12 United States Patent

Pritchard et al.

US007036107B1

US 7,036,107 B1
Apr. 25, 2006

(10) Patent No.:
45) Date of Patent:

(54) METHODS AND APPARATUS FOR
SELECTIVE COMMENT ASSERTION

(75) Inventors: Jeffrey Orion Pritchard, Santa Cruz,
CA (US); Tim Allen, Santa Cruz, CA

(US); Aaron Ferrucci, Santa Cruz, CA

(US); Chris Adler, Watsonville, CA

(US)

(73) Assignee: Altera Corporation, San Jose, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 328 days.

(21) Appl. No.: 10/461,742

(22) Filed: Jun. 12, 2003
(51) Imt. CL.
GO6F 17/50 (2006.01)
(52) US.CL ..., 716/18; 716/4; 703/13
(58) Field of Classification Search 716/1,

716/4, 18; 703/13
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,519,756 B1* 2/2003 Kaoetal 716/18
6,836,877 B1* 12/2004 Dupenloup 716/18

Comment Indicator 501

Vendor Code 505

OTHER PUBLICATTIONS

Van De Vanter, “Preserving the Documentary Structure of
Source Code 1in Language-based Transformation Tools,”
2001 First IEEE Int’] Workshop on Source Code Analysis
and Manipulation, pp. 131-141.%

Some et al, “Parsing Minimization when FExtracting
Information from Code in the Presence of Conditional
Compilation,” 1998 6th Int’l Workshop on Program
Comprehension, pp. 118-125.%

Bening et al., “Optimizing Multiple EDA Tools within the
ASIC Design Flow,” IEEE Design & Test of Computers, pp.
46-535.%

Exemplar Logic, Inc. “Leonardo Spectrum for Altera Refer-
ence Manual, Software Version v2001.1”, copyright 2001
Exemplar Logic, Inc. Jul. 2001.

Synplify, Inc., Synplity Reference Manual, Oct. 2001.

* cited by examiner

Primary Examiner—ILeigh M. Garbowski

(74) Attorney, Agent, or Firm—Beyer, Weaver & Thomas,
LLP.

(57) ABSTRACT

Methods and apparatus are provided for efliciently imple-
menting a programmable chip using hardware description
source files passed through multiple tools. A hardware
description language source file 1s provided with mecha-
nisms to allow tool-specific code to be handled by both a
synthesis tool and by a simulation tool. Instructions are
provided to direct a synthesis tool to read as code comments
that a stmulation tool 1s configured to disregard.

31 Claims, 7 Drawing Sheets

Instruction
{Exception) 503

Comment Indicator 511

Comment Indicator

Vendor Code 525

Synthesis Tool Specific Code

513

End Instruction

(Exception)

US 7,036,107 B1

Sheet 1 of 7

Apr. 25, 2006

U.S. Patent

MV 10114,
| 2an3rg

¢ simowarg N30T

—— N

_ LIT YRR | | ST WP _
10S$3301] JOSS00I]

11] sy |
0SS0

1 €11 Juta[H
10552001

_ COT AIONRN
e

U.S. Patent Apr. 25, 2006 Sheet 2 of 7 US 7,036,107 B1

Figure 2
“Prior Art”

201 Input Stage

205 ™ ‘ Generator Program

Logic Description

207 \{ Synthesis Tool i 209
—

v_ _
213 \‘l Place-and-Route I
219 Programmable Logic
Configuration

Simulation Tool

U.S. Patent Apr. 25, 2006 Sheet 3 of 7 US 7,036,107 B1

Figure 3
“Prior Art”

e o

VHDL Source File
301

Preprocessing Script
305

Simulation Tool 325 Simulation Tool 321 Synthesis Tool 303
[— I ——— , 4
Project Library Assignment And . |
Mapping File 315 Conﬁguarla;mn File EDF Input File 311

|

U.S. Patent Apr. 25, 2006 Sheet 4 of 7 US 7,036,107 B1

Figure 4
“Prior Art”

Comment Indicator 401 Vendor Caode 405 Instruction

Simulation Tool Specific Code

Comment Indicator 421 Vendor Code 425 | End Instruction 423

U.S. Patent Apr. 25, 2006 Sheet 5 of 7 US 7,036,107 B1

Figure 5
' Instruction
Comment Indicator 501 Vendor Code 5035 (Exception) 503
Comment Indicator 511 Synthesis TOgll gpeciﬁc Code

—

Comment Indicator Vendor Code 525 E‘%%igzggggfn

— e

U.S. Patent Apr. 25, 2006 Sheet 6 of 7 US 7,036,107 B1

Figure 6

Handling Synthesis
Tool Specific Code

601 Begin Parsing Source File

Read Begin Comment
603 Indicator

611 Read As
Vendor Code Match? No

Yes

Instruction
To Read Comment As
HD1. (Exception
Indicator)?

N623 Handle As
° Dhrective

Yes
y_

Read-amments As HDL
631 Disregarding Comment
Indicators

e

No

Code Maich And
Corresponding End
ception Indicator

033

Yes

635 Continue
Scanning File

U.S. Patent Apr. 25, 2006 Sheet 7 of 7 US 7,036,107 B1

Figure 7
714 710
| L.
700 CDROM | Interface
\ B
Y Y 706
]
1 Primary
Storage (A)
Mass - -
-« Processor
Storage
" Prlmary
702 N S B
708 1UZ torage (B)
|
I\ 704
Y
Network — 712
Connection

SN

Us 7,036,107 Bl

1

METHODS AND APPARATUS FOR
SELECTIVE COMMENT ASSERTION

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to implementing program-
mable chups. More specifically, the present invention relates
to methods and apparatus for enabling the ethicient and
optimized implementation of programmable chips using
hardware description language source {files passed through
multiple tools.

2. Description of the Prior Art

Logic designers traditionally process designs represented
as hardware description language source files using a variety
of different tools. In one example, designs are simulated
using one tool and synthesized using another tool. In many
instances, the various tools are provided by different ven-
dors. Many of the tools support and recognize the general
syntax and constructs in hardware description language
code.

However, some tool-specific portions of code are some-
times used during logic design. A synthesis tool provider
may support tool-specific syntax and constructs that extend
the features and functionality of the hardware description
language for that particular tool. However, the tool-specific
syntax and constructs may not be supported by other tools.
For example, a synthesis tool-specific portion of code may
not be recognizable by a simulation tool. Conversely, a
simulation tool-specific portion of code may not be recog-
nizable by a synthesis tool. Few mechanisms are available
for allowing tool-specific code to be handled by multlple
tools often from different vendors. Consequently, it 1s there-
fore desirable to provide improved methods and apparatus
for handling tool-specific code.

SUMMARY OF THE

INVENTION

Methods and apparatus are provided for ethiciently imple-
menting a programmable chip using hardware description
source files passed through multiple tools. A hardware
description language source file 1s provided with mecha-
nisms to allow tool-specific code to be handled by both a
synthesis tool and by a simulation tool. Instructions are
provided to direct a synthesis tool to read as code comments
that a stmulation tool 1s configured to disregard.

In one aspect, a method for parsing code 1s provided. A
source file 1s recerved at a logic synthesis tool. A scan of the
source file 1s mitiated. The source file includes logic infor-
mation for implementing a programmable chip. Comment
indicator information included 1n the source file 1s 1dentified.
The comment indicator information directs the logic syn-
thesis tool to disregard a first portion of the source file as
comment 1nformation. Exception indicator information
included in the first portion 1s identified. The exception
indicator directs that a second portion of the source file
included 1n the first portion 1s not comment information. The
second portion 1s parsed.

In another aspect, a computer readable medium 1ncluding
computer code for implementing a programmable chip 1s
provided. The computer readable medium includes com-
ment idicator information, exception indicator information,
and logic description information. The comment indicator
information directs a logic synthesis tool to disregard a first
portion of a source file associated with the computer read-
able medium as comment mformation. The exception indi-
cator information included 1n the first portion directs that a

10

15

20

25

30

35

40

45

50

55

60

65

2

second portion of the source file included 1n the first portion
1s not comment information. The logic description informa-
tion included 1n the second portion provides information on
implementing the programmable chip.

In yet another aspect, a system for implementing a pro-
grammable chip 1s provided. The system includes an inter-
face, a memory, and a processor. The interface 1s configured
to receive a source file including logic information for
implementing a programmable chip. The processor 1is
coupled to memory. The processor 1s configured to 1mitiate a
scan of the source file and identily comment indicator
information and exception indicator information. The com-
ment indicator information designates a first portion of the
source file as comment information and the exception indi-
cator information included in the first portion designates that
a second portion of the source file 1s not comment 1nforma-
tion.

These and other features and advantages of the present
invention will be presented 1n more detail 1n the following
specification of the invention and the accompanying figures,
which illustrate by way of example the principles of the
invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may best be understood by reference to the
tollowing description taken in conjunction with the accom-
panying drawings, which illustrate specific embodiments of
the present invention.

FIG. 1 1s a diagrammatic representation showing a device
that can be the target of the techmiques of the present
invention.

FIG. 2 1s a diagrammatic representation showing the
programming of the target device.

FIG. 3 1s a diagrammatic representation showing hard-
ware description language processing.

FIG. 4 1s a diagrammatic representation showing a
mechanism for handling simulation tool-specific code.

FIG. § 1s a diagrammatic representation showing a
mechanism for handling synthesis tool-specific code.

FIG. 6 1s a flow process diagram showing one example of
an 1mproved technique for logic synthesis and simulation.

FIG. 7 1s a diagrammatic representation of a system for
configuring the target device.

DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENTS

Reference will now be made 1n detail to some specific
embodiments of the invention including the best modes
contemplated by the inventors for carrying out the invention.
Examples of these specific embodiments are illustrated 1n
the accompanying drawings. While the invention 1s
described in conjunction with these specific embodiments, 1t
will be understood that 1t 1s not intended to limit the
invention to the described embodiments. On the contrary, 1t
1s intended to cover alternatives, modifications, and equiva-
lents as may be included within the spirit and scope of the
invention as defined by the appended claims. For example,
the techniques of the present invention will be described in
the context of particular tools for logic synthesis and simu-
lation. However, 1t should be noted that the techniques of the
present invention can be applied to a variety of tools and
associated code provided to the tools. In the following
description, numerous specific details are set forth 1n order
to provide a thorough understanding of the present inven-
tion. The present invention may be practiced without some

Us 7,036,107 Bl

3

or all of these specific details. In other imnstances, well known

process operations have not been described in detail 1n order

not to unnecessarily obscure the present invention.
Conventional programmable chips include logic that can

be customized for specific applications based on the needs of 3

a particular user. Examples of programmable chips include
programmable logic devices (PLDs) and field program-
mable gate arrays (FPGAs). Programmable chips ofler
advantages over more specialized application-specific inte-
grated circuits (ASICs), such as significant cost savings 1n
non-mass market applications. ASICs are custom-designed
integrated circuits for specific usages. Because ASICs are
custom-designed, they are oiten faster compared to pro-
grammable chips. However, the process of designing, veri-
tying, fabricating, and testing ASICs 1s time-consuming and
expensive. Any tlaw uncovered on a particular ASIC after
fabrication 1s complete requires a vast amount of time and
expense to correct. Furthermore, ASICs are not program-
mable. An ASIC fabricated for specific digital signal pro-
cessing (DSP) applications can not be reconfigured 11 the
specific applications change.

In many 1mplementations, logic designers create a logic
description of a design using a hardware description lan-
guage (HDL) such as VHDL or Verilog. Hardware descrip-
tion languages allow the simulation and synthesis of logic
designs. In typical implementations, the same hardware
description language code 1s passed to both the simulation
tool and the synthesis tool 1n order to ensure integrity of the
design verification.

Tools for simulation allow the application of inputs and
the observation of outputs without having to implement a
physical device. Simulation tools provide designers with
cost eflective and eflicient mechanisms for both functional
and timing verification of a design. Functional verification
involves the circuit’s logical operation independent of tim-
ing considerations. Parameters such as gate delays are
disregarded. Timing verification involves the analysis of the
design’s operation with timing delays. Setup, hold, and other
timing requirements for sequential devices such as flip-tlops
are confirmed. Some available simulation tools include
Synopsys VCS, VSS, and Scirocco, available from Synop-
sys Corporation of Sunnyvale, Calif. and Cadence NC-
Verilog and NC-VHDL available from Cadence Design
Systems of San Jose, Calif.

Tools for synthesis allow the implementation of the logic
design on a programmable chip. Some of the available
synthesis tools are Leonardo Spectrum, available from Men-
tor Graphics Corporation of Wilsonville, Oreg. and Synplify
available from Synplicity Corporation of Sunnyvale, Calif.
In many instances, the simulation and synthesis tools are
capable of understanding most hardware description lan-
guage code. However, problems arise when portions of HDL
code can only be understood by either the simulation tool or
the synthesis tool. In one example, more than 90% of the
code can be read and understood by both a simulation tool
and by a synthesis tool. However, there may be some blocks
ol code meant only for the simulation tool and some other
blocks meant only for the synthesis tool.

For example, synthesis tools may understand technology
specific constructs such as memory objects (e.g. RAM or
ROM functions) and know how to build a design which
includes them directly. Some examples of RAM or ROM
functions supported by synthesis tools include library or
parameterized modules (LPM), such as lpm_ram_dq, lpm_

ram_10, lpm_rom, as well as cycle-shared dual port RAM
(csdpram), dual-port RAM (altdpram), single-Clock FIFO

(scfifo), and dual-clock FIFO (dcfifo) functions. However, a

10

15

20

25

30

35

40

45

50

55

60

65

4

simulation tool may not understand these particular con-
structs. In many instances, simulator tools have no prior
knowledge of technology specific constructs and generate
errors when exposed to the technology specific elements of
a design.

Verilog provides conditional compilation directives 1n the
form of ifdef statements that indicate to a tool such as a
compiler whether code should or should not be ignored.
High level programming languages such as C also support
similar features for software designs. In one example, 1f a
variable such as SIMULATION TOOIL READABLE 1s
toggled on, a simulation tool would parse and compile
Verilog code for simulation. However, 11 the variable SIMU-
LATION_TOOL_READABLE 1s toggled ofl, the simula-
tion tool would 1gnore the code portion. Another variable
such as SYNTHESIS TOOIL. READABLE could be
toggled 1 order to indicate whether an associated code
portion should be processed by a synthesis tool. The iidef
statements provide a convenient mechanism for logic
designers to write tool-specific code in {files passed to
multiple tools. Any code that may only be recognizable by
some of the tools configured to parse and process the code
1s referred to herein as tool-specific code. In one example,
tool-specific code 1s hardware description language code for
implementing memory objects recognizable by a synthesis
tool but not by a simulation tool. Tool-specific code recog-
nizable by a sythesis tool 1s referred to herein as synthesis
tool-specific code. Tool-specific code recognizable by a
simulation tool 1s referred to herein as simulation tool-
specific code.

Other hardware description languages such as VHDL,
however, do not provide a mechanism similar to the ifdef
statement 1in Verilog. Consequently, there 1s no convenient
mechanism for indicating, for example, that a specific por-
tion of code should be processed by a synthesis tool but
ignored by a simulation tool. A wide range of efforts have
been invested i allowing tool-specific code n VHDL
source files.

One way of allowing tool-specific code in VHDL source
files 1s to use preprocessing scripts. A logic designer pre-
pares a VHDL source file including code portions under-
standable only by a synthesis tool and code portions under-
standable only by a simulation tool. A synthesis tool
preprocessing script 1s then run on the VHDL source file to
remove or modily the simulation tool portions, creating a
synthesis tool-specific VHDL source file. The synthesis
tool-specific VHDL source {file 1s then passed to a synthesis
tool. In a similar manner, a simulation tool preprocessing
script 1s run on a VHDL source file to remove or modily any
synthesis tool portions including technology specific ele-
ments, creating a simulation tool-specific VHDL source file.
Alternatively, synthesis tool-specific elements are converted
into a format that can be understood by a simulation tool or
vice versa. The simulation tool-specific VHDL source file 1s
then passed to a simulation tool. The two different prepro-
cessing scripts may output two different tool-specific VHDL
source files. Preprocessing scripts, however, are often non-
trivial, command prompt driven utilities that are prone to
human error. Furthermore, preprocessing scripts potentially
add another layer of possible debugging in the design
process. Scripts may also have to be customized and rewrit-
ten for particular tools.

Simulation models of technology specific constructs are
often used 1n conjunction with preprocessing scripts. Pre-
processing scripts with simulation models of technology
specific constructs are also often non-trivial, command
prompt driven utilities that are prone to human error. In one

Us 7,036,107 Bl

S

example, a memory generation utility can be to create
simulation models for any supported RAM or ROM func-
tion. Instantiations of asynchronous or synchronous RAM or
ROM can also be created with the utility. Memory size and
memory type may have to be entered to a particular VHDL
design component. Many preprocessing scripts and 1n par-
ticular preprocessing scripts providing simulation models
require very particular mput formats and may only be
compatible with a certain set of simulation tools.

A less involved mechanism for allowing tool-specific
code to be passed to multiple tools would be to introduce a
statement such as ifdefl into VHDL. However, there are
many vendors and users of VHDL tools, and adding such a
teature would require agreement amongst a large number of
parties. Furthermore, adding such a feature would also
render obsolete a large number of tools currently 1n exist-
ence, as existing tools would not understand the new ifdef
analogous statement. Logic designers would then again have
to resort to one of the above mechanisms for allowing
tool-specific code.

The techniques of the present mvention recognize that
mechanisms for allowing logic designers to process HDL
source files through multiple tool chains are limited. Accord-
ing to various embodiments, the techmques of the present
invention allow tool-specific code to be processed by mul-
tiple tools 1n a manner compatible with existing synthesis
and simulation tools. In one example, a relatively simple
modification to a synthesis tool allows tool-specific code to
¢ passed to both a synthesis and a simulation tool without
modification of the simulation tool.

FIG. 1 1s a diagrammatic representation of a program-
mable chip that can be implemented from HDL source files
passed though multiple tools. In one example, the hetero-
geneous programmable chip includes memory 105, logic
clements 131 and 133, and processor elements 111, 113, 115,
and 117. It should be noted that various components such as
processor elements 111, 113, 115, and 117 are optional. The
programmable chip does not need these elements mncorpo-
rated and may have one or more processor cores. Alterna-
tively, a variety of different components can be assembled to
form a processor core. Instead of providing a generic pro-
cessor core on a programmable chip, different components
are provided to allow customization of the processor core.

Logic elements 131 typically can be implemented using,
components such as antifuses, static RAM, and EPROMS.
Any mechanism 1n a programmable chip that performs an
operation on a given number of mput lines to provide one or
more outputs based on information programmed 1s herein
referred to as a logic element. Some logic elements are
implemented as combinations of look up tables and switches
for performing Boolean operations on input lines. In one
example, a logic element includes a 16-bit SRAM lookup
table (LUT) that can implement an arbitrary 4-input logic
function, circuitry that forms a fast carry chain and a fast
cascade chain, a register and preset/reset logic for the
register.

According to various embodiments, each processor ele-
ment includes multiplier blocks and adder/output blocks.
The multiplier block includes input registers, a multiplier,
and a pipeline register for pipelining multiply-accumulate
and multiply-add/subtract functions.

FI1G. 2 1s a diagrammatic representation of one example of
the various programs, tools, and stages that are commonly
used to implement a programmable chip. An input stage 201
receives selection information typically from a user for logic
such as a processor as well as other components to be
implemented on a programmable chip. A generator program

5

10

15

20

25

30

35

40

45

50

55

60

65

6

2035 creates a logic description provides the logic description
along with other customized logic to any of a variety of
synthesis tools, place and route programs, and program-
mable logic configuration tools to allow a logic description
to be downloaded onto the programmable chip.

In one example, an mput stage 201 typically allows
selection and parameterization of components to be used
with customized logic. In some examples, components pro-
vided to an imput stage include itellectual property func-
tions, megatunctions, and intellectual property cores. The
mput stage 201 may be a graphical user interface using
wizards for allowing eflicient or convenient entry of infor-
mation. The input stage may also be a text interface or a
program reading a data file such as a spreadsheet, database
table, or schematic to acquire selection information. The
iput stage 201 produces an output containing information
about the various modules selected.

Intellectual property 1functions have conventionally
encapsulated a single implementation for the specified func-
tion. Designers would have to select general processor cores
to implement specific functions with logic elements. In some
instances, a general processor core would have some con-
figurable parameters. In one instance, an 8-bit processor
versus a 16-bit processor could be selected based on the
needs of the application and the availability of resources.

In typical implementations, the generator program 205
can 1dentily the selections and generate a logic description
with information for implementing the various modules. The
generator program 205 can be a Perl script creating HDL
files such as Verilog, Abel, VHDL, and AHDL files from the
module information entered by a user. According to various
embodiments, the generator program 2035 also provides
information to a synthesis tool 207 to allow HDL files to be
automatically synthesized. In some examples, a logic
description 1s provided directly by a designer. Some of the
available synthesis tools are Leonardo Spectrum, available
from Mentor Graphics Corporation of Wilsonville, Oreg.
and Synplify available from Synplicity Corporation of
Sunnyvale, Calif. The HDL files may contain technology
specific code readable only by a synthesis tool. The HDL
files at this point may also be passed to a sitmulation tool 209.

As will be appreciated by one of skill in the art, the input
stage 201, generator program 205, and synthesis tool 207
can be separate programs. The interface between the sepa-
rate programs can be a database file, a log, or simply
messages transmitted between the programs. For example,
instead of writing a file to storage, the mput stage 201 can
send messages directly to the generator program 205 to
allow the generator program to create a logic description.
Similarly, the generator program can provide information
directly to the synthesis tool instead of wrniting HDL files.
Similarly, mput stage 201, generator program 205, and
synthesis tool 207 can be integrated 1nto a single program.

A user may select various modules and an integrated
program can then take the user selections and output a logic
description 1n the form of a synthesized netlist without
intermediate files. Any mechanism for depicting the logic to
be programmed onto a programmable chip 1s referred to
herein as a logic description. According to various embodi-
ments, a logic description 1s an HDL file such as a VHDL,
Abel, AHDL, or Verilog file. A logic description may be in
various stages ol processing between the user selection of
components and parameters to the final configuration of the
programmable chip. According to other embodiments, a
logic description 1s a synthesized netlist such as an Elec-
tronic Design Interchange Format Input File (EDF file). An

Us 7,036,107 Bl

7

EDF file 1s one example of a synthesized netlist file that can
be output by the synthesis tool 207.

A synthesis tool 207 can take HDL files and output EDF
files. Various synthesized netlist formats will be appreciated
by one of skill in the art. The synthesized netlist file can be
read by a place and route tool 213. A place and route tool
typically locates logic cells onto specific logic elements of a
target hardware device and connects wires between the
inputs and outputs of the various logic elements in accor-
dance with logic required to implement an electronic design.
A programmable logic configuration stage 219 can take the
output of the place and route tool to program the logic device
with the user selected and parameterized modules. Accord-
ing to various embodiments, the place and route tool 213 and
the programmable logic configuration stage 219 are pro-
vided 1 the Quartus Development Tool, available from
Altera Corporation of San Jose, Calif. As will be appreciated
by one of skill in the art, a variety of synthesis, place and
route, and programmable logic configuration tools can be
used to implement various techniques of the present inven-
tion.

As noted above, diflerent stages and programs can be
integrated 1n a variety of manners. According to one embodi-
ment, the mput stage 201, the generator program 205, the
synthesis tool 207, the place and route tool 213, and the
programmable logic configuration stage 219 are integrated
into a single program. The various stages are automatically
run and transparent to a user. The program can receive the
user selected modules, generate an logic description depict-
ing logic for implementing the various selected modules,
and 1mplement the programmable chip. As will be appreci-
ated by one of skill in the art, HDL files and EDF files are
mere examples of a logic description. Other file formats as
well as internal program representations are other examples
of a logic description.

FIG. 3 1s a diagrammatic representation showing more
detailed processing associated with synthesis and simulation
tools. According to various embodiments, an HDL design
file such as a VHDL source file 301 1s provided for both
logic synthesis and simulation. The VHDL source file 301
may be provided to a synthesis tool 303, simulation software
321, and simulation software 323. In one example, simula-
tion software 325 1s capable of reading the VHDL source file
301. However, simulation software 321 1s not. Conse-
quently, VHDL source file 301 1s passed to a preprocessing
script 305 that 1s configured to convert the VHDL source file
301 into a form recognizable by simulation tool 321. In one
instance, the preprocessing script 305 removes material that
simulation tool 321 can not recognize. In another example,
the preprocessing script 305 creates simulation models for

various synthesis tool-specific portions of the VHDL source
file 301.

The synthesis tool 303 takes the VHDL source file 301
and generates output information such as EDF files files 311
for implementing the design on the programmable chip. It
should be noted that the synthesis tool 303 may also output
other files such as assignment and configuration (ACF) files
313, as well as project library mapping (LMF) files 315.
Tool-specific code creates complications during the synthe-
s1s and simulation process by introducing the possible need
for various preprocessing scripts to account for incompat-
abilities.

FIG. 4 1s a diagrammatic representation showing a com-
monly used technique for allowing the handling of simula-
tion tool-specific code. In many hardware description lan-
guages, comment indicators are used to idicate to a tool to
disregard portions of a source file. Indicators noting that

10

15

20

25

30

35

40

45

50

55

60

65

8

portions should be read as comments are referred to herein
as comment 1ndicator information. Some comment 1ndica-
tors include // and -- used to signify that the remaimng
portion of the line before the end of line or carnage return
character should be read as comments. Other comment
indicators 1include beginning comment indicators such as /*
and end comment indicators such as */ to signify that
portions of code between the indicators should be read as
comments. Conventional simulation tools and synthesis
tools recognize the comment indicators.

Comment indicators can be used to handle simulation
tool-specific code. In one example, a comment indicator
401, such as a -- character sequence, 1s used to indicate that
a particular line should be read as comments. However,
instructions can be provided within the comments 1 a
format recognizable to a tool. In one example, a comment
indicator 401 precedes a vendor code 405 directing a par-
ticular tool associated with the vendor to ignore subsequent
code until 1t reads further 1nstructions 423 associated with
another comment indicator 421 and vendor code 425. One
example 1s as follows:

-- synthesis_tool_vendor translate_oil
use std.textio.all;
-- synthesis_tool_vendor translate_on

The -- character sequence followed by the translate_ofl
isruction directs the synthesis tool to 1gnore all code until
it recei1ves a translate on instruction. The next line of code
(use std.textio.all), 1s consequently 1gnored. In one example,
the translate_ofl and translate_on mechanism provides a
convenient way for logic designers to provide simulation
tool-specific code 1n a VHDL source file. A simulation tool
reading the code line (use std.textio.all) would simply parse
and process the code as any simulation tool would and
ignore the comments. However, a specially configured syn-
thesis tool would recognize instructions embedded in the
comments and 1gnore the code line (use std.textio.all). Many
synthesis tools have been modified to look for instructions or
directives 1n comment lines. The istructions or directives
may or may not be associated with a particular vendor code.
Directives are provided in synthesis tools such as Leonardo
Spectrum, available from Mentor Graphics Corporation of
Wilsonville, Oreg. and Synplity available from Synplicity
Corporation of Sunnyvale, Calif. Consequently, a modifica-
tion to the synthesis tool allows simulation tool-specific
code to be read by both a synthesis tool and a simulation tool
without requiring any preprocessing scripts.

Simulation tools, however, have not been configured to
read and understand directives. That 1s, simulation tools do
not recognize any instructions directing the simulation tools
not to parse and process a particular block of code. A
simulation tool, 1 one example, could be modified to
recognize the following sequence:

-- simulation tool vendor translate o
my_rom lpm_rom (.address (address),.data (data));
-- simulation_tool vendor translate on

A synthesis tool reading the above code would recognize
that the 1nstruction was not directed at 1t and consequently
would parse and process the line of code (my_rom lpm_rom
(.address (address),.data (data))). A simulation tool, how-
ever, would recognize that an instruction was being provided
to not parse and process the block of code. Consequently,
synthesis tool-specific code could be passed to the simula-
tion tool without any preprocessing. However, no such
mechanisms have been generally available 1mn simulation
tools and simulation tools generally do not support direc-
tives.

[

Us 7,036,107 Bl

9

The techniques of the present invention recognize that
synthesis tool-specific code and simulation tool-specific
code can be handled by making modifications to only a
synthesis tool. Consequently, no simulation tools need to be
modified. FIG. 4 described a technique for handling simu-
lation tool-specific code by using instructions within coms-
ments. A synthesis tool would read an instruction to ignore
a specified code portion while a simulation tool would
simply parse and process the code portion.

FIG. 5 shows a mechanism for handling synthesis tool-
specific code. According to various embodiments, synthesis
tool-specific code can be handled without making any
modifications to the simulation tool. A comment 1ndicator
501 1s followed by a vendor code 505 and an mstruction 503.
The mstruction 503 precedes another comment indicator 511
associated with a line of code 513. The nstruction 503 here
directs the synthesis tool to 1gnore any comment indicators
until an end 1nstruction 1s read. Consequently, comments are
parsed and processed as code. Any instruction directing a
tool to disregard subsequent comment indicators 1s referred
to herein as exception indicator information. In one
example, exception indicator information 503 may be an
instruction such as read comment as hdl. Comment 513
delinated by comment indicator 311 would be read as HDL
code. Multiple lines of comments may be read as HDL code
before an end exception 525 1s received. One example of
code 1s as follows:

-- synthesis_tool_vendor read_comment_as_hdl_on

-- my_rom lpm_rom (.address (address),.data (data));

-- synthesis_tool_vendor read_comment_as_hdl_off

Having source code 1n a comment indicator delineated
portion allows a simulation tool to simply 1gnore all pro-
vided synthesis tool-specific code. A synthesis tool, how-
ever, would parse and process the synthesis tool-specific
code based upon the instruction to read the comment as
HDL.

A variety of mechanisms can be used to handle error
conditions such as nested comments or multiple consecutive
begin nstructions or multiple consecutive end instructions.
In one example, nested comments may not be supported and
multiple consecutive begin or end instructions may be
ignored. Instruction formats may also vary. In one case,
instructions may be followed by toggles or on/ofl indicators.

FIG. 6 1s a flow process diagram showing the handling of
synthesis tool-specific code 1 a synthesis tool. At 601, a
source file 1s parsed. During parsing, a begin comment
indicators such as a //, --, or /* 1s read at 603. At 611, 1t 1s
determined 1f there 1s a vendor code match. If the character
sequence following the begin comment indicator does not
match the vendor code of the synthesis tool, subsequent
comments are read as comments. In typical cases of // or --
begin comment indicators, the rest of the line 1s read as
comments. In typical cases of the /* begin comment indi-
cator, the code between the /* and the subsequent */ 1s read
as comments. If there 1s a vendor code match at 611, 1t 1s
determined at 621 1f there 1s a exception indicator or an
instruction to read the comment not as a comment, but as
HDL. If there 1s not, the instruction 1s handled as a directive
at 623. If an exception indicator 1s present, comments are
read as HDL while comment indicators are disregarded at
631. Comments are read as HDL until another vendor code
match and corresponding end exception indicators 1s read at
633. When the end exception indicator i1s read at 633,
parsing continues to proceed at 633.

The techniques of the present invention for allowing
tool-specific code processing by multiple tools can be imple-
mented on a variety of system. FIG. 7 illustrates a typical

10

15

20

25

30

35

40

45

50

55

60

65

10

computer system that can be used to implement a program-
mable chip in accordance with an embodiment of the present
invention. The computer system 700 includes any number of
processors 702 (also referred to as central processing units,
or CPUs) that are coupled to storage devices including
primary storage 706 (typically a random access memory, or
“RAM™), primary storage 704 (typically a read only
memory, or “ROM?™). The processors 702 can be configured
to recerve selection information from a user to dynamically
generate a logic description. As 1s well known 1n the art,
primary storage 704 acts to transier data and instructions
uni-directionally to the CPU and primary storage 706 1s used
typically to transfer data and instructions 1n a bi-directional
mannet.

Both of these primary storage devices may include any
suitable type of the computer-readable media described
above. A mass storage device 708 i1s also coupled bi-
directionally to CPU 702 and provides additional data
storage capacity and may include any of the computer-
readable media described above. The mass storage device
708 may be used to store programs, data and the like and 1s
typically a secondary storage medium such as a hard disk
that 1s slower than primary storage. The mass storage device
708 can be used to hold a library or database of prepackaged
logic or intellectual property functions, as well as informa-
tion on generating particular configurations. It will be appre-
ciated that the information retained within the mass storage
device 708, may, in appropriate cases, be incorporated 1n
standard fashion as part of primary storage 706 as virtual
memory. A specific mass storage device such as a CD-ROM
714 may also pass data unmi-directionally to the CPU.

CPU 702 1s also coupled to an interface 710 that includes
one or more mput/output devices such as such as video
monitors, track balls, mice, keyboards, microphones, touch-
sensitive displays, transducer card readers, magnetic or
paper tape readers, tablets, styluses, voice or handwriting
recognizers, or other well-known input devices such as, of
course, other computers. Video momitors can be used to
display wizards and subwizards to a user. Finally, CPU 702
optionally may be coupled to a computer or telecommuni-
cations network using a network connection as shown
generally at 712. With such a network connection, 1t 1s
contemplated that the CPU might receive information from
the network, or might output information to the network in
the course of performing the above-described method steps.
It should be noted that the system 700 may also be associ-
ated with devices for transierring completed designs onto a
programmable chip. The above-described devices and mate-
rials will be familiar to those of skill in the computer
hardware and software arts.

The hardware elements described above may be config-
ured (usually temporarily) to act as multiple software mod-
ules for performing the operations of this invention. For
example, instructions for running a generator program, input
stage (e.g., a wizard), and/or compiler may be stored on
mass storage device 708 or 714 and executed on CPU 708
in conjunction with primary memory 706.

Although many of the components and processes are
described above in the singular for convenience, 1t will be
appreciated by one of skill in the art that multiple compo-
nents and repeated processes can also be used to practice the
techniques of the present invention.

While the invention has been particularly shown and
described with reference to specific embodiments thereof, 1t
will be understood by those skilled 1n the art that changes in
the form and details of the disclosed embodiments may be
made without departing from the spirit or scope of the

Us 7,036,107 Bl

11

invention. For example, various aspects described above
may be implemented using firmware, soitware, or hardware.
Aspects of the present invention may be employed with a
variety of different file formats, languages, and communi-
cation protocols and should not be restricted to the ones
mentioned above. In one example, the techniques of the
present invention could be applied to any software parser.
Mechanisms allow for additional special code to be passed
exclusively to a particular vendor’s compiler.

Furthermore, the techniques of the present invention have
been described with reference to changes 1n a synthesis tool
to allow support for tool-specific code without making
changes to a simulation tool. It 1s recognized that similar
changes can be made to a simulation tool to allow support
tor tool-specific code without making changes to a synthesis
tool. Instructions can be provided in comment portions to
mstruct a simulation tool to disregard code or to read
comments as code. Therefore, the scope of the mvention
should be determined with reference to the appended claims.

What 1s claimed 1s:

1. A method for parsing code, the method comprising:

receiving a source file at a logic synthesis tool;

initiating a scan of the source file, the source file including
logic information for implementing a programmable
chip;
identifying comment indicator information included in
the source file, the comment indicator information
directing the logic synthesis tool to disregard a first
portion of the source file as comment information;

identifying exception indicator information included in
the first portion, the exception indicator noting that a
second portion of the source {file included 1n the first
portion 1s not comment information;

parsing the second portion.

2. The method of claim 1, wherein the second portion 1s
parsed to provide information for implementing the pro-
grammable chip.

3. The method of claim 1, wherein the second portion of
text 1s parsed for logic synthesis or simulation.

4. The method of claim 3, wherein the second portion of
text 1dentifies memory objects.

5. The method of claim 1, further comprising forwarding
the source file to a simulation tool, wherein the simulation
tool disregards both the first portion and the second portion
as comment information.

6. The method of claim 1, wherein the second portion 1s
bounded by a begin exception indicator and an end excep-
tion 1ndicator.

7. The method of claim 6, wherein the begin exception
indicator and the end exception indicator each include a
vendor and a directive.

8. The method of claam 7, wherein the directive 1s
interpreted as an instruction by the logic synthesis tool.

9. The method of claim 1, wherein the comment indicator
information 1includes a first begin comment indicator,
wherein the logic synthesis tool 1gnores a subsequent begin
comment 1ndicator following the first begin comment 1ndi-
cator without an intervening end comment indicator.

10. The method of claim 1, wherein the comment indi-
cator information includes a first end comment 1ndicator,
wherein the logic synthesis tool 1gnores a subsequent end
comment indicator following the first end comment 1ndica-
tor without an mtervening begin comment indicator.

11. The method of claim 1, wherein the first portion 1is
bounded by a begin comment 1indicator and an end comment
indicator.

10

15

20

25

30

35

40

45

50

55

60

65

12

12. The method of claim 11, wherein the begin comment
indicator 1s a pair of forward slashes.

13. The method of claim 12, wherein the end comment
indicator 1s an end of line indicator.

14. The method of claim 12, wherein the begin comment
indicator 1s a forward slash followed by an asterisk.

15. The method of claim 14, wherein the end comment
indicator 1s an asterisk followed by a forward slash.

16. The method of claim 11, wherein the begin comment
indicator 1s a pair of dashes.

17. A computer readable medium including computer
code for implementing a programmable chip, the computer
readable medium comprising:

comment indicator information, the comment indicator
information directing a logic synthesis tool to disregard
a first portion of a source file associated with the
computer readable medium as comment 1information;

exception indicator information included 1n the first por-
tion, the exception indicator noting that a second por-
tion of the source file included in the first portion 1s not
comment information;

logic description information included 1n the second por-
tion providing information on implementing the pro-
grammable chip.

18. The computer readable medium of claim 17, wherein

the logic description information includes information for
implementing a processor core.

19. The computer readable medium of claim 18, wherein
the source file 1s an HDL source file.

20. The computer readable medium of claim 17, wherein
the second portion 1s parsed for logic synthesis or simula-
tion.

21. The computer readable medium of claim 20, wherein
the second portion 1dentifies memory objects.

22. The computer readable medium of claim 17, wherein
the second portion 1s bounded by a begin exception indicator
and an end exception indicator.

23. The computer readable medium of claim 22, wherein
the begin exception 1indicator and the end exception indica-
tor each include a vendor and a directive.

24. The computer readable medium of claim 23, wherein
the directive 1s imterpreted as an instruction by the logic
synthesis tool.

25. A system for implementing a programmable chip, the

system comprising:

an 1nterface configured to receive a source file including
logic information for implementing a programmable
chip;

memory;

a processor coupled to said memory, the processor con-
figured to 1nitiate a scan of the source file and 1dentity
comment indicator information and exception indicator
information, wherein the comment indicator informa-
tion designating a first portion of the source file as
comment information and the exception indicator
information included in the first portion designates that

a second portion of the source file 1s not comment
information.

26. The system of claim 25, wherein the second portion 1s
parsed to provide information for implementing the pro-
grammable chip.

Us 7,036,107 Bl

13 14
27. The system of claim 25, wherein the second portion 1s noting that a second portion of the source file included
parsed for logic synthesis or simulation. in the first portion is not comment information;

28. A system for parsing code, the system comprising:

.. . _ means for parsing the second portion.
means for receiving a source {ile at a logic synthesis tool; P 2 P

means for initiating a scan of the source file, the source 5 29. The SySte_m ofclaim 2_8: where?n the secoPd portion 1s
file including logic information for implementing a parsed to provide imnformation for implementing the pro-
programmable chip; grammable chip.

means for identifying comment indicator information 30. The system of claim 29, wherein the source file is an
included in the source file, the comment indicator HDI . source file.

information directing the logic synthesis tool to disre- 10 _ _ o
gard a first portion of the source file as comment 31. The system of claim 28, wherein the second portion 1s

information: parsed for logic synthesis or simulation.

means for identifying exception indicator information
included 1n the first portion, the exception indicator * 0k k% ok

	Front Page
	Drawings
	Specification
	Claims

