that 1s not 1n
OREG(1,h), a call mstruction to 1_opt, a restore 1nstruction
for each register in OPT (1) that 1s not in OREG(1,h), and a
branch back to the address following the original call to
function 1. The optimizer loops through all the functions h
until all of them have been processed, at a done step 68.

Table I below lists sample disassembled post-link code of
a hot function bar and of two cold functions foo and gal that
call bar. For the sake of this example, bar 1s characterized by:
REG (bar)={R29, R30, R31}

OLD(bar)={foo, gal}
OREG (bar,foo)={R29}




Us 7,036,116 B2

11

OREG (bar,gal)={R29,R30}
OPT (bar)=OREG (bar,foo) U OREG (bar,gal)={R29,

R30)

The left column 1n the table below shows the post-link

code before optimization, while the right column shows the °
code after optimization. Hot code 1s shown in boldface,
while cold code 1s shown 1n regular type.

TABLE 1

CODE COMPARISON

Before optimization
Program begin

Function foo:
Prolog:

store R30
FOQO1: store R31

FOO2:
body:

L.1: call bar
L.2:
Epilog:

FOQO3: restore R30
FOO4: restore R31

return

Function gal:
Prolog:

(GAL1l: store R31
GAL2:
body:

L.3: call bar
L.4:
Epilog:

(GAL3: restore R31
GAL4:
return

Function bar:

Prolog:
store R29
store R30
store R31

Epilog:
restore R29
restore R30
restore R31

return

program end

/* foo’s call to bar®/

After optimization
Program begin

Function foo:
Prolog:

store R30
FOO1l: branch W3

FOO?2;:
body:

L.1: branch W1
1.2:
Epilog:

FOO3: branch W4
FOO4: restore R31

return

Function gal:
Prolog:

GALl: branch W5
GAL2:
body:

L.3: branch W2
1L.4:
Epilog:

GAL3: branch W6

GAL4: ...
return

Function bar:

Prolog:
store R29
store R30
store R31
Epilog:

restore R29
restore R30
restore R31
return

Function bar__opt:

Prolog:
:st.u.re R31
Epilog:
.l‘f.!!S.tﬂl“E R31
return
WI: :st.ﬂ.re R30

call bar_ opt

10

15

20

25

30

35

40

45

50

55

60

65

12

TABLE I-continued

CODE COMPARISON

Before optimization After optimization
restore R30
branch L2

/* gal’s call to bar */ W2: call bar_ opt
branch L4

/* percolated to W3: store R29

foo’s prolog */ branch FOO?2

/* percolated to W4 restore R29

foo’s epilog */ branch FOO4

/* percolated to W3: store R29

to gal’s prolog */ store R30
branch GAL?2

/* percolated to WO6: restore R29

to gal’s epilog */ restore R30
branch GAL4

program end

The optimizer has added wrapper code W3 to the prolog
of foo. Wrapper code W3 includes store instructions for each
of OREG(bar,foo)={R30}, along with the original store
instruction that was replaced by the branch to the wrapper
code, store R31. Wrapper W4, added to the epilog of foo,
includes a restore 1nstruction for each store in W3. Similarly,
W3 and W6 are inserted into gal’s prolog and epilog
respectively. They include store/restore instructions for
OREG(bar,gal)>{R29,R30}, along with the supplanted
store/restore of R31.

The optimizer has replaced the calls to bar at L1 and L3
with wrapper code W1 and W2 respectively. Since OPT(bar)

\OREG (bar, foo)={R30}, the wrapper code W1 replacing
the call to bar 1 foo includes store/restore 1nstructions for
R30, as well as a call to bar_opt. Wrapper code W2, which
replaces the call to bar in gal, includes no store/restore
instructions since OPT(bar NOREG(bar,gal) 1s the empty set.
Preferably, the optimizer will eliminate wrapper code W2,
and replace the call to bar 1 gal at L3 with a call to bar_opt
instead.

In other words, a store/restore nstruction for each of the
registers in OPT(bar) 1s added in place of the corresponding
instructions removed from the prolog/epilog of bar. If a
given register 1s unused in the caller function, the caller
function 1s modified by adding the store/restore instructions
to the caller function prolog/epilog. The register will be
saved 1n the caller stack frame. If the register 1s used 1n the
caller function, the store/restore instructions are added to the
wrapper code before/after the call to bar_opt. The register
will be saved 1n the stack frame of bar_opt.

Duplicating the code of function bar 1s done 1n order to
preserve the correctness of the program. The program may
contain undetected call instructions to bar, such as call
instructions via registers or call instructions from other
modules such as libraries. All the detected call instructions
will be redirected, according to the above optimization
algorithm, to 1invoke the optimized function bar_opt,
whereas all the undetected call instructions will continue to
branch to the original non-optimized function bar. In cases
where the entire control flow graph 1s known, the optimizer
need not duplicate the code 1n bar to a new location, and will
instead preferably replace all store/restore instructions that
reference OPT(bar) 1n the prolog/epilog of bar with NOP
instructions.

Realistically, the entire control flow graph 1s rarely com-
pletely known. When the control flow graph 1s incompletely




Us 7,036,116 B2

13

known, the optimizer preterably optimizes the original bar
in situ and renames 1t bar_opt. The optimizer then creates a
new wrapper function. The new wrapper function comprises
the removed store instructions, a call to bar_opt, and the
removed restore instructions. The new wrapper function 1s
named bar, since it 1s functionally equivalent to the original
function bar. All calls to bar that cannot safely use bar_opt
are routed to the new wrapper function. For instance, 1f bar
1s located 1n a library that 1s loaded into memory at run-time,
the Tunction location table 1n the library header 1s modified
so that any caller function that calls bar from outside the
library 1s referred to the new wrapper function instead of
bar_opt.

Table II below demonstrates optimizing function bar in
situ. The conventions and assumptions used 1n the table are
identical to those 1n Table 1.

TABL.

L1

11

CODE COMPARISON

Before optimization After optimization

Program begin Program begin

Function foo: Function foo:

Prolog: Prolog:
store R30 store R30
FOOQO1: store R31 FOO1: branch W3
FOO2: FOO?2:
body: body:
L.1: call bar L.1: branch W1
L.2: . L.2:
Epilog: Epilog:
FOQO3: restore R30 FOO3: branch W4
FOO4: restore R31 FOQO4: restore R31
return return

Function gal: Function gal:

Prolog: Prolog:
GALl: store R31 GALl: branch W5
GAL2: GAL2:
body: body:
L.3: call bar L.3: branch W2
L4: . L.4:
Epilog: Epilog:
GAL3: restore R31 GAL3: branch W6
GAL4: GAL4: ..

return return

Function bar: Function bar_ opt:

Prolog: Prolog:
store R29 NOP
store R30 NOP
store R31 store R31
Epilog: Epilog:
restore R29 NOP
restore R30 NOP
restore R31 restore R31
return return

program end

Function bar:
Prolog:
store R29

10

15

20

25

30

35

40

45

50

55

60

65

14

TABLE II-continued

CODE COMPARISON

Before optimization After optimization

store R30
call bar_ opt
Epilog:
restore R29
restore R30
return
/* foo’s call to bar®/ Wl store R30
call bar_ opt
restore R30
branch L2
/* gal’s call to bar */ W2: call bar__opt
branch L4
/* percolated to W3 store R29
foo’s prolog */ branch FOO2
/* percolated to W4 restore R29
foo’s epilog */ branch FOO4
/* percolated to W35 store R29
to gal’s prolog */ store R30
branch GAL?2
/* percolated to W6: restore R29
to gal’s epilog */ restore R30
branch GAL4

program end

Table II 1s functionally equivalent to Table I. Only the
positions of bar_opt and bar have been interchanged. Less
code must be added when using the technique shown 1n
Table II than that 1n Table I, since we do not duplicate the
entire function.

Preferably, after performing the optimization described
above, a code-straightening algorithm 1s applied to the
generated code 1 order to remove the unconditional
branches to and from the wrapper codes. Straightening
algorithms are known in the art of post-link optimization
tools, such as the FDPR (Feedback Directed Program
Restructuring) tool offered by IBM Corporation (Armonk,
N.Y.) as part of the Performance Tool Box (PTX) for the
AIX™ operating system. Further aspects of FDPR are
described 1n the above-mentioned articles by Haber et al.,
Henis et al., and Schmidt et al.

The preferred embodiments described above are all based
on the assumption that for the sake of safety, the original
post-link code cannot be expanded or shrunk during opti-
mization. The principles of the present invention can also be
applied, however, in an environment that enables deletion,
addition and movement of code. Such an environment is
provided by some post-link compilers, particularly when the
entire program can be successiully disassembled, as well as
within the framework of an optimizing compiler that
exploits profiling information. In this environment, the need
for wrapper codes can be avoided by instead inserting the
required store and restore instructions directly before and
after the corresponding call instruction in 1. Preferably,
instead of replacing the store/restore instructions in the
function prolog/epilog with NOP instructions as 1n the case
when the control tflow graph 1s fully known, the store/restore
istructions are removed from the prolog/epilog of 1.

It will thus be appreciated that the preferred embodiments
described above are cited by way of example, and that the
present invention 1s not limited to what has been particularly
shown and described hereinabove. Rather, the scope of the
present invention includes both combinations and subcom-




Us 7,036,116 B2

15

binations of the various features described hereinabove, as
well as variations and modifications thereof which would
occur to persons skilled 1n the art upon reading the foregoing
description and which are not disclosed 1n the prior art.

The 1nvention claimed 1s:
1. A method for code optimization, comprising:

disassembling object code that has been compiled and

linked;
analyzing the disassembled code so as to identify a callee
function 1n the code, the callee function including store
and restore instructions with respect to a non-volatile
register, and further to identity in the code a call
istruction to the callee function located 1nside a caller
function; and
modilying the code so as to move at least one of the store
and restore 1nstructions with respect to the non-volatile
register from the callee function to the caller function,

wherein analyzing the disassembled code comprises
determining a sum of frequencies of executing the call
istruction to the callee function within the caller
function, and moditying the code comprises modifying
the code conditional upon the sum of the frequencies of
executing the call instruction being greater than of the
sum of the frequencies of execution of call instructions
to the caller function.

2. A method according to claim 1, wherein moditying the
code comprises moving the at least one of the store and
restore 1nstructions after determining that the non-volatile
register 1s not used in the caller function.

3. A method according to claim 1, wherein modifying the
code comprises locating an unused register 1n the caller
function, and modifying the caller function to reference the
unused register instead of the non-volatile register.

4. A method according to claim 1, wherein moditying the
code comprises:

creating a copy of the callee function;

removing the at least one of the store and restore nstruc-
tions from the copy; and

modilying the call instruction to reference the copy
instead of the callee function.

5. Amethod according to claim 4, wherein the object code
comprises a fixed sequence of code mstructions ending with
a last instruction, and creating the copy comprises adding a
copy of the callee function after the last instruction.

6. A method according to claim 4, wherein analyzing the
disassembled code comprises 1dentifying call instructions to
the callee function located 1n a plurality of caller functions,
and wherein modifying the code comprises selecting at least
one of the plurality of caller functions to modity.

7. A method according to claim 6, wherein modifying the
code comprises moving the at least one of the store and
restore instructions after determining that the non-volatile
register 1s not used 1n the at least one of the plurality of caller
functions that 1s selected.

8. A method according to claim 7, wherein moditying the
code comprises, for each one of the plurality of caller
functions, finding any use of the non-volatile register 1n the
one of the plurality of caller functions, and inserting a store
instruction before the call nstruction and a restore 1nstruc-
tion after the call instruction 1n the one of the plurality of
caller functions.

9. A method according to claim 8, wherein moditying the
code comprises, 1f the use 1s not found, adding the at least
one of the store and restore instructions to the one of the
plurality of caller functions.

10

15

20

25

30

35

40

45

50

55

60

65

16

10. A method according to claim 1, wherein the callee
function has an original name, and wherein modifying the
code comprises:

removing the at least one of the store and restore mstruc-

tions from the callee function;

renaming the callee function with a new name; and

creating an added function with the original name of
the callee function, the added function comprising the
at least one of the store and restore instructions
removed from the callee function and a call to the callee
function using the new name.

11. A method according to claim 10, wherein the object
code comprises a fixed sequence of code 1nstructions ending
with a last instruction, and creating the added function
comprises serting the added function after the last instruc-
tion.

12. A method according to claim 10, wherein analyzing
the disassembled code comprises identifying call instruc-
tions to the callee function located 1n a plurality of caller
functions, and wherein moditying the code comprises select-
ing at least one of the plurality of caller functions to modity.

13. A method according to claim 12, wherein modifying
the code comprises moving the at least one of the store and
restore 1nstructions after determining that the non-volatile
register 1s not used in the at least one of the plurality of caller
functions that 1s selected.

14. A method according to claim 13, wherein modifying
the code comprises, for each one of the plurality of caller
functions, finding any use of the at least one of the non-
volatile register 1in the one of the plurality of caller functions,
and 1nserting a store instruction before the call nstruction
and a restore instruction after the call istruction 1n the one
of the plurality of caller functions.

15. A method according to claim 14, wherein modifying
the code comprises, 11 the use 1s not found, adding the at least
one of the store and restore mnstructions to the one of the
plurality of caller functions.

16. A method according to claim 10, wherein a function
comprises a name, and creating the added function com-
prises renaming the callee function with a new name, and

naming the added function with the name of the callee
function.

17. Amethod according to claim 1, wherein modifying the
code comprises adding the at least one of the store and
restore instructions to the caller function.

18. A method according to claim 17, wherein the caller
function comprises a fixed sequence of code instructions,
and modilying the code comprises modifying the code
without altering the fixed sequence.

19. A method according to claim 18, wherein adding the
at least one of the store and restore 1nstructions comprises
replacing an instruction in at least one of the prolog and
epilog of the caller function with an unconditional branch to
a caller function wrapper code, and wherein the caller
function wrapper code comprises the mstruction so replaced
and the at least one of the store and restore 1nstructions.

20. Amethod according to claim 1, wherein modifying the
code comprises recompiling the object code.

21. Apparatus for code optimization, comprising a code
processor, which 1s arranged to disassemble object code that
has been compiled and linked, to analyze the disassembled
code so as to identily a callee Tunction 1n the code, the callee
function including store and restore imstructions with respect
to a non-volatile register, and further to identify 1n the code
a call instruction to the callee function located 1nside a caller
function, and to modity the code so as to move at least one




Us 7,036,116 B2

17

of the store and restore instructions with respect to the
non-volatile register from the callee function to the caller
function,

wherein the processor 1s arranged to determine a sum of

frequencies of executing the call mstruction to the
callee function within the caller function, and to modity
the code conditional upon the sum of the frequencies of
executing the call instruction being greater than the
sum of the frequencies of execution of call istructions
to the caller function.

22. Apparatus according to claim 21, wherein the proces-
sor 1s arranged to move the at least one of the store and
restore 1nstructions after determining that the non-volatile
register 1s not used 1n the caller function.

23. Apparatus according to claim 21, wherein the proces-
sor 1s arranged to locate an unused register in the caller
function, and to modily the caller function to reference the
unused register 1nstead of the non-volatile register.

24. Apparatus according to claim 21, wherein the proces-
sor 1s arranged to create a copy of the callee function, to
remove the at least one of the store and restore 1nstructions
from the copy, and to modity the call instruction to reference
the copy instead of the callee function.

25. Apparatus according to claim 24, wherein the object
code comprises a fixed sequence of code 1nstructions ending
with a last nstruction, and the processor 1s arranged to add
a copy of the callee function after the last istruction.

26. Apparatus according to claim 24, wherein the proces-
sor 1s arranged to identily call instructions to the callee
function located 1n a plurality of caller functions, and to
select at least one of the plurality of caller functions to
modity.

27. Apparatus according to claim 26, wherein the proces-
sor 1s arranged to move the at least one of the store and
restore 1nstructions after determining that the non-volatile

register 1s not used in the at least one of the plurality of caller
functions that 1s selected.

28. Apparatus according to claim 27, wherein the proces-
sor 1s arranged, for each one of the plurality of caller
functions, to find any use of the at least one of the non-
volatile register 1n the one of the plurality of caller functions,
and to insert a store instruction before the call instruction
and a restore instruction after the call istruction 1n the one
of the plurality of caller functions.

29. Apparatus according to claim 28, wherein the proces-
sor 1s arranged, 1f the use 1s not found, to add the at least one
of the store and restore 1nstructions to the one of the plurality
of caller functions.

30. Apparatus according to claim 21, wherein the callee
function has an original name, and wherein the processor 1s
arranged to remove the at least one of the store and restore
instructions from the callee function and to rename the
callee function with a new name, and to create an added
function with the original name of the callee function, the
added function comprising the at least one of the store and
restore 1nstructions removed from the callee function and a
call to the callee function using the new name.

31. Apparatus according to claim 30, wherein the object
code comprises a fixed sequence of code 1nstructions ending
with a last istruction, and the processor 1s arranged to insert
the added function after the last instruction.

32. Apparatus according to claim 30, wherein the proces-
sor 1s arranged to identily call instructions to the callee
function located 1n a plurality of caller functions, and to
select at least one of the plurality of caller functions to

modity.

5

10

15

20

25

30

35

40

45

50

55

60

65

18

33. Apparatus according to claim 32, wherein the proces-
sor 1s arranged to move the at least one of the store and
restore instructions after determining that the non-volatile
register 1s not used in the at least one of the plurality of caller
functions that 1s selected.

34. Apparatus according to claim 33, wherein the proces-
sor 1s arranged, for each one of the plurality of caller
functions, to find any use of the at least one of the non-
volatile register in the one of the plurality of caller functions,
and to insert a store instruction before the call 1nstruction
and a restore 1nstruction after the call instruction in the one
of the plurality of caller functions.

35. Apparatus according to claim 34, wherein the proces-
sor 1s arranged, 1f the use 1s not found, to add the at least one
of the store and restore 1nstructions to the one of the plurality
ol caller functions.

36. Apparatus according to claim 30, wherein a function
comprises a name, and the processor 1s arranged to rename
the callee function with a new name, and name the added
function with the name of the callee function.

377. Apparatus according to claim 21, wherein the proces-
sor 1s arranged to add the at least one of the store and restore
instructions to the caller function.

38. Apparatus according to claim 37, wherein the caller
function comprises a fixed sequence of code instructions,
and the processor 1s arranged to modily the code without
altering the fixed sequence.

39. Apparatus according to claim 38, wherein the proces-
sor 1s arranged to replace an instruction in at least one of the
prolog and epilog of the caller function with an uncondi-
tional branch to a caller function wrapper code, and wherein
the caller function wrapper code comprises the mstruction so
replaced and the at least one of the store and restore
instructions.

40. Apparatus according to claim 21, wherein the proces-
sor 1s arranged to modily the code by recompiling the object
code.

41. A computer software product, comprising a computer-
readable medium in which software 1s stored, which soft-
ware, when read by a computer, causes the computer to
disassemble object code that has been compiled and linked,
to analyze the disassembled code so as to identily a callee
function 1n the code, the callee function including store and
restore 1instructions with respect to a non-volatile register,
and further to identify in the code a call mstruction to the
callee function located inside a caller function, and to
modily the code so as to move at least one of the store and
restore instructions with respect to the non-volatile register
from the callee function to the caller function,

wherein the software causes the computer to determine a

sum of frequencies of executing the call mstruction to
the callee function within the caller function, and to
modily the code conditional upon the sum of the
frequencies of executing the call mstruction being
greater than the sum of the frequencies of execution of
call instructions to the caller function.

42. A product according to claim 41, wherein the software
causes the computer to move the at least one of the store and
restore instructions after determining that the non-volatile
register 1s not used 1n the caller function.

43. A product according to claim 41, wherein the software
causes the computer to locate an unused register 1n the caller
function, and to modily the caller function to reference the
unused register istead of the non-volatile register.

44 . A product according to claim 41, wherein the software
causes the computer to create a copy of the callee function,
to remove the at least one of the store and restore mnstruc-



Us 7,036,116 B2

19

tions from the copy, and to modify the call instruction to
reference the copy instead of the callee function.

45. A product according to claim 44, wherein the object
code comprises a fixed sequence of code 1nstructions ending
with a last mstruction, and the software causes the computer
to add a copy of the callee function after the last instruction.

46. A product according to claim 44, wherein the software
causes the computer to identify call instructions to the callee
function located 1n a plurality of caller functions, and to
select at least one of the plurality of caller functions to
modity.

47. A product according to claim 46, wherein the software
causes the computer to move the at least one of the store and
restore 1nstructions after determining that the non-volatile
register 1s not used in the at least one of the plurality of caller
functions that 1s selected.

48. A product according to claim 47, wherein the software
causes the computer, for each one of the plurality of caller
functions, to find any use of the at least one of the non-
volatile register 1n the one of the plurality of caller functions,
and to insert a store instruction before the call instruction
and a restore 1nstruction after the call instruction in the one
of the plurality of caller functions.

49. A product according to claim 48, wherein the software
causes the computer, 1f the use 1s not found, to add the at
least one of the store and restore instructions to the one of
the plurality of caller functions.

50. A product according to claim 41, wherein the callee
function has an original name, and wherein the software
causes the computer to remove the at least one of the store
and restore instructions from the callee function and to
rename the callee function with a new name, and to create
an added function with the original name of the callee
function, the added function comprising the at least one of
the store and restore instructions removed from the callee
function and a call to the callee function using the new name.

51. A product according to claim 50, wherein the object
code comprises a fixed sequence of code 1nstructions ending
with a last mstruction, and the software causes the computer
to sert the added function after the last istruction.

52. A product according to claim 50, wherein the software
causes the computer to 1dentify call instructions to the callee

10

15

20

25

30

35

40

20

function located in a plurality of caller functions, and to
select at least one of the plurality of caller functions to
modity.

53. A product according to claim 52, wherein the software
causes the computer to move the at least one of the store and
restore instructions after determining that the non-volatile
register 1s not used 1n the at least one of the plurality of caller
functions that 1s selected.

54. A product according to claim 53, wherein the software
causes the computer, for each one of the plurality of caller
functions, to find any use of the at least one of the non-
volatile register in the one of the plurality of caller functions,
and to insert a store instruction before the call instruction
and a restore struction after the call mstruction in the one
of the plurality of caller functions.

55. A product according to claim 54, wherein the software
causes the computer, if the use 1s not found, to add the at
least one of the store and restore instructions to the one of
the plurality of caller functions.

56. A product according to claim 50, wherein a function
comprises a name, and the software causes the computer to
rename the callee function with a new name, and name the
added function with the name of the callee function.

57. A product according to claim 41, wherein the software
causes the computer to add the: at least one of the store and
restore instructions to the caller function.

58. A product according to claim 57 wherein the caller
function comprises a fixed sequence of code instructions,
and the software causes the computer to modily the code
without altering the fixed sequence.

59. A product according to claim 58, wherein the software
causes the computer to replace an 1nstruction 1n at least one
of the prolog and epilog of the caller function with an
unconditional branch to a caller function wrapper code, and
wherein the caller function wrapper code comprises the
instruction so replaced and the at least one of the store and
restore instructions.

60. A product according to claim 41, wherein the software
causes the computer to modity the code by recompiling the
object code.



	Front Page
	Drawings
	Specification
	Claims

